110 research outputs found

    Submodularity and Optimality of Fusion Rules in Balanced Binary Relay Trees

    Full text link
    We study the distributed detection problem in a balanced binary relay tree, where the leaves of the tree are sensors generating binary messages. The root of the tree is a fusion center that makes the overall decision. Every other node in the tree is a fusion node that fuses two binary messages from its child nodes into a new binary message and sends it to the parent node at the next level. We assume that the fusion nodes at the same level use the same fusion rule. We call a string of fusion rules used at different levels a fusion strategy. We consider the problem of finding a fusion strategy that maximizes the reduction in the total error probability between the sensors and the fusion center. We formulate this problem as a deterministic dynamic program and express the solution in terms of Bellman's equations. We introduce the notion of stringsubmodularity and show that the reduction in the total error probability is a stringsubmodular function. Consequentially, we show that the greedy strategy, which only maximizes the level-wise reduction in the total error probability, is within a factor of the optimal strategy in terms of reduction in the total error probability

    Detection Performance in Balanced Binary Relay Trees with Node and Link Failures

    Full text link
    We study the distributed detection problem in the context of a balanced binary relay tree, where the leaves of the tree correspond to NN identical and independent sensors generating binary messages. The root of the tree is a fusion center making an overall decision. Every other node is a relay node that aggregates the messages received from its child nodes into a new message and sends it up toward the fusion center. We derive upper and lower bounds for the total error probability PNP_N as explicit functions of NN in the case where nodes and links fail with certain probabilities. These characterize the asymptotic decay rate of the total error probability as NN goes to infinity. Naturally, this decay rate is not larger than that in the non-failure case, which is N\sqrt N. However, we derive an explicit necessary and sufficient condition on the decay rate of the local failure probabilities pkp_k (combination of node and link failure probabilities at each level) such that the decay rate of the total error probability in the failure case is the same as that of the non-failure case. More precisely, we show that log⁥PN−1=Θ(N)\log P_N^{-1}=\Theta(\sqrt N) if and only if log⁥pk−1=Ω(2k/2)\log p_k^{-1}=\Omega(2^{k/2})

    Study of modulation techniques for multiple access satellite communications

    Get PDF
    Multiple access communication utilizing small ground stations for satellite communication modulation - multiplexing technique

    Scalable adaptive group communication on bi-directional shared prefix trees

    Get PDF
    Efficient group communication within the Internet has been implemented by multicast. Unfortunately, its global deployment is missing. Nevertheless, emerging and progressively establishing popular applications, like IPTV or large-scale social video chats, require an economical data distribution throughout the Internet. To overcome the limitations of multicast deployment, we introduce and analyze BIDIR-SAM, the rest structured overlay multicast scheme based on bi-directional shared prefix trees. BIDIR-SAM admits predictable costs growing logarithmically with increasing group size. We also present a broadcast approach for DHT-enabled P2P networks. Both schemes are integrated in a standard compliant hybrid group communication architecture, bridging the gap between overlay and underlay as well as between inter- and intra-domain multicast

    Design, Analysis and Computation in Wireless and Optical Networks

    Get PDF
    abstract: In the realm of network science, many topics can be abstracted as graph problems, such as routing, connectivity enhancement, resource/frequency allocation and so on. Though most of them are NP-hard to solve, heuristics as well as approximation algorithms are proposed to achieve reasonably good results. Accordingly, this dissertation studies graph related problems encountered in real applications. Two problems studied in this dissertation are derived from wireless network, two more problems studied are under scenarios of FIWI and optical network, one more problem is in Radio- Frequency Identification (RFID) domain and the last problem is inspired by satellite deployment. The objective of most of relay nodes placement problems, is to place the fewest number of relay nodes in the deployment area so that the network, formed by the sensors and the relay nodes, is connected. Under the fixed budget scenario, the expense involved in procuring the minimum number of relay nodes to make the network connected, may exceed the budget. In this dissertation, we study a family of problems whose goal is to design a network with “maximal connectedness” or “minimal disconnectedness”, subject to a fixed budget constraint. Apart from “connectivity”, we also study relay node problem in which degree constraint is considered. The balance of reducing the degree of the network while maximizing communication forms the basis of our d-degree minimum arrangement(d-MA) problem. In this dissertation, we look at several approaches to solving the generalized d-MA problem where we embed a graph onto a subgraph of a given degree. In recent years, considerable research has been conducted on optical and FIWI networks. Utilizing a recently proposed concept “candidate trees” in optical network, this dissertation studies counting problem on complete graphs. Closed form expressions are given for certain cases and a polynomial counting algorithm for general cases is also presented. Routing plays a major role in FiWi networks. Accordingly to a novel path length metric which emphasizes on “heaviest edge”, this dissertation proposes a polynomial algorithm on single path computation. NP-completeness proof as well as approximation algorithm are presented for multi-path routing. Radio-frequency identification (RFID) technology is extensively used at present for identification and tracking of a multitude of objects. In many configurations, simultaneous activation of two readers may cause a “reader collision” when tags are present in the intersection of the sensing ranges of both readers. This dissertation ad- dresses slotted time access for Readers and tries to provide a collision-free scheduling scheme while minimizing total reading time. Finally, this dissertation studies a monitoring problem on the surface of the earth for significant environmental, social/political and extreme events using satellites as sensors. It is assumed that the impact of a significant event spills into neighboring regions and there will be corresponding indicators. Careful deployment of sensors, utilizing “Identifying Codes”, can ensure that even though the number of deployed sensors is fewer than the number of regions, it may be possible to uniquely identify the region where the event has taken place.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Guide to Discrete Mathematics

    Get PDF

    Detection Performance of M-ary Relay Trees with Non-binary Message Alphabets

    Full text link
    We study the detection performance of MM-ary relay trees, where only the leaves of the tree represent sensors making measurements. The root of the tree represents the fusion center which makes an overall detection decision. Each of the other nodes is a relay node which aggregates MM messages sent by its child nodes into a new compressed message and sends the message to its parent node. Building on previous work on the detection performance of MM-ary relay trees with binary messages, in this paper we study the case of non-binary relay message alphabets. We characterize the exponent of the error probability with respect to the message alphabet size D\mathcal D, showing how the detection performance increases with D\mathcal D. Our method involves reducing a tree with non-binary relay messages into an equivalent higher-degree tree with only binary messages.Comment: Submitted to SSP workshop 201

    Decentralized detection in resource-limited sensor network architectures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (leaves 201-207).We consider the problem of decentralized binary detection in a network consisting of a large number of nodes arranged as a tree of bounded height. We show that the error probability decays exponentially fast with the number of nodes under both a Neyman-Pearson criterion and a Bayesian criterion, and provide bounds for the optimal error exponent. Furthermore, we show that under the Neyman-Pearson criterion, the optimal error exponent is often the same as that corresponding to a parallel configuration, implying that a large network can be designed to operate efficiently without significantly affecting the detection performance. We provide sufficient, as well as necessary, conditions for this to happen. For those networks satisfying the sufficient conditions, we propose a simple strategy that nearly achieves the optimal error exponent, and in which all non-leaf nodes need only send 1-bit messages. We also investigate the impact of node failures and unreliable communications on the detection performance. Node failures are modeled by a Galton-Watson branching process, and binary symmetric channels are assumed for the case of unreliable communications. We characterize the asymptotically optimal detection performance, develop simple strategies that nearly achieve the optimal performance, and compare the performance of the two types of networks. Our results suggest that in a large scale sensor network, it is more important to ensure that nodes can communicate reliably with each other(e.g.,by boosting the transmission power) than to ensure that nodes are robust to failures. In the case of networks with unbounded height, we establish the validity of a long-standing conjecture regarding the sub-exponential decay of Bayesian detection error probabilities in a tandem network. We also provide bounds for the error probability, and show that under the additional assumption of bounded Kullback-Leibler divergences, the error probability is (e cnd ), for all d> 1/2, with c c(logn)d being a positive constant. Furthermore, the bound (e), for all d> 1, holds under an additional mild condition on the distributions. This latter bound is shown to be tight. Moreover, for the Neyman-Pearson case, we establish that if the sensors act myopically, the Type II error probabilities also decay at a sub-exponential rate.(cont.) Finally, we consider the problem of decentralized detection when sensors have access to side-information that affects the statistics of their measurements, and the network has an overall cost constraint. Nodes can decide whether or not to make a measurement and transmit a message to the fusion center("censoring"), and also have a choice of the transmission function. We study the tradeoff in the detection performance with the cost constraint, and also the impact of sensor cooperation and global sharing of side-information. In particular, we show that if the Type I error probability is constrained to be small, then sensor cooperation is not necessary to achieve the optimal Type II error exponent.by Wee Peng Tay.Ph.D

    Optimization and Applications of Modern Wireless Networks and Symmetry

    Get PDF
    Due to the future demands of wireless communications, this book focuses on channel coding, multi-access, network protocol, and the related techniques for IoT/5G. Channel coding is widely used to enhance reliability and spectral efficiency. In particular, low-density parity check (LDPC) codes and polar codes are optimized for next wireless standard. Moreover, advanced network protocol is developed to improve wireless throughput. This invokes a great deal of attention on modern communications
    • 

    corecore