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Abstract

We consider the problem of decentralized binary detection in a network consisting of
a large number of nodes arranged as a tree of bounded height. We show that the error
probability decays exponentially fast with the number of nodes under both a Neyman-
Pearson criterion and a Bayesian criterion, and provide bounds for the optimal error
exponent. Furthermore, we show that under the Neyman-Pearson criterion, the opti-
mal error exponent is often the same as that corresponding to a parallel configuration,
implying that a large network can be designed to operate efficiently without signifi-
cantly affecting the detection performance. We provide sufficient, as well as necessary,
conditions for this to happen. For those networks satisfying the sufficient conditions,
we propose a simple strategy that nearly achieves the optimal error exponent, and in
which all non-leaf nodes need only send 1-bit messages.

We also investigate the impact of node failures and unreliable communications on
the detection performance. Node failures are modeled by a Galton-Watson branch-
ing process, and binary symmetric channels are assumed for the case of unreliable
communications. We characterize the asymptotically optimal detection performance,
develop simple strategies that nearly achieve the optimal performance, and compare
the performance of the two types of networks. Our results suggest that in a large scale
sensor network, it is more important to ensure that nodes can communicate reliably
with each other (e.g., by boosting the transmission power) than to ensure that nodes
are robust to failures.

In the case of networks with unbounded height, we establish the validity of a
long-standing conjecture regarding the sub-exponential decay of Bayesian detection
error probabilities in a tandem network. We also provide bounds for the error prob-
ability, and show that under the additional assumption of bounded Kullback-Leibler
divergences, the error probability is Ω(e−cn

d
), for all d > 1/2, with c being a posi-

tive constant. Furthermore, the bound Ω(e−c(log n)d
), for all d > 1, holds under an

additional mild condition on the distributions. This latter bound is shown to be
tight. Moreover, for the Neyman-Pearson case, we establish that if the sensors act
myopically, the Type II error probabilities also decay at a sub-exponential rate.
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Finally, we consider the problem of decentralized detection when sensors have
access to side-information that affects the statistics of their measurements, and the
network has an overall cost constraint. Nodes can decide whether or not to make
a measurement and transmit a message to the fusion center (“censoring”), and also
have a choice of the transmission function. We study the tradeoff in the detection
performance with the cost constraint, and also the impact of sensor cooperation and
global sharing of side-information. In particular, we show that if the Type I error
probability is constrained to be small, then sensor cooperation is not necessary to
achieve the optimal Type II error exponent.

Thesis Supervisor: John N. Tsitsiklis
Title: Clarence J Lebel Professor of Electrical Engineering

Thesis Supervisor: Moe Z. Win
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

This dissertation shows that for decentralized detection in a network configured as

a tree with bounded height, the error probability falls exponentially fast with the

number of nodes in the network, and the Neyman-Pearson error exponent is often

the same as that of a parallel configuration. On the other hand, a tandem network

exhibits sub-exponential error probability decay. More specifically, we consider a

decentralized binary detection problem in a tree network, and study the detection

performance when there is a large number of nodes in the network. We address some

fundamental questions concerning the performance of sensor networks, and provide

insights into the dependence of detection performance on network architecture and

cost constraints. We also propose strategies that allow system designers to operate

large networks efficiently.

In the following, we provide some background to the problem of decentralized

detection, discuss some related work, and present our contributions.

1.1 Background and Related Work

The problem of optimal decentralized detection has attracted a lot of interest over the

last twenty-five years. Tenney and Sandell [1] are the first to consider a decentralized

detection system in which each of several sensors makes an observation and sends a

summary (e.g., using a quantizer or other “transmission function”) to a fusion center.

15



Such a system is to be contrasted to a centralized one, where the raw observations are

transmitted directly to the fusion center. The framework introduced in [1] involves a

“star topology” or “parallel configuration”: the fusion center is regarded as the root

of a tree, while the sensors are the leaves, directly connected to the root. Several

pieces of work follow, e.g., [2–12], all of which study the parallel configuration under

a Neyman-Pearson or Bayesian criterion. A common goal of these references is to

characterize the optimal transmission function, where optimality usually refers to the

minimization of the probability of error or some other cost function at the fusion

center. A typical result is that under the assumption of (conditionally) independent

sensor observations, likelihood ratio quantizers are optimal; see [6] for a summary of

such results.

In this thesis, we consider resource-limited sensor networks. Sensor nodes are typ-

ically inexpensive, battery-powered devices that are deployed in large numbers over

a possibly large geographical area. Such nodes commonly have limited power and

may not be able to communicate over long distances. In the well studied parallel

configuration described above, each node sends its information directly to the fusion

center. Even though the error probabilities in a parallel configuration decrease ex-

ponentially, the energy consumption of having each sensor transmit directly to the

fusion center can be too high. The energy consumption can be reduced by setting

up a directed spanning in-tree, rooted at the fusion center. In a tree configuration,

each non-leaf node combines its own observation (if any) with the messages it has

received and forms a new message, which it transmits to another node. In this way,

information from each node is propagated along a multi-hop path to the fusion cen-

ter, but the information is “degraded” along the way. The study of sensor networks

other than the parallel configuration is initiated in [13], which considers a tandem

configuration, as well as more general tree configurations, and characterizes optimal

transmission strategies under a Bayesian formulation. Tree configurations are also

discussed in [14–21], under various performance objectives. In all but the simplest

cases, the exact form of optimal strategies in tree configurations is difficult to derive.

Most of these references focus on person-by-person (PBP) optimality and obtain nec-
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essary, but not sufficient, conditions for an optimal strategy. When the transmission

functions are assumed to be finite-alphabet quantizers, typical results establish that

under a conditional independence assumption, likelihood ratio quantizers are PBP

optimal. However, finding the optimal quantizer thresholds requires the solution of

a nonlinear system of equations, with as many equations as there are thresholds.

As a consequence, computing the optimal thresholds or characterizing the overall

performance is hard, even for networks of moderate size.

Because of these difficulties, the analysis and comparison of large sensor networks

is apparently tractable only in an asymptotic regime that focuses on the rate of decay

of the error probabilities as the number of sensors increases. For example, in the

Neyman-Pearson framework, one can focus on minimizing the error exponent 1

g = lim sup
n→∞

1

n
log βn,

where βn is the Type II error probability at the fusion center and n is the number

of sensors, while keeping the Type I error probability less than some given threshold.

Note our convention that error exponents are negative numbers. The magnitude of

the error exponent, |g|, is commonly referred to as the rate of decay of the Type

II error probability. A larger |g| would translate to a faster decay rate, hence a

better detection performance. This problem has been studied in [22], for the case

of a parallel configuration with a large number of sensors that receive independent,

identically distributed (i.i.d.) observations.

The asymptotic performance of another special configuration, involving n sen-

sors arranged in tandem, has been studied in [23–25], under a Bayesian formulation.

Necessary and sufficient conditions for the error probability to decrease to zero as

n increases have been derived. However, it has been conjectured in [6, 8, 25, 26],

that even when the error probability decreases to zero, it apparently does so at a

sub-exponential rate. (This is a conjecture that we will resolve in this thesis.) Ac-

cordingly, [25] argues that the tandem configuration is inefficient and suggests that

1Throughout this thesis, log stands for the natural logarithm.
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as the number of sensors increases, the network “should expand more in a parallel

than in [a] tandem” fashion.

Although a tree allows for shorter-range communications, thus making better use

of communication resources, the detection performance may be worse than that of

a parallel configuration. For the case where observations are obtained only at the

leaves, it is not hard to see that the detection performance of a tree cannot be better

than that of a parallel configuration with the same number of leaves. In this thesis,

we investigate the extent to which bounded height tree networks under-perform a

parallel configuration. We analyze the dependence of the optimal error exponent

on the network architecture, and characterize the optimal error exponent for a large

class of tree networks. We also present simple, and easily implementable strategies

to nearly achieve the optimal performance. In the case of networks with unbounded

height, we specifically consider the tandem network, and study the error probability

decay rate.

Another way to mitigate energy consumption in a parallel configuration is to trade-

off energy efficiency and detection reliability. For this purpose, “censoring networks”

have been introduced in [27] and later in [28]. These references consider a binary de-

tection problem, assume that the sensors obtain independent measurements Xi, and

raise the question of deciding which sensors should transmit their measurements to a

fusion center, subject to a constraint on the average number of transmitting sensors.

In particular, they assume that the sensors are operating independently from each

other, i.e., the censoring decisions do not involve any sensor cooperation or exchange

of information. Their main results state that each sensor should base its decision on

the likelihood ratio associated with its measurement, and should transmit Xi only if

the likelihood ratio falls outside a “censoring interval.” Subsequently, [29] and [30]

consider the asymptotic performance of “constrained networks,” including the case

of an overall power constraint and the case of capacity-constrained communications.

The question of deciding which sensors should transmit is replaced by the question of

choosing the mode of sensor transmissions. There are differences between the prob-

lems considered in [27] and the problems studied in [29] and [30], but there are also

18



significant similarities, suggesting that a unified treatment may be possible. Such a

unified treatment, at a higher level of generality, is one of the objectives of this thesis.

However, we will be concerned with sensor networks with an asymptotically large

number of nodes, unlike in [27,28], where the problem of censoring is treated for the

case of a fixed number of nodes.

1.2 Our Contributions

Most of the decentralized detection literature has been concerned with characterizing

optimal detection strategies for particular sensor configurations; the comparison of

the detection performance of different configurations is a rather unexplored area.

We bridge this gap by considering the asymptotic performance of bounded height

tree networks, under a Neyman-Pearson formulation. As it is not apparent that

the Type II error probability decays exponentially fast with the number of nodes in

the network, we first show that under the bounded height assumption, exponential

decay is possible, and provide bounds for the optimal error exponent. We then

obtain the rather counterintuitive result that if leaves dominate (in the sense that

asymptotically almost all nodes are leaves), then bounded height trees have the same

asymptotic performance as the parallel configuration, even in non-trivial cases. (Such

an equality is clear in some trivial cases, e.g., the configuration shown in Figure 1-1,

but is unexpected in general.) This result has important ramifications: a system

designer can reduce the energy consumption in a network (e.g., by employing an h-

hop spanning tree that minimizes the overall energy consumption), without losing

detection efficiency, under certain conditions.

We also provide a strategy in which each non-leaf node sends only a 1-bit message,

and which nearly achieves the same performance as the parallel configuration. These

results are counterintuitive for the following reasons: 1) messages are compressed

to only one bit at each non-leaf node so that “information” is lost along the way,

whereas in the parallel configuration, no such compression occurs; 2) even though

leaves dominate, there is no reason why the error exponent will be determined solely

19



v1 v2 f{n − h vh−1

Figure 1-1: A tree network of height h, with n− h leaves. Its error probability is no
larger than that of a parallel configuration with n−h leaves and a fusion center. If h
is bounded while n increases, the optimal error exponent is the same as for a parallel
configuration with n leaves.

by the leaves. For example, our discussion in Section 3.3.5 indicates that without the

bounded height assumption, or if a Bayesian framework is assumed instead of the

Neyman-Pearson formulation, then a generic tree network (of height greater than 1)

performs strictly worse than a parallel configuration, even if leaves dominate. Under

a mild additional assumption on the allowed transmission functions, we also find

that the sufficient conditions for achieving the same error exponent as a parallel

configuration, are necessary.

We also study the detection performance of bounded height tree networks in a

Bayesian formulation, and show that although error probabilities decay exponentially

fast, the decay rate is generically worse than that in the parallel configuration, un-

like for the Neyman-Pearson formulation. We study specific classes of tree networks

that are of practical interest, and characterize the optimal error exponents when re-

stricted to simple, easily implementable strategies. We also compare and contrast the

performance of these tree networks.

Next, we analyze the impact on the detection performance when sensors are either

prone to failure or the communication links between sensors are unreliable. Specifi-

cally, we study and contrast the impact on the detection performance of either node

failures (modeled by a Galton-Watson branching process) or unreliable communica-

tions (modeled by binary symmetric channels). In both cases, we focus on “dense”

networks, in which we let the degree of every node (other than the leaves) become

large, and we characterize the asymptotically optimal detection performance. We

develop simple strategies that nearly achieve the optimal performance, and compare

the performance of the two types of networks. Our results suggest that when de-
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signing a large scale sensor network, it is more important to ensure that nodes can

communicate reliably with each other (e.g., by boosting the transmission power) than

to ensure that nodes are robust to failures. We consider the energy consumption of

nodes arranged in a grid. We show that in a scheme that increases the transmission

power of each node in a network so that the network performs as well as a parallel

configuration with reliable communications, a tree network spanning the nodes in the

grid is more energy efficient than a parallel configuration, in which all nodes transmit

directly to a fusion center.

For the problem of Bayesian binary hypothesis testing in a tandem network, we

show that the rate of error probability decay is always sub-exponential, thus estab-

lishing the validity of a long-standing conjecture [6,8,25,26]. Under the additional as-

sumption of bounded Kullback-Leibler (KL) divergences, we show that for all d > 1/2,

the error probability is Ω(e−cn
d
), where c is a positive constant. 2 Furthermore, the

bound Ω(e−c(logn)d
), for all d > 1, holds under an additional mild condition on the

distributions. This latter bound is shown to be tight. For the Neyman-Pearson formu-

lation, we establish that if the sensors act myopically, the Type II error probabilities

also decay at a sub-exponential rate.

Finally, we consider the problem of constrained decentralized detection in a par-

allel configuration (censoring network). We characterize the optimal error exponent,

showing the tradeoff between the detection performance and the cost constraint, and

derive asymptotically optimal strategies for the case where sensor decisions are only

allowed to depend on locally available information. Furthermore, we show that for

the Neyman-Pearson case, global sharing of side-information (“sensor cooperation”)

does not improve the asymptotically optimal performance, when the Type I error

is constrained to be small. This implies that each sensor can make its censoring

and transmission decisions only on the basis of the locally available side-information.

Moreover, we show that all sensors can use the same policy, which allows for a simple

distributed scheme.

2For two nonnegative functions f and g, we write f(n) = Ω(g(n)) (resp. f(n) = O(g(n))) if for all
n sufficiently large, there exists a positive constant c such that f(n) ≥ cg(n) (resp. f(n) ≤ cg(n)).
We write f(n) = Θ(g(n)) if f(n) = Ω(g(n)) and f(n) = O(g(n)).
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Parts of this thesis have appeared in [31, 32], which investigated the performance

of bounded height tree networks; in [33], which studied the impact of node failures

and unreliable communications on detection performance; in [34], which showed that

error probabilities decay sub-exponentially in tandem networks, and provided tight

lower bounds for the error probability decay rate; and in [35–37], which investigated

the performance of censoring sensor networks.

1.3 Thesis Outline

In Chapter 2, we introduce the basic model that underlies most of our development.

We also list some assumptions that are made in most of the thesis. In Chapter 3, we

study the Neyman-Pearson detection problem in bounded height tree networks, and

in Chapter 4, we consider the Bayesian formulation. We analyze the impact of node

failures and unreliable communications on detection performance in Chapter 5. In

Chapter 6, we study the tandem network, and in Chapter 7, we consider the problem

of censoring in parallel configurations. Finally, in Chapter 8, we conclude and discuss

some future research directions.
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Chapter 2

The Basic Model

In this chapter, we introduce the basic model that we will consider throughout this

dissertation, and some common assumptions that are made in various parts of the

thesis. The development of subsequent chapters builds on the model we describe here,

although in some cases we will make extensions or modifications to the model. Finally,

we will also sketch some mathematical results that underly most of our development.

This thesis considers decentralized binary detection problems involving n− 1 sen-

sors and a fusion center. We will be interested in the case where n increases to infinity.

We are given two probability spaces (Ω,F ,P0) and (Ω,F ,P1), associated with two

hypotheses H0 and H1. We use Ej to denote the expectation operator with respect

to Pj . Each sensor v observes a random variable Xv taking values in some set X .

The sensor network is configured as a directed tree, and each node’s information is

propagated via the arcs in the tree to the root of the tree, which is designated as

the fusion center. We introduce a framework below that allows us to describe the

network and its evolution as more nodes are added to the network.

2.1 Tree Networks

The configuration of the sensor network is represented by a directed tree Tn =

(Vn, En). Here, Vn is the set of nodes, of cardinality n, and En is the set of di-

rected arcs of the tree. One of the nodes (the “root”) represents the fusion center,
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and the remaining n − 1 nodes represent the remaining sensors. We will always use

the special symbol f to denote the root of Tn. We assume that the arcs are oriented

so that they all point towards the fusion center. In the sequel, whenever we use the

term “tree”, we mean a directed, rooted tree as described above.

We will use the terminology “sensor” and “node” interchangeably. Moreover, the

fusion center f will also be called a sensor, even though it plays the special role of

fusing; whether the fusion center makes its own observation or not is irrelevant, since

we are working in the large n regime, and we will assume it does not.

We say that node u is a predecessor of node v if there exists a directed path from

u to v. In this case, we also say that v is a successor of u. An immediate predecessor

of node v is a node u such that (u, v) ∈ En. An immediate successor is similarly

defined. Let the set of immediate predecessors of v be Cn(v). If v is a leaf, Cn(v) is

naturally defined to be empty. The length of a path is defined as the number of arcs

in the path. The height of the tree Tn is the length of the longest path from a leaf to

the root, and will be denoted by hn.

Since we are interested in asymptotically large values of n, we will consider a

sequence of trees (Tn)n≥1. While we could think of the sequence as representing the

evolution of the network as sensors are added, we do not require the sequence En to

be an increasing sequence of sets; thus, the addition of a new sensor to Tn may result

in some edges being deleted and some new edges being added. We define the height

of a sequence of trees to be h = supn≥1 hn. We are interested in tree sequences of

bounded height, i.e., h <∞.

Definition 2.1 (h-uniform tree). A tree Tn is said to be h-uniform if the length of

every path from a leaf to the root is exactly h. A sequence of trees (Tn)n≥1 is said to

be h-uniform if there exists some n0 <∞, so that for all n ≥ n0, Tn is h-uniform.

For a tree with height h, we say that a node is at level k if it is connected to the

fusion center via a path of length h− k. Hence the fusion center f is at level h, while

in an h-uniform tree, all leaves are at level 0.

Let ln(v) be the number of leaves of the sub-tree rooted at node v. (These are the
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leaves whose path to f goes through v.) Thus, ln(f) is the total number of leaves. Let

pn(v) be the total number of predecessors of v, i.e., the total number of nodes in the

sub-tree rooted at v, not counting v itself. Thus, pn(f) = n− 1. We let An ⊂ Vn be

the set of nodes whose immediate predecessors include leaves of the tree Tn. Finally,

we let Bn ⊂ An be the set of nodes all of whose predecessors are leaves; see Figure

2-1.

v

u

Figure 2-1: Both nodes v and u belong to the set An, but only node u belongs to the
set Bn.

2.2 Strategies

Given a tree Tn, consider a node v 6= f . Node v receives messages Yu from every

u ∈ Cn(v) (i.e., from its immediate predecessors). Node v then uses a transmission

function γv to encode and transmit a summary Yv = γv(Xv, {Yu : u ∈ Cn(v)}) of its

own observation Xv, and of the received messages {Yu : u ∈ Cn(v)}, to its immediate

successor.1 We constrain all messages to be symbols in a fixed alphabet T . Thus,

if the in-degree of v is |Cn(v)| = d, then the transmission function γv maps X × T d

to T . Let Γ(d) be a given set of transmission functions that the node v can choose

from. In general, Γ(d) is a subset of the set of all possible mappings from X × T d to

T . For example, Γ(d) is often assumed to be the set of quantizers whose outputs are

the result of comparing likelihood ratios to some thresholds (cf. the definition of a

Log-Likelihood Ratio Quantizer in Section 3.1.2). For convenience, we denote the set

1To simplify the notation, we suppress the dependence of Xv, Yv, γv, etc. on n.
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of transmission functions for the leaves, Γ(0), by Γ. We assume that all transmissions

are perfectly reliable.

Consider now the root f , and suppose that it has d immediate predecessors. It

receives messages from its immediate predecessors, and based on this information, it

decides between the two hypotheses H0 and H1, using a fusion rule γf : T d 7→ {0, 1}.2

Let Yf be a binary-valued random variable indicating the decision of the fusion center.

We define a strategy for a tree Tn, with n − 1 nodes and a fusion center, as a

collection of transmission functions, one for each node, and a fusion rule. In some

cases, we will be considering strategies in which only the leaves make observations;

every other node v simply fuses the messages it has received, and forwards a message

Yv = γv({Yu : u ∈ Cn(v)}) to its immediate successor. A strategy of this type will

be called a relay strategy. A tree network in which we restrict to relay strategies will

be called a relay tree. If in addition, the alphabet T is binary, we will use the terms

1-bit relay strategy and 1-bit relay tree. Finally, in a relay tree, nodes other than the

root and the leaves will be called relay nodes.

2.3 Common Assumptions

In this section, we list some of the common assumptions that we will be making in

the sequel. We also introduce some notations that we will frequently use. Our first

assumption involves the distribution of the random variables {Xv : v ∈ Vn}.

Assumption 2.1. Under hypothesis Hj, where j = 0, 1, the random variables Xv are

i.i.d., with marginal distribution PXj .

Assumption 2.1 will be assumed in most of the sequel except in Chapter 7. This

assumption is commonly made in the literature, e.g., [6, 22, 25, 29, 30]. We note that

2 Recall that in centralized Neyman-Pearson detection, randomization can reduce the Type II
error probability, while in Bayesian detection, randomization does not improve the detection per-
formance. Therefore, in Neyman-Pearson detection, the fusion center uses a randomized fusion rule
to make its decision. Similarly, the transmission functions γv used by each node v, can also be ran-
domized. We avoid any discussion of randomization here, and in most of the thesis, to simplify the
exposition, and because randomization is not required asymptotically in Chapters 3-6. A detailed
discussion of randomization is presented in Chapter 7.
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without Assumption 2.1, the problem of decentralized detection in a parallel configu-

ration involving only 2 nodes, and for which the space X (recall that this is the value

space of each node’s observation) is discrete, is a NP-complete problem [38]. There-

fore, without the above assumption, the problems we consider would be intractable.

Although this assumption is restrictive, and does not hold in many practical cases

of interest, it nevertheless allows us to obtain tractable formulations and results that

provide valuable insights into the more general case of correlated observations.

We denote the Kullback-Leibler (KL) divergence of two probability measures, P

and Q as

D(P ‖Q) = EP

[
log

dP

dQ

]
,

where EP is the expectation operator with respect to (w.r.t.) P. Suppose that X

is a sensor observation. For any γ ∈ Γ, let the distribution of γ(X) be P
γ
j . Note

that −D(Pγ0 ‖P
γ
1) ≤ 0 ≤ D(Pγ1 ‖P

γ
0), with both inequalities being strict as long as the

measures P
γ
0 and P

γ
1 are not indistinguishable.

Assumptions 2.2 and 2.3 are similar to the assumptions made in the study of the

parallel configuration (see [22]).

Assumption 2.2. The measures PX0 and PX1 are equivalent, i.e., they are abso-

lutely continuous w.r.t. each other. Furthermore, there exists some γ ∈ Γ such that

−D(Pγ0 ‖P
γ
1) < 0 < D(Pγ1 ‖P

γ
0).

Assumption 2.3. E0

[
log2 dP

X
1

dP
X
0

]
<∞.

Assumption 2.3 implies the following lemma; see Proposition 3 of [22] for a proof.3

Lemma 2.1. There exists some a ∈ (0,∞), such that for all γ ∈ Γ,

E0

[
log2 dP

γ
1

dP
γ
0

]
≤ E0

[
log2 dPX1

dPX0

]
+ 1 < a,

E0

[∣∣∣ log
dP

γ
1

dP
γ
0

∣∣∣
]
< a.

3 In reference to that proof, the argument needs to be carried out by using the function t 7→
(t log2 t)1(t ≥ 1), which is convex for t ≥ 0, together with the fact that t log2 t < 1 when t ∈ [0, 1).
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2.4 Mathematical Preliminaries

In this section, we state Cramèr’s Theorem from Large Deviations Theory (see either

[39] or [40]). This result will be useful in the proofs of subsequent chapters. We

present here, without proof, a modified version of Theorem 1.3.13 of [40].

Theorem 2.1 (Cramèr). Suppose that X has distribution P, with log-moment gen-

erating function ϕ(λ) = log E[exp(λX)]. Let the Fenchel-Legendre transform of ϕ(λ)

be Φ(x) = sup{λx− ϕ(λ) : λ ∈ R}. Suppose that E[|X|] <∞. Then,

(i) P(X ≥ x) ≤ exp(−Φ(x)), for all x ≥ E[X].

(ii) P(X ≤ x) ≤ exp(−Φ(x)), for all x ≤ E[X].

Furthermore, suppose that there exists an open interval I such that ϕ(λ) <∞ for

all λ ∈ I 4. Suppose that x lies inside the support of the distribution P, and has a

corresponding λ ∈ I, such that ϕ′(λ) = x. Then, we have for all ǫ > 0,

P
(∣∣X − x

∣∣ < ǫ
)
≥

(
1 − ϕ′′(λ)

ǫ2

)
exp

(
− Φ(x) − |λ|ǫ

)
.

4Note that the function ϕ(·) is convex and twice differentiable over I.
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Chapter 3

Network Architectures and

Performance

In this chapter, we investigate the detection performance of a tree configuration under

a Neyman-Pearson criterion. We restrict to trees with bounded height for two reasons.

First, without a restriction on the height of the tree, performance can be poor (this

is exemplified by tandem networks in which the error probability seems to decay at a

sub-exponential rate; cf. Chapter 6). Second, bounded height translates to a bound

on the delay until information reaches the fusion center.

We will first state the Neyman-Pearson formulation in detail, and provide some

motivating examples. We then show that the detection error probability decays expo-

nentially fast in a tree with bounded height, and provide sufficient, as well as necessary

conditions, for the error exponent to be the same as that of a parallel configuration.

We also propose strategies that nearly achieve the optimal error exponent. Finally,

we discuss the admissibility of our proposed strategies, and provide some numerical

examples.

3.1 The Neyman-Pearson Problem

In this section, we formulate the Neyman-Pearson decentralized detection problem in

a tree network. We provide some motivating examples, and introduce our assump-
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tions. Then, we give a summary of the main results.

Given a tree Tn, we require that the Type I error probability P0(Yf = 1) be no

more than a given α ∈ (0, 1). A strategy is said to be admissible if it meets this

constraint. We are interested in minimizing the Type II error probability P1(Yf = 0).

Accordingly, we define β∗(Tn) as the infimum of P1(Yf = 0), over all admissible strate-

gies. Similarly, we define β∗
R(Tn) as the infimum of P1(Yf = 0), over all admissible

relay strategies. Typically, β∗(Tn) or β∗
R(Tn) will converge to zero as n→ ∞. We are

interested in the question of whether such convergence takes place exponentially fast,

and in the exact value of the Type II error exponent, defined by

g∗ = lim sup
n→∞

1

n
log β∗(Tn), g∗R = lim sup

n→∞

1

ln(f)
log β∗

R(Tn).

Note that in the relay case, we use the total number of leaves ln(f) instead of n in

the definition of g∗R. This is because only the leaves make observations and therefore,

g∗R measures the rate of error decay per observation.

In the classical case of a parallel configuration, with n−1 leaves directly connected

to the fusion center, the optimal error exponent, denoted as g∗P , is given by [22]

g∗P = lim
n→∞

1

n
log β∗(Tn) = − sup

γ∈Γ
D(Pγ0 ‖P

γ
1), (3.1)

under Assumptions 2.1-2.3.

Our objective is to study g∗ and g∗R for different sequences of trees. In particular,

we wish to obtain bounds on these quantities, develop conditions under which they

are strictly negative (indicating exponential decay of error probabilities), and develop

conditions under which they are equal to g∗P . At this point, under Assumptions

2.1-2.3, we can record two relations that are always true:

g∗P ≤ g∗R, −D(PX0 ‖PX1 ) ≤ g∗ ≤ zg∗R, (3.2)

where z = lim inf
n→∞

ln(f)/n. The first inequality is true because all of the combining

of messages that takes place in a relay network can be carried out internally, at the
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fusion center of a parallel network with the same number of leaves. The inequality

−D(PX0 ‖PX1 ) ≤ g∗ follows from the fact that −D(PX0 ‖PX1 ) is the classical error

exponent in a centralized system where all raw observations are transmitted directly

to the the fusion center. Finally, the inequality g∗ ≤ zg∗R follows because an optimal

strategy is at least as good as an optimal relay strategy; the factor of z arises because

we have normalized g∗R by ln(f) instead of n.

For a sequence of trees of the form shown in Figure 1-1, it is easily seen that

g∗ = g∗R = g∗P . In order to develop some insights into the problem, we now consider

some less trivial examples.

3.1.1 Motivating Examples

In the following examples, we restrict to relay strategies for simplicity, i.e., we are

interested in characterizing the error exponent g∗R. However, most of our subsequent

results hold without such a restriction, and similar statements can be made about

the error exponent g∗ (cf. Theorem 3.1).

Example 3.1. Consider a 2-uniform sequence of trees, as shown in Figure 3-1, where

each node vi receives messages from m = (n− 3)/2 leaves (for simplicity, we assume

that n is odd).

f

v1 v2

m m

Figure 3-1: A 2-uniform tree with two relay nodes.

Let us restrict to 1-bit relay strategies. Consider the fusion rule that declares H0

iff both v1 and v2 send a 0. In order to keep the Type I error probability bounded by α,

we view the message by each vi as a local decision about the hypothesis, and require

that its local Type I error probability be bounded by α/2. Furthermore, by viewing

the sub-tree rooted at vi as a parallel configuration, we can design strategies for each
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sub-tree so that

lim
n→∞

1

m
log P1(Yvi

= 0) = g∗P . (3.3)

At the fusion center, the Type II error exponent is then given by

lim
n→∞

1

n
log βn = lim

n→∞

1

n
log P1(Yv1 = 0, Yv2 = 0)

=
1

2
lim
n→∞

1

m
log P1(Yv1 = 0) +

1

2
lim
n→∞

1

m
log P1(Yv2 = 0)

= g∗P ,

where the last equality follows from (3.3). This shows that the Type II error probability

falls exponentially and, more surprisingly, that g∗R ≤ g∗P . In view of Eq. (3.2), we have

g∗R = g∗P . It is not difficult to generalize this conclusion to all sequences of trees in

which the number n− ln(f)−1 of relay nodes is bounded. For such sequences, we will

also see that g∗ = g∗R (cf. Theorem 3.1(iii)). �

Example 3.2. We now consider an example in which the number of relay nodes

grows with n. In Figure 3-2, we let both m and N be increasing functions of n (the

total number of nodes), in a manner to be made explicit shortly.

v2v1

f

mm m

vN

Figure 3-2: A 2-uniform tree with a large number of relay nodes.

Let us try to apply a similar argument as in Example 3.1, to see whether the

optimal exponent of the parallel configuration can be achieved with a relay strategy,

i.e., whether g∗R = g∗P . We let each node vi use a local Neyman-Pearson test. We

also let the fusion center declare H0 iff it receives a 0 from all relay sensors. In order

to have a hope of achieving the error exponent of the parallel configuration, we need
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to choose the local Neyman-Pearson test at each relay so that its local Type II error

exponent is close to g∗P = − supγ∈Γ D(Pγ0 ‖P
γ
1). However, the associated local Type I

error cannot fall faster than exponentially, so we can assume it is bounded below by

δ exp(−mǫ), for some δ, ǫ > 0, and for all m large enough. In that case, the overall

Type I error probability (at the fusion center) is at least 1 − (1 − δe−mǫ)N . We then

note that if N increases quickly with m (e.g., N = mm), the Type I error probability

approaches 1, and eventually exceeds α. Hence, we no longer have an admissible

strategy. Thus, if there is a hope of achieving the optimal exponent g∗P of the parallel

configuration, a more complicated fusion rule will have to be used. �

Our subsequent results will establish that, similar to Example 3.1, the equalities

g∗ = g∗R = g∗P also hold in Example 3.2. However, Example 3.2 shows that in order to

achieve this optimal error exponent, we may need to employ nontrivial fusion rules at

the fusion center (and for similar reasons at the relay nodes), and various thresholds

will have to be properly tuned. The simplicity of the fusion rule in Example 3.1 is

not representative.

In our next example, the optimal error exponent is inferior (strictly larger) than

that of a parallel configuration.

Example 3.3. Consider a sequence of 1-bit relay trees with the structure shown in

Figure 3-3. Let the observations Xv at the leaves be i.i.d. Bernoulli random variables

vmv2v1

f

2 2 2

Figure 3-3: A 2-uniform tree, with two leaves attached to each level 1 node.

with parameter 1− p under H0, and parameter p under H1, where 1/2 < p < 1. Note

that

g∗P = E0

[
log

dPX1

dPX0

]
= p log

1 − p

p
+ (1 − p) log

p

1 − p
.
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We can identify this relay tree with a parallel configuration involving m nodes, with

each node receiving an independent observation distributed as γ(X1, X2). Note that

we can restrict the transmission function γ to be the same for all nodes v1, ..., vm [22],

without loss of optimality. We have

lim
n→∞

1

m
log β∗(Tn) = min

γ∈Γ(2)

1∑

j=0

P0

(
γ(X1, X2) = j

)
log

[P1

(
γ(X1, X2) = j

)

P0

(
γ(X1, X2) = j

)
]
. (3.4)

To minimize the right-hand side (R.H.S.) of (3.4), we only need to consider a small

number of choices for γ. If γ(X1, X2) = X1, we are effectively removing half of the

original 2m nodes, and the resulting error exponent is g∗P/2, which is inferior to g∗P .

Suppose now that γ is of the form γ(X1, X2) = 0 iff X1 = X2 = 0. Then, it is easy

to see, after some calculations (omitted), that

lim
n→∞

1

m
log β∗(Tn) = p2 log

(1 − p)2

p2
+ (1 − p2) log

1 − (1 − p)2

1 − p2

> 2
(
p log

1 − p

p
+ (1 − p) log

p

1 − p

)
,

and

lim
n→∞

1

ln(f)
log β∗(Tn) > p log

1 − p

p
+ (1 − p) log

p

1 − p
= g∗P .

Finally, we need to consider γ of the form γ(X1, X2) = 1 iff X1 = X2 = 1. A

similar calculation (omitted) shows that the resulting error exponent is again inferior.

We conclude that the relay network is strictly inferior to the parallel configuration,

i.e., g∗P < g∗R. An explanation is provided by noting that this sequence of trees violates

a necessary condition, developed in Section 3.3.6 for the optimal error exponent to be

the same as that of a parallel configuration; see Theorem 3.1(iv). �

A comparison of the results for the previous examples suggests that we have

g∗P = g∗R (respectively, g∗P < g∗R) whenever the degree of level 1 nodes increases

(respectively, stays bounded) as n increases. That would still leave open the case

of networks in which different level 1 nodes have different degrees, as in our next

example.
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Example 3.4. Consider a sequence of 2-uniform trees of the form shown in Figure

3-4. Each node vi, i = 1, ..., m, has i + 1 leaves attached to it. We will see that

the optimal error exponent is again the same as for a parallel configuration, i.e.,

g∗R = g∗ = g∗P . (cf. Theorem 3.1(ii)). �

vm
v2v1

f

2 3 m + 1

Figure 3-4: A 2-uniform tree, with ln(vi) = i+ 1.

3.1.2 Assumptions and Notation

We will make use of Assumptions 2.1, 2.2 and 2.3 in most of our results. In this

subsection, we list some additional assumptions and notation.

Given an admissible strategy, and for each node v ∈ Vn, we consider the log-

likelihood ratio of the distribution of Yv (the message sent by v) under H1, w.r.t. its

distribution under H0,

Lv,n(y) = log
dP

(v)
1,n

dP
(v)
0,n

(y),

where dP
(v)
1,n/dP

(v)
0,n is the Radon-Nikodym derivative of the distribution of Yv under

H1 w.r.t. that under H0. If Yv takes values in a discrete set, then this is just the log-

likelihood ratio log
(
P1(Yv = y)/P0(Yv = y)

)
. For simplicity, we let Lv,n = Lv,n(Yv)

and define the log-likelihood ratio of the received messages at node v to be

Sn(v) =
∑

u∈Cn(v)

Lu,n.
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(Recall that Cn(v) is the set of immediate predecessors of v.)

A (1-bit) Log-Likelihood Ratio Quantizer (LLRQ) with threshold t for a non-leaf

node v, with |Cn(v)| = d, is a binary-valued function on T d, defined by

LLRQd,t

(
{yu : u ∈ Cn(v)}

)
=





0, if x ≤ t,

1, if x > t,

where

x =
1

ln(v)

∑

u∈Cn(v)

Lu,n(yu). (3.5)

By definition, a node v that uses a LLRQ ignores its own observation Xv and acts as

a relay. If all non-leaf nodes use a LLRQ, we have a special case of a relay strategy.

We will assume that LLRQs are available choices of transmission functions for all

non-leaf nodes.

Assumption 3.1. For all t ∈ R and d > 0, LLRQd,t ∈ Γ(d).

As already discussed (cf. Eq. (3.2)), the optimal performance of a relay tree is

always dominated by that of a parallel configuration with the same number of leaves,

i.e., g∗P ≤ g∗R. In Section 3.3, we find sufficient conditions under which the equality

g∗R = g∗P holds. Then, in Section 3.3.6, we look into necessary conditions for this to be

the case. It turns out that non-trivial necessary conditions for the equality g∗R = g∗P

to hold are, in general, difficult to obtain, because they depend on the nature of

the transmission functions available to the sensors. For example, if the sensors are

allowed to simply forward undistorted all of the messages that they receive, then the

equality g∗R = g∗P holds trivially. Hence, we need to impose some restrictions on the

set of transmission functions available, as in the assumption that follows.

Assumption 3.2.

(a) There exists a n0 ≥ 1 such that for all n ≥ n0, we have ln(v) > 1 for all v in the

set Bn of nodes whose immediate predecessors are all leaves.

(b) Let X1, X2, . . . be i.i.d. random variables under either hypothesis Hj, each with

distribution PXj . For k > 1, γ0 ∈ Γ(k), and γi ∈ Γ, i = 1, . . . , k, let ξ =
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(γ0, . . . , γk). We also let νξj be the distribution of γ0(γ1(X1), . . . , γk(Xk)) under

hypothesis Hj. We assume that

g∗P < inf
ξ∈Γ(k)×Γk

1

k
E0

[
log

dνξ1

dνξ0

]
, (3.6)

for all k > 1.

Assumption 3.2 holds in most cases of interest. Part (a) results in no loss of

generality: if in a relay tree we have ln(v) = 1 for some v ∈ Bn, we can remove

the predecessor of v, and treat v as a leaf. Regarding part (b), it is easy to see

that the left-hand side (L.H.S.) of (3.6) is always less than or equal to the R.H.S.,

hence we have only excluded those cases where (3.6) holds with equality. We are

essentially assuming that when the messages γ1(X1), . . . , γk(Xk) are summarized (or

quantized) by γ0, there is some loss of information, as measured by the associated

KL divergences.

3.1.3 Main Results

In this section, we collect and summarize the main results of this chapter. The

asymptotic proportion of nodes that are leaves, defined by

z = lim inf
n→∞

ln(f)

n
,

plays a critical role.

Theorem 3.1. Consider a sequence of trees, (Tn)n≥1, of bounded height. Suppose

that Assumptions 2.1-2.3, and Assumption 3.1 hold. Then,

(i) g∗P ≤ g∗R < 0 and −D(PX0 ‖PX1 ) ≤ g∗ ≤ zg∗R < 0.

(ii) If z = 1, then g∗P = g∗ = g∗R.

(iii) If the number of non-leaf nodes is bounded, or if minv∈Bn ln(v) → ∞, then

g∗P = g∗ = g∗R.
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(iv) If Assumption 3.2 also holds, we have g∗R = g∗P iff z = 1.

Note that part (i) follows from (3.2), except for the strict negativity of the error

exponents, which is established in Proposition 3.2. Part (ii) is proved in Proposition

3.3. Part (iii) is proved in Corollary 3.1. (Recall that Bn is the set of non-leaf nodes

all of whose immediate predecessors are leaves.) Part (iv) is proved in Proposition

3.5. One might also have expected a result asserting that g∗P ≤ g∗. However, this is

not true without additional assumptions, as will be discussed in Section 3.3.6.

3.2 Error Bounds for h-Uniform Relay Trees

In this section, we consider a 1-bit h-uniform relay tree, in which all relay nodes at

level k use a LLRQ with a common threshold tk. We wish to develop upper bounds

for the error probabilities at the various nodes. We do this recursively, by moving

along the levels of the tree, starting from the leaves. Given bounds on the error

probabilities associated with the messages received by a node, we develop a bound

on the log-moment generating function at that node (cf. Eq. (3.8)), and then use the

standard Chernoff bound technique to develop a bound on the error probability for

the message sent by that node (cf. Eq. (3.7)).

Let t(k) = (t1, t2, . . . , tk), for k ≥ 1, and t(0) = ∅. For j = 0, 1, k ≥ 1, and λ ∈ R,

we define recursively

Λj,0(γ;λ) = Λj,0(γ, ∅;λ) = log Ej

[(dP
γ
1

dP
γ
0

)λ]
,

Λ∗
j,k(γ, t

(k)) = sup
λ∈R

{
λtk − Λj,k−1(γ, t

(k−1);λ)
}
, (3.7)

Λj,k(γ, t
(k);λ) = max

{
− Λ∗

1,k(γ, t
(k))(j + λ),Λ∗

0,k(γ, t
(k))(j − 1 + λ)

}
. (3.8)

The operation in (3.7) is known as the Fenchel-Legendre transform of Λj,k−1(γ, t
(k−1);λ)

[39]. We will be interested in the case where

− D(Pγ0 ‖P
γ
1) < 0 < D(Pγ1 ‖P

γ
0), (3.9)
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t1 ∈
(
− D(Pγ0 ‖P

γ
1),D(Pγ1 ‖P

γ
0)

)
, (3.10)

tk ∈
(
− Λ∗

1,k−1(γ, t
(k−1)),Λ∗

0,k−1(γ, t
(k−1))

)
, for 1 < k ≤ h. (3.11)

We now provide an inductive argument to show that the above requirements

on the thresholds tk are feasible. From Assumption 2.2, there exists a γ ∈ Γ that

satisfies (3.9), hence the constraint (3.10) is feasible. Furthermore, the Λ∗
j,1(γ, t

(1)) are

large deviations rate functions and are therefore positive when t1 satisfies (3.10) [39].

Suppose now that k > 1 and that Λ∗
j,k−1(γ, t

(k−1)) > 0. From (3.8), Λj,k−1(γ, t
(k−1);λ)

is the maximum of two linear functions of λ (see Figure 3-5). Taking the Fenchel-

Legendre transform, and since tk satisfies (3.11), we obtain Λ∗
j,k(γ, t

(k)) > 0, which

completes the induction.

λ
0 1

{

Slope=−Λ∗

1,k−1(γ, t(k−1)) Slope=Λ∗

0,k−1(γ, t(k−1))

Λ∗

0,k(γ, t(k))

Slope=tk

Figure 3-5: Typical plot of Λ0,k−1(γ, t
(k−1);λ), k ≥ 2.

From the definitions of Λj,k and Λ∗
j,k, the following relations can be established.

The proof consists of straightforward algebraic manipulations and is omitted.

Lemma 3.1. Suppose that γ ∈ Γ satisfies (3.9), and t(h) satisfies (3.10)-(3.11). For
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k ≥ 1, we have

Λ∗
1,k(γ, t

(k)) = Λ∗
0,k(γ, t

(k)) − tk,

and for k ≥ 2, we have

inf
λ∈[0,1]

Λ0,k(γ, t
(k);λ) = −

Λ∗
0,k(γ, t

(k))Λ∗
1,k(γ, t

(k))

Λ∗
0,k(γ, t

(k)) + Λ∗
1,k(γ, t

(k))
.

Furthermore, the supremum in (3.7) is achieved at some λ ∈ (−1, 0) for j = 1, and

λ ∈ (0, 1) for j = 0. For k ≥ 2, we have

Λ∗
1,k(γ, t

(k)) =
Λ∗

1,k−1(γ, t
(k−1))(Λ∗

0,k−1(γ, t
(k−1)) − tk)

Λ∗
0,k−1(γ, t

(k−1)) + Λ∗
1,k−1(γ, t

(k−1))
,

Λ∗
0,k(γ, t

(k)) =
Λ∗

0,k−1(γ, t
(k−1))(Λ∗

1,k−1(γ, t
(k−1)) + tk)

Λ∗
0,k−1(γ, t

(k−1)) + Λ∗
1,k−1(γ, t

(k−1))
.

Proposition 3.1 below, whose proof is provided in Section 3.5, will be our main

tool in obtaining upper bounds on error probabilities. It shows that the Type I and

II error exponents are essentially upper bounded by −Λ∗
0,h(γ, t

(h)) and −Λ∗
1,h(γ, t

(h))

respectively. In Section 4.5, we present a class of tree networks whose error exponents

are precisely −Λ∗
j,h(γ, t

(h)), for j = 0, 1 when restricted to certain strategies. Recall

that pn(v) is the total number of predecessors of v, ln(v) is the number of leaves in the

sub-tree rooted at v, and Bn is the set of nodes all of whose immediate predecessors

are leaves.

Proposition 3.1. Fix some h ≥ 1, and consider a sequence of trees (Tn)n≥1 such

that for all n ≥ n0, Tn is h-uniform. Suppose that Assumptions 2.1-2.3 hold. Suppose

that, for every n, every leaf uses the same transmission function γ ∈ Γ, which satisfies

(3.9), and that every level k node (k ≥ 1) uses a LLRQ with threshold tk, satisfying

(3.10)-(3.11).
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(i) For all nodes v of level k ≥ 1 and for all n ≥ n0, we have

1

ln(v)
log P1

(Sn(v)
ln(v)

≤ tk

)
≤ −Λ∗

1,k(γ, t
(k)) +

pn(v)

ln(v)
− 1,

1

ln(v)
log P0

(Sn(v)
ln(v)

> tk

)
≤ −Λ∗

0,k(γ, t
(k)) +

pn(v)

ln(v)
− 1.

(ii) Suppose that for all n ≥ n0 and all v ∈ Bn, we have ln(v) ≥ N . Then, for all

n ≥ n0, we have

1

ln(f)
log P1

(Sn(f)

ln(f)
≤ th

)
≤ −Λ∗

1,h(γ, t
(h)) +

h

N
,

1

ln(f)
log P0

(Sn(f)

ln(f)
> th

)
≤ −Λ∗

0,h(γ, t
(h)) +

h

N
.

3.3 Optimal Error Exponent

In this section, we show that the Type II error probability in a sequence of bounded

height trees falls exponentially fast with the number of nodes. We derive sufficient

conditions for the error exponent to be the same as that of a parallel configuration.

We show that if almost all of the nodes are leaves, i.e., z = 1, then g∗P = g∗ = g∗R.

The condition z = 1 is also equivalent to another condition that requires that the

proportion of leaves attached to bounded degree nodes vanishes asymptotically. We

also show that under some additional mild assumptions, this sufficient condition is

necessary. We start with some graph-theoretic preliminaries.

3.3.1 Properties of Trees

In this section, we define various quantities associated with a tree, and derive a few

elementary relations that will be used later.

Recall that Bn is the set of non-leaf nodes all of whose predecessors are leaves.

(For an h-uniform tree, Bn is the set of all level 1 nodes.) For N > 0, let

FN,n = {v ∈ Bn : ln(v) ≤ N}, F c
N,n = {v ∈ Bn : ln(v) > N}, (3.12)
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and

qN,n =
1

ln(f)

∑

v∈FN,n

ln(v), (3.13)

where the sum is taken to be zero if the set FN,n is empty. Let qN = lim sup
n→∞

qN,n. For

a sequence of h-uniform trees, this is the asymptotic proportion of leaves that belong

to “small” subtrees in the network.

It turns out that it is easier to work with h-uniform trees. For this reason, we

show how to transform any tree of height h to an h-uniform tree.

Height Uniformization Procedure. Consider a tree Tn = (Vn, En) of height h,

and a node v that has at least one leaf as an immediate predecessor (v ∈ An). Let

Dn be the set of leaves that are immediate predecessors of v, and whose paths to

the fusion center f are of length k < h. Add h − k nodes, {uj : j = 1, . . . , h − k},
to Vn; remove the edges (u, v), for all u ∈ Dn; add the edges (u1, v), and (uj+1, uj),

for j = 1, . . . , h − k − 1; add the edges (u, uh−k), for all u ∈ Dn. This procedure is

repeated for all v ∈ An. The resulting tree is h-uniform. �

The height uniformization procedure essentially adds more nodes to the network,

and re-attaches some leaves, so that the path from every leaf has exactly h hops. Let

(T ′
n = (V ′

n, E
′
n))n≥1 be the new sequence of h-uniform trees obtained from (Tn)n≥1,

after applying the uniformization procedure. (We are abusing notation here in that

T ′
n typically does not have n nodes, nor is the sequence |V ′

n| increasing.) Regarding

notation, we adopt the convention that quantities marked with a prime are defined

with respect to T ′
n.

Note that l′n(f) = ln(f). For the case of a relay network, it is seen that any

function of the observations at the leaves that can be computed in T ′
n can also be

computed in Tn. Thus, the detection performance of T ′
n is no better than that of Tn.

Hence, we obtain

g∗R ≤ lim sup
n→∞

1

l′n(f)
log β∗(T ′

n). (3.14)
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Therefore, any upper bound derived for h-uniform trees, readily translates to an upper

bound for general trees. On the other hand, the coefficients qN for the h-uniform trees

T ′
n (to be denoted by q′N) are different from the coefficients qN for the original sequence

Tn. They are related as follows. The proof is given in Section 3.5.

Lemma 3.2. For any N,M > 0, we have

q′N ≤ h(NqM +N/M).

In particular, if qN = 0 for all N > 0, then q′N = 0 for all N > 0.

It turns out that the condition z = 1 is equivalent to the condition qN = 0 for all

N > 0. The proof is provided in Section 3.5.

Lemma 3.3. We have z = 1 iff qN = 0 for all N > 0.

3.3.2 An Upper Bound

In this section, we develop an upper bound on the Type II error probabilities, which

takes into account some qualitative properties of the sequence of trees, as captured

by qN .

Lemma 3.4. Consider an h-uniform sequence of trees (Tn)n≥1, and suppose that

Assumptions 2.1-2.3, and Assumption 3.1 hold. For every ǫ > 0, there exists some

N such that

g∗R ≤ (1 − qN)(g∗P + ǫ).

Proof. If g∗P + ǫ ≥ 0, there is nothing to prove, since qN ≤ 1 and g∗R ≤ 0. Suppose

that g∗P + ǫ < 0. Choose γ ∈ Γ such that

−D(Pγ0 ‖P
γ
1) ≤ − sup

γ′∈Γ
D(Pγ

′

0 ‖P
γ′

1 ) +
ǫ

2
= g∗P +

ǫ

2
< 0.

Let tk = t = −D(Pγ0 ‖P
γ
1) + ǫ/2 ≤ g∗p + ǫ, for k = 1, . . . , h, and note that

−D(Pγ0 ‖P
γ
1) < t < 0. (3.15)
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Because of (3.15), we have Λ∗
0,1(γ, t

(1)) > 0. Furthermore, using Lemma 3.1,

Λ∗
1,1(γ, t

(1)) = Λ∗
0,1(γ, t

(1)) − t > −t.

Now let k ≥ 2, and suppose that Λ∗
1,k−1(γ, t

(k−1)) > −t and Λ∗
0,k−1(γ, t

(k−1)) > 0.

From Lemma 3.1,

Λ∗
0,k(γ, t

(k)) =
Λ∗

0,k−1(γ, t
(k−1))(Λ∗

1,k−1(γ, t
(k−1)) + t)

Λ∗
0,k−1(γ, t

(k−1)) + Λ∗
1,k−1(γ, t

(k−1))
> 0,

and

Λ∗
1,k(γ, t

(k)) = Λ∗
0,k(γ, t

(k)) − tk = Λ∗
0,k(γ, t

(k)) − t > −t.

Hence, by induction, tk satisfies (3.10)-(3.11), so that Proposition 3.1 can be applied.

Choose N sufficiently large so that h/N < Λ∗
0,h(γ, t

(h)). If qN = 1, the claimed

result holds trivially. Hence, we assume that qN ∈ [0, 1). In this case, for n sufficiently

large, there exists at least one node in Bn so that ln(v) > N . We remove all nodes

v ∈ Bn with ln(v) ≤ N , and their immediate predecessors. Then, we remove all level

2 nodes v that no longer have any predecessors, and so on. In this way, we obtain an

h-uniform subtree of Tn, to be denoted by T ′′
n . (Quantities marked with double primes

are defined w.r.t. T ′′
n .) We have l′′n(v) > N for all v ∈ B′′

n, and l′′n(f) =
∑

v∈F c
N,n

ln(v) =

ln(f)(1− qN,n). Consider the following relay strategy on the tree T ′′
n . (Since this is a

subtree of Tn, this is also a relay strategy for the tree Tn, with some nodes remaining

idle.) The leaves transmit with transmission function γ, and the other nodes use a

1-bit LLRQ with threshold t. (Note that in the definition (3.5) of the normalized

log-likelihood ratio, the denominator ln(v) now becomes l′′n(v).)

We first show that the strategy just described is admissible. We apply part (ii) of

Proposition 3.1 to T ′′
n , to obtain

lim sup
n→∞

1

ln(f)
log P0(Yf = 1)
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= lim sup
n→∞

l′′n(f)

ln(f)
· 1

l′′n(f)
log P0(Yf = 1)

≤ (1 − qN) lim sup
n→∞

1

l′′n(f)
log P0

(Sn(f)

l′′n(f)
> t

)

≤ (1 − qN)
(
− Λ∗

0,h(γ, t
(h)) +

h

N

)
< 0,

hence P0(Yf = 1) ≤ α, when n is sufficiently large.

To bound the Type II error probability, we use Proposition 3.1 and Lemma 3.1,

to obtain

g∗R ≤ lim sup
n→∞

1

ln(f)
log β∗(T ′′

n )

≤ (1 − qN ) lim sup
n→∞

1

l′′n(f)
log P1

(Sn(f)

l′′n(f)
≤ t

)

≤ (1 − qN )
(
− Λ∗

1,h(γ, t
(h)) +

h

N

)

= (1 − qN)
(
t− Λ∗

0,h(γ, t
(h)) +

h

N

)

≤ (1 − qN )t

≤ (1 − qN )
(
g∗P + ǫ

)
.

This proves the lemma.

3.3.3 Exponential decay of error probabilities

We now establish that Type II error probabilities decay exponentially. The bounded

height assumption is crucial for this result. Indeed, for the case of a tandem configu-

ration, the exponential decay property does not seem to hold.

Proposition 3.2. Consider a sequence of trees of height h, and let Assumptions

2.1-2.3, and Assumption 3.1 hold. Then,

−∞ < g∗P ≤ g∗R < 0 and −∞ < −D(PX0 ‖PX1 ) ≤ g∗ < 0.

Proof. The lower bounds on g∗R and g∗ follow from (3.2). Note that g∗P cannot be equal
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to −∞ because it cannot be better than the error exponent of a parallel configuration

in which all the observations are provided uncompressed to the fusion center. The

error exponent in the latter case is −D(PX0 ‖PX1 ), by Stein’s Lemma, and is finite as

a consequence of Assumption 2.3.

It remains to show that the optimal error exponents are negative. Every tree of

height h satisfies n ≤ ln(f)h + 1. From (3.2), we obtain g∗ ≤ g∗R/h. Therefore, we

only need to show that g∗R < 0. As discussed in connection to (3.14), we can restrict

attention to a sequence of h-uniform trees.

We use induction on h. If h = 1, we have a parallel configuration and the result

follows from [22]. Suppose that the result is true for all sequences of (h− 1)-uniform

trees. Consider now a sequence of h-uniform trees. Let ǫ > 0 be such that g∗P + ǫ < 0.

From Lemma 3.4, there exists some N such that g∗R ≤ (1 − qN )(g∗P + ǫ). If qN < 1,

we readily obtain the inequality g∗R < 0.

Suppose now that qN = 1. We only need to consider a sequence (nk)k≥1 such that

lim
k→∞

qN,nk
= 1. Using the inequality (3.26), we have

|FN,nk
|

lnk
(f)

≥ qN,nk

N
,

and

lim inf
k→∞

|FN,nk
|

lnk
(f)

≥ 1

N
. (3.16)

For each node v ∈ Bn, we remove all of its immediate predecessors (leaves) except

for one, call it u. The leaf u transmits γ(Xu) to its immediate successor v. Since node

v receives only a single message, it just forwards it to its immediate successor. The

resulting performance is the same as if the nodes v in Bn were making a measurement

Xv and transmitting γ(Xv) to their successor. This is equivalent to deleting all the

leaves of Tn to form a new tree, T ′′
n , which is (h − 1)-uniform. The above argument

shows that β∗(Tnk
) ≤ β∗(T ′′

nk
).
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We have l′′nk
(f) = |Bnk

| and from (3.16),

lim inf
k→∞

|Bnk
|

lnk
(f)

≥ lim inf
k→∞

|FN,nk
|

lnk
(f)

≥ 1

N
.

Therefore,

lim sup
k→∞

1

lnk
(f)

log β∗(Tnk
) ≤ 1

N
lim sup
k→∞

1

l′′nk
(f)

log β∗(T ′′
nk

).

By the induction hypothesis, the right-hand side in the above inequality is negative

and the proof is complete.

3.3.4 Sufficient Conditions for Matching the Performance of

the Parallel Configuration

We are now ready to prove the main result of this section. It shows that when qN = 0

for all N > 0, or equivalently when z = 1 (cf. Lemma 3.3), bounded height tree

networks match the performance of the parallel configuration.

Proposition 3.3. Consider a sequence of trees of height h in which z = 1, or equiv-

alently qN = 0 for all N > 0. Suppose that Assumptions 2.1-2.3, and Assumption 3.1

hold. Then,

g∗P = g∗ = g∗R.

Furthermore, if the sequence of trees is h-uniform, the optimal error exponent does

not change even if we restrict to relay strategies in which every leaf uses the same

transmission function and all other nodes use a 1-bit LLRQ with the same threshold.

Proof. We have shown g∗P ≤ g∗R in (3.2). We now prove that g∗R ≤ g∗P . As already

explained, there is no loss in generality in assuming that the sequence of trees is

h-uniform (by performing the height uniformization procedure, and using Lemma

3.2).

47



For any ǫ > 0, Lemma 3.4 yields

g∗R ≤ g∗P + ǫ.

Letting ǫ → 0, we obtain g∗R ≤ g∗P , hence g∗R = g∗P . From (3.2) with z = 1, we obtain

g∗ ≤ g∗R = g∗P .

We now show that g∗ ≥ g∗P . Consider a tree with n nodes, ln(f) of which are

leaves. We will compare it with another sensor network in which ln(f) nodes v

transmit a message γv(Xv) to the fusion center and n− ln(f)−1 nodes transmit their

raw observations to the fusion center. The latter network can simulate the original

network, and therefore its optimal error exponent is at least as good. By a standard

argument (similar to the one in Proposition 3.4 below), the optimal error exponent

in the latter network can be shown to be greater than or equal to

lim sup
n→∞

ln(f)

n
g∗P + lim sup

n→∞
−n− ln(f) − 1

n
D(PX0 ‖PX1 ) = g∗P ,

hence concluding the proof.

Fix an ǫ ∈ (0,−g∗P ). For any tree sequence with z = 1, we can perform the height

uniformization procedure to obtain an h-uniform sequence of trees. In practice, this

height uniformization procedure may be performed virtually at each node, so that

the tree sequence simulates a h-uniform tree sequence. A simple strategy on the

height uniformized tree sequence that ǫ-achieves the optimal error exponent is a relay

strategy in which:

(i) all leaves transmit with the same transmission function γ ∈ Γ, where γ is chosen

such that −D(Pγ0 ‖P
γ
1) ≤ g∗P + ǫ/2;

(ii) all other nodes use 1-bit LLRQs with the same threshold t = −D(Pγ0 ‖P
γ
1)+ ǫ/2.

Lemmas 3.2 and 3.3, and the proof of Lemma 3.4 shows that this relay strategy ǫ-

achieves the optimal error exponent g∗R = g∗ = g∗P . This also shows that there is no
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loss in optimality even if we restrict the relay nodes to use only 1-bit LLRQs. This

may be useful in situations where the nodes are simple, low-cost devices.

Proposition 3.3 provides sufficient conditions for a sequence of trees to achieve

the same error exponent as the parallel configuration. We note a few special cases in

which these sufficient conditions are satisfied. The first one is the case where there is

a finite bound on the number of nodes that are not leaves. In that case, z is easily

seen to be 1. This is consistent with the conclusion of Example 3.1, where a simpler

argument was used. The second is the more general case where nodes in Bn are

attached to a growing number of leaves, which implies that qN = 0 for all N > 0.

Corollary 3.1. Suppose that Assumptions 2.1-2.3, and Assumption 3.1 hold. Sup-

pose further that either of the following conditions holds:

(i) There is a finite bound on the number of nodes that are not leaves.

(ii) We have minv∈Bn ln(v) → ∞.

Then, g∗P = g∗ = g∗R.

The above corollary can be applied to Example 3.2. In that example, every level 1

node has m leaves attached to it, with m growing large as n increases. Therefore, the

tree network satisfies condition (ii) in Corollary 3.1, and the optimal error exponent

is g∗ = g∗R = g∗P . In this case, even if the number N of level 1 nodes grows much faster

than m, we still achieve the same error exponent as the parallel configuration. The

above proposed strategy, in which every leaf uses the same transmission function, and

every node uses the same LLRQ, will nearly achieve the optimal performance.

We are now in a position to determine the optimal error exponent in Example 3.4.

Example 3.4, revisited: Recall that in Example 3.4, every vi ∈ Bn has i + 1 of

predecessors. It is easy to check that z = 1. From Proposition 3.3, the optimal error

exponent is the same as that for the parallel configuration. �
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3.3.5 Discussion of the Sufficient Conditions

Proposition 3.3 is unexpected as it establishes that the performance of a tree possess-

ing certain qualitative properties is comparable to that of the parallel configuration.

Furthermore, the optimal performance is obtained even if we restrict the non-leaf

nodes to use 1-bit LLRQs. At first sight, it might appear intuitive that if the leaves

dominate in a relay tree (z = 1), then the tree should always have the same per-

formance as a parallel configuration. However, this intuition is misleading, as this

is not the case for a Bayesian formulation, in which both the Type I and II error

probabilities are required to decay at the same rate, is involved. To see this, con-

sider the 2-uniform tree in Figure 3-1, where every node is constrained to sending

1-bit messages. Suppose we are given nonzero prior probabilities π0 and π1 for the

hypotheses H0 and H1. Instead of the Neyman-Pearson criterion, suppose that we

are interested in minimizing the error exponent

lim sup
n→∞

1

ln(f)
logP ∗

e ,

where P ∗
e is the minimum of the error probability π0P0(Yf = 1) + π1P1(Yf = 0), opti-

mized over all strategies. It can be shown that to obtain the optimal error exponent,

we only need to consider the following two fusion rules: (a) the fusion center declares

H0 iff both v1 and v2 send a 0, or (b) the fusion center declares H1 iff both v1 and v2

send a 1. Then, using the results in Section 4.4 of Chapter 4, the optimal error ex-

ponent for this tree network is strictly worse than that for the parallel configuration.

Similarly, if we constrain the Type I error in the Neyman-Pearson criterion to de-

cay faster than a predetermined rate, it can be shown that the optimal Type II error

exponent for a tree network can be strictly worse than that of a parallel configuration.

Note that the bounded height assumption is essential in proving g∗ = g∗R = g∗P ,

when z = 1. Although our technique can be extended to include those tree sequences

whose height grows very slowly compared to n (on the order of log | log(n/ln(f)−1)|),
we have not been able to find the optimal error exponent for the general case of un-

bounded height. We show in Chapter 6 that in a tandem network, the Bayesian error
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probability decays sub-exponentially fast. The proof of Proposition 6.2 in Chapter

6 involves the construction of a tree network, with unbounded height, and in which

z = 1. In that proof, it is also shown that such a network has a sub-exponential

rate of error decay. We conjecture that this is also the case for the Neyman-Pearson

formulation.

In summary, for a tree network to achieve the same Type II error exponent as

a parallel configuration, we require that the tree sequence have a bounded height,

satisfy the condition z = 1, and that the error criterion be the Neyman-Pearson

criterion. Without any one of these three conditions, our results no longer hold.

3.3.6 A Necessary Condition for Matching the Performance

of the Parallel Configuration

In this section, we establish necessary conditions under which a sequence of relay trees

with bounded height performs as well as a parallel configuration. As noted in Section

3.1.2, any necessary conditions generally depend on the type of transmission functions

available to the relay nodes. However, under an additional condition (Assumption

3.2), the sufficient condition for g∗R = g∗P in Proposition 3.3 is also necessary.

Proposition 3.4. Suppose that Assumptions 2.1-2.3, and Assumption 3.2 hold, and

h ≥ 2. If there exists some N > 0 such that qN > 0 (equivalently, z < 1), then

g∗P < g∗R.

Proof. Fix some N > 0 and suppose that qN > 0. Given a tree Tn, we construct a new

tree T ′′
n , as follows. We remove all nodes other than the leaves and the nodes in FN,n.

For all the leaves u that are not immediate predecessors of some v ∈ FN,n, we let u

transmit its message directly to the fusion center. We add new edges (v, f), for each

v ∈ FN,n. This gives us a tree T ′′
n of height 2, with l′′n(f) = ln(f) and q′′N = qN . The

latter tree T ′′
n can simulate the tree Tn, hence the optimal error exponent associated

with the sequence (Tn)n≥1 is bounded below by the optimal error exponent associated

with the sequence (T ′′
n )n≥1. Therefore, without loss of generality, we only need to prove

the proposition for a sequence of trees of height 2, and in which FN,n = Bn, for some
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N > 0 such that qN > 0; we henceforth assume that this is the case. The rest of the

argument is similar to the proof of Stein’s Lemma in Lemma 3.4.7 of [39]. Suppose

that a particular admissible relay strategy has been fixed, and let βn be the associated

Type II error probability. Let λn = E0[Sn(f)]/ln(f). We show that Sn(f)/ln(f) is

close to λn in probability. Let Dn be the set of leaves that transmit directly to the

fusion center. The proof of the following lemma is in Section 3.5.

Lemma 3.5. For all η > 0, P0(|Sn(f)/ln(f) − λn| > η) → 0, as n→ ∞.

We return to the proof of Proposition 3.4. Given the transmission functions at all

other nodes, the fusion center will optimize performance by using an appropriate like-

lihood ratio test, with a (possibly randomized) threshold. We can therefore assume,

without loss of generality that this is the case. We let ζn be the threshold chosen,

and note that it must satisfy

P0(Sn(f)/ln(f) ≤ ζn) ≥ 1 − α. (3.17)

From a change of measure argument (see Lemma 3.4.7 in [39]), we have for η > 0,

1

ln(f)
log β∗(Tn)

≥ λn − η +
1

ln(f)
log P0

(
λn − η <

Sn(f)

ln(f)
≤ ζn

)
.

Using (3.17) and Lemma 3.5, we see that the last term goes to 0 as n → ∞.We also

have

λn =
1

ln(f)

( ∑

v∈Dn

E0

[
log

dP
γv

1

dP
γv

0

]
+

∑

v∈FN,n

E0[Lv,n]
)

≥ (1 − qN,n)g
∗
P + qN,nK,

where, using the notation in Assumption 3.2,

K = inf
1<k≤N

ξ∈Γ(k)×Γk

1

k
E0

[
log

dνξ1

dνξ0

]
> g∗P .
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Then, letting n→ ∞, we have

g∗R ≥ (1 − qN )g∗P + qNK − η,

for all η > 0. Taking η → 0 completes the proof.

The condition that there exists a finite N such that ln(v) ≤ N for a non-vanishing

proportion of nodes, in the statement of Proposition 3.4, can be thought of as corre-

sponding to a situation where relay nodes are of two different types: high cost relays

that can process a large number of received messages (ln(v) → ∞) and low cost re-

lays that can only process a limited number of received messages (ln(v) ≤ N for some

small N). From this perspective, Proposition 3.4 states that a tree network of height

greater than one, with a nontrivial proportion of low cost relays, will always have a

performance worse than that of a parallel configuration.

Together with Proposition 3.3, we have shown the following.

Proposition 3.5. Suppose that Assumptions 2.1-2.3, and Assumptions 3.1-3.2 hold.

Then, g∗R = g∗P iff z = 1 (or equivalently, iff qN = 0 for all N > 0).

Finally, we present an example in which z < 1 and g∗ < g∗P . Since there are also

easy examples where z < 1 and g∗P < g∗, this suggests that one can combine them to

construct examples where z < 1 and g∗ = g∗P . Thus, unlike the case of a relay tree,

z = 1 is not a necessary condition for g∗ = gP .

Example 3.5. Consider the tree network shown in Figure 3-6, where every node

makes a 3-bit observation. Each leaf then compresses its 3-bit observation to a 1-bit

message, while each level 1 node is allowed to send a 4-bit message. (Recall that our

framework allows for different transmission function sets Γ(d) at the different levels.)

We assume Assumptions 2.2-3.1 hold. Moreover, we assume that this network satisfies

Assumption 3.2.

Consider the following strategy: each level 1 node forwards the two 1-bit messages

it receives from its two leaves to the fusion center. It then compresses its own 3-bit

observation into a 2-bit message before sending it to the fusion center. Using this
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Figure 3-6: Every node makes a 3-bit observation. Leaves are constrained to sending
1-bit messages, while level 1 nodes are constrained to sending 4-bit messages.

strategy, the tree network is equivalent to a parallel configuration with 3m nodes, 2m

of which are constrained to sending 1-bit messages, and m of which are constrained

to sending 2-bit messages. Clearly, this parallel configuration performs strictly better

than one in which all 3m nodes are constrained to sending 1-bit messages, therefore

we have g∗ < g∗P . �

Example 3.5 shows that, unlike the case of relay trees, a tree can outperform a

parallel configuration. On the other hand, Example 3.5 is an artifact of our assump-

tions. For example, if we restrict every node in this example to sending only 1 bit,

the situation is reversed and we have g∗P < g∗. The question of whether a parallel

configuration always performs at least as well as a tree network, i.e., whether g∗P ≤ g∗,

when every node can send the same number of bits, remains open.

3.4 Achieving the Type I Error Constraint

We have provided a strategy in Section 3.3.4 that allows a h-uniform tree sequence

with z = 1, to achieve an error exponent to within ǫ of g∗P (for any small ǫ > 0).

However, a large number of nodes may be required before the proposed strategy

meets the Type I error constraint when h is large. In this section, we provide an upper

bound for the number of nodes required before our proposed strategy is admissible.

Clearly, this upper bound depends on the distributions under either hypothesis, so our

benchmark for comparison is taken to be the number of nodes required when a similar
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ǫ-optimal strategy is used in the parallel configuration. Throughout this section, we

will consider only h-uniform tree sequences with z = 1 (since a height uniformization

procedure can be performed on those tree sequences that are not height uniform).

We first record an elementary result. Let ιh be a vector of length h, and whose

entries are all 1. Also, let u(γ, t) = Λ∗
0,1(γ, t)/Λ

∗
1,1(γ, t).

Lemma 3.6. For γ ∈ Γ, and −D(Pγ0 ‖P
γ
1) < t < D(Pγ1 ‖P

γ
0), we have

Λ∗
0,h(γ, tιh)

Λ∗
1,h(γ, tιh)

= u(γ, t)2h−1

. (3.18)

Furthermore, we have 1

Λ∗
1,h(γ, tιh) = Λ∗

1,1(γ, t)
h−2∏

k=0

1

1 + u(γ, t)2k , (3.19)

Λ∗
0,h(γ, tιh) = Λ∗

0,1(γ, t)
h−2∏

k=0

u(γ, t)2k

1 + u(γ, t)2k . (3.20)

Proof. From Lemma 3.1, we obtain

Λ∗
0,h(γ, tιh)

Λ∗
1,h(γ, tιh)

=
Λ∗

0,h−1(γ, tιh−1)(Λ
∗
1,h−1(γ, tιh−1) + t)

Λ∗
1,h−1(γ, tιh−1)(Λ

∗
0,h−1(γ, tιh−1) − t)

=
(Λ∗

0,h−1(γ, tιh−1)

Λ∗
1,h−1(γ, tιh−1)

)2

.

Therefore, by induction, (3.18) holds. Lemma 3.1 also yields

Λ∗
1,h(γ, tιh) =

Λ∗
1,h−1(γ, tιh−1)

Λ∗
0,h−1(γ, tιh−1) + Λ∗

1,h−1(γ, tιh−1)
Λ∗

1,h−1(γ, tιh−1)

=
1

1 + u(γ, t)2h−2 Λ∗
1,h−1(γ, tιh−1).

The equation (3.19) then follows by induction. A similar argument shows (3.20), and

the lemma is proved.

We are interested in relating the Type I error exponent of a height uniform tree

1 The products are taken to be 1 if h = 1.
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sequence, with h greater than one, to that of a parallel configuration, when both

configurations use ǫ-optimal strategies with the same Type II error exponent. Recall

that in our proposed ǫ-optimal strategy, every leaf uses the same transmission function

γ ∈ Γ, and every other node uses a LLRQ with the same threshold t. We shall call this

the (γ, t) strategy. We consider only the case when ǫ is chosen sufficiently small so that

Λ∗
1,h(γ, tιh) > Λ∗

1,1(γ, 0). There is little loss of generality in making this assumption,

since we are typically interested in strategies that nearly achieve the optimal error

exponent. For each n, let αh,n(t) and βh,n(t) be the Type I and II error probabilities

of a h-uniform network with n nodes, when the (γ, t) strategy is used.

Suppose that a h-uniform tree sequence uses the (γ, t) strategy. Since Λ∗
1,1(γ, ·) is

continuous, there exists an s ∈ (−D(Pγ0 ‖P
γ
1), 0), such that

Λ∗
1,1(γ, s) = − lim sup

n→∞

1

n
log βh,n(t).

This implies that if a parallel configuration uses the (γ, s) strategy, then its error

exponent is the same as a h-uniform tree sequence using the (γ, t) strategy. Given

that both configurations have the same Type II error exponent, we can now compare

their Type I error exponents. Let ah(t) = lim supn→∞(1/n) logαh,n(t) be the Type I

error exponent.

Proposition 3.6. Suppose that Assumptions 2.1-2.3 hold. For h > 1, suppose a

h-uniform tree sequence with z = 1 uses the (γ, t) strategy so that Λ∗
1,h(γ, tιh) >

Λ∗
1,1(γ, 0). Suppose also that a parallel configuration uses the (γ, s) strategy so that it

has the same Type II error exponent as the h-uniform tree sequence. Then,

ah(t) ≤ Ka1(s),

where

K =
Λ∗

0,1(γ, t)

Λ∗
0,1(γ, s)

h−2∏

k=0

u(γ, t)2k

1 + u(γ, t)2k .
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Furthermore, for each δ ∈ (0, 1), let N0(δ) be such that for all n ≥ N0(δ),

0 ≤ n

ln(f)
− 1 ≤ δmin{K|a1(s)|, 1}.

Then, if n ≥ infδ∈(0,1) max
{
N0(δ),

logα
a1(s)

1+δ
K(1−δ)

}
, we have αh,n ≤ α.

Proof. From Proposition 3.1 and Lemma 3.6, we have

ah(t) ≤ −Λ∗
0,h(γ, tιh) = −KΛ∗

0,1(γ, s) = Ka1(s),

where the last equality follows because a1(s) = −Λ∗
0,1(γ, s) (cf. Theorem 2.1).

Fix a δ ∈ (0, 1), and consider n ≥ max
{
N0(δ),

logα
a1(s)

1+δ
K(1−δ)

}
. From Proposition

3.1, we have

αh,n ≤ exp
(
ln(f)

(
− Λ∗

0,h(γ, tιh) +
n

ln(f)
− 1

))

≤ exp
( n

1 + δ

(
Ka1(s) +

n

ln(f)
− 1

))

≤ exp
( n

1 + δ

(
Ka1(s) − δKa1(s)

))

= exp
( n

1 + δ
(1 − δ)Ka1(s)

)
≤ α.

The proposition is now proved.

From Theorem 2.1, we have α1,n ≤ exp(na1(s)) so that if n ≥ logα/a1(s), the

Type I error constraint is satisfied. Let us take n0 = logα/a1(s) as an estimate of

the required number of nodes for the (γ, s) strategy to be admissible in the parallel

configuration. Then, if α is very small (e.g., on the order of 10−6), Proposition

3.6 shows that approximately at most n0/K nodes are required for the h-uniform

tree sequence to meet the Type I error constraint. Moreover, since s < 0, we have

Λ∗
0,1(γ, s) ≥ Λ∗

0,1(γ, 0), yielding the following lower bound for K:

K ≥ K0 :=
Λ∗

0,1(γ, t)

Λ∗
0,1(γ, 0)

h−2∏

k=0

u(γ, t)2k

1 + u(γ, t)2k . (3.21)
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Taking the reciprocal of the R.H.S. of (3.21) yields an upper bound for the number

of nodes required for the (γ, t) strategy to be admissible. This upper bound applies

for all tree sequences with the same height h, regardless of the network architecture.

We next consider some numerical examples below to verify our conclusions. Sup-

pose that leaves make i.i.d. observations with Bernoulli distributions that have pa-

rameters p0 = 0.2 under H0, and p1 = 0.8 under H1. For simplicity, we assume that

leaves transmit their 1-bit observations in the raw to the level 1 nodes. We consider

2-uniform tree sequences similar to that in Example 3.2. Suppose there are N level

1 nodes, each with m leaves attached. In the first case, we fix the number of relay

nodes to be N = 4. In the second case, we let N = m2 (this mirrors the case of ap-

proximating a hop constrained minimum spanning tree in the unit square; cf. Section

4.1). The thresholds used in the LLRQs for each case are given in Table 3.1 below.

In all cases, the Type I error constraint is set at α = 10−6.

N t s 1/K
4 -0.4318 -0.4312 9.6547
m2 -0.4318 -0.3714 12.5625

Table 3.1: The threshold t is used in the 2-uniform tree network, while the threshold
s is chosen so that the corresponding parallel configuration has the same Type II
error exponent. The ratio of the number of nodes required for the 2-uniform tree
sequence to achieve the Type I error constraint, compared to that for the parallel
configuration, is approximately upper bounded by 1/K.

The Type II error probability for the case N = 4 is shown in Figure 3-7. We have

chosen the threshold s so that the Type II error exponent of the parallel configuration

is the same as that of the tree sequence, as verified by Figure 3-7.

From Figure 3-8, the parallel configuration requires approximately 198 nodes be-

fore the Type I error constraint is met. In the 2-uniform tree sequence, approximately

900 nodes are required. This is well within 1/K = 9.6547 times of 198 nodes. In the

case N = m2, we require 155 nodes and 1338 nodes for the parallel configuration

and the 2-uniform tree sequence respectively (cf. Figure 3-9). Again, 1/K = 12.5625

is an upper bound for the ratio of nodes in the tree network to that in the parallel

configuration. These examples verify that 1/K gives an approximate upper bound for
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Figure 3-7: Plot of log βh,n vs. n.

determining the number of nodes required so that our proposed strategy is admissible

in a tree architecture.

The case N = m2 mirrors the tree network constructed in the example in Section

4.1. As shown in that example, a tree network with a similar architecture as the

case where N = m2, and with a total of n nodes, has a transmission cost of c1n
2/3,

where c1 is a positive constant. A parallel configuration with n nodes, on the other

hand, has a transmission cost of c2n, where c2 is another positive constant. Even

though the tree network requires approximately 10 times as many nodes for our

strategy to be admissible (as shown numerically above), it is easy to see that if

n > 100 ·(c1/c2)3, the tree network with 10n nodes has a lower transmission cost than

a parallel configuration with n nodes. As the sensor networks we are interested in

have hundreds or thousands of nodes, this example shows that our proposed strategy

results in an energy efficient tree network, although the number of nodes required

in the tree network may be many times more than that for a parallel configuration.

Moreover, as shown in Section 3.3, our proposed strategy nearly achieves the optimal
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error exponent in this tree network.
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Figure 3-8: Plot of Type I error probabilities for N = 4.
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Figure 3-9: Plot of Type I error probabilities for N = m2.
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3.5 Proofs

In this section, we prove some of the results in this chapter.

Proof of Proposition 3.1.

We first show part (i). The proof proceeds by induction on k. Suppose that k = 1,

which is equivalent to the well-studied case where all sensors transmit directly to a

fusion center. In this case, pn(v) = ln(v). Since t1 ∈ (−D(Pγ0 ‖P
γ
1),D(Pγ1 ‖P

γ
0)), from

(2.2.13) of [39], we obtain

1

ln(v)
log P1

(Sn(v)
ln(v)

≤ t1

)
≤ −Λ∗

1,1(γ, t1).

The inequality for the Type I error probability follows from a similar argument.

Consider now the induction hypothesis that the result holds for some k. Given a k-

uniform tree rooted at v, the induction hypothesis leads to bounds on the probabilities

associated with the log-likelihood ratio Lv,n of the message Yv computed at the node

v. We use these bounds to obtain bounds on the log-moment generating function of

Lv,n. Recall that Lv,n equals Lv,n(0) whenever Yv = 0, which is the case if and only

if Sn(v)/ln(v) ≤ tk. Fix some λ ∈ [−1, 0]. We have

1

ln(v)
log E1

[
eλLv,n

]

=
1

ln(v)
log

[
P1(Yv = 0)eλLv,n(0) + P1(Yv = 1)eλLv,n(1)

]

=
1

ln(v)
log

[
P1(Yv = 0)1+λP0(Yv = 0)−λ + P1(Yv = 1)1+λP0(Yv = 1)−λ

]

≤ 1

ln(v)
log

[
P1(Yv = 0)1+λ + P0(Yv = 1)−λ

]
.

Using the inequality log(a+ b) ≤ max{log(2a), log(2b)}, we obtain

1

ln(v)
log E1

[
eλLv,n

]

≤ max
{1 + λ

ln(v)
log P1(Yv = 0),− λ

ln(v)
log P0(Yv = 1)

}
+

log 2

ln(v)
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≤ max
{
− (1 + λ)Λ∗

1,k(γ, t
(k)), λΛ∗

0,k(γ, t
(k))

}
+
pn(v)

ln(v)
− 1 +

log 2

ln(v)
(3.22)

≤ Λ1,k(γ, t
(k);λ) +

pn(v)

ln(v)
+

1

ln(v)
− 1, (3.23)

where (3.22) follows from the induction hypothesis.

Consider now a node u at level k+1. The subtree rooted at u is a (k+1)-uniform

tree. Each level k node v ∈ Cn(u) can be viewed as the root of a k-uniform tree and

Eq. (3.23) can be applied to Lv,n. From the Markov Inequality, and since λ ∈ [−1, 0],

we have

P1

(Sn(u)
ln(u)

≤ tk+1

)
≤ e−λln(u)tk+1E1

[
eλSn(u)

]
,

so that

1

ln(u)
log P1

(Sn(u)
ln(u)

≤ tk+1

)

≤ −λtk+1 +
1

ln(u)

∑

v∈Cn(u)

log E1

[
eλLv,n

]

= −λtk+1 +
∑

v∈Cn(u)

ln(v)

ln(u)
· 1

ln(v)
log E1

[
eλLv,n

]

≤ −λtk+1 + Λ1,k(γ, t
(k);λ) +

∑

v∈Cn(u)

pn(v)

ln(u)
+

|Cn(u)|
ln(u)

− 1 (3.24)

= −λtk+1 + Λ1,k(γ, t
(k);λ) +

pn(u)

ln(u)
− 1, (3.25)

where (3.24) follows from the induction hypothesis and (3.23). Taking the infimum

over λ ∈ [−1, 0] (cf. Lemma 3.1), and using (3.7), we obtain

1

ln(u)
log P1

(Sn(u)
ln(u)

≤ tk+1

)
≤ −Λ∗

1,k+1(γ, t
(k+1)) +

pn(u)

ln(u)
− 1.

A similar argument proves the result for the Type I error probability, and the proof

of part (i) is complete.

For part (ii), suppose that for all n ≥ n0 and all v ∈ Bn, we have ln(v) ≥ N .

Note that ln(f) ≥ N |Bn|. Furthermore, the number of nodes at each level k ≥ 1 is
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bounded by |Bn|, which yields

pn(f)

ln(f)
− 1 ≤ n

ln(f)
− 1 =

n− ln(f)

ln(f)
≤ h|Bn|
N |Bn|

=
h

N
.

Applying the results from part (i), with k = h, we obtain part (ii).

Proof of Lemma 3.2.

We have l′n(f) = ln(f). Furthermore, it can be shown that |B′
n| ≤ h|Bn|. There-

fore,

q′N,n =
1

l′n(f)

∑

v∈F ′

N,n

l′n(v) ≤
1

ln(f)
N |B′

n|

≤ 1

ln(f)
Nh

(
|FM,n| + |F c

M,n|
)

≤ hNqM,n + hN/M,

where the last inequality follows from |FM,n| ≤
∑

v∈FM,n

ln(v) and |F c
M,n| ≤ ln(f)/M .

Taking the limit superior as n→ ∞, we obtain

q′N ≤ h(NqM +N/M).

Suppose that qM = 0 for all M > 0. Then for all N,M > 0, we have

q′N ≤ hN/M.

Taking M → ∞, we obtain the desired result.

Proof of Lemma 3.3.

Suppose that qN > 0 for some N > 0. Using the inequality

qN,n =
1

ln(f)

∑

v∈FN,n

ln(v) ≤
N |FN,n|
ln(f)

,

or

|FN,n| ≥
qN,n
N

ln(f), (3.26)
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we obtain

ln(f)

n
≤ ln(f)

|FN,n| + ln(f)

≤ ln(f)

qN,nln(f)/N + ln(f)

=
N

N + qN,n
.

Letting n→ ∞, we obtain

z ≤ N

N + qN
< 1.

For the converse, suppose that qN = 0 for all N > 0. It can be seen that each

non-leaf node is on a path that connects some v ∈ Bn to the fusion center. Therefore,

the number of non-leaf nodes n− ln(f) is bounded by h|Bn|. We have

n− ln(f)

ln(f)
≤ h|Bn|

ln(f)
= h

|FN,n| + |F c
N,n|

ln(f)
≤ hqN,n +

h

N
.

Therefore,

lim sup
n→∞

n− ln(f)

ln(f)
≤ h

N
.

This is true for all N > 0, which implies that lim
n→∞

ln(f)/n = 1.

Proof of Lemma 3.5.

For each v ∈ Bn, we have Yv = γv({γu(Xu) : u ∈ Cn(v)}), for some γv ∈ Γ(ln(v)).

Using the first, and the second part of Lemma 2.1, there exists some a1 ∈ (0,∞),

such that

E0[L
2
v,n] ≤ E0

[( ∑

u∈Cn(v)

log
dP

γu

1

dP
γu

0

)2]
+ 1

≤ ln(v)E0

[ ∑

u∈Cn(v)

log2 dP
γu

1

dP
γu

0

]
+ 1

≤ l2n(v)a1 + 1
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≤ l2n(v)a, (3.27)

where a = a1 + 1.

To prove the lemma, we use Chebychev’s inequality, and the inequalities ln(v) ≤ N

for v ∈ FN,n, and |Dn| ≤ ln(f), to obtain

P0

(∣∣Sn(f)

ln(f)
− λn

∣∣ > η
)

≤ 1

η2l2n(f)

( ∑

v∈Dn

E0

[
log2 dP

γv

1

dP
γv

0

]
+

∑

v∈FN,n

E0[L
2
v,n]

)

≤ 1

η2l2n(f)

( ∑

v∈Dn

a+
∑

v∈FN,n

l2n(v)a
)

(3.28)

≤ a

η2ln(f)
+

a

η2ln(f)

∑

v∈FN,n

ln(v)

ln(f)
N

≤ a(1 +N)

η2ln(f)
, (3.29)

where (3.28) follows from Lemma 2.1 and (3.27). The R.H.S. of (3.29) goes to zero

as n→ ∞, and the proof is complete.
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Chapter 4

Bayesian Detection in Bounded

Height Tree Networks

In Chapter 3, we considered the Neyman-Pearson detection problem for tree networks

with bounded height. In this chapter, we continue this investigation by focusing on

the Bayesian formulation.

We start with an example that serves to motivate some of our assumptions. We

then show that for bounded height trees, error probabilities decay exponentially fast.

However, the optimal error exponent is generically worse than the one associated with

a parallel configuration, and is also harder to characterize exactly. In order to make

further progress, we place some additional restrictions on the allowed quantization

strategies, and consider tree sequences with symmetric architectures. We analyze

two different classes of symmetric tree sequences, and compare their detection per-

formances. Our results suggest that for tree sequences with the same height, having

more immediate predecessors for each relay node deteriorates performance.

4.1 An Example Network

Suppose that we distribute n nodes randomly in the unit square and place a fusion

center at the center of the square. We are interested in configuring the nodes so that

every node is at most two hops away from the fusion center.
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1
√

m{

Figure 4-1: Random nodes in a unit square. The hollow circles represent the local
aggregators. The dotted lines represent communication links. Only one sub-square
is shown with its communication links.

One possibility (to be referred to as Design I) is to fix some m, and divide the

square into m sub-squares, each with side of length 1/
√
m (see Figure 1). For large n,

there are approximately n/m nodes in each of these sub-squares. We let all the nodes

within a sub-square transmit their messages to an “aggregator” node in that sub-

square. In this way, we get a “symmetric” tree network, in which every aggregator is

connected to roughly the same number of nodes, with high probability. Suppose now

that the communication cost is proportional to the Euclidean distance between two

communicating nodes. Since the number m is fixed, the communication cost in this

strategy is Θ(n).

An alternative possibility (to be referred to as Design II) is to minimize the over-

all communication cost by using a 2-hop Minimum Spanning Tree (MST). Because

finding a hop-constrained MST is NP-hard (see [41]), let us consider a simple heuris-

tic [42]. As before, we place an aggregator in each of the m sub-squares, and let

the rest of the nodes in the sub-square send their observations to this aggregator.

However, we do not fix m in this strategy. The overall expected cost is

F (m) = m
(
a1
n

m

1√
m

)
+ma2 =

a1n√
m

+ma2,
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where a1 and a2 are nonzero constants. To minimize F (m), a simple calculation shows

that we should take m = m(n) = Θ(n2/3), which reduces the cost from Θ(n) in Design

I, to Θ(n2/3). On the other hand, one suspects that the detection performance of

Design II will be inferior to that of Design I. The results in Lemma 4.3 and Proposition

4.1 provide evidence that this is indeed the case.

Motivated by the two designs introduced above, we will consider the detection

performance of two different classes of tree networks. The first class of tree networks

consists of symmetric trees with a fixed number of aggregators or relay nodes, while

the second class of tree networks consists of tree architectures in which the number

of relay nodes increases at a certain rate (we call these the rapidly branching tree

sequences; cf. Section 4.5). We characterize the detection performance of both classes

over a restricted set of strategies that are easy to implement in practice in Sections 4.4

and 4.5, and compare the performance of these two classes. We show that the second

class performs worse than any of the tree networks in the first class, in Proposition

4.1.

4.2 Problem Formulation

Suppose that each hypothesis Hj has positive prior probability πj. Given a tree

network Tn, a typical goal is to minimize the probability of error Pe(Tn) = π0P0(Yf =

1) + π1P1(Yf = 0), over all strategies. Let P ∗
e (Tn) be the minimum probability of

error (over all strategies) at the fusion center. In a sequence of trees (Tn)n≥1, we seek

to characterize the optimal error exponent [39],

E∗ = lim sup
n→∞

1

n
logP ∗

e (Tn)

= max
{

lim sup
n→∞

1

n
log P0(Yf = 1), lim sup

n→∞

1

n
log P1(Yf = 0)

}
.
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Similar to the Neyman-Pearson formulation, for a relay tree, we consider instead the

optimal error exponent,

E∗
R = lim sup

n→∞

1

ln(f)
logP ∗

e (Tn).

In addition to Assumptions 2.1-2.2, we will also make the following assumption.

A prime denotes differentiation w.r.t. λ, and a double prime is the second derivative

w.r.t. λ.

Assumption 4.1. Both D(PX0 ‖PX1 ) and D(PX1 ‖PX0 ) are finite, and there exists some

b ∈ (0,∞), such that for all γ ∈ Γ, Λ′′
0,0(γ;λ) ≤ b, for all λ ∈ (0, 1), and Λ′′

1,0(γ;λ) ≤ b,

for all λ ∈ (−1, 0).

4.3 Exponential Decay

In this section, we show that the optimal error probability in a sequence of trees with

bounded height h decays exponentially fast with the number of nodes n. (This is in

contrast to general trees, where the decay can be sub-exponential, cf. Chapter 6.)

When h = 1, we have the classical parallel configuration considered in [22], and the

optimal error exponent is given by

E∗
P = − sup

γ∈Γ
Λ∗

0,1(γ, 0) = inf
γ∈Γ

min
λ∈[0,1]

Λ0,0(γ;λ) < 0. (4.1)

Also, recall that z = lim inf
n→∞

ln(f)/n is the asymptotic proportion of nodes that are

leaves.

Theorem 4.1. Suppose that Assumptions 2.1, 2.2 and 4.1 hold. Consider any se-

quence of trees of height h. Then,

E∗
P ≤ E∗

R < 0, (4.2)
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and

min
λ∈[0,1]

log E0

[(dPX1

dPX0

)λ]
≤ E∗ ≤ zE∗

R < 0. (4.3)

Furthermore, if z = 1, we have

E∗
P ≤ E∗ ≤ E∗

R ≤ 1

2h−1
E∗
P . (4.4)

Proof. (Outline) We first note that E∗
R ≥ E∗

P holds trivially since a parallel configu-

ration can simulate any relay tree network. Also, since a relay strategy is a possible

strategy for any tree network, zE∗
R ≥ E∗; the factor z is because we have normalized

E∗
R with ln(f) instead of n. Furthermore, the first inequality in (4.3) is easily arrived

at when comparing a tree network to one in which raw observations at every node is

available at the fusion center. Finally, since z ≥ 1/h, it remains to show E∗
R < 0 and

(4.4).

We first show E∗ ≥ E∗
P when z = 1. Compare the tree network Tn to another

network T ′
n in which all the non-leaf nodes send their raw observations to the fusion

center, and all the leaves send their messages directly to the fusion center. Clearly,

T ′
n can simulate Tn, and has at least as good performance as Tn. Moreover, T ′

n is

now a parallel configuration, and using an argument similar to that in [22], we obtain

E∗ ≥ E∗
P .

Next, we show that E∗
R ≤ E∗

P/2
h−1 < 0 for z = 1, and E∗

R < 0 for z < 1. Any tree

of height h can be transformed to an h-uniform tree using the height uniformization

procedure described in Section 3.3.1. For the same reason as in Section 3.3.1, it is

sufficient to show the inequalities for the height uniform counterpart of (Tn)n≥1, hence

we can without loss of generality assume that the sequence of trees is h-uniform. We

consider two cases below.

When z = 1, let all leaves use the same transmission function γ ∈ Γ such that

(3.9) is satisfied, and let all non-leaf nodes use a LLRQ with threshold 0 (it is easy
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to verify that this satisfies (3.10)-(3.11)). Then, from Proposition 3.1, we have

E∗
R ≤ −min{Λ∗

0,h(γ, 0),Λ∗
1,h(γ, 0)},

where 0 is a vector of h 0s. From Lemma 3.1, we have

Λ∗
0,h(γ, 0) = Λ∗

1,h(γ, 0) =
1

2h−1
Λ∗

0,1(γ, 0).

Taking the infimum over all γ ∈ Γ, we obtain the desired bound using (4.1).

We now consider a sequence of trees (Tn)n≥1 with z < 1, and show that E∗
R < 0.

We give an outline of the proof here, since it is similar to that of Proposition 3.2.

Recall that FN,n is the set of level 1 nodes in Tn, with less than N leaves attached.

Since z < 1, there exists a positive N such that lim infn→∞ |FN,n|/ln(f) > 0. We

form a new tree T ′
n by removing all leaves, and allowing each level 1 node to make its

own observation. The new tree, of height h− 1, has performance no better than the

original:

lim sup
n→∞

1

ln(f)
logP ∗

e (Tn) ≤ lim sup
n→∞

1

ln(f)
logP ∗

e (T
′
n)

≤ lim inf
n→∞

|FN,n|
ln(f)

lim sup
n→∞

1

|Bn|
logP ∗

e (T ′
n),

where Bn is the set of level 1 nodes. The desired conclusion then follows by induction

on h. This concludes our proof of the theorem.

We have shown that the rate of error probability decay in any bounded height

tree network is exponential in n. However, the exact rate of decay depends on several

factors, such as the probability distributions and the architecture of the network. For

example, in architectures that are essentially the same as the parallel configuration

or can be reduced to the parallel configuration (cf. Figure 1-1), the error exponent is

E∗
P . However, in most other cases, the error exponent is apparently strictly less than

E∗
P . To obtain some insights into the optimal error exponent, we consider specific

classes of h-uniform tree networks in the next two sections. However, it turns out
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that finding optimal strategies is in general difficult, so we will instead analyze simple,

but suboptimal strategies.

4.4 Symmetric Tree Sequences

In this section, we consider the asymptotic performance of a special class of h-uniform

tree networks, which we call r-symmetric. These are relay trees, with a bounded

number of relay nodes, as in Design I in Section 4.1. Throughout this section, we

assume that nodes can only send binary messages. An r-symmetric tree network is

defined as follows.

Definition 4.1 (r-symmetric tree). For h, r ≥ 1, a h-uniform tree sequence (Tn)n≥1

is said to be r-symmetric if:

(i) for all level k nodes v, where k > 1, |Cn(v)| = r, and

(ii) for all level 1 nodes v, ln(v)/ln(f) → 1/rh−1 as n→ ∞.

The second condition in this definition requires that when n is large, all the rh−1

level 1 nodes have approximately the same number of immediate predecessors.

We define a counting quantizer (CQ) with threshold s for a level k node v, where

k ≥ 1, as a transmission function of the form

Yv =





0,
∑

u∈Cn(v) Yu ≤ s,

1, otherwise,

where
∑

u∈Cn(v) Yu is the total number of 1s that v receives from its immediate prede-

cessors. A counting quantizer is arguably the simplest quantizer that can be imple-

mented. A counting quantizer is equivalent to a LLRQ with an appropriate threshold,

if all the messages of v’s immediate predecessors are identically distributed.

It is well known that to minimize the probability of error at the fusion center,

there is no loss in optimality if we restrict to LLRQs at the relay nodes [6]. Given

the symmetry of our tree network, it is easy to see that if we restrict leaves to
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using the same transmission function, then there is no loss in optimality if counting

quantizers are used at every relay node. Without the above restriction on the leaves,

it is unclear what the optimal strategy is. For tractability and to ensure that our

strategies are easily implementable, we will now restrict all non-leaf nodes to using

counting quantizers. We call such a strategy a counting strategy. Let E∗
S(r) denote

the optimal (over all counting strategies) error exponent (in the worst-case over all

r-symmetric tree sequences). We will show that with the restriction to counting

strategies, using the same transmission function at the leaves results in no loss of

optimality.

Consider minimizing the following objective function, 1

max{λ1 lim
n→∞

1

n
log P0(Yf = 1), λ2 lim

n→∞

1

n
log P1(Yf = 0)}, (4.5)

where λ1 and λ2 are fixed positive constants. In the case of minimizing the error

exponent, λ1 = λ2 = 1. We use this more general formulation because it proves to

be useful below. We start with two preliminary lemmas, the first of which is proved

in [22]. We provide an outline of the proof here for completeness.

Lemma 4.1. Suppose that Assumptions 2.1, 2.2 and 4.1 hold. Consider minimizing

the objective function (4.5) at the fusion center of a parallel configuration. Then,

there is no loss in optimality if we restrict all nodes to using the same transmission

function, and the fusion rule to be a counting quantizer.

Proof. (Outline) Suppose that there are n nodes in the parallel configuration, sending

messages to the fusion center using transmission functions γ1, . . . , γn. For any strat-

egy, from the Neyman-Pearson Lemma, there exists a LLRQ with some threshold t

such that

max{λ1

n
log P0(Yf = 1),

λ2

n
log P1(Yf = 0)}

≥ max{λ1

n
log P0

(
Sn(f)/ln(f) > t

)
,
λ2

n
log P1(Sn(f)/ln(f) ≤ t

)
}

1We use the notation lim here, without first showing that the limit exists. The subsequent
arguments can be made completely rigorous by considering a subsequence of the tree sequence, in
which limits of the Type I and II error exponents exist at each non-leaf node.
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= max{λ1

n

n∑

i=1

Λ∗
0,1(γi, t),

λ2

n

n∑

i=1

Λ∗
1,1(γi, t)} + o(1)

≥ inf
γ∈Γ,t∈R

max{λ1Λ
∗
0,1(γ, t), λ2Λ

∗
1,1(γ, t)} + o(1),

where o(1) denotes a term that goes to 0, as n increases, and the first inequality

follows from Theorem 2.1. Since the lower bound can be achieved arbitrarily closely

even when nodes are restricted to using the same transmission function, and the

fusion rule is restricted to the class of counting quantizers, the lemma is proved.

Let the immediate predecessors of the fusion center f be v1, . . . , vr, and let

ψi = − lim
n→∞

1

ln(vi)
log P0(Yvi

= 1),

ϕi = − lim
n→∞

1

ln(vi)
log P1(Yvi

= 0).

Without loss of generality, we can assume that

0 ≤ ψ1 ≤ ψ2 ≤ . . . ≤ ψr <∞, (4.6)

∞ > ϕ1 ≥ ϕ2 ≥ . . . ≥ ϕr ≥ 0. (4.7)

Furthermore, if ψi > ψj , then ϕi < ϕj and vice versa, for all i, j. The reason why

there is no loss of generality is because if there exists i 6= j with ψi ≤ ψj and ϕi ≤ ϕj ,

then for n sufficiently large, we can use as the strategy for the sub-tree rooted at

vi, the same strategy that is used for the sub-tree rooted at vj , and not increase the

objective function at the fusion center.

Lemma 4.2. To minimize the objective function (4.5) at the fusion center using a

counting quantizer as the fusion rule, there is no loss in optimality if we restrict all

immediate predecessors of f so that ψi = ψj, and ϕi = ϕj for all i, j.

Proof. Suppose the fusion center uses a counting quantizer with threshold s. Then,
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we have

lim
n→∞

1

ln(f)
log P0(Yf = 1)

= lim
n→∞

1

ln(f)
log P0(

r∑

i=1

Yvi
> s)

= lim
n→∞

1

ln(f)
log P0(Yvi

= 1, i = 1, 2, . . . , s+ 1)

=

s+1∑

i=1

lim
n→∞

1

ln(f)
log P0(Yvi

= 1)

= −1

r

s+1∑

i=1

ψi, (4.8)

where the second equality follows because {Yvi
= 1, i = 1, 2, . . . , s + 1} is the domi-

nating error event, and the third equality follows from independence. Similarly, we

obtain

lim
n→∞

1

ln(f)
log P1(Yf = 0) = −1

r

r∑

i=s+1

ϕi. (4.9)

Then, the objective function (4.5) is equal to

1

r
max{−λ1

s+1∑

j=1

ψj ,−λ2

r∑

j=s+1

ϕj}

≥ 1

r
max{−λ1(s+ 1)ψs+1,−λ2(r − s)ϕs+1},

where equality holds if we set ψi = ψj and ϕi = ϕj for all i, j. Hence, it is optimal to

use the same strategy for each of the sub-trees rooted at the nodes v1, . . . , vr.

Theorem 4.2. Consider an r-symmetric tree sequence (Tn)n≥1, and suppose that

Assumptions 2.1, 2.2 and 4.1 hold. Amongst all counting strategies, there is no loss

in optimality if we impose the following restrictions:

(i) all leaves use the same transmission function;

(ii) for each k ≥ 1, all level k nodes use counting quantizers with the same threshold.
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Furthermore, the optimal error exponent at the fusion center is given by2

E∗
S(r) = lim

n→∞

1

n
logP ∗

e (Tn)

= − sup
{[( h∏

k=2

sk + 1

r

)
Λ∗

0,1(γ, t)
]
∧

[( h∏

k=2

r − sk
r

)
Λ∗

1,1(γ, t)
]

:

sk = 0, . . . , r − 1, for k = 2, . . . , h; γ ∈ Γ; −D(Pγ0 ‖P
γ
1) < t < D(Pγ1 ‖P

γ
0)

}
.

(4.10)

Proof. (Outline3) From Lemma 4.2, an optimal counting strategy is to use the same

transmission strategy at every sub-tree rooted at each v ∈ Cn(f). Suppose that the

fusion center uses, as its fusion rule, a counting quantizer with threshold sh. Then,

the objective at each v ∈ Cn(f) is to minimize

1

r
max

{
(sh + 1) lim

n→∞

1

ln(v)
log P0(Yv = 1), (r − sh) lim

n→∞

1

ln(v)
log P1(Yv = 0)

}
.

We apply Lemma 4.2 on v, and repeat the same argument for h− 2 steps. Therefore,

we conclude that for each k ≥ 2, there is no loss in optimality if all nodes at the same

level k, use counting quantizers with the same threshold sk. Moreover, there is no

loss in optimality if each level 1 node has the same Type I and II error exponents.

Applying Lemma 4.1 to each level 1 node yields that it is asymptotically optimal for

all leaves to use the same transmission function γ, and all level 1 nodes to use LLRQs

(which are equivalent to counting quantizers since leaves use the same transmission

function) with the same threshold t . Finally, the form of the optimal error exponent

is obtained by optimizing over the thresholds sk, where k = 2, . . . , h, the threshold t,

and the transmission function γ. The theorem is now proved.

Suppose that the transmission function γ in (4.10) has been fixed, and suppose

2The products are taken to be 1 when h = 1. We also use the notation x ∧ y = min{x, y}.
3For any given counting strategy, a more rigorous proof will involve taking a subsequence of

(Tn)n≥1, so that the same performance is achieved by this subsequence using a counting strategy in
which the thresholds do not vary with n.
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that h > 1 and r > 1. Then, we have

1

rh−1

h∏

i=2

(si + 1) ≤ 1,

1

rh−1

h∏

i=2

(r − si) ≤ 1,

and equality cannot hold simultaneously in both expressions above. Since for each

γ ∈ Γ, Λ∗
0,1(γ, t) and Λ∗

1,1(γ, t) are continuous in t, the error exponent in (4.10) is

achieved by setting

( h∏

i=2

si + 1

r

)
Λ∗

0,1(γ, t) =
( h∏

i=2

r − si
r

)
Λ∗

1,1(γ, t).

Hence, the error exponent is strictly smaller than that for the parallel configuration.

This shows that using a r-symmetric tree results in a loss of efficiency as compared

to the parallel configuration, if we restrict to counting strategies. In the following, we

discuss some special cases.

4.4.1 On the Worst Error Exponent

When r = 1, the network is essentially the same, and therefore achieves the same

performance, as a parallel configuration, which is the best possible. Our next result

provides evidence that performance degrades as r increases. Let (Tn(r))n≥1 be a

r-symmetric tree sequence, where r = 1, 2, . . ..

Lemma 4.3. Suppose that Assumptions 2.1, 2.2 and 4.1 hold, and the network is

restricted to counting strategies. Then, for any r ≥ 1 and any positive integer m > 1,

E∗
S(r) < E∗

S(mr).

Proof. Consider any sequence of integers ki, where i = 2, . . . , h, such that 0 ≤ ki < mr

for all i. For each i, we can find an integer si ∈ [0, r), such that msi ≤ ki < m(si+1).
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We have

ki + 1

mr
≤ m(si + 1)

mr
=
si + 1

r
, (4.11)

1 − ki
mr

≤ 1 − msi
mr

= 1 − si
r
. (4.12)

Then, it is an easy exercise to show that

[( h∏

i=2

ki + 1

mr

)
Λ∗

0,1(γ, t)
]
∧

[( h∏

i=2

(1 − ki
mr

)
)
Λ∗

1,1(γ, t)
]

≤
(
1 − 1

mr

)[( h∏

i=2

si + 1

r

)
Λ∗

0,1(γ, t)
]
∧

[( h∏

i=2

(1 − si
r

)
)
Λ∗

1,1(γ, t)
]

≤ −
(
1 − 1

mr

)
E∗
S(r).

Taking the supremum over ki, γ and t, yields E∗
S(mr) > E∗

S(r). The proof is now

complete.

The above lemma shows that for any m > 1 and r ≥ 1, (E∗
S(m

lr))l≥0 is an

increasing sequence, which is bounded above by zero, hence it converges. We provide

an upper bound for this limit (cf. Proposition 4.6) below.

Proposition 4.1. Suppose that Assumptions 2.1, 2.2 and 4.1 hold. For any collection

of symmetric tree sequences, {(Tn(r))n≥1 : r = 1, 2, . . .}, where (Tn(r))n≥1 is a r-

symmetric tree sequence, we have

lim sup
r→∞

E∗
S(r) ≤ − sup

γ∈Γ
t∈R

( Λ∗
0,1(γ, t)

1
h−1 Λ∗

1,1(γ, t)
1

h−1

Λ∗
0,1(γ, t)

1
h−1 + Λ∗

1,1(γ, t)
1

h−1

)h−1

.

Proof. Given γ ∈ Γ, and −D(Pγ0 ‖P
γ
1) < t < D(Pγ1 ‖P

γ
0), let

δ =
Λ∗

1,1(γ, t)
1

h−1

Λ∗
0,1(γ, t)

1
h−1 + Λ∗

1,1(γ, t)
1

h−1

, (4.13)
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and s = ⌊δr⌋. We have

E∗
S(r) ≤ −

[(s+ 1

r

)h−1

Λ∗
0,1(γ, t)

]
∧

[(r − s

r

)h−1

Λ∗
1,1(γ, t)

]
.

Since s/r → δ as r → ∞, we obtain

lim sup
r→∞

E∗
S(r) ≤ −[δh−1Λ∗

0,1(γ, t)] ∧ [(1 − δ)h−1Λ∗
1,1(γ, t)]

= −
( Λ∗

0,1(γ, t)
1

h−1 Λ∗
1,1(γ, t)

1
h−1

Λ∗
0,1(γ, t)

1
h−1 + Λ∗

1,1(γ, t)
1

h−1

)h−1

,

and taking the infimum over γ ∈ Γ and t ∈ R, the proposition is proved.

Under some additional symmetry assumptions, the inequality in the above propo-

sition is an equality. This is shown in Proposition 4.6 in Section 4.5.

4.4.2 Optimality of the Majority Decision Rule

Suppose that all the leaves use the transmission function γ ∈ Γ. Finding an optimal

strategy using (4.10) requires us to search over a space with rh−1 elements, and also

optimizing over t. The search can be daunting even for moderate values of r and h.

For this reason, we now consider the case where r is odd, and the majority decision

rule is used at every non-leaf node, i.e., a node transmits a 1 iff the majority of

its immediate predecessors send a 1. For level 1 nodes, the majority decision rule

corresponds to a LLRQ with threshold 0, while for nodes of level greater than 1,

it corresponds to a counting quantizer with threshold (r − 1)/2. In the proposition

below, we develop a sufficient condition under which this strategy is optimal.

Proposition 4.2. Consider a r-symmetric tree network with h > 1, and r an odd

integer. Suppose that that all the leaves use the same transmission function γ. Let

t0 and t1 be such that Λ∗
0,1(γ, t0) = rh−1Λ∗

1,1(γ, t0) and Λ∗
1,1(γ, t1) = rh−1Λ∗

0,1(γ, t1).

Under Assumptions 2.1, 2.2 and 4.1, and the restriction to counting strategies, if

max
{
Λ∗

0,1(γ, t0),Λ
∗
1,1(γ, t1)

}
≤ 2rh−1(r + 1)

rh−1(r − 1) + r + 3
Λ∗

0,1(γ, 0), (4.14)
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then using the majority decision rule at all relay nodes achieves the optimal error

exponent, which is given by

E∗
S(r) = −

(r + 1

2r

)h−1

Λ∗
0,1(γ, 0).

Proof. If r = 1, the network is equivalent to the parallel configuration. It is easy to

see that the sufficient condition (4.14) holds trivially, therefore our claim is consistent

with the well known optimal fusion rule for the parallel configuration. Henceforth,

we assume that r > 1.

For simplicity, let ψ(t) = Λ∗
0,1(γ, t) and ϕ(t) = Λ∗

1,1(γ, t). The sufficient condition

(4.14) is obtained by approximating the convex functions ψ and ϕ with appropriate

straight line segments as shown in Figure 4-2.

Suppose that each level k node uses a counting quantizer with threshold sk, such

that at least one of the thresholds sk 6= (r − 1)/2. Consider the case where

b =
h∏

k=2

(sk + 1) < a =
(r + 1

2

)h−1
<

h∏

k=2

(r − sk) = c.

We consider the solution to the equations

y =
b(ψ(t0) − ψ(0))

t0
t+ bψ(0),

y = −c(ϕ(0) − ϕ(t0))

t0
t+ cϕ(0),

which gives the intersection of the straight line approximations shown in Figure 4-2.

Solving the linear equations, and observing that ψ(0) = ϕ(0), we obtain

y =
bc(1 + d)

c+ bd
ψ(0),

where d = ψ(t0)−ψ(0)
ϕ(0)−ϕ(t0)

. Since ψ and ϕ are convex functions,

sup
t

min{bψ(t), cϕ(t)} ≤ y.
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bψ(0)

cϕ(0)

D(Pγ1 ‖P
γ
0)−D(Pγ0 ‖P

γ
1) t0

aϕ(t) aψ(t) bψ(t)cϕ(t)

t

0
0

(t0, bψ(t0))

(t0, cϕ(t0))

Figure 4-2: A typical plot of the rate functions.

To prove the proposition, we check that under the condition (4.14), y ≤ aψ(0), for

all pairs (b, c) such that b < a < c. This is equivalent to checking that

d ≤ c(a− b)

b(c− a)
=
a

b

(
1 − b− a

c− a

)
− 1, (4.15)

for all (b, c) such that b < a < c. The R.H.S. of (4.15) increases when b decreases (and

c increases), hence the minimum value is achieved by setting b = (r+1)h−2(r−1)/2h−1,

and c = (r + 1)h−2(r + 3)/2h−1. This yields the sufficient condition

Λ∗
0,1(γ, t0) ≤

2rh−1(r + 1)

rh−1(r − 1) + r + 3
Λ∗

0,1(γ, 0),

in the case where b < a < c. A similar argument for the case where c < a < b yields

the sufficient condition

Λ∗
1,1(γ, t1) ≤

2rh−1(r + 1)

rh−1(r − 1) + r + 3
Λ∗

0,1(γ, 0).
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Finally, the optimal error exponent is obtained by substituting sk = (r − 1)/2 in

Theorem 4.2, and the proposition is proved.

To show that our sufficient condition in Proposition 4.2 is not vacuous, we provide

an example in which the optimal counting strategy is not the majority decision rule.

Example 4.1. Consider a r-symmetric network, with r = 45 and h = 3. Suppose

that each leaf sends the message 1 with probability p0 = 0.3 under hypothesis H0, and

with probability p1 = 0.9 under hypothesis H1. If all non-leaf nodes use the majority

decision rule (the counting quantizer thresholds are s2 = s3 = 22), we get an error

exponent of −129.2460/452. If counting quantizers with thresholds s2 = s3 = 23

are used, our error exponent is −129.5009/452, which is more negative than that for

the majority decision rule. In fact, it can be checked numerically that these are the

optimal counting quantizers that should be used. The error exponents in the cases

where s2 and s3 are constrained to be the same, are plotted in Figure 4-3. �
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Figure 4-3: Plot of the error exponent for the cases when s2 = s3.

To illustrate the use of Proposition 4.2, we consider an example below.
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Example 4.2. We have assumed that all nodes, including the leaves, transmit 1-

bit messages. However, our results still hold even if the 1-bit message restriction is

removed for the leaves. In this example, we will drop the 1-bit message restriction for

the leaves to simplify calculations. Consider a r-symmetric network with r = 3 and

h = 2. Assume that leaves transmit their observations in the raw to their immediate

successors, where each observation is i.i.d. with distribution

H0 : N(−1, σ2), H1 : N(1, σ2).

We obtain

Λ∗
0,1(γ, t) =

σ2

8

(
t+

2

σ2

)2

,

Λ∗
1,1(γ, t) =

σ2

8

(
t− 2

σ2

)2

.

Solving the equality Λ∗
0,1(γ, t0) = 3Λ∗

1,1(γ, t0), yields t0 = (2/σ2)(
√

3 − 1)/(
√

3 + 1).

(Because of symmetry, we only need to verify (4.14) for Λ∗
0,1(γ, t0).) Then, we have

Λ∗
0,1(γ, t0) =

σ2

8

(√3 − 1√
3 + 1

+ 1
)2 4

σ4

=
( √

3√
3 + 1

)2 2

σ2

<
1

σ2
=

2rh−1(r + 1)

rh−1(r − 1) + r + 3
Λ∗

0,1(γ, 0).

Therefore, it is optimal (amongst all counting strategies) to use the majority rule as

the fusion rule. This is verified numerically in Figure 4-4 below. �

The sufficient condition in (4.14) can be difficult to check if one does not have

access to the functions Λ∗
j,1(γ, t), j = 0, 1. A simpler but cruder sufficient condition

is presented below; the proof is the same as in Proposition 4.2, except that we let

D(Pγ1 ‖P
γ
0) play the role of t0, and −D(Pγ0 ‖P

γ
1) the role of t1.

Corollary 4.1. Suppose that r is an odd integer greater than 1, and all the leaves use

the same transmission function γ. Under Assumptions 2.2-4.1, and the restriction to
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Figure 4-4: Curves of different types correspond to different strategies. Intersections
of curves of the same type give the negative of the respective error exponents. Solid
curves are for the majority decision strategy (s2 = 1), dotted curves are for the
strategy with s2 = 0, and dashed curves are for the strategy with s2 = 2.

counting strategies, if

max{D(Pγ0 ‖P
γ
1),D(Pγ1 ‖P

γ
0)} ≤ −2(r + 1)

r − 1
inf

λ∈[0,1]
Λ0,0(γ;λ),

then using the majority decision rule at all non-leaf nodes achieves the optimal error

exponent.

4.4.3 Binary Symmetric Networks

In the previous subsection, we considered the case where r is odd, and gave a sufficient

condition under which the majority decision rule strategy is optimal. When r is even,

the majority decision rule at a level k node, where k > 1, can be a counting quantizer

with threshold either r/2− 1 or r/2. This can lead to a large number of possibilities

for the majority decision rule strategy when h is large. We now consider the special
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case where r = 2 and h is odd. For each level k node v, where k > 1, there are two

immediate predecessors. The two counting quantizers that v can use are either the

the counting quantizer with threshold 0 (OR rule), or the counting quantizer with

threshold 1 (AND rule). The proof of the following proposition is similar to that of

Proposition 4.2, and is omitted.

Proposition 4.3. Suppose that r = 2 and h is odd. Suppose all the leaves use

the same transmission function γ. Under Assumptions 2.1, 2.2 and 4.1, and the

restriction to counting strategies, if

max{−D(Pγ0 ‖P
γ
1),D(Pγ1 ‖P

γ
0)} ≤ 3Λ∗

0,1(γ, 0), (4.16)

then it is asymptotically optimal to use LLRQs with threshold 0 for all level 1 nodes,

and to use the OR rule in half of the remaining h− 1 levels, and the AND rule in the

other half of the remaining h− 1 levels.

4.4.4 A Generalization

We generalize the concept of a r-symmetric tree network as follows.

Definition 4.2. For a vector ~r = (r2, r3, . . . , rh), where rk are positive integers, a

h-uniform sequence of trees (Tn)n≥1 is said to be ~r-symmetric if

(i) for all level k vertices v, where k > 1, |Cn(v)| = rk , and

(ii) for all level 1 nodes v, ln(v)/ln(f) →
(∏h

k=2 rk
)−1

as n→ ∞.

It is not difficult to generalize Theorem 4.2 to the following; the proof is omitted.

Proposition 4.4. Let ~r = (r2, r3, . . . , rh), and suppose Assumptions 2.1, 2.2 and 4.1

hold. Given a ~r-symmetric tree network (Tn)n≥1 of height h ≥ 1, the optimal error

exponent, over all counting strategies, is

E∗
S(~r) = sup

{[( h∏

k=2

sk + 1

rk

)
Λ∗

0,1(γ, t)
]
∧

[( h∏

k=2

rk − sk
rk

)
Λ∗

1,1(γ, t)
]

:

sk = 0, . . . , rk − 1, and γ ∈ Γ,−D(Pγ0 ‖P
γ
1) < t < D(Pγ1 ‖P

γ
0)

}
. (4.17)
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Furthermore, there is no loss in optimality if we use

1. the same transmission function for all the leaves;

2. counting quantizers with the same threshold for nodes of the same level k, where

k ≥ 1.

4.5 Rapidly Branching Tree Sequences

In the previous section, we considered a symmetric tree sequence in which the number

of non-leaf nodes is bounded. In this section, we consider tree sequences in which the

number of non-leaf nodes becomes large, in a certain sense, as n increases. Motivated

by the example in Section 4.1, we define the following.

Definition 4.3. A rapidly branching tree sequence is a sequence of h-uniform trees

(Tn)n≥1, such that

(i) the number of immediate predecessors of each non-leaf node grows to infinity as

n increases;

(ii) there exists a sequence of positive reals (κn)n≥1 such that κn decreases to 0 as n

increases, and for each level k node v, where k ≥ 2,

maxu∈Cn(v) l
2
n(u)

minu∈Cn(v) l2n(u)
≤ κn|Cn(v)|.

A rapidly branching tree sequence is a sequence of trees in which the number of

immediate predecessors of each node grows faster than the rate at which the network

becomes “unbalanced” (in the sense that different level 1 nodes have very different

numbers of leaves attached to them). The definition of a rapidly branching tree

sequence implies that the number of immediate predecessors of every level 1 node

grows uniformly fast.

In Design II of Section 4.1, when n is large, with high probability, we have ln(u) ≃
ln(v) for all level 1 nodes u and v. Therefore, this tree network fits our definition of a
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rapidly branching network with height h = 2. For a general h, a similar design can be

used to approximate a h-hop MST [42]. In all of these designs, with high probability,

we get a rapidly branching tree network.

Since using LLRQs for every node is known to be optimal (see e.g. [6]), we assume

that every node (including leaves) has access to LLRQs. The number of nodes at each

level k in a rapidly branching tree network grows with n. Similar to Section 4.4, the

problem of finding optimal LLRQs for each node in a rapidly branching tree network

is, in general, intractable. Therefore, we make the following simplifying assumption.

Assumption 4.2. Every node has access to LLRQs, and every node of the same

level k uses a LLRQ with the same threshold tk.

For notational simplicity, if each leaf uses a transmission function γ, which is a

LLRQ, we identify γ with the threshold of the LLRQ, i.e., γ = t0 ∈ R. We will first

make a slight detour and show a limit theorem for a rapidly branching tree network.

The proof is provided in Section 4.6.

Proposition 4.5. Suppose that Assumptions 2.1, 2.2 and 4.1 hold. Given a rapidly

branching tree network (Tn)n≥1, suppose each leaf sends its observation to its im-

mediate successor via a transmission function γ ∈ Γ, and each level k node, where

k ≥ 1, uses a LLRQ with constant threshold tk. Suppose that {γ, t1, . . . , th} satisfy

(3.9)-(3.11). Then, we have

lim
n→∞

1

ln(f)
log P1

(
Yf = 0

)
= −Λ∗

1,h(γ, t
(h)),

lim
n→∞

1

ln(f)
log P0

(
Yf = 1

)
= −Λ∗

0,h(γ, t
(h)).

We now consider the Bayesian detection problem in a rapidly branching tree se-

quence, in which all nodes are constrained to sending only one bit reliably.

Theorem 4.3. Consider a rapidly branching tree sequence (Tn)n≥1. Suppose that
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Assumptions 2.1, 2.2, 4.1, and 4.2 hold. Then, the optimal error exponent is

E∗
RB = − sup

γ∈Γ
t1∈R

( Λ∗
0,1(γ, t1)

1
h−1 Λ∗

1,1(γ, t1)
1

h−1

Λ∗
0,1(γ, t1)

1
h−1 + Λ∗

1,1(γ, t1)
1

h−1

)h−1

. (4.18)

Furthermore, if the supremum is achieved by γ ∈ Γ, and t1 ∈ (−D(Pγ0 ‖P
γ
1),D(Pγ1 ‖P

γ
0)),

then the optimal threshold tk for level k nodes, where k = 2, . . . , h, is

tk =
Λ∗

0,k−1(γ, t
(k−1))Λ∗

1,k−1(γ, t
(k−1))

1
h−k+1 − Λ∗

0,k−1(γ, t
(k−1))

1
h−k+1 Λ∗

1,k−1(γ, t
(k−1))

Λ∗
0,k−1(γ, t

(k−1))
1

h−k+1 + Λ∗
1,k−1(γ, t

(k−1))
1

h−k+1

.

We first state a lemma whose proof is easily obtained using calculus, and is thus

omitted.

Lemma 4.4. Given k ≥ 1 and a, b > 0, we have

min
−b<x<a

(( a + b

a(b+ x)

) 1
k

+
( a + b

b(a− x)

) 1
k
)k

=
((1

a

) 1
k+1

+
(1

b

) 1
k+1

)k+1

,

and the minimizer is given by

x∗ =
ab

1
k+1 − a

1
k+1 b

a
1

k+1 + b
1

k+1

.

Proof of Theorem 4.3: Suppose that under Assumptions 2.1, 2.2, 4.1, and 4.2, it

is optimal for each leaf to use a LLRQ with threshold γn, and for each level k node,

where k ≥ 1, to use a LLRQ with threshold tn,k. Let (nl)l≥1 be a subsequence such

that

lim
l→∞

1

lnl
(f)

logPe(Tnl
) = E∗

RB.

Since γn is bounded (|γn| cannot diverge to infinity, otherwise every leaf reports

either 1 or 0 with probability one (asymptotically), under both hypotheses), there
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exists a subsequence (ul)l≥1 of (nl)l≥1 such that γul
→ γ ∈ R as l → ∞. Then,

from Assumption 4.1, since D(Pγ0 ‖P
γ
1) and D(Pγ1 ‖P

γ
0) are bounded, the thresholds

tul,k must satisfy −D(Pγ0 ‖P
γ
1) ≤ tul,k ≤ D(Pγ1 ‖P

γ
0), for l sufficiently large, otherwise

either the Type I or Type II error exponents at the fusion center is zero.

Therefore, there exists a further subsequence (ml)l≥1 of (ul)l≥1 such that for all k,

liml→∞ tml,k = tk, for some bounded tk. Then, for all ǫ > 0, from Proposition 4.5, we

obtain

E∗
RB ≥ −min{Λ∗

0,h(γ + ǫ, t1 + ǫ, . . . , tk + ǫ),Λ∗
1,h(γ − ǫ, t1 − ǫ, . . . , tk − ǫ)}.

Taking ǫ → 0, and noting that Λ∗
0,h and Λ∗

1,h are continuous in all their arguments,

we get

E∗
RB ≥ −min{Λ∗

0,h(γ, t
(h)),Λ∗

1,h(γ, t
(h))}.

This shows that there is no loss in optimality if we restrict transmission functions to

be the same for all n. Therefore, it remains to optimize over γ ∈ Γ and over t(h).

In this case, it is well known (using the same argument as in Corollary 3.4.6 of [39])

that the optimal fusion rule at the fusion center consists of a LLRQ with threshold

th = 0. This yields

E∗
RB = inf

λ∈[0,1]

γ,t(h−1)

Λ0,h−1(γ, t
(h−1);λ)

= − sup
γ,t(h−1)

Λ∗
0,h−1(γ, t

(h−1))Λ∗
1,h−1(γ, t

(h−1))

Λ∗
0,h−1(γ, t

(h−1)) + Λ∗
1,h−1(γ, t

(h−1))
(4.19)

= −
[

inf
γ,t(h−2)

inf
th−1

{ 1

Λ∗
0,h−1(γ, t

(h−1))
+

1

Λ∗
1,h−1(γ, t

(h−1))

}]−1

= −
[

inf
γ,t(h−2)

inf
th−1

{ Λ∗
0,h−2(γ, t

(h−2)) + Λ∗
1,h−2(γ, t

(h−2))

Λ∗
0,h−2(γ, t

(h−2))(Λ∗
1,h−2(γ, t

(h−2)) + th−1)

+
Λ∗

0,h−2(γ, t
(h−2)) + Λ∗

1,h−2(γ, t
(h−2))

Λ∗
1,h−2(γ, t

(h−2))(Λ∗
0,h−2(γ, t

(h−2)) − th−1)

}]−1

, (4.20)

where (4.19) and (4.20) follow from Lemma 3.1. We take a = Λ∗
0,h−2(γ, t

(h−2)) and
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b = Λ∗
1,h−2(γ, t

(h−2)) in Lemma 4.4 to obtain

E∗
RB = −

[
inf

γ,t(h−2)

{( 1

Λ∗
0,h−2(γ, t

(h−2))

)1/2

+
( 1

Λ∗
1,h−2(γ, t

(h−2))

)1/2}2]−1

.

The optimal error exponent and the optimal thresholds for the LLRQs then follow

by repeating the above same argument for another h − 2 steps. The proof is now

complete. �

By taking t1 = 0 in (4.18), we get the same lower bound as in (4.4). Hence one

does no worse than by a factor of 1/2h−1 from the optimal error exponent of a parallel

configuration.

For completeness, our next result shows that the bound in Proposition 4.1 is an

equality if leaves can use LLRQs as transmission functions.

Proposition 4.6. Suppose that the set Γ of allowable transmission functions for the

leaves includes LLRQs. Then, under Assumptions 2.1, 2.2, and 4.1, we have

lim
r→∞

E∗
S(r) = − sup

γ∈Γ
t∈R

( Λ∗
0,1(γ, t)

1
h−1 Λ∗

1,1(γ, t)
1

h−1

Λ∗
0,1(γ, t)

1
h−1 + Λ∗

1,1(γ, t)
1

h−1

)h−1

= E∗
RB.

Proof. Consider a collection of tree sequences {(T (n, r))n≥1 : r ≥ 1} such that (a)

each (T (n, r))n≥1 is a r-symmetric tree sequence; and (b) for each r and for each n,

every level 1 node in T (n, r) has the same number of leaves attached to it. Then,

from Theorem 4.2, the optimal error exponent for each tree sequence (T (n, r))n≥1 is

E∗
S(r).

Suppose that there exists a subsequence (rm)m≥1 such that g = limm→∞ E∗
S(rm) <

E∗
RB. Suppose that each tree sequence (T (n, rm))n≥1 uses the asymptotically opti-

mal counting strategy proposed in Theorem 4.2. Note that this strategy also sat-

isfies Assumption 4.2. We shall construct a rapidly branching tree sequence from

{(T (n, rm))n≥1 : m ≥ 1}. Fix a positive ǫ < E∗
RB − g, and let (nm)m≥1 be an

increasing sequence of positive integers such that

1

lnm(f)
logPe(T (nm, rm)) ≤ E∗

S(rm) + ǫ.
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Let T̃m = T (nm, rm). Then, it is an easy exercise to verify that (T̃m)m≥1 satisfies

Definition 4.3 with κm = 1/rm (which goes to 0, as m→ ∞). We then have

1

lnm(f)
logPe(T̃m) =

1

lnm(f)
logPe(T (nm, rm)) ≤ E∗

S(rm) + ǫ.

Taking m → ∞, we obtain lim supm→∞(1/lnm(f)) logPe(T̃m) ≤ g + ǫ < E∗
RB, a

contradiction to Theorem 4.3. Therefore, we must have lim infr→∞ E∗
S(r) ≥ E∗

RB.

Finally, from Proposition 4.1, we obtain the desired conclusion.

We define a strongly symmetric tree sequence (T (n))n≥1 to be a tree sequence in

which each tree T (n) has a symmetric relay network (i.e., each node of level k ≥ 2

has the same number of immediate predecessors), and each level 1 node has the same

number of leaves. If a r-symmetric tree sequence is strongly symmetric, then the

asymptotically optimal counting strategy proposed in Theorem 4.2 satisfies Assump-

tion 4.2. In this case, Proposition 4.1 and Lemma 4.3 shows that E∗
S(r) < E∗

RB for all

r < ∞, i.e., a rapidly branching tree sequence satisfying Assumptions 2.1, 2.2, 4.1,

and 4.2, has worse performance than a strongly symmetric r-symmetric tree sequence,

for every r.

4.6 Proofs

In this section, we prove some of the results in this chapter.

Proof of Proposition 4.5.

Note that we cannot apply the Gärtner-Ellis Theorem directly here, since the

asymptotic log moment generating function does not satisfy the regularity condi-

tions required for the theorem to hold [39]. Therefore, our proof proceeds from first

principles.

It can be shown that Definition 4.3 ensures that n/ln(f) goes to 1, as n grows

large (cf. Lemma 3.3). Therefore, Proposition 3.1 yields

lim sup
n→∞

1

ln(f)
log P1

(
Yf = 0

)
≤ −Λ∗

1,h(γ, t
(h)), (4.21)
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lim sup
n→∞

1

ln(f)
log P0

(
Yf = 1

)
≤ −Λ∗

0,h(γ, t
(h)). (4.22)

Next, we show the following lower bound by induction on k: for all nodes v at

level k, where k ≥ 1, and for any ǫ > 0, there exists a positive N such that for all

n ≥ N , we have

1

ln(v)
log P1

(
Yv = 0

)
≥ −Λ∗

1,k(γ, t
(k)) − ǫ, (4.23)

1

ln(v)
log P0

(
Yv = 1

)
≥ −Λ∗

0,k(γ, t
(k)) − ǫ. (4.24)

When k = 1, it is straightforward to apply Theorem 2.1 and Assumption 4.1 to

obtain (4.23) and (4.24). Details are omitted. Now assume that the claim holds for

all level k nodes. We apply Theorem 2.1 to show that (4.23)-(4.24) hold for all level

k+ 1 nodes v. For each u ∈ Cn(v), let Lu,n be the log-likelihood ratio of the message

sent by u. Let

ϕ(λ) = log E1

[
eλSn(v)/ln(v)

]
=

∑

u∈Cn(v)

log E1

[
eλLu,n/ln(v)

]
,

and its corresponding Fenchel-Legendre transform be

Φ(x) = sup
λ∈R

{λx− ϕ(λ)}

= sup
λ∈R

{
λx−

∑

u∈Cn(v)

log E1

[
eλLu,n/ln(v)

]}

≤
∑

u∈Cn(v)

ln(u) sup
λ∈R

{ λ

ln(v)
x− 1

ln(u)
log E1

[
eλLu,n/ln(v)

]}

=
∑

u∈Cn(v)

ln(u) sup
λ∈R

{
λx− 1

ln(u)
log E1

[
eλLu,n

]}
. (4.25)

Note that the supremum inside the sum on the R.H.S. of (4.25) is achieved by some

λ ∈ [−1, 0]. For such a λ, we have

1

ln(u)
log E1

[
eλLu,n

]
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=
1

ln(u)
log

[
P1(Yu = 0)1+λP0(Yu = 0)−λ + P1(Yu = 1)1+λP0(Yu = 1)−λ

]

≥ max
{1 + λ

ln(u)
log P1(Yu = 0),− λ

ln(u)
log P0(Yu = 1)

}

+
1

ln(u)
log min

{
P0(Yu = 0),P1(Yu = 1)

}
.

From (4.21)-(4.22), if n is large, we have min
{
P0(Yu = 0),P1(Yu = 1)

}
is close to

1. Together with the induction hypothesis on the node u, we then have for all n

sufficiently large,

1

ln(u)
log E1

[
eλLu,n

]
≥ max

{
− (1 + λ)Λ∗

1,k(γ, t
(k)), λΛ∗

0,k(γ, t
(k))

}
− ǫ/3

= Λ1,k(γ, t
(k);λ) − ǫ/3.

Continuing from (4.25), we obtain

Φ(x) ≤
∑

u∈Cn(v)

ln(u) sup
λ∈R

{
λx− Λ1,k(γ, t

(k);λ)
]}

+ ln(v)
ǫ

3

= ln(v)
(
Λ∗

1,k+1(γ, (t
(k), x)) + ǫ/3

)
. (4.26)

Next, we show that there exists a finite positive constant c such that for all λ ∈
[−ln(v), 0], ϕ′′(λ) ≤ c2κn. For any level k node u, we have

Lu,n
ln(u)

=
1

ln(u)
log

P1(Yu = y)

P0(Yu = y)
,

where y ∈ {0, 1}. The induction hypothesis yields that for n large, we have |Lu,n| ≤
ln(u)c, for some constant c. Therefore, we obtain

ϕ′′(λ) ≤
∑

u∈Cn(v)

1

l2n(v)

E1

[
L2
u,n exp(λLu,n/ln(v))

]

E1

[
exp(λLu,n/ln(v))

]

≤ c2
∑

u∈Cn(v)

l2n(u)

l2n(v)

≤ c2 maxu∈Cn(v) l
2
n(u)

|Cn(v)|minu∈Cn(v) l2n(u)
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≤ c2κn, (4.27)

where the last inequality follows from Definition 4.3. Fix a x < tk+1, and a sufficiently

small positive δ that is less than ǫ/3, so that x+δ ≤ tk+1. Then, it is an easy exercise

to check that if tk+1 satisfies (3.11), and if n is large, the conditions in Theorem 2.1

are satisfied for X = Sn(v)/ln(v), and for some λ ∈ [−ln(v), 0].

Let l(n) = minv∈Bn ln(v). (Recall that Bn is the set of level 1 nodes, so we have

ln(v) ≥ l(n) for all non-leaf nodes v.) From Theorem 2.1, we have

1

ln(v)
log P1

(
Yv = 0

)
=

1

ln(v)
log P1

(
Sn(v)/ln(v) ≤ tk+1

)

≥ 1

ln(v)
log P1

(
Sn(v)/ln(v) ≤ x+ δ

)

≥ − 1

ln(v)
Φ(x) − |λ|

ln(v)
δ +

1

ln(v)
log

(
1 − ϕ′′(λ)/δ2

)

≥ −Λ∗
1,k+1(γ, (t

(k), x)) − ǫ/3 − ǫ/3 +
1

l(n)
log

(
1 − c2κn/δ

2
)

≥ −Λ∗
1,k+1(γ, t

(k+1)) − ǫ,

where the penultimate inequality follows from (4.26) and (4.27). The last inequal-

ity follows by taking n sufficiently large, and from the continuity of the function

Λ∗
1,k+1(γ, (t

(k), ·)). We have now shown (4.23) for all level k + 1 nodes; the proof of

(4.24) is similar. The induction is now complete, and the proposition is proved.
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Chapter 5

Error Prone Sensor Networks

In Chapter 3, we studied the detection performance of bounded height tree net-

works, as the number of nodes increases. For a Neyman-Pearson binary hypothesis

testing problem, we showed the somewhat surprising result that, under certain mild

conditions, the asymptotically optimal detection performance (in terms of the error

exponent) is the same as for the parallel configuration. This implies that a large net-

work can be designed so that it is energy efficient, while matching the performance

of the ideal, parallel configuration. However, in that chapter, we have not accounted

for the possibility of node failures, and we have assumed that all messages are re-

ceived reliably. In this chapter, we address these two issues, in the context of dense

sensor networks. We also aim to obtain qualitative insights into the management of

sensor networks. Throughout, we will again assume Assumption 2.1, i.e., nodes make

(conditionally) i.i.d. observations under either hypothesis.

5.1 Related Work and Our Contributions

Parallel configurations with a random number of nodes have been studied by [43–

45]. In [43, 44], the authors consider spatially correlated signals, and analyze the

performance of a simple but suboptimal strategy. In [45], the authors assume that

all nodes make i.i.d. observations under either hypothesis, quantize their observations

using the same quantizer, and use a multiple access protocol that combines the sensor
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messages in an additive fashion. In this thesis, we model the case of node failures by

allowing the number of nodes that transmit messages to a particular node be a random

variable with a known distribution. Then, we let the mean of this distribution become

asymptotically large, to model a dense network. The work in this thesis differs from

the previous references in several ways, including the following: (a) we are interested

in evaluating the asymptotically optimal detection performance, and in designing

asymptotically optimal transmission strategies; (b) we focus on trees with height

greater than one. Our results show that for a dense network whose expected number

of leaves is n, and under a particular assumption on the distribution of the degree of

each node, the asymptotic Neyman-Pearson detection performance is the same as for

a parallel configuration with n leaves, thus establishing that the randomness in the

network topology does not lead to performance deterioration.

For the case of unreliable communications, we assume that all nodes are con-

strained to sending one-bit messages over a binary symmetric channel (BSC) with

known crossover probability. To model a dense network, we let the degree of each

non-leaf node grow asymptotically large. The case of the parallel configuration is cov-

ered by results in [22]. Parallel configurations with a fixed number of nodes, and with

non-ideal channels between the nodes and the fusion center, have also been studied

in [10–12,21]. In this work, we study the effect of unreliable communications on the

detection performance of a tree network of height greater than one, and character-

ize the optimal error exponent. In particular, we show that it is no longer possible

to achieve the performance of a parallel configuration, in contrast to the results in

Chapter 3. We also consider a scheme that allows a tree network to achieve the same

performance as that of a network with reliable communications, but at the expense

of increased transmission power. We compare the energy efficiency of such a scheme

with that of a parallel configuration, and establish that a tree network is preferable.

Finally, we consider the Bayesian version of the problems we have described above,

under some additional simplifying assumptions, and characterize the optimal error

exponent.
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5.2 Node Failures

We model node failures by letting the number of immediate predecessors of each

node be random variables with known distributions. Although [43–45] have studied

variations of this problem in a different context, they specifically assumed a Poisson

distribution and considered only the parallel configuration. Our formulation involves

trees with a general height h ≥ 1, and distributions from a somewhat larger family.

The main reason for introducing this larger family of distributions is to facilitate

comparison with the results in Section 5.3. Since we will not be indexing our tree

sequence using the number of nodes n in each tree (which is now random), we will

drop the subscript n in our notation. For example, the set of immediate predecessors

of a node v will be denoted as C(v), instead of Cn(v).

Let h be a positive integer. We form a random tree according to a Galton-Watson

branching process [46] with h stages. Consider the fusion center f . Let Nf = |C(f)|
be a nonnegative integer random variable, with marginal law µh. For each node v in

the random set C(f), we let Nv = |C(v)| be i.i.d. random variables with distribution

µh−1. We continue this process until the level 0 nodes are reached. Hence, each

level k node v (with k ≥ 1) has Nv immediate predecessors, where Nv is a random

variable with law µk. Furthermore, we also assume that all these random variables

are independent, and independent of the hypothesis. We call such a tree a GW tree

of height h. We will sometimes use Mk to denote a generic random variable with law

µk.

Let λk = E[Mk] < ∞ be the mean1 of the distribution µk, and let λ∗ = min
1≤k≤h

λk.

We consider the case of asymptotically large λ∗ to model a dense network, i.e., we

let λk → ∞ for all k, and allow the laws µk to vary accordingly. Strictly speaking,

we are dealing with a sequence of random tree networks: each tree in the sequence

corresponds to a different choice of the parameters λk, and these parameters tend

to infinity along this sequence. However, we keep this underlying sequence hidden

(and implicit), to prevent overburdening the notation. Let λ(k) =
k∏
i=1

λi, which is the

1When dealing with the distribution of the GW tree, we will use the notation P, E and var, since
the distribution is the same under either hypothesis.
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expected number of leaves that are predecessors of a level k node.

We make the following assumption. The assumption is satisfied if Mk has Poisson

distribution with mean λk, or if there is a constant p ∈ (0, 1) such that Mk has

a Binomial distribution B(nk, p) with mean λk = nkp. If every Nv has a Binomial

distribution, a GW tree can be interpreted as a deterministic tree network with erasure

channels between nodes.

Assumption 5.1. Let Mk be random variables with distribution µk and mean λk,

k = 1, . . . , h. We have

var[Mk]/λ
2
k → 0, as λk → ∞. (5.1)

Under Assumption 5.1, a straightforward application of Chebychev’s inequality

shows that the distribution of Mk is clustered around its mean.

Lemma 5.1. For any η > 0, we have P(|Mk/λk − 1| > η) → 0, as λk → ∞.

We assume that there is a multiple access protocol in place, so that every node

can distinguish the messages it receives from each of its immediate predecessors.

This can for example, be a random access protocol that allows a large number of

immediate predecessors. Lemma 5.1 shows that, with high probability, approximately

λk orthogonal channels are required if a random access orthogonal signalling scheme

is implemented.

Suppose that the distributions µ1, . . . , µh have been fixed. A transmission policy

for a node v specifies the transmission function of v, for each realization of the in-

degree Nv. Similarly, a GW-strategy is defined as a mapping, which for any realization

of the random tree, specifies a strategy (as defined at the end of Section 2.2) for

that tree. Note that a GW-strategy requires, in general, global information on the

structure of the realized tree and may be hard to implement. Given a GW-strategy

π and a set of distributions µ = (µ1, . . . , µh), let βπ be the resulting Type II error

probability, P1(Yf = 0), at the fusion center. (This is an average over all possible

realizations of the tree, as well as over the distribution of the observations.) Let us
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fix some α ∈ (0, 1). Let β∗ be the infimum of βπ, over all GW-strategies π, subject to

the constraint that the Type I error probability, P0(Yf = 1), is less than or equal to α.

Similar to previous chapters, our goal is to characterize the optimal error exponent

lim sup
λ∗→∞

1

λ(h)
log β∗.

(Recall that λ(h) =
h∏
k=1

λk is the expected number of leaves, as determined by µ.)

Given a GW-strategy and a level k node v, let Lv be the log-likelihood ratio

(more formally, the logarithm of the Radon-Nikodym derivative) of the distribution

of Yv under H1 with respect to that under H0. If v is at level k ≥ 1, we define the

log-likelihood ratio of the messages it receives by

Sv =
∑

u∈C(v)

Lu,

where the sum is taken to be 0 if C(v) is empty.

Motivated by the ǫ-optimal strategies for non-random tree networks in Chapter

3, we will be interested in the case where nodes v at some level k ≥ 1 use a transmis-

sion policy (called a Mean-normalized Log-Likelihood Ratio (MLLR) quantizer) that

results in a message Yv of the form

Yv =





0, if Sv/λ(k) ≤ t,

1, otherwise,

for some threshold t. We assume that all non-leaf nodes are allowed to use MLLR

quantizers.

For deterministic network topologies, i.e., if Nv = λk, a.s., for all level k nodes v,

our results in Chapter 3 show that the Type II error probability decays exponentially

fast with λ(h), at rate g∗P . The proposition below shows that this remains true for a

GW tree.

Proposition 5.1. Suppose that Assumptions 2.1-2.3, and Assumption 5.1 hold, and
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that α ∈ (0, 1). The optimal error exponent of a GW tree of height h is given by

lim
λ∗→∞

1

λ(h)
log β∗ = g∗P . (5.2)

Furthermore, for any ǫ ∈ (0,−g∗P ), and any large enough λ∗, the following GW-

strategy satisfies the Type I error probability constraint, and its error exponent is

bounded above by g∗P + ǫ:

(i) each leaf uses the same transmission function γ ∈ Γ, with −D(Pγ0 ‖P
γ
1) ≤ g∗P +

ǫ/2 < 0; and

(ii) for k ≥ 1, every level k node uses a MLLR quantizer with threshold tk =

−D(Pγ0 ‖P
γ
1) + ǫ/2h−k+1.

To prove the proposition, we will first lower bound the optimal error exponent. We

will then derive a matching upper bound by showing that the proposed GW-strategy

comes within ǫ of the lower bound.

5.2.1 The Lower Bound

In this section, we show that in the limit, as λ∗ → ∞, and for any GW-strategy, the

error exponent is lower bounded by g∗P . We first show an elementary fact.

Lemma 5.2. Suppose that X and Y are non-negative random variables with E[X] ≤ a

and E[Y ] ≤ b, and that the event A has probability P(A) > c1 + c2, where c1, c2 > 0.

Then, there exists some ω ∈ A such that X(ω) ≤ a/c1 and Y (ω) ≤ b/c2.

Proof. From Markov’s Inequality,

P(X > a/c1) ≤ c1, P(Y > b/c2) ≤ c2.

Therefore, by the union bound, we have

P
(
({X > a/c1} ∪ {Y > b/c2}) ∩ A

)
≤ c1 + c2.
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This implies that

P({X ≤ a/c1} ∩ {Y ≤ b/c2} ∩ A) ≥ P(A) − c1 − c2 > 0.

Hence, there exists some ω ∈ A such that X(ω) ≤ a/c1 and Y (ω) ≤ b/c2.

In the following lemma, we show that l(f) (the actual number of leaves) and λ(h)

(the expected number of leaves) are close (in probability), in the limit of large λ∗.

Lemma 5.3.

(a) E[l(f)] = λ(h) and var[l(f)]/λ2(h) → 0, as λ∗ → ∞.

(b) For all δ > 0, P(|l(f)/λ(h) − 1| > δ) → 0, as λ∗ → ∞.

Proof.

(a) We use induction on h. For h = 1, (a) follows from Assumption 5.1. Suppose that

the claim holds for GW trees of height h − 1, and consider a GW tree of height

h. Recall that Nf is the cardinality of the set C(f) of immediate predecessors

of the fusion center f . For u ∈ C(f), we observe that l(u) is the number nodes

in a GW tree of height h − 1, rooted at u. The induction hypothesis yields

E[l(u)] = λ(h − 1) and var[l(u)]/λ2(h − 1) → 0, as λ∗ → ∞. Furthermore, the

random variables l(u) are i.i.d. Let w be a typical element of C(f). We have

E[l(f)] = E

[ ∑

u∈C(f)

l(u)
]

= E[Nf ] E[l(w)] = λ(h).

Using a well known formula for the variance of the sum of a random number of

i.i.d. random variables, we also have

var[l(f)]

λ2(h)
=

var[Nf ]
(
E[l(w)]

)2
+ E[Nf ]var[l(w)]

λ2(h)

=
var[Nf ]

λ2
h

· λ
2(h− 1)

λ2(h− 1)
+
λh
λ2
h

· var[l(w)]

λ2(h− 1)
,

which, using the induction hypothesis and Assumption 5.1, converges to 0.

103



(b) This is an immediate consequence of Chebychev’s Inequality.

We are now ready to prove the lower bound for the optimal error exponent.

Lemma 5.4. Suppose that Assumptions 2.1-2.3, and Assumption 5.1 hold, and that

α ∈ (0, 1). Then,

lim inf
λ∗→∞

1

λ(h)
log β∗ ≥ g∗P .

Proof. Suppose that g := lim inf
λ∗→∞

1
λ(h)

log β∗ < g∗P . Fix ǫ > 0 and δ ∈ (0, 1) such that

(g+ ǫ)/(1+ δ) < g∗P . Then, there exists a sequence of distributions (µ1, . . . , µh) along

which λ∗ → ∞, such that for the kth element of that sequence we have λ(h) = ζk,

where ζ1 ≥ 1, ζk+1 ≥ 1+δ
1−δζk, k = 1, 2, . . ., and

lim
k→∞

1

ζk
log β∗ = g.

Let G be the set of all trees with height less than or equal to h, and let Rk be a

random tree, generated according to the GW process. It follows that there exists

some K1 > 0 such that for all k ≥ K1, we have

E[P1(Yf = 0 | Rk)] =P1(Yf = 0) ≤ eζk(g+ǫ),

E[P0(Yf = 1 | Rk)] =P0(Yf = 1) ≤ α.

Fix a c ∈ (α, 1). From Lemma 5.3(b), P(l(f) ∈ [(1 − δ)ζk, (1 + δ)ζk]) → 1, as

k → ∞. Since (1 + c)/2 < 1, we can choose a K ≥ K1, such that for all k ≥ K,

P
(
l(f) ∈ [(1 − δ)ζk, (1 + δ)ζk]

)
>

1 + c

2
=

1 − c

2
+ c.

Using Lemma 5.2, for each k ≥ K, there exists some tree rk ∈ G with nk leaves,

where nk ∈ [(1 − δ)ζk, (1 + δ)ζk], so that

P1

(
Yf = 0 | Rk = rk

)
≤ 2

1 − c
eζk(g+ǫ), (5.3)
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P0

(
Yf = 1 | Rk = rk

)
≤ α

c
< 1. (5.4)

From (5.3),

1

nk
log P1

(
Yf = 0 | Rk = rk

)
≤ ζk
nk

(g + ǫ) +
1

nk
log

2

1 − c

≤ g + ǫ

1 + δ
+

1

nk
log

2

1 − c
.

Letting k → ∞, we obtain

lim sup
k→∞

1

nk
log P1

(
Yf = 0 | Rk = rk

)
≤ g + ǫ

1 + δ
< g∗P .

Recall that g∗P is the optimal Type II error exponent (as k → ∞) of a parallel

configuration with nk nodes sending messages directly to the fusion center, subject to

the constraint that the Type I error probability is less than or equal to α/c (cf. (5.4)

and [22]). Since such a parallel configuration can simulate the tree rk, we obtain a

contradiction, which proves the desired result.

5.2.2 Achievability

In this subsection, we fix some ǫ ∈ (0,−g∗P ), consider a GW-strategy of the form

described in Proposition 5.1, and show that it performs as claimed. In particular, for

k ≥ 1, every level k node v sends a 0 (or, for the fusion center, it declares H0) iff

Sv ≤ λ(k)tk.

We first show that this strategy results in a Type II error exponent within ǫ of g∗P .

Consider a node v at level k ≥ 1. Since exp(−Sv) is the ratio of the likelihood under

H0 to that under H1, of the received messages at node v, we have E1[exp(−Sv)] = 1.

Hence, from the Chernoff bound, we obtain

1

λ(k)
log P1

( Sv
λ(k)

≤ tk

)
≤ 1

λ(k)
log

(
eλ(k)tkE1[e

−Sv ]
)

= tk. (5.5)
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In particular, for v = f , we have k = h and

1

λ(h)
log P1

(
Sf ≤ λ(h)th

)
≤ th = −D(Pγ0 ‖P

γ
1) +

ǫ

2

≤ g∗P + ǫ. (5.6)

By taking ǫ → 0 in (5.6), we obtain the claimed upper bound on the Type II error

exponent.

It only remains to verify that this strategy meets the Type I error constraint,

when λ∗ is sufficiently large. This is accomplished by the following lemma.

Lemma 5.5. Suppose that Assumptions 2.1-2.3, and Assumption 5.1 hold. Let v be

a level k node, with k ≥ 1. For the particular GW-strategy proposed in Proposition

5.1, we have P0(Yv = 0) → 1, as λ∗ → ∞.

Proof. We proceed by induction on k. We start by considering the case k = 1. Let u

be a typical immediate predecessor of v. We have

E0[Sv]

λ(1)
=

E[Nv]

λ(1)
· E0[Lu] = E0[Lu] = −D(Pγ0 ‖P

γ
1).

Furthermore, using a well known formula for the variance of the sum of a random

number of i.i.d. random variables,

var0[Sv]

λ2(1)
=

var[Nv](E0[Lu])
2 + E[Nv]var0[Lu]

λ2(1)
,

which converges to zero as λ(1) → ∞, because var[Nv]/λ
2(1) converges to zero (As-

sumption 5.1), E0[Lu] = −D(Pγ0 ‖P
γ
1) <∞, E[Nu] = λ(1), and var0[Lu] ≤ E0[L

2
u] <∞

(from Assumption 2.3 and Proposition 3 of [22]). Since the threshold t1 used by v

satisfies −D(Pγ0 ‖P
γ
1) < t1, Chebychev’s inequality yields P0(Sv > λ(1)t1) → 0, and,

therefore, P0(Yv = 0) → 1.

Suppose now that the induction hypothesis holds for k − 1, where k ≥ 2. Let v

be a level k node, and let u be a typical immediate predecessor of v. Using the facts
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P0(Yu = 0) → 1 and P0(Yu = 1) → 0 in the second equality below, we have

lim sup
λ∗→∞

E0[Lu]

λ(k − 1)

= lim sup
λ∗→∞

1

λ(k − 1)

(
P0(Yu = 0) log

P1(Yu = 0)

P0(Yu = 0)
+ P0(Yu = 1) log

P1(Yu = 1)

P0(Yu = 1)

)

= lim sup
λ∗→∞

1

λ(k − 1)
log P1(Yu = 0)

= lim sup
λ∗→∞

1

λ(k − 1)
log P1

(
Su ≤ λ(k − 1)tk−1

)

≤ tk−1,

where the last inequality follows from (5.5), applied to u.

Using a similar argument, we have

lim sup
λ∗→∞

var0[Lu]

λ2(k − 1)
≤ lim sup

λ∗→∞

E0[L
2
u]

λ2(k − 1)

= lim sup
λ∗→∞

1

λ2(k − 1)
log2 P1(Su ≤ λ(k − 1)tk−1)

≤ t2k−1. (5.7)

We then obtain

lim sup
λ∗→∞

1

λ(k)
E0[Sv] = lim sup

λ∗→∞

1

λ(k)
E[Nv]E0[Lu]

= lim sup
λ∗→∞

1

λ(k − 1)
E0[Lu]

≤ tk−1.

Furthermore,
var0[Sv]

λ2(k)
=

var[Nv](E0[Lu])
2 + E[Nv]var0[Lu]

λ2
k · λ2(k − 1)

,

which converges to zero as λ∗ → ∞, because var[Nv]/λ
2
k → 0 (Assumption 5.1),

E[Nv]/λ
2
k = 1/λk → 0, and both E0[Lu]/λ(k−1) and var0[Lu]/λ

2(k−1) are bounded.

Since tk−1 < tk, Chebychev’s inequality shows that P0(Sv > λ(k)tk) → 0, and there-

fore, P0(Yv = 0) → 1.
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5.2.3 Discussion

We have shown that the optimal error exponent for a tree network with node failures

is g∗P , the same as for a parallel configuration with a large but deterministic number

of nodes, and developed a strategy that achieves the optimal performance, as close

as desired. In our ǫ-optimal strategy, every non-leaf node uses a MLLR quantizer.

Hence, there is no loss in optimality if we restrict each of the non-leaf nodes to sending

only one bit.

Another advantage of this strategy is that every non-leaf node only needs to

know the received messages from its immediate predecessors and the distributions

µ1, . . . , µh; no additional information on the topology of the realized tree is required.

While it might be possible, in a static network, as part of the setup process, to inform

each node of the topology of the network, this would be too difficult or costly in a

mobile or time-varying network. The model that we have adopted, i.e., modeling the

immediate predecessors of each sensor as a random set, can be applied to a mobile

network, in which a node does not know a priori how many nodes will be within

transmission range. See [43] for a related model, employed in a similar spirit.

5.3 Unreliable Communications

In this section, we consider the case where messages are restricted to be binary, and

the channel between any two nodes is a binary symmetric channel (BSC) with known

crossover probability η ∈ (0, 1/2). Recall that the sequence of trees (Tn)n≥1 models

the evolution of the network as more nodes are added. We assume that for some n0,

and for all n ≥ n0, Tn is a h-uniform tree, i.e., all leaves are exactly h hops away

from the fusion center (this is done for simplicity, to reduce the number of cases that

we need to consider; an extension to more general types of trees is possible). For

every non-leaf node v, we assume that |Cn(v)| ≥ cn, for some sequence cn of positive

integers that diverges to infinity as n increases. Similar to the previous section, we are

interested in characterizing the Type II error exponent at the fusion center, when the

Type I error probability is constrained to be less than or equal to a given α ∈ (0, 1).
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However, in this case, it turns out that the relevant error exponent is

lim sup
n→∞

1

|Cn(f)| log β∗,

where β∗ is the minimum Type II error probability at the fusion center, for the tree

Tn, optimized over all strategies that satisfy the Type I error constraint. Note that we

have normalized the error exponent using |Cn(f)| (instead of ln(f), the total number

of leaves), even though every leaf makes an observation. The reason for this will

become apparent in Proposition 5.3 below.

Consider a non-leaf node v. It receives a message from each node u ∈ Cn(v), and

forms a message Yv, which it sends to its immediate successor, w. Because of the

noisy channel, the message received by w, denoted by Zv, may be different from Yv.

Let L̄v be the log-likelihood ratio of the distribution of Zv under H1 with respect to

that under H0. Since Zv is binary, the random variable L̄v takes one of the two values

log(P1(Zv = z)/P0(Zv = z)), z = 0, 1, depending on whether Zv is 0 or 1. Let

Sv =
∑

u∈Cn(v)

L̄u,

which is the sum of the log-likelihood ratios of the received messages at node v.

We will be interested in the case where nodes v at some level k ≥ 1 use LLRQs

as their transmission functions, i.e.,

Yv =





0, if Sv/|Cn(v)| ≤ t,

1, otherwise,

for some threshold t.
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5.3.1 The Case h = 1

Let us first consider the simple case where h = 1, i.e., the parallel configuration. For

every γ ∈ Γ, let

qγj (0) = (1 − η)Pj(γ(X) = 0) + ηPj(γ(X) = 1),

qγj (1) = (1 − η)Pj(γ(X) = 1) + ηPj(γ(X) = 0),

and

e0,γ = qγ0 (0) · log
qγ1 (0)

qγ0 (0)
+ qγ0 (1) · log

qγ1 (1)

qγ0 (1)
,

e1,γ = qγ1 (0) · log
qγ1 (0)

qγ0 (0)
+ qγ1 (1) · log

qγ1 (1)

qγ0 (1)
,

For an interpretation, note that if u is a leaf that employs the transmission func-

tion γ, then ej,γ = Ej [L̄u]. Let e0 = infγ∈Γ e0,γ. The following proposition follows

immediately from [22].

Proposition 5.2. Suppose that Assumptions 2.1-2.3 hold. Then, for h = 1, and for

any α ∈ (0, 1), we have

lim
n→∞

1

|Cn(f)| log β∗ = e0

Furthermore, the optimal error exponent does not change if we restrict all the leaves

to use the same transmission function γ ∈ Γ.

As shown in [22], the optimal error exponent e0 can be achieved to within some

ǫ, by letting all leaves use a transmission function γ that satisfies e0,γ ≤ e0 + ǫ/2, and

letting the fusion center use a LLRQ with threshold t = e0,γ + ǫ/2.
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5.3.2 The General Case

We henceforth assume that h ≥ 2. We have the following proposition, which shows

that the optimal error exponent is the same as that of a parallel configuration in

which the nodes in Cn(f) have perfect knowledge of the true hypothesis. Intuitively,

as n becomes large, each node v ∈ Cn(f) discriminates between the two hypotheses

with vanishing probabilities of error. Let Bern(η) denote the Bernoulli distribution

on {0, 1} that takes value 1 with probability η. Let

D(η) = η log
η

1 − η
+ (1 − η) log

1 − η

η
,

which is the KL divergence function of Bern(1 − η) w.r.t. Bern(η).

Proposition 5.3. Suppose that Assumptions 2.1-2.3 hold, h ≥ 2, and α ∈ (0, 1).

Then, the optimal error exponent is

lim
n→∞

1

|Cn(f)| log β∗ = −D(η) < 0.

Furthermore, for any ǫ > 0, as n → ∞, the following strategy satisfies the Type I

error probability constraint, and also satisfies lim supn→∞(1/|Cn(f)|) log P1(Yf = 0) ≤
−D(η) + ǫ:

(i) All leaves use the same transmission function γ ∈ Γ, where γ is chosen so that

P0(γ(X) = 0) 6= P1(γ(X) = 0).

(ii) Every node at level 1 uses a LLRQ, with a threshold t that satisfies e0,γ < t <

e1,γ.

(iii) All other nodes other than the fusion center, use the majority rule: send a 1 if

and only if more than half of the received messages are equal to 1.

(iv) The fusion center uses a LLRQ with threshold t = −D(η) + ǫ.

Proof. (Outline) Similar to the proof of Proposition 5.1, we first lower bound the

optimal error exponent. Consider the fusion center f . Suppose a genie tells each
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v ∈ Cn(f) the true hypothesis, and each node v sends this information to the fusion

center. Because of the BSC from each sensor v to f , the received message at f has

distribution Bern(η) under H0, and Bern(1− η) under H1. From Stein’s Lemma [39],

the optimal error exponent is −D(η). The performance in the absence of the genie

cannot be better. Therefore,

lim inf
n→∞

1

|Cn(f)| log β∗ ≥ −D(η). (5.8)

We now turn to the proof of the upper bound. Consider the strategy described

in the proposition. Let v be a node at level 1. This node v receives a message Zu

from each leaf u ∈ Cn(v). These messages are binary, conditionally i.i.d., but with

a different distribution under each hypothesis. Moreover, v receives at least cn such

messages. In such a case, it is well known [39] (and also easy to show from laws

of large numbers) that if the node v uses a LLRQ with a threshold t that satisfies

e0,γ < t < e1,γ, then the error probabilities at node v decay exponentially fast with

cn; that is, there exist some ∆ and δ > 0 such that

P0(Yv = 1) ≤ ∆e−cnδ, P1(Yv = 0) ≤ ∆e−cnδ, ∀n. (5.9)

Taking into account the statistics of the BSC, we have

P0(Zv = 1) ≤ η + ∆e−cnδ, P1(Zv = 0) ≤ η + ∆e−cnδ, ∀n. (5.10)

In particular, for n sufficiently large, and for all level 1 nodes v, we have P0(Zv = 1) <

1/2 and P1(Zv = 0) < 1/2. Consider now a node w at level 2. This node receives at

least cn independent messages Zv from each v ∈ Cn(w), where these messages have

error probabilities P0(Zv = 1) < 1/2 and P1(Zv = 0) < 1/2. The node w then uses a

majority rule to form its message Yw. It is easy to show, using laws of large numbers,

that (5.9) holds for Yw, with possibly different constants ∆ and δ. Then, (5.10) also

holds for Zw. Continuing inductively, we conclude that there exist constants ∆ > 0

and δ > 0, such that for all nodes v, (5.10) holds.
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Consider now the fusion center, and a typical node v ∈ Cn(f). From (5.10), if n is

sufficiently large, the message Zv received by the fusion center has KL divergence at

least D(η) − ǫ/2 (note that D(·) is continuous and decreasing over (0, 1/2)). It then

follows, from Cramér’s Theorem [39], that the Type II error exponent at the fusion

center is less than or equal to −D(η) + ǫ, if a LLRQ with threshold t = −D(η) + ǫ is

used at the fusion center. Moreover, the Type I error exponent is strictly negative in

this case, so that the Type I error probability can be brought to below α when n is

sufficiently large. The proof is now complete.

5.3.3 Discussion

We have established that the detection performance of a tree network in which the

communication channel between two nodes is a BSC, and which has a height h ≥ 2, is

the same as if every immediate predecessor of the fusion center had perfect knowledge

of the true hypothesis. On the other hand, when compared to the case of reliable

communications (where the error probability falls exponentially fast with the number

of nodes cf. Chapter 3), the performance is significantly degraded. Thus, channel

noise can be detrimental.

Consider a tree network in which all non-leaf nodes have the same number of

immediate predecessors cn. Suppose that each node estimates its channel to its im-

mediate successor, and sends its message only if that message will be received reliably.

In this case, the number of immediate predecessors of a node of level k ≥ 1 has a Bi-

nomial distribution B(cn, 1− η) with mean λk = cn(1− η). In Section 5.2, we showed

that the Type II error probability, when the network is operating in this manner,

falls exponentially with λ(h) = chn(1− η)h. On the other hand, Proposition 5.3 shows

that the minimum error probability achievable when messages are sent regardless of

channel conditions, falls exponentially with cn. Hence, our results suggest that in a

dense sensor network of height h ≥ 2, if a node determines that it cannot reliably

transmit its message to its immediate successor, it is better for the node to remain

silent. Our results also suggest that when designing a large scale sensor network, it is

more important to ensure that there is reliable communication between nodes (e.g.,
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by using sufficient transmission power), than to guard against node failures.

It has been argued in [47, 48] that, contrary to popular belief, in most practical

scenarios, multi-hop wireless sensor networks are less energy efficient than the simple

parallel configuration, if the network is used for the purpose of forwarding data to

the fusion center (with no fusion involved at intermediate nodes). The model we

have considered, however, requires intermediate data to be fused on the way to the

fusion center into 1-bit messages. In this case, it is easy to see that a tree network is

more energy efficient than a parallel configuration (for a more detailed comparison,

see the example in Chapter 4). On the other hand, with unreliable communications,

Proposition 5.3 indicates that the detection performance of a tree network is much

worse than that of a parallel configuration, leading to an interesting tradeoff. In

Section 5.3.5, we will consider an example where nodes are arranged on a grid. We

will show that it is possible to construct a tree that is more energy-efficient than the

parallel configuration, while guaranteeing that the Type II error probability decays

exponentially fast with the number of nodes. However, we first need to develop

a result on the optimal error exponent, when the channel crossover probability η

decreases with the number of nodes.

5.3.4 Error Exponent with Small Channel Crossover Proba-

bilities

In Proposition 5.3, we showed that the Type II error probability decays exponentially

fast with |Cn(f)|, when the channel error probability η is fixed. In this section, we

let η go to zero as n increases, which corresponds to increasing the transmit power of

each node.2 Under an assumption on the rate at which η goes to zero, we show that

the Type II error probability can be made to decay exponentially fast with n, at rate

g∗P .

Proposition 5.4. Suppose that Assumptions 2.1-2.3 hold. Suppose also the following:

1. If h = 1, then limn→∞ η = 0.

2We suppress the dependence of η on n in the notation.
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2. Let lM = maxv∈Cn(f) ln(v). If h ≥ 2, then lim sup
n→∞

1
lM

log η ≤ g∗P .

Fix an ǫ ∈ (0,−g∗p/h). Suppose that all leaves use the same transmission function

γ ∈ Γ, chosen so that −D(Pγ0 ‖P
γ
1) < g∗P + ǫ. Suppose also that each level k (k ≥ 1)

node v sends a message 0 iff Sv/ln(v) ≤ tk := g∗P + kǫ. Then, for n sufficiently large,

we have for every level k node v,

1

ln(v)
log P1(Yv = 0) ≤ tk, (5.11)

1

ln(v)
log P0(Yv = 1) ≤ −ǫk < 0, (5.12)

where ǫ1, . . . , ǫh are positive reals less than or equal to ǫ. In particular, for any h ≥ 1

and α ∈ (0, 1), the optimal error exponent is

lim
n→∞

1

n
log β∗ = g∗P .

Proof. If h = 1, the situation is similar to the case considered in Section 5.3.1. As

η → 0, e0,γ approaches −D(Pγ0 ‖P
γ
1), and e0 approaches g∗P , which leads to the desired

result. The details are omitted.

We now consider the case where h ≥ 2. From the Chernoff bound, we have

1

ln(v)
log P1

( Sv
ln(v)

≤ tk

)
≤ 1

ln(v)
log

(
eln(v)tkE1[e

−Sv ]
)

= tk,

hence (5.11) follows. To show the inequality (5.12), we proceed by induction on k.

When k = 1, the inequality follows from Cramér’s Theorem [39]. Suppose that (5.12)

holds for all level k nodes. Consider a level k + 1 node v. For any s ∈ [0, 1], we have

from the Chernoff bound,

1

ln(v)
log P0

( Sv
ln(v)

> tk+1

)

≤ −stk+1 +
1

ln(v)
log E0[exp(sSv)]

= −stk+1 +
1

ln(v)

∑

u∈Cn(v)

log E0[exp(sL̄u)]
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≤ −stk+1+

1

ln(v)

∑

u∈Cn(v)

log
{

P1(Zu = 0)s + P0(Zu = 1)1−s
}

≤ −stk+1 +
1

ln(v)

∑

u∈Cn(v)

max
{
s log P1(Zu = 0),

(1 − s) log P0(Zu = 1)
}

+
|Cn(v)|
ln(v)

log 2

≤ −stk+1 + max{stk,−(1 − s)ǫk} +
2|Cn(v)|
ln(v)

log 2. (5.13)

The last inequality follows because

s log P1(Zu = 0) ≤ s log(P1(Yu = 0) + η)

≤ s log
(
eln(u)tk + eln(u)(g∗p+ǫ)

)

≤ ln(u)stk + log 2.

(In the penultimate inequality, we used (5.11), and the assumption on the decay rate

of η; in the last inequality, we used the fact g∗P +ǫ ≤ tk.) Similarly, using the induction

hypothesis instead of (5.11), we have

(1 − s) log P0(Zu = 1) ≤ −ln(u)(1 − s)ǫk + log 2,

hence inequality (5.13) holds. We choose s in the R.H.S. of (5.13) so that stk =

−(1 − s)ǫk. Note that tk < 0 and ǫk > 0, which together guarantee that 0 < s < 1.

Recall that every non-leaf node is assumed to have degree at least cn, which grows to

infinity. Thus, for n sufficiently large, (5.13) implies that

1

ln(v)
log P0(Yv = 1) ≤ −sǫ+

2|Cn(v)|
ln(v)

log 2

≤ −sǫ+
2

cn
log 2

≤ −sǫ/2 := −ǫk+1,

hence (5.12) holds for level k + 1 nodes. The induction is now complete.
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To complete the proof of the proposition, since ln(f)/n→ 1 as n→ ∞ (cf. Lemma

3.3), (5.11) yields

lim sup
n→∞

1

n
log β∗ = lim sup

n→∞

1

ln(f)
log β∗ ≤ g∗p + hǫ,

while (5.12) ensures that the Type I error probability is less than α for n sufficiently

large. Finally, the optimal error exponent is obtained by letting ǫ go to 0, and the

proposition is proved.

Using a similar argument as in the proof of the above proposition, it can be shown

that the condition

lim sup
n→∞

1

lM
log η < 0, (5.14)

is sufficient for a tree network of height h ≥ 2 to achieve a Type II error probability

that decays exponentially fast with n, although the error exponent can be worse (less

negative) than g∗P .

5.3.5 Energy Efficiency Comparison

In this subsection, we consider ln(f) nodes arranged on a grid, with neighboring

nodes unit distance apart. The ln(f) nodes are the leaves of our network, but we

are otherwise free to configure the network, and to possibly introduce additional

nodes that will serve as message relays. We will compare the energy consumption

of a parallel configuration with that of a tree network of height h ≥ 2, under the

assumptions of Proposition 5.4. In both cases, the fusion center is placed at the

center of the entire grid.

To construct a tree of height h, we add new nodes at levels 1, . . . , h−1, as follows

(see Figure 5-1). Let r be a positive integer which is a perfect square. Partition the

grid of nodes into r equal sub-squares, each of which is called a level h−1 sub-square.

At the center of each sub-square, we place a new node, which serves as a level h− 1

node. Next, partition each level h − 1 sub-square into r further sub-squares, and
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place a new node at the center of each of the latter sub-squares. These are the level

h − 2 nodes, which send their messages to the level h − 1 node of that sub-square.

We repeat this procedure h − 1 times. Finally, all the leaves in a level 1 sub-square

send their messages to the level 1 node in that sub-square.

Figure 5-1: A tree network of height 3, with r = 4. The circles represent the new
nodes that we have added. The dotted lines indicate communication links. Only one
level 1 sub-square (the top right one) is shown with all its communication links.

The total number of nodes is n = ln(f)+(rh−1)/(r−1). As we consider progres-

sively larger values of ln(f), we adjust the value of r used in the above construction,

so that ln(f)/rh−1 → ∞, and ln(f)/rh → 0, as n→ ∞. We compare the performance

and energy consumption of this tree network with that of a parallel configuration

in which all ln(f) nodes send their messages directly to the fusion center. (Since

ln(f)/n → 1 as n → ∞, the results would also be the same for a parallel configura-

tion with n, instead of ln(f), nodes.)

In the tree network (h ≥ 2) that we have constructed, the condition

lim sup
n→∞

1

lM
log η ≤ g∗P

is not only sufficient, but also necessary for the Type II error exponent to be g∗P . To see

this, suppose that Z1, . . . , Zr are messages received at the fusion center. For the Type

I error constraint to be satisfied, there exists (z1, . . . , zr) such that γf(z1, . . . , zr) = 0.

Moreover, for any Y1, . . . , Yr ∈ {0, 1}, we have P1(Z1 = z1, . . . , Zr = zr | Y1, . . . , Yr) ≥
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ηr. Therefore, we obtain

β∗ ≥ P1(Z1 = z1, . . . , Zr = zr)

= E1[P1(Z1 = z1, . . . , Zr = zr | Y1, . . . , Yr)] ≥ ηr.

Hence, if lim supn→∞(1/lM) log η > g∗P , we would have limn→∞(1/ln(f)) logβ∗ > g∗P ,

since lM = ln(f)/r.

We assume that each node employs antipodal signalling, and the received signal

is corrupted by additive white Gaussian noise with variance N0/2: a node receives

a N(
√
Eb, N0/2) random variable if a 1 is sent by its immediate predecessor, and

a N(−
√
Eb, N0/2) random variable if a 0 is sent. The recipient node performs a

maximum a posterior probability test to determine if a 1 or 0 was sent. The resulting

channel error probability is

η = Q
(√

2Eb
N0

)
≈ 1

2

√
N0

Ebπ
e−Eb/N0 ,

where Q(·) is the Gaussian complementary error function. To satisfy the conditions

in Proposition 5.4, we choose Eb as follows:

1. if h = 1, let Eb = E(n), where E(n) → ∞ as n→ ∞;

2. if h ≥ 2, let Eb = c · ln(f)/r, where c ≥ −g∗P/N0 is a constant.

We also assume a path-loss model, so that the received bit energy at each receiver node

is Eb = E0/D
a, where D is the transmission distance, a is the path-loss exponent,

and E0 is the transmission energy expended by the transmitting node. Therefore,

the transmission energy of a node is E0 = EbD
a. In line with standard wireless

communications models [49], we take 2 ≤ a ≤ 4.

Let ECT be the circuit processing energy required by each node, and ECR be the

receiver circuit energy incurred by a receiver node per message received [48]. The

total energy EP expended by a parallel configuration is given below. The first term

is the receiver circuit energy of the fusion center, the second term is the processing
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energy expended by all the nodes, the third term is the total transmission energy,

and c(n) is the average path-loss Da suffered by the nodes. We have

EP = ln(f)ECR + (ln(f) + 1)ECT + ln(f)E(n)c(n).

Since more than half of the nodes are at distance at least
√
ln(f)/4 from the fusion

center, we obtain

EP ≥ ln(f)(ECR + ECT ) + ln(f)E(n) · 1

2

(√
ln(f)

4

)a

= Ω
(
n1+a/2E(n)

)
.

For the tree network with height h ≥ 2, we have the following upper bound on the

total energy consumption ET . The first term is the total processing energy of all the

nodes, the second term is the receiver circuit energy expended by nodes from level

1 to level h, the third term is an upper bound on the transmission energy expended

by nodes from level 1 to level h − 1, and the last term is an upper bound on the

transmission energy expended by the leaves. So, we have

ET ≤ nECT + (n− 1)ECR + Eb

h−1∑

k=1

rk
(√

ln(f)

r
k−1
2

)a

+ ln(f)Eb

(√
ln(f)

r
h−1

2

)a

≤ n(ECT + ECR) + c
ln(f)

r

h−1∑

k=1

rk · n
a/2

rk−1
+ ln(f) · cln(f)

r
· n

a/2

rh−1

≤ n(ECT + ECR) + c(h− 1)n1+a/2 + cn1+a/2 ln(f)

rh

= O(n1+a/2).

The above analysis shows that for large n, ET < EP . Hence, the tree network

consumes less energy than the parallel configuration, if both networks are designed

to have the same error exponent g∗P .
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5.4 The Bayesian Problem

In this section, we consider the Bayesian formulation of the problems analyzed in

Sections 5.2 and 5.3, under some additional simplifying assumptions.

Suppose that we are given positive prior probabilities π0 and π1 for each hypoth-

esis. Let Pe = π0P0(Yf = 1) + π1P1(Yf = 0) be the probability of error at the fusion

center, and let P ∗
e be the minimum probability of error, where the minimization is

over all strategies. We assume that the fusion center always uses the optimal fusion

rule, namely the maximum a posteriori probability rule. In this section, we assume

that all nodes are constrained to sending 1-bit messages. We also make the following

assumption on the observations at the leaves.

Assumption 5.2. Either one of the following holds:

(i) The observations Xi at the leaves take values in a finite set.

(ii) Assumption 2.3 and the condition E1

[
log2

(
dPX1 /dPX0

)]
<∞ hold.

For each γ ∈ Γ, let

Λ(γ) = min
s∈[0,1]

log E0

[(dP
γ
1

dP
γ
0

)s]
.

Under Assumptions 2.2 and 5.2, it is known that the optimal error exponent for a

parallel configuration with a deterministic number of nodes is given by

Λ∗ = inf
γ∈Γ

Λ(γ).

According to Propositions 2 and 3 of [22], Assumptions 2.1-2.2 and 5.2 imply the

following lemma.

Lemma 5.6. Suppose that Assumptions 2.1-2.2, and 5.2 hold. Then, for any choice

of transmission functions γ1, . . . , γn used by the n leaves in a parallel configuration,

the resulting probability of error, Pe(n), assuming that all transmissions are reliable,
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satisfies

Pe(n) = exp
{ n∑

i=1

Λ(γi) + f(n)
}
,

where f(n) is a function such that limn→∞ f(n)/n = 0.

In the next two subsections, we consider separately the cases of node failures and

unreliable communications, in the Bayesian framework.

5.4.1 Node Failures

For tractability, we consider only the case where for all k ≥ 1, µk is the Poisson

distribution with mean λk. We have the following proposition, which yields the

optimal error exponent in the presence of node failures. Unlike the Neyman-Pearson

case, where the Type II error probability decays exponentially fast with the expected

number, λ(h) of leaves, the Bayesian error probability decays exponentially with λh.

Proposition 5.5. Suppose that Assumptions 2.1-2.2, and 5.2 hold.

(a) If h = 1, the optimal error exponent is given by

lim
λ1→∞

1

λ1
logP ∗

e = −1 + e−Λ∗

.

(b) If h ≥ 2, the optimal error exponent is given by

lim
λ∗→∞

1

λh
logP ∗

e = −1.

Furthermore, the optimal error exponent remains unchanged if we restrict all

leaves to use the same transmission function γ ∈ Γ, and all other nodes to use a

majority rule.

Proof. (a) Suppose that h = 1. For every n, we have from Lemma 5.6, Pe(n) ≥
exp{nΛ∗ + f(n)}. Furthermore, Pe = E[Pe(N)], where N has a Poisson distribution

with mean λ1. Fix some ǫ > 0. Let n0 be such that |f(n)| ≤ nǫ, for every n > n0.
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Let m = sup1≤n≤n0
{|f(n)|}, and notice that |f(n)| ≤ m+ nǫ. We have

Pe ≥
∞∑

n=0

e−λ1
λn1
n!
en(Λ∗−ǫ)−m

= e−m−λ1

∞∑

n=0

1

n!

(
λ1e

Λ∗−ǫ
)n

= exp{λ1(e
Λ∗−ǫ − 1) −m}

Therefore,

lim inf
λ1→∞

1

λ1
logP ∗

e ≥ −1 + eΛ
∗−ǫ.

Since ǫ was arbitrary, it follows that

lim inf
λ1→∞

1

λ1

logP ∗
e ≥ −1 + eΛ

∗

.

For a corresponding upper bound, let all leaves use a transmission function γ∗

such that Λ(γ∗) ≤ Λ∗ + ǫ. We then have

P ∗
e ≤

∞∑

n=0

e−λ1
λn1
n!
en(Λ∗+ǫ)+f(n)

≤
∞∑

n=0

e−λ1
λn1
n!
en(Λ∗+2ǫ)+m

= exp{λ1(e
Λ∗+2ǫ − 1) +m}.

We take logarithms, divide by λ1, and take the limit as λ1 → ∞. Using also the fact

that ǫ was arbitrary, we obtain that

lim sup
λ1→∞

1

λ1
logP ∗

e ≤ −1 + eΛ
∗

.

(b) (Outline) Suppose now that h ≥ 2. Notice that there is a probability e−λh that the

fusion center has no predecessors, and a further probability of min{π0, π1} of making

an error, so that P ∗
e ≥ min{π0, π1}e−λh . It follows that lim supλ∗→∞(1/λh) logP ∗

e ≥
−1.
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For a corresponding upper bound, consider the case where all leaves use the same

transmission function, and all other nodes use a majority rule. An easy induction

argument shows that for every immediate predecessor of the fusion center, P0(Yu = 1)

and P1(Yu = 0) can be brought arbitrarily close to zero, as λ∗ → ∞. This brings us

to a situation similar to the one considered in part (a), except that now Λ∗ can be

replaced by an arbitrarily negative constant. A calculation similar to the one in part

(a) yields lim supλh→∞(1/λ1) logP ∗
e ≤ −1.

5.4.2 Unreliable Communications

In the case of unreliable communications, the corresponding results are obtained

easily.

Proposition 5.6. Suppose that Assumptions 2.1-2.2, and 5.2 hold.

(i) If h = 1, it is optimal to have all leaves use the same transmission function,

and the optimal error exponent is given by

lim
n→∞

1

|Cn(f)| logP ∗
e

= inf
γ∈Γ

min
s∈[0,1]

log
( 1∑

z=0

(qγ0 (z))1−s(qγ1 (z))s
)
.

(ii) For h ≥ 2, it is optimal to have all leaves use the same transmission function

γ, where γ is chosen so that Λ(γ) < 0, and to have all intermediate nodes use

a majority rule. Furthermore, the optimal error exponent is given by

lim
n→∞

1

|Cn(f)| logP ∗
e =

1

2
log

(
4η(1 − η)

)
.

Proof. (Outline) Part (i) follows from Theorem 1 of [22]. As for part (ii), an argument

similar to the proof of Proposition 5.3 shows that the probability of error at each

intermediate node converges to zero, so that the messages received by the fusion center

have asymptotic distributions Bern(η) or Bern(1 − η), under H0 or H1, respectively.

The final result then follows immediately from Chernoff’s bound [39].
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Chapter 6

Performance of Tandem Networks

In the previous chapters, we have focused our attention on networks that have

bounded height. We now shift our attention to networks whose heights grow with the

number of nodes. Specifically, we consider the special case of a tandem or serial net-

work, in which the height of the network grows linearly with the number of nodes. We

study the rate of error probability decay and show that it is always sub-exponential,

establishing the validity of a long-standing conjecture.

6.1 Background and Related Work

Consider a tandem network, as shown in Figure 6-1, with n nodes. We assume

Assumption 2.1, i.e., each node i makes an i.i.d. observation Xi under either hypoth-

esis. We also assume that each node i is constrained to sending a 1-bit message

Yi to sensor i + 1. Let πj > 0 be the prior probability of hypothesis Hj, and let

Pe(n) = π0P0(Yn = 1) + π1P1(Yn = 0) be the probability of error at node n, under

some particular strategy. The goal of a system designer is to design a strategy so

that the probability of error Pe(n) is minimized. Let P ∗
e (n) = inf Pe(n), where the

infimum is taken over all possible strategies.

The problem of finding optimal strategies has been studied in [14, 16, 26], while

the asymptotic performance of a long tandem network (i.e., n → ∞) is considered

in [23–26,50, 51] (some of these works do not restrict the message sent by each node
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n1

X1 Xn

2

X2

Y1 Y2 Yn−1 Yn

Figure 6-1: A tandem network.

to be binary). In the case of binary communications, [24, 25] find necessary and

sufficient conditions under which the error probability goes to zero in the limit of

large n. To be specific, recall that under the basic model, PXj is the distribution of a

sensor observation under hypothesis Hj. Then, the error probability stays bounded

away from zero iff there exists a B <∞ such that | log(dPX1 /dPX0 )| ≤ B almost surely.

When the log-likelihood ratio is unbounded, numerical examples have indicated that

the error probability goes to zero much slower than exponentially. This is to be

contrasted with the case of a parallel configuration where the error probability decays

exponentially fast with the number of nodes n [22]. This suggests that a tandem

configuration performs worse than a parallel configuration, when n is large. It has

been conjectured in [6,8,25,26] that indeed, the rate of decay of the error probability

is sub-exponential. However, a proof is not available. The goal of this chapter is to

prove this conjecture.

We first note that there is a caveat to the sub-exponential decay conjecture: the

probability measures PX0 and PX1 need to be equivalent, i.e., absolutely continuous

w.r.t. each other (cf. first part of Assumption 2.2). Indeed, if there exists a measurable

set A such that PX0 (A) > 0 and PX1 (A) = 0, then an exponential decay rate can

be achieved as follows: each node always declares 1 until some node m observes a

Xm ∈ A, whereupon all nodes i ≥ m declare 0. For this reason, we assume throughout

that the measures PX0 and PX1 are equivalent. Under this assumption, we show that

lim
n→∞

1

n
logP ∗

e (n) = 0.

When the error probability goes to zero, we would also like to quantify the best
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possible (sub-exponential) decay rate. In this spirit, we find lower bounds on the

probability of error, under the further assumption of bounded KL divergences. In

particular, we show that for any d > 1/2, and some positive constant c, the error

probability is Ω(e−cn
d
). Under some further mild assumptions, which are valid in

most practical cases of interest, we establish the bound Ω(e−c(log n)d
) for all d > 1,

and show that it is tight.

6.2 Sub-exponential Decay

In this section we show that the rate of decay of the error probability is always

sub-exponential. Although the proof is simple, we have not been able to find it

in the literature. Instead, all works on this topic, to our best knowledge, have only

conjectured that the decay is sub-exponential, with numerical examples as supporting

evidence [8, 25, 26].

We first state an elementary fact that we will make use of throughout this chapter.

Lemma 6.1. Suppose that P and Q are two equivalent probability measures. If

A1, A2, . . . is a sequence of measurable events such that P(An) → 0, as n → ∞,

then Q(An) → 0, as n→ ∞.

Proof. For m > 0, let R = dQ/dP, and Bm = {R ≤ m}. We have

P(Bc
m) =

∫

{R>m}

1

R
dQ ≤ 1

m
,

which implies that

P(R = ∞) = lim
m→∞

P(Bc
m) = 0.

Since P and Q are equivalent measures, we have Q(R = ∞) = 0. For all m > 0, and

n ≥ 1, we have

Q(An) ≤ Q(An ∩Bm) + Q(Bc
m)
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≤ mP(An ∩Bm) + Q(Bc
m)

≤ mP(An) + Q(Bc
m).

Taking n → ∞, and then m → ∞, we obtain the desired conclusion by noting that

Q(Bc
m) → Q(R = ∞) = 0, as m→ ∞.

Let Li = log
dP

X
1

dP
X
0

(Xi) be the log-likelihood ratio associated with the observation

made by node i. From [5, 6, 14, 25], there is no loss in optimality if we require each

sensor to form its messages by using a LLRQ, i.e., a rule of the form

Yi =





0, if Li ≤ ti,n(y),

1, otherwise,
(6.1)

where ti,n(y) is a threshold whose value depends on the message Yi−1 = y received

by node i. In the sequel, we will assume, without loss of optimality, that all nodes

use a LLRQ. The next lemma follows easily from the existence results in [5], and

Proposition 4.2 in [6].

Lemma 6.2. There exists an optimal strategy under which each node uses a LLRQ,

with thresholds that satisfy ti,n(1) ≤ ti,n(0) for all i = 1, . . . , n.

Proof. Fix the number of nodes n. As already noted, there is no loss in optimality if

we require each node to form its messages by using a LLRQ. From this, it is easily

shown that for all i = 1, . . . , n, P1(Yi = y)/P0(Yi = y) is nondecreasing in y ∈ {0, 1}.
Consider node i, where i ≥ 2, and suppose that Yi−1 = y ∈ {0, 1}. Since node i

uses a LLRQ, it chooses its message by comparing

Li + log
P1(Yi−1 = y)

P0(Yi−1 = y)

to a threshold t. Comparing with (6.1), we have

ti,n(y) = t− log
P1(Yi−1 = y)

P0(Yi−1 = y)
.
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Since P1(Yi−1 = y)/P0(Yi−1 = y) is nondecreasing in y, we have ti,n(1) ≤ ti,n(0).

In view of Lemma 6.2, we can restrict to strategies of the form

γi(Xi, Yi−1) =





0, if Li ≤ ti,n(1),

1, if Li > ti,n(0),

Yi−1, otherwise,

where ti,n(1) ≤ ti,n(0). Note that this is the type of strategies used in [24] to show

that the error probability converges to zero.

Proposition 6.1. Suppose that Assumption 2.1, and the first part of Assumption

2.2 hold. Then, the rate of decay of the error probability in a tandem network is

sub-exponential, i.e.,

lim
n→∞

1

n
logP ∗

e (n) = 0.

Proof. Suppose that P ∗
e (n) → 0 as n→ ∞, else the proposition is trivially true. Fix

some n and consider an optimal strategy for the tandem network of length n. We

have, for all i,

P0(Yi = 1) = P0

(
Li > ti,n(0)

)
· P0(Yi−1 = 0) + P0

(
Li > ti,n(1)

)
· P0(Yi−1 = 1), (6.2)

P1(Yi = 0) = P1

(
Li ≤ ti,n(0)

)
· P1(Yi−1 = 0) + P1

(
Li ≤ ti,n(1)

)
· P1(Yi−1 = 1). (6.3)

From (6.2) and (6.3), with i = n, and applying Lemma 6.2, we have

P ∗
e (n) = π0P0(Yn = 1) + π1P1(Yn = 0)

= π0

(
P0

(
Ln > tn,n(0)

)
+ P0

(
tn,n(1) < Ln ≤ tn,n(0)

)
· P0(Yn−1 = 1)

)

+ π1

(
P1

(
Ln ≤ tn,n(1)

)
+ P1

(
tn,n(1) < Ln ≤ tn,n(0)

)
· P1(Yn−1 = 0)

)
(6.4)

≥ min
j=0,1

Pj
(
tn,n(1) < Ln ≤ tn,n(0)

)
· P ∗

e (n− 1). (6.5)

From (6.4), in order to have P ∗
e (n) → 0 as n→ ∞, we must have P0(Ln > tn,n(0)) → 0
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and P1(Ln ≤ tn,n(1)) → 0, as n → ∞. Because P0 and P1 are equivalent measures,

from Lemma 6.1, we have P1(Ln > tn,n(0)) → 0 and P0(Ln ≤ tn,n(1)) → 0, as n→ ∞.

Hence, Pj(tn,n(1) < Ln ≤ tn,n(0)) → 1 for j = 0, 1. Therefore, from (6.5), the error

probability cannot decay exponentially fast.

We have established that the decay of the error probability is sub-exponential.

This confirms that the parallel configuration performs much better than the tandem

configuration when n is large. It now remains to investigate the best performance

that a tandem configuration can possibly achieve. In the next section, we use a more

elaborate technique to derive a lower bound for the error probability.

6.3 Rate of Decay

In this section, we show that under the assumption of bounded KL divergences, the

error probability is Ω(e−cn
d
), for some positive constant c and for all d > 1/2. Under

some additional assumptions, the lower bound is improved to Ω(e−c(log n)d
), for any

d > 1. The ideas in this section are inspired by the methods in [14] and Chapter 4.

In particular, we rely on a sequence of comparisons of the tandem configuration with

other tree configurations, whose performance can be quantified using the methods of

Chapters 3 and 4.

Our results involve the KL divergences, which for convenience, we denote as

D0 = E0

[
log

dPX1

dPX0

]
,

D1 = E1

[
log

dPX1

dPX0

]
.

We assume that −∞ < D0 < 0 < D1 <∞, throughout this section.

Let k and m be positive integers, and let n = km. Let us compare the following

two networks: (i) a tandem network, as in Figure 6-1, with n nodes, where each

node i obtains a single observation Xi; (ii) a modified tandem network T (k,m), as in

Figure 6-2, with k nodes, where each node vi obtains m (conditionally) independent

observations X(i−1)m+1, . . . , Xim, given either hypothesis. In both networks a node
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sends a binary message to its successor. It should be clear that when we keep the

total number of observations n = km the same in both networks, the network T (k,m)

can perform at least as well as the original one. Indeed, each node vi in the modified

network can emulate the behavior of m nodes in tandem in the original network.

{{ {

v1 v2 vk

m
mm

1 bit 1 bit 1 bit

Figure 6-2: A modified tandem network T (k,m) that outperforms a tandem network
with n = km nodes.

Therefore, it suffices to establish a lower bound for the error probability in the

network T (k,m). Towards this goal, we will use some standard results in Large

Deviations Theory, notably Cramér’s Theorem [39], in the lemma below.

Lemma 6.3. Suppose that Assumption 2.1, and the first part of Assumption 2.2 hold.

Suppose also that −∞ < D0 < 0 < D1 <∞. Let Sm =
∑m

i=1 Li, and for j = 0, 1, let

Λ∗
j(t) = sup

ξ∈R

{ξt− log Ej

[(dP
X
1

dPX
0

)ξ]}.

(i) For every ǫ > 0, there exist a ∈ (0, 1), c > 0, and M ≥ 1, such that for all

m ≥M ,

P0(Sm/m > D1 + ǫ) ≥ ae−mc,

P1(Sm/m ≤ D0 − ǫ) ≥ ae−mc.

(ii) Suppose that E1

[(dP
X
1

dP
X
0

)s]
< ∞ for some s > 0. Then, there exists some ǫ > 0,

such that Λ∗
1(D1 + ǫ) > 0, and

P1(Sm/m ≤ D1 + ǫ) ≥ 1 − e−mΛ∗

1(D1+ǫ), ∀ m ≥ 1.

(iii) Suppose that E0

[(dP
X
1

dP
X
0

)s]
< ∞ for some s < 0. Then, there exists some ǫ > 0,
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such that Λ∗
0(D0 − ǫ) > 0, and

P0(Sm/m > D0 − ǫ) ≥ 1 − e−mΛ∗

0(D0−ǫ), ∀ m ≥ 1.

(iv) For every ǫ > 0, there exists some M ≥ 1 such that

P1(Sm/m ≤ D1 + ǫ) ≥ 1/2, ∀ m ≥M.

Moreover, if for some integer r ≥ 2, E1

[∣∣ log
dP

X
1

dP
X
0

∣∣r] <∞, then there exists some

cr > 0 such that

P1(Sm/m ≤ D1 + ǫ) ≥ 1 − cr
mr/2ǫr

, ∀ m ≥ 1.

(v) For every ǫ > 0, there exists some M ≥ 1 such that

P0(Sm/m > D0 − ǫ) ≥ 1/2, ∀ m ≥M.

Moreover, if for some integer r ≥ 2, E0

[∣∣ log
dP

X
1

dP
X
0

∣∣r] <∞, then there exists some

cr > 0 such that

P0(Sm/m > D0 − ǫ) ≥ 1 − cr
mr/2ǫr

, ∀ m ≥ 1.

Proof. Note that part (iii) is essentially a restatement of part (ii), with a different

measure. A similar remark applies for (iv) and (v).

Part (i) follows directly from Cramér’s Theorem (see Theorem 2.1). To show part

(ii), we note that ϕ(ξ) = log E1

[(dP
X
1

dP
X
0

)ξ]
is a convex function of ξ, with ϕ(−1) =

ϕ(0) = 0, and ϕ′(0) = D1. Therefore, ϕ(ξ) is a nondecreasing function for ξ ∈ [0, s],

and ϕ(s)/s ≥ D1. Choose t > ϕ(s)/s, then we have Λ∗
1(t) ≥ st − ϕ(s) > 0, i.e.,

Λ∗
1(Di + ǫ) > 0, where ǫ = t − D1 > 0. The probability bound in part (ii) follows

from Cramér’s Theorem. A similar argument holds for part (iii).

Next, we prove part (iv). The first claim follows from the Weak Law of Large
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Numbers (WLLN), applied to the random variables L1, L2, . . .. Now, suppose that

E1

[∣∣ log
dP

X
1

dP
X
0

∣∣r] < ∞, for some integer r ≥ 2. We make use of the following estimate

of the moment of Sm/m (see e.g. Lemma 5.3.1 of [52]): there exists a constant cr > 0

such that

E1

[∣∣Sm/m−D1

∣∣r] ≤ cr
mr/2

, ∀ m ≥ 1.

From Markov’s Inequality, we obtain

P1(Sm/m > D1 + ǫ) ≤ 1

ǫr
E1

[∣∣Sm/m−D1

∣∣r]

≤ cr
mr/2ǫr

.

A similar argument holds for part (v), and the lemma is proved.

We now state our main result. Part (ii) of the following proposition is a general

lower bound that always holds; part (i) is a stronger lower bound, under an additional

assumption. Note that the condition in part (i) implies that Ej

[∣∣ log
dP

X
1

dPX
0

∣∣r] < ∞ for

all r, but the reverse implication is not always true.

Proposition 6.2. Suppose that Assumption 2.1, and the first part of Assumption 2.2

holds. Suppose also that −∞ < D0 < 0 < D1 <∞.

(i) Suppose that there exists some ǫ′ > 0 such that for all s ∈ [−ǫ′, 1+ǫ′], E0

[(dP
X
1

dP
X
0

)s]
<

∞. Then,

lim
n→∞

1

(log n)d
logP ∗

e (n) = 0,

for all d > 1.

(ii) For all d > 1/2, we have

lim
n→∞

1

nd
logP ∗

e (n) = 0.
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Furthermore, if for some integer r ≥ 2, Ej

[∣∣ log
dP

X
1

dP
X
0

∣∣r] < ∞ for both j = 0, 1,

then the above is true for all d > 1/(2 + r/2).

Proof. Let us fix m and k, and an optimal strategy for the modified network T (k,m).

Let Yvi
be the 1-bit message sent by node vi, under that strategy. Let

Si,m =

m∑

l=1

L(i−1)m+l, (6.6)

which is the log-likelihood ratio of the observations obtained at node vi. For the same

reasons as in Lemma 6.2, an optimal strategy exists and can be taken to be a LLRQ,

of the form

Yvi
=





0, if Si,m/m ≤ ti,m(y),

1, otherwise,

where ti,m(y) is a threshold whose value depends on the message y received by node

vi from node vi−1. For the same reasons as in Lemma 6.2, we can assume that the

optimal strategy is chosen such that ti,m(1) ≤ ti,m(0), for all m ≥ 1, and for all i ≥ 1.

Let q0,i = P0(Yvi
= 1) and q1,i = P1(Yvi

= 0) be the Type I and II error proba-

bilities at node vi. Suppose that the conditions in part (i) of the proposition hold.

Let δ = min{Λ∗
0(D0 − ǫ),Λ∗

1(D1 + ǫ)}. From parts (ii)-(iii) of Lemma 6.3, there exists

ǫ > 0, such that δ > 0. Let us fix such an ǫ, and let a ∈ (0, 1), c > 0, and M ≥ 1 be as

in Lemma 6.3(i). We first show a lower bound on the Type I and II error probabilities

qj,i.

Lemma 6.4. There exists some M̄ such that for every i ≥ 1, and every m ≥ M̄ ,

either

q0,i ≥
a

2
e−mc(1 − e−mδ)i, (6.7)

or

q1,i ≥
a

2
e−mc(1 − e−mδ)i. (6.8)
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Proof. The proof proceeds by induction on i. When i = 1, the result is an immediate

consequence of Lemma 6.3(i). Indeed, if the threshold t used by node v1 satisfies

t ≤ D1, then q0,1 ≥ ae−mc, and if t ≥ D0, then q1,1 ≥ ae−mc.

Assume now that i > 1 and that the result holds for i − 1. We will show that it

also holds for i. Let Si,m be as defined in (6.6). We have for i > 1,

q0,i = (1 − q0,i−1)P0(Si,m/m > ti,m(0)) + q0,i−1P0(Si,m/m > ti,m(1)), (6.9)

q1,i = (1 − q1,i−1)P1(Si,m/m ≤ ti,m(1)) + q1,i−1P1(Si,m/m ≤ ti,m(0)). (6.10)

We start by considering the case where q0,i−1 < 1/2 and q1,i−1 < 1/2. Suppose

that ti,m(0) ≤ D1 + ǫ. From (6.9) and Lemma 6.3(i), we have for all m ≥M ,

q0,i ≥
1

2
P0(Si,m/m > D1 + ǫ)

≥ a

2
e−mc

≥ a

2
e−mc(1 − e−mδ)i.

Similarly, if ti,m(1) ≥ D0 − ǫ, we have q1,i ≥ ae−mc(1 − e−mδ)i/2.

It remains to consider the case where ti,m(0) > D1 + ǫ and ti,m(1) < D0 − ǫ. From

(6.9) and Lemma 6.3(iii), we obtain

q0,i ≥ q0,i−1P0(Si,m/m > D0 − ǫ)

≥ q0,i−1(1 − e−mδ).

Similarly, from (6.10) and Lemma 6.3(ii), we have

q1,i ≥ q1,i−1P1(Si,m/m ≤ D1 + ǫ)

≥ q1,i−1(1 − e−mδ).

Using the induction hypothesis, either (6.7) or (6.8) holds.

We next consider the case where q0,i−1 ≥ 1/2 and q1,i−1 < 1/2. If either
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a) ti,m(1) ≥ D0 − ǫ, or

b) ti,m(0) > D1 + ǫ and ti,m(1) < D0 − ǫ,

we obtain, via the same argument as above, the desired conclusion. Suppose then

that ti,m(0) ≤ D1 + ǫ and ti,m(1) < D0 − ǫ. From (6.9) and the WLLN, we have for

some M̄ sufficiently large, and for all m ≥ M̄ ,

q0,i ≥
1

2
P0(Si,m/m > ti,m(1))

≥ 1

2
P0(Si,m/m > D0 − ǫ) ≥ 1

4
,

so that the claim holds trivially. The case q0,i−1 < 1/2 and q1,i−1 ≥ 1/2 is similar.

We finally consider the case where q0,i−1 ≥ 1/2 and q1,i−1 ≥ 1/2. If ti,m(1) ≤ D1,

then

q0,i ≥
1

2
P0(Si,m/m > D1) ≥

a

2
e−mc.

If on the other hand, ti,m(1) > D1, then ti,m(0) ≥ ti,m(1) > D1 > D0, and

q1,i ≥
1

2
P1(Si,m/m ≤ D0) ≥

a

2
e−mc.

This concludes the proof of the lemma.

We return to the proof of part (i) of Proposition 6.2. Fix some d > 1 and some

l ∈ (1/d, 1). Let k = k(m) = exp(ml). For a tandem network with n nodes, since

k(m)m = exp(ml)m is increasing inm, we have exp((m−1)l)(m−1) < n ≤ exp(ml)m,

for some m. Since the tree network T (k(m), m) outperforms a tandem network with

n nodes, we have

P ∗
e (n) ≥ π0q0,k(m) + π1q1,k(m)

≥ min{π0, π1}
a

2
e−mc(1 − e−mδ)k(m), (6.11)
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where the last inequality follows from Lemma 6.4. Note that

1

(log(k(m)m))d
log

(
e−mc(1 − e−mδ)k(m)

)

= − mc

(ml + logm)d
+

em
l

(ml + logm)d
log

(
1 − e−mδ

)

= − mc

(ml + logm)d
+

em
l−mδ

(ml + logm)d
log

(
1 − e−mδ

)emδ

. (6.12)

Since dl > 1 and l < 1, the R.H.S. of (6.12) converges to 0 as m → ∞. Moreover,

since

1 ≤ log(k(m)m)

logn
≤ ml + logm

(m− 1)l + log(m− 1)
→ 1,

as m→ ∞, we have from (6.11),

lim
n→∞

1

(logn)d
logP ∗

e (n) = 0,

which proves part (i) of the proposition.

For part (ii), the argument is the same, except that we use parts (iv) and (v) of

Lemma 6.3 (instead of parts (ii) and (iii)), and the inequalities (6.7) and (6.8) are

replaced by

q0,i ≥
a

2
e−mc

1

2i
,

and

q1,i ≥
a

2
e−mc

1

2i
,

respectively, and we let k = ml where l ∈ (1/d−1, 1), for 1/2 < d < 1. The conclusion

when Ej

[∣∣ log
dP

X
1

dP
X
0

∣∣r] <∞ for some integer r ≥ 2 can be derived similarly.
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6.4 Tightness

Part (i) of Proposition 6.2 translates to a bound of the form Ω(e−c(logn)d
), for every

d > 1. In this section, we show that this family of bounds is tight, in the sense that it

cannot be extended to values of d less than one. This is accomplished by constructing

an example in which the error probability is O(e−c(logn)d
), with d = 1, i.e., the error

probability is of the order O(n−c) for some c > 0.

Our example involves a Gaussian hypothesis testing problem. We assume that

under Hj, X1 is distributed according to a normal distribution with mean 0 and

variance σ2
j , where 0 < σ2

0 < 1/2 < σ2
1 . We first check that the condition in part (i)

of Proposition 6.2 is satisfied. We have

dPX1

dPX0
(x) =

σ0

σ1

e
−x2

2

(
1

σ2
1
− 1

σ2
0

)
,

and (using the formula for the moment generating function of a χ2 distribution),

E0

[(dPX1

dPX0

)s]
=

(σ0

σ1

)s
E0

[
e

s
2

(
1−σ2

0/σ
2
1

)
(X1/σ0)2

]

=
(σ0

σ1

)s( 1

1 − s
(
1 − σ2

0/σ
2
1

)
)1/2

<∞,

if s < 1/(1 − σ2
0/σ

2
1). Hence, the condition in part (i) of Proposition 6.2 is satisfied.

Fix some n and let an =
√

log n. We analyze the rate of decay of error probability

of a particular sub-optimal strategy considered in [25], which is the following:

γ1(X1) =





0, if X2
1 ≤ a2

n,

1, otherwise,

and for i ≥ 2,

γi(Xi, Yi−1) =





0, if X2
i ≤ a2

n and Yi−1 = 0,

1, otherwise.

Thus, the decision at node n is Yn = 1 iff we have X2
i > a2

n for some i ≤ n.
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Proposition 6.3. With the above described strategy, the probability of error is O(n−c),

for some c > 0.

Proof. Let Q(·) be the Gaussian complementary error function, i.e., Q(x) = P(Z ≥
x), where Z is a standard normal random variable. We use the well-known bound

Q(x) ≤ exp(−x2/2) (see, e.g., [46]). The Type I error probability is given by

P0(Yn = 1) = P0(X
2
i > a2

n for some i)

≤ nP0(X
2
1 > a2

n)

= 2nQ
(
an/σ0

)

≤ 2ne−a
2
n/2σ

2
0

= 2n
1− 1

2σ2
0 ,

which is of the form O(n−c), with c > 0.

The Type II error probability is

P1(Yn = 0) =
(

P1(X
2
1 ≤ a2

n)
)n

=
(
1 − P1(X

2
1 > a2

n)
)n

≤ e−nP1(X2
1>a

2
n). (6.13)

From the lower bound Q(x) ≥ 1
x
√

2π
(1 − 1

x2 ) exp(−x2/2) (see [46]), we have

nP1(X
2
1 > a2

n) = 2nQ
(
an/σ1

)

≥
√

2

π
· σ1

an

(
1 − σ2

1

a2
n

)
e−a

2
n/2σ

2
1n

=

√
2

π
· σ1√

log n

(
1 − σ2

1

log n

)
n

1− 1

2σ2
1

= Ω(nd1),

where d1 > 0. From (6.13), we obtain that P1(Yn = 0) = O(exp(−nd1)). Hence,

the overall error probability is dominated by the Type I error probability, and this
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strategy achieves a decay rate of n−c for some positive constant c.

We note that in most cases, the rate n−c is not achievable. For example, consider

the more common case of detecting the presence of a known signal in Gaussian noise:

under H0, the distribution of X1 is normal with mean −µ and variance 1, while under

H1, the distribution is normal with mean µ and variance 1. A numerical computation

indicates that the optimal error probability decay is of the order exp(−c√log n) (see

[26] and Figure 6-3). Finding the exact decay rate analytically for particular pairs

of distributions seems to be difficult because there is no closed form solution for

the optimal thresholds used in the LLRQ decision rule at each node [25], except for

distributions with certain symmetric properties [26].
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Figure 6-3: A plot of the optimal error probability as a function of the number of
nodes, for the problem of detecting the presence of a known signal in Gaussian noise.
The optimal thresholds for the LLRQs at each node are given in [26]. For large n,
the plot is almost linear.

6.5 The Neyman-Pearson Problem

In this section, we consider a simplified version of the detection problem in a long

tandem, under a Neyman-Pearson framework. We will establish that the probability
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of Type II error decays sub-exponentially, if we restrict the message sent by each node

to be a Neyman-Pearson optimal decision at that node.

It is well known that in centralized Neyman-Pearson detection, randomization can

reduce the Type II error probability. Accordingly, we assume that each node i also

has access to a random variable Vi, independent of the hypothesis or the observations,

which acts as the randomization variable. We assume independent randomization [6],

i.e., that the random variables Vi are independent. Given the received message Yi−1,

the randomization variable Vi, and its own observation Xi, each node i chooses Yi so

as to minimize P1(Yi = 0), subject to the constraint P0(Yi = 1) ≤ α, where α ∈ (0, 1)

is a given threshold. We call such a strategy a myopic one.

Let β∗
n(α) be the Type II error probability, P1(Yn = 0), for node n, when a myopic

strategy is used. It is well known that there is again no loss in optimality if we restrict

the nodes to using randomized LLRQs, i.e., each node i uses a rule of the form

Yi =





0, if Li ≤ ti(Yi−1, Vi),

1, otherwise,

where the randomized threshold ti(Yi−1, Vi) depends on both the message Yi−1 and

the randomization variable Vi. It is also easy to see that it suffices for Vi to take

values in a space V of cardinality two. We finally have ti(1, v) ≤ ti(0, v) for all i and

all v ∈ V. The proof of this fact is similar to that of Lemma 6.2, and is omitted.

Proposition 6.4. Suppose that independent randomization is used, and the probabil-

ity measures P0 and P1 are equivalent. Then, for all α ∈ (0, 1), we have

lim
n→∞

1

n
log β∗

n(α) = 0.

Proof. It is easily seen that 0 ≤ β∗
n+1(α) ≤ β∗

n(α), and therefore β∗
n(α) converges

as n → ∞. (To see this, note that node n + 1 could just set Yn+1 = Yn, thus

achieving a probability of error equal to β∗
n(α).) If limn→∞ β∗

n(α) > 0, the result of

the proposition is immediate. Therefore, without loss of generality, we assume that

limn→∞ β∗
n(α) = 0.
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Suppose that the tandem network uses a myopic strategy. Then, we have P0(Yn =

1) = α, for all n ≥ 1. The recursive relations (6.2)-(6.3) still hold, so we have

P1(Yn = 0) = P1

(
Ln ≤ tn(0, Vn)

)
· P1(Yn−1 = 0) + P1

(
Ln ≤ tn(1, Vn)

)
· P1(Yn−1 = 1),

(6.14)

which implies that

P1(Yn = 0) = P1

(
Ln ≤ tn(1, Vn)

)
+ P1

(
tn(1, Vn) < Ln ≤ tn(0, Vn)

)
· P1(Yn−1 = 0).

(6.15)

Since P1(Yn = 0) → 0, as n → ∞, we must have P1(Ln ≤ tn(1, Vn)) → 0, as n →
∞. By Lemma 6.1, we obtain P0(Ln ≤ tn(1, Vn)) → 0, and P0(Ln > tn(1, Vn)) → 1,

as n→ ∞.

Using the recursive relation (6.2) for the Type I error, we obtain

α = P0(Yn = 1)

= P0(Ln > tn(0, Vn)) · P0(Yn−1 = 0) + P0(Ln > tn(1, Vn)) · P0(Yn−1 = 1)

= P0(Ln > tn(0, Vn))(1 − α) + P0(Ln > tn(1, Vn))α.

(6.16)

We take the limit of both sides. Since P0(Ln > tn(1, Vn)) → 1, we obtain P0(Ln >

tn(0, Vn))(1 − α) → 0. By Lemma 6.1, it follows that P1(Ln > tn(0, Vn)) → 0. Since

we also have P1(Ln ≤ tn(1, Vn)) → 0, we obtain P1(tn(1, Vn) < Ln ≤ tn(0, Vn)) → 1.

From (6.15), it follows that P1(Yn = 0) decays sub-exponentially fast, and the proof

is complete.

Myopic strategies are, in general, suboptimal. If we allow general strategies, the

Type II error probability decay rate, can come arbitrarily close to exponential, as

illustrated by the example in Section 6.4. Indeed, in that example, we exhibit a

(suboptimal) strategy whose Type I error probability converges to zero, and which

achieves a Type II error probability P1(Yn = 0) of order O(exp(−nd1)), where d1 ∈
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(0, 1). We can choose d1 to be arbitrarily close to 1 (by choosing a large σ1 in the

example), so that the error probability decay is almost exponential. However, whether

the optimal Type II error probability decay rate is guaranteed to be sub-exponential

(as is the case for the Bayesian problem) remains an open problem.
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Chapter 7

Censoring Sensor Networks

In the previous chapters, we studied the relationship between the architecture of

a tree network, and its detection performance. In this chapter, we focus on the

parallel configuration, and study the tradeoff between energy efficiency and detection

performance.

7.1 Motivation and Overview

In censoring networks, nodes can decide whether or not to make a measurement

and transmit that measurement to the fusion center. When sensors are operating

independently from each other, [27,28] show that each sensor should base its censoring

decision on the likelihood ratio associated with its measurement. In this chapter, we

consider the censoring problem in a more general context, and for a large number

of nodes. We allow the possibility of sensors having access to some side-information

Ri, which can be used to choose between transmission modes. We use the term

“side-information” in a very general way to refer to some observable that affects the

operation of each sensor. In general, Ri could provide information on the quality of

the channel from sensor i to the fusion center, or on the quality of the measurement

available at sensor i. The choice of what side-information is available depends on the

specific problem and its constraints. We illustrate our framework by presenting two

motivating examples, which will be revisited in Section 7.8.
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Example 7.1 (Fading Channels). Consider a large number n of sensors deployed for

the purposes of detection, that is, testing between two hypotheses, H0 and H1. Each

sensor i obtains an independent measurement X̃i (with a different distribution under

each hypothesis), which it can encode and transmit to a fusion center through a noisy

channel. The message received at the fusion center is of the form

Yi = Qiγ̃i(X̃i) +Wi,

where Qi is a stochastic fading coefficient, and Wi is zero-mean Gaussian noise with

known variance σ2
i , independent of everything else. In order to conserve power, or

to avoid divulging the presence of the sensors, we introduce a constraint that under

“normal conditions” (that is, under the null hypothesis H0), the expected number of

transmitting sensors is bounded by nc, where c ∈ (0, 1] is a given constant. Then, the

sensor network is faced with the problem of choosing which sensors should transmit

their measurements to the fusion center. Suppose that the network has knowledge of

the channel state information Qi and σi, i = 1, . . . , n. Obviously, we would like to

choose only those sensors that have a favorable channel to the fusion center, so the

choice should be based on Ri = (Qi, σi). (In some cases, σi is a known constant,

then the choice is made based only on Ri = Qi.) Furthermore, we would like to

examine and compare a cooperative scheme (the decision to transmit or not by each

sensor depends on the channel parameters of all sensors) and a distributed scheme

(the decision of each sensor depends only on the local channel parameters). Finally,

we may want to optimize the choice of the “transmission function” γ̃i from within a

class of possible such functions. �

Example 7.2 (Spatial Signal). Consider the problem of detecting a spatial signal

on the domain [−1, 1] (or more generally on a bounded subset of Rd). The sensors

are placed randomly and uniformly in the set [−1, 1], with the fusion center at the

origin. Let Ri be the location of sensor i. This serves as the side-information that is

available. There are two possible spatial signals s0(·) and s1(·), and we wish to detect

which of the two is present. Each sensor i makes a noisy measurement of the local
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signal. We assume that the power required for a sensor to transmit its measurement

depends on the distance from the sensor to the fusion center. Given a constraint on

the total power used by the sensors, which ones should be chosen to transmit? It is

not necessarily the case that the sensors closest to the fusion center should be the ones

transmitting; for instance, if the spatial signals s0(r) and s1(r) are equal when r is

in the vicinity of the fusion center, the sensors close to the fusion center do not have

any information worth transmitting. In Section 7.8.2, we will give an example where

the transmitting sensors should be the ones furthest away from the fusion center. �

In our formulation, we allow the sensors to cooperate, in the sense that the sensors’

censoring decisions can be made by the fusion center, on the basis of the entire vector

(R1, . . . , Rn) of side-information values at each sensor. This can arise, for example,

when the local pieces of side-information are some low-resolution data that can be

transmitted to the fusion center inexpensively, or when the fusion center is able to

monitor the state of the channels from the sensors to itself. Nevertheless, we will

establish that when the Type I error probability is asymptotically small, optimal

performance can be achieved even in the absence of such cooperation, by having each

sensor make its censoring and transmission decisions only on the basis of the locally

available side-information. Furthermore, all the sensors can use the same policy,

which shows that a simple distributed scheme is asymptotically optimal. The case

where there is no cooperation is the asymptotic counterpart of the censoring problem

considered in [27] (cf. Section 7.5.3).

We then proceed to consider the Bayesian counterpart of the above formulation,

except that for reasons described in Section 7.9, the cooperation among sensors is

explicitly ruled out. We characterize the asymptotically optimal performance and

the strategies that achieve it. We show that an optimal scheme is to divide the

sensors into two groups, each group using the same policy. We also show how some of

the results in [29] and [30] can be derived by converting the problems studied therein

to our framework. Finally, we provide a generalization of some of the results in [30].
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7.2 Problem Formulation

In this section, we introduce our model. We will use the notation z(n) to denote a

vector (z1, . . . , zn), where the components of the vector may be numbers, random

variables, or functions.

7.2.1 The Basic Elements of the Model

We consider a hypothesis testing problem involving two hypotheses, H0 andH1. There

are n sensors and a fusion center. Each sensor i observes some side-information Ri,

which is a random variable taking values in a set R, and a measurement Xi taking

values in a set X . In addition, there is an auxiliary random variable V , taking values in

a set V of our own choosing, which will be used as the “seed” whenever a randomized

decision is to be made. These are all the basic random variables in our model. We

assume a suitably large measurable space (Ω,F ) so that all random variables can be

defined on that space, for any number n of sensors. To avoid technical distractions,

we will not delve into measurability issues.

Under each hypothesis Hj, j = 0, 1, we assume that we have a measure Pj , and a

corresponding expectation operator Ej , with the following properties.

1. The random variable Ri is distributed according to a given marginal probability

law µj, for every i.

2. Conditioned on R1 = r1, R2 = r2, . . . , Rn = rn, the measurements Xi are (con-

ditionally) independent, and each Xi is distributed according to a given regular

conditional distribution νj(· | ri).

3. The random variable V is independent of the random variables Ri and Xi, with

a distribution that is the same under both hypotheses, and which will be of our

choosing.

Note that we have only specified the marginal distributions of the variables Ri. Re-

garding their joint distribution, we will be making in the sequel one of the following

alternative assumptions:
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1. Under either hypothesis, the random variables Ri are independent (and there-

fore i.i.d.).

2. Under either hypothesis, the sequence (R1, R2, . . .) is stationary and ergodic.

In this case, we also assume µ0 = µ1, so that the variables Ri provide no

information about the true hypothesis.

7.2.2 Sensor Policies and Strategies

There are two types of decisions to be made at each sensor: deciding whether to

make a measurement (not censoring), and if a measurement is made, deciding what

to transmit to the fusion center. These decisions are to be made based on available

information, according to a set of rules (policies). We describe here the types of

policies to be considered.

We assume that R(n) is known at the fusion center (in a mathematically equivalent

scenario, we could have each sensor communicate its side-information to every other

sensor) and that the same is true for the auxiliary random variable V . Based on

R(n) and V , we let the fusion center decide which of the sensors should make a

measurement Xi. (This is what we term as cooperation: the decision depends on the

side-information of all sensors.) Subsequently, each uncensored sensor is to generate

a message to the fusion center.

Formally, we define a pure censoring policy for sensor i as a function ξi : Rn 7→
{0, 1}. Let the set of pure censoring policies be Ξ. A pure transmission policy for

sensor i is a function γi : X ×R 7→ Y , where Y is a (possibly infinite) transmission

alphabet. These policies are called pure because they do not make use of the ran-

domization variable V . We restrict pure transmission policies to belong to a given

set Γ. The pair (ξi, γi) is called a pure policy for sensor i.

We allow censoring and transmission policies to be randomized, by considering

πi = (ξi,v, γi,v)v∈V , which is a collection of pure policies indexed by V. We call πi

a policy for sensor i. We envisage the following sequence of events. A realization v

of the randomization variable V is generated (this can be done at the fusion center,
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with the result communicated to all sensors, or at each sensor using a common seed).

Sensor i then uses the pure policy (ξi,v, γi,v). It is censored (no measurement is

made) if and only if ξi,v(R
(n)) = 0. If on the other hand ξi,v(R

(n)) = 1, a message

Yi = γi,v(Xi, Ri) is transmitted to the fusion center. Although we say that the message

Yi is transmitted to the fusion center, our formulation allows for the inclusion of

channel noise in the transmission function γi,v. More specifically, suppose that the

message Ỹi = γ̃i,v(X̃i, Ri) is transmitted over a noisy channel so that Yi = f(Ỹi, Ri,Wi)

is received at the fusion center. Here, f is the channel transfer function and Wi is

a random variable conditionally independent of X̃i, given Ri. Then, we can define

Xi = (X̃i,Wi), and the transmission function as γi,v(Xi, Ri) = f(γ̃i,v(X̃i, Ri), Ri,Wi).

As an example, consider Example 7.1 of Section 7.1. In our present notation, we have

Xi = (X̃i,Wi), Ri = (Qi, σi), and γi,v(Xi, Ri) = Qiγ̃i,v(X̃i) + Wi. Therefore, in the

sequel, we will assume that the message received at the fusion center is the same as

Yi. For convenience, we also assume that Xi and γi,v(Xi, Ri) are always defined, even

if sensor i is censored and nothing gets transmitted.

A collection π(n) of policies, one for each sensor, all of which involve the same set

V and the same randomization variable V , together with the distribution of V , will

be called a strategy. We will often abuse terminology, however, and will be referring

to π(n) as a strategy.

7.2.3 Resource Constraints

We assume that when sensor i makes a measurement Xi and transmits Yi to the fusion

center, certain resources are consumed, and therefore a cost is incurred, possibly

depending on the side-information at that sensor. To model such costs, we introduce

a function ρ : R×Γ 7→ [0,∞), and interpret ρ(r, γ) as the cost incurred by a sensor i

that uses a pure policy π = (ξ, γ), if the side-information at that sensor takes on the

value r, and the sensor is not censored, i.e., ξ(R(n)) = 1. When the sensor is censored,

we assume that no cost is incurred, so that the resulting expected cost at sensor

i (under H0) equals ρ(π) = E0[ξ(R
(n))ρ(Ri, γ)]. For a more general (randomized)

policy π = (ξv, γv)v∈V , ρ(π) is defined to be equal to E0[ξV (R(n))ρ(Ri, γV )], where the
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expectation is taken with respect to both R(n) and V . We will say that a strategy

π(n) = (π1, . . . , πn) is admissible if

1

n

n∑

i=1

ρ(πi) ≤ c, (7.1)

where c is a given constant.

Note that the resource constraint is in place only under H0. The presumption

here is that H0 (the “null hypothesis”) corresponds to a “normal” situation. Thus,

we are constraining the resource utilization to be low under normal circumstances,

but allow higher resource utilization under exceptional circumstances. However, in a

Bayesian formulation, we will define E = q0E0+q1E1, where qj is the prior probability

of hypothesis Hj, and will replace E0 with E in the definition of ρ(πi).

The following are two examples of resource constraints. Many other choices are

possible, to reflect particular constraints of interest to a system designer.

Example 7.3 (Proportional Censoring). If ρ(r, γ) = 1 for all r ∈ R and all γ ∈ Γ,

then (7.1) becomes a constraint on the average proportion of sensors that make a

measurement. �

Example 7.4 (Power constraints). Suppose that ρ(r, γ) = E0[
∣∣γ(X1, r)|2 | R1 = r].

In this case, (7.1) becomes a constraint on the average transmission power. �

7.2.4 The Fusion Center

The fusion center receives the messages Yi from each sensor. Based on this informa-

tion, together with the side-information R(n) and the random variable V , it decides

between the two hypotheses. Recall that in classical (centralized) Neyman-Pearson

hypothesis testing, randomization can reduce the Type II error probability. Accord-

ingly, we assume that the fusion center has access to another random variable V ′

which is uniformly distributed in [0,1], and independent of everything else. We then

let the fusion center use a randomized fusion rule φ : Yn ×Rn × V × [0, 1] → {0, 1}
to select one of the two hypotheses. Let Ĥn = φ(Y (n), R(n), V, V ′), which is a binary
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random variable indicating the selected hypothesis. In the above expression, and in

order to keep notation simple, we assume that whenever sensor i is censored, Yi is set

to a special symbol y∗.

We summarize the elements of our model in the following definition.

Definition 7.1. An overall strategy consists of the following.

1. A set V, and the distribution of a V-valued random variable V ;

2. an admissible strategy π(n) (i.e., one that satisfies the resource constraints);

3. a fusion rule φ.

For given n and c, and a given overall strategy, the Type I error and the Type II

error probabilities P0(Ĥn = 1) and P1(Ĥn = 0) are well defined. In a Neyman-Pearson

formulation (Section 7.3), we will aim at minimizing the probability of the Type II

error (more precisely, its error exponent), subject to a constraint on the Type I error

probability. In a Bayesian formulation (Section 7.9), we will aim at minimizing a

weighted average of these two error probabilities.

7.2.5 Independent Randomization

Our model allows for randomization based on a globally known randomization vari-

able V , whose distribution is subject to our choice. Such a V can be generated at

each sensor using a common seed, or it can be generated at the fusion center and

communicated to the sensors. As discussed in [6], the above model of dependent ran-

domization includes the special case of independent randomization, where the sensors

rely on locally generated independent random variables.

Formally, we will say that we have independent randomization if the set V is a

Cartesian product of n copies of another set V0, i.e., V = Vn0 , and is endowed with a

product measure, so that V is of the form V = (V1, . . . , Vn) = V (n), where the Vi are

independent.
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7.2.6 Local and Homogeneous Strategies

Loosely speaking, in a local strategy every sensor i has access only to an independent,

locally generated random variable Vi and its own side-information Ri, thus allowing

for distributed implementation. Furthermore, in a homogeneous local strategy, every

sensor responds in the same way to its local variables. In the definition below, v =

(v1, . . . , vn).

Definition 7.2.

1. A policy π = (ξv, γv)v∈V is said to be local (for sensor i), if (i) independent

randomization is used; (ii) ξv(r
(n)) can be expressed as a function of only ri and

vi; and (iii) γv(x, r) can be expressed as a function of only x, r, and vi.

2. A strategy π = (π1, . . . , πn) is said to be local if each πi is a local policy for

sensor i.

A local policy for sensor i is denoted as πi = (ξi,vi
, γi,vi

)vi∈V0 , where the functions

ξi,vi
and γi,vi

are now functions whose arguments are the local random variables Xi

and Ri.

Definition 7.3. A local strategy is said to be homogeneous if the independent random

variables Vi are identically distributed, and if the policy of every sensor is identified

with the same local policy.

Let us remark that for a homogeneous local strategy associated with a common

local policy π, the resource constraint (7.1) simplifies to ρ(π) ≤ c. We let Π(c) be the

set of local policies that satisfy this constraint.

For the reader’s convenience, we summarize the notation introduced so far:
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Xi Measurement of sensor i.

Ri Side-information of sensor i.

V Randomization variable.

ξi Pure censoring policy for sensor i.

γi Pure transmission policy for sensor i.

πi = (ξi,v, γi,v)v∈V A policy for sensor i. Given V , ξi,V is a pure censoring

policy, and γi,V is a pure transmission policy.

π(n) A strategy (π1, . . . , πn).

ρ(π) Expected cost of policy π.

Π(c) Set of local policies π satisfying the resource constraint

ρ(π) ≤ c.

7.3 The Neyman-Pearson Problem

Given an overall strategy for the n-sensor problem, we will use βn to denote the

resulting Type II error probability, P1(Ĥn = 0). For any given n, c, and α, we define

β∗
n(c, α) = inf βn,

where the infimum is taken over all overall strategies that satisfy the resource con-

straint (7.1), as well as the constraint P0(Ĥn = 1) ≤ α.

The above optimization problem is intractable, even in the absence of censoring.

Even if it were tractable, implementing an optimal cooperative censoring strategy

would involve complicated feedback from the fusion center to the sensors. We will see

however, that the problem becomes tractable if n is large and α is small, and under

an asymptotic optimality criterion. We will focus on the case of an asymptotically

small Type I error probability and the associated optimal error exponent

lim
α→0

lim inf
n→∞

1

n
log β∗

n(c, α).
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7.3.1 Assumptions and Notation

Our main assumptions for this chapter are similar in nature to those in Section 2.3.

Recall that under Hj , the measure µj describes the distribution of Ri, and νj(· | ·)
describes the conditional distribution of Xi given Ri. We use the notation µ≪ µ′ to

indicate that a measure µ is absolutely continuous with respect to another measure

µ′.

Assumption 7.1. We have µ0 ≪ µ1, and for every r ∈ R, ν0(· | r) ≪ ν1(· | r).

Let dµ0/dµ1 be the Radon-Nikodym derivative (likelihood ratio) of the measures

µ0 and µ1. Similarly, we define a function ℓ01 : X × R 7→ [0,∞), so that for every

r ∈ R, ℓ01(Xi | r) is the likelihood ratio between the two hypotheses, when Xi is

observed, given that Ri = r. Formally, this is the Radon-Nikodym derivative of the

measures ν0(· | r) and ν1(· | r) on the set X .

In the same vein, for any pure transmission policy γ ∈ Γ, we define a function

ℓγ01 : Y × R 7→ [0,∞), so that for every r ∈ R, ℓγ01(Yi | r) is the likelihood ratio

between the two hypotheses, when Yi = γ(Xi, Ri) is received at the fusion center,

given that Ri = r. Formally, this is the Radon-Nikodym derivative of the measures

νγ0 (· | r) and νγ1 (· | r) on the set Y , where νγj (· | r) is the measure νj(· | r) restricted

to the σ-algebra generated by Yi = γ(Xi, r).

Let us fix a strategy
(
(ξi,v, γi,v)v∈V

)
1≤i≤n, and recall that (ξi,V , γi,V ) is the resulting

pure policy of sensor i, as determined by V . With the above introduced notation,

the likelihood ratio calculated at the fusion center, on the basis of the available

information (R(n), Y (n), V ), is

∏

i:ξi,V (R(n))=1

ℓ
γi,V

01 (Yi | Ri)
n∏

i=1

dµ0

dµ1
(Ri). (7.2)

For convenience, we define the random variables Zi and Sn by

Zi = −ξi,V (R(n)) log ℓ
γi,V

01 (Yi | Ri) − log
dµ0

dµ1
(Ri), (7.3)
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and

Sn =
n∑

i=1

Zi, (7.4)

so that Sn is the negative of the log-likelihood ratio at the fusion center.

The amount of relevant information contained in Yi, given that Ri = r and that

sensor i employs a pure transmission policy γ ∈ Γ, is quantified by the KL divergence,

defined by

I(r, γ) = E0

[
log ℓγ01(Yi | r)

∣∣∣ Ri = r
]
.

Assumption 7.2. We have

E0

[
log2 dµ0

dµ1

(R1)
]
<∞,

E0

[
log2 ℓ01(X1 | R1)

]
<∞.

We record a consequence of Assumption 7.2, whose proof is similar to that of

Lemma 2.1.

Lemma 7.1. We have E0

[
log(dµ0/dµ1)

]
< ∞. Furthermore, for every γ ∈ Γ, we

have 0 ≤ I(R1, γ) <∞, P0-a.s., and

E0

[
log2 ℓγ01(Y1 | R1)

∣∣∣ R1

]
≤ a(R1), P0-a.s.,

for some function a(·) that satisfies E0[a(R1)] <∞.

7.4 The I.I.D. Case

In this section, we characterize the optimal exponent for the Neyman-Pearson prob-

lem. Furthermore, we show that the optimal exponent does not change when we

restrict to homogeneous local strategies. Throughout this section, we assume that

under either hypothesis, the random variables Ri are i.i.d.

According to Stein’s Lemma [39], in the absence of censoring or side-information,

and if all sensors use the same pure transmission policy, the error exponent is the
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negative of the associated KL divergence. By a similar argument, if the sensors use a

common local policy π = (ξv, γv)v∈V0 ∈ Π(c), we expect to obtain an error exponent

equal to

λ(π) = −E0

[
log

dµ0

dµ1

(R1)
]
− E0

[
ξV1(R1)I(R1, γV1)

]
.

It is then natural to optimize over all admissible local policies π ∈ Π(c), and define

λ∗(c) = − E0

[
log

dµ0

dµ1
(R1)

]
− sup

π∈Π(c)

E0

[
ξV1(R1)I(R1, γV1)

]
,

where the optimization includes the choice of the local randomization variable V1 and

its distribution.

We will show that λ∗(c) is the optimal error exponent, even if we remove the

restriction to homogeneous local strategies, in the limit as α goes to zero. In deriving

the required lower bound, we will not be able to invoke standard results from Large

Deviations Theory, because the summands in the log-likelihood ratio are all affected

by the overall side-information R(n), and are not independent. For this reason, the

proof of the lower bound will proceed from first principles.

Our main result is as follows.

Theorem 7.1. Suppose that Assumptions 7.1 and 7.2 hold, and that the random

variables Ri are i.i.d., under either hypothesis.

(i) For every α ∈ (0, 1) and c > 0, the optimal error exponent lim inf
n→∞

(1/n) logβ∗
n(c, α)

is bounded below by λ∗(c)/(1 − α).

(ii) For every α ∈ (0, 1) and c > 0, there exists a sequence of admissible homoge-

neous local strategies (one for each n) that satisfy the Type I error constraint,

and such that the corresponding Type II error probabilities βn satisfy

lim
n→∞

1

n
log βn = λ∗(c).

(iii) For every c > 0,

lim
α→0

lim inf
n→∞

1

n
log β∗

n(c, α) = λ∗(c).
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Furthermore, if the random variables Ri are stationary and ergodic, and µ0 = µ1,

then (iii) still holds.

We record an elementary fact that will be used later.

Lemma 7.2. The function λ∗ : [0,∞) 7→ (−∞, 0] is convex, and in particular,

continuous on (0,∞).

Proof. Suppose that c = δc1 + (1 − δ)c2 for some δ ∈ [0, 1]. Fix some ǫ > 0 and

consider two local policies πk ∈ Π(ck), k = 1, 2, (so that ρ(πk) ≤ ck), which satisfy

λ(πk) ≤ λ∗(ck) + ǫ.

Consider a new local policy π0 that uses π1 with probability δ, and π2 with probability

1 − δ. We then have

ρ(π0) = δρ(π1) + (1 − δ)ρ(π2) ≤ δc1 + (1 − δ)c2 = c,

so that π0 ∈ Π(c). Furthermore,

λ∗(c) ≤ λ(π0) = δλ(π1) + (1 − δ)λ(π2)

≤ δλ∗(c1) + (1 − δ)λ∗(c2) + ǫ.

The result follows by letting ǫ decrease to zero.

7.4.1 Proof of the Lower Bound

In this subsection, we prove the first part of Theorem 7.1. Throughout this subsection,

α is held at a fixed value.

Suppose that a strategy π(n) has been fixed. Since we are interested in a lower

bound on the resulting error exponent, we assume that the fusion center uses the best

possible fusion rule. As the fusion center is faced with a classical Neyman-Pearson

problem, where the information available is (Y (n), R(n), V, V ′), a corresponding opti-
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mal fusion rule is a likelihood ratio test of the form:

Ĥn = 0 if and only if
Sn
n

≤ Tn,

where Tn is a possibly randomized threshold (determined by V ′). It is convenient to

consider the expected value of the log-likelihood ratio, given that the side-information

has been revealed and the randomization variable has been realized. We thus define

Λn =
1

n
E0[Sn | R(n), V ]

= −1

n

n∑

i=1

log
dµ0

dµ1

(Ri) −
1

n

n∑

i=1

ξi,V (R(n))I(Ri, γi,V ),

where the second equality follows from (7.3)-(7.4) and the definition of I(r, γ). We

start by showing that Sn/n is asymptotically close (in probability) to Λn.

Lemma 7.3. For every η > 0, lim
n→∞

P0

(∣∣Sn

n
− Λn

∣∣ < η
)

= 1.

Proof. We condition on R(n) and V . Then Sn−nΛn becomes a sum of (conditionally)

independent random variables, each having (conditional) variance bounded by a(Ri)

[cf. Lemma 7.1]. Chebychev’s inequality yields

P0

(∣∣Sn
n

− Λn

∣∣ ≥ η
∣∣∣ R(n), V

)

≤ 1

n2η2
E0

[
(Sn − nΛn)

2
∣∣ R(n), V

]

≤ 1

n2η2
E0

[ n∑

i=1

log2 ℓ
γi,V

01 (Yi | Ri)
∣∣∣ R(n), V

]

≤ 1

n2η2

n∑

i=1

a(Ri). (7.5)

Taking unconditional expectations of both sides, we obtain

P0

(∣∣Sn
n

− Λn

∣∣ ≥ η
)
≤ 1

nη2
E0[a(R1)],

which converges to zero because E0[a(R1)] <∞.
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The next lemma is crucial in that it relates the amount of information provided

by an admissible strategy to the best possible exponent λ∗(c) under local admissible

strategies. The key idea is that as far as sensor i is concerned, the side-information at

the other sensors has the same effect as using additional local randomization variables.

Lemma 7.4. For any sequence of admissible strategies (one for each n), and for

every sequence of measurable subsets An of Ω, we have

lim inf
n→∞

E0[Λn1An] ≥ λ∗(c).

Proof. Suppose that a sequence of admissible strategies π(n) has been fixed, and let

(ξi,v, γi,v)v∈V be the policy of sensor i. We have

E0[Λn1An] ≥− E0

[ 1

n

n∑

i=1

log
dµ0

dµ1
(Ri)1An

]
− 1

n

n∑

i=1

E0

[
ξi,V (R(n))I(Ri, γi,V )

]
. (7.6)

To bound the first term,

E0

[1

n

n∑

i=1

log
dµ0

dµ1
(Ri)1An

]

= E0

[(1

n

n∑

i=1

log
dµ0

dµ1
(Ri) − E0

[
log

dµ0

dµ1
(R1)

])
1An

]
+ E0

[
log

dµ0

dµ1
(R1)

]
P0(An)

≤ E0

[ ∣∣∣
1

n

n∑

i=1

log
dµ0

dµ1

(Ri) − E0

[
log

dµ0

dµ1

(R1)
]∣∣∣

]
+ E0

[
log

dµ0

dµ1

(R1)
]
. (7.7)

In the limit as n → ∞, the first term in the R.H.S. of (7.7) converges to 0 (be-

cause the Ri are i.i.d. and the L1 ergodic theorem applies), which leaves the term

E0

[
log dµ0

dµ1
(R1)

]
.

For any v ∈ V, let ξ̃i,v(Ri) = E0[ξi,v(R
(n)) | Ri]. Then,

1

n

n∑

i=1

E0

[
ξi,V (R(n))I(Ri, γi,V )

]

=
1

n

n∑

i=1

E0

[
ξ̃i,V (Ri)I(Ri, γi,V )

]
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=
1

n

n∑

i=1

E0

[
ξ̃i,V (R1)I(R1, γi,V )

]
(7.8)

≤ sup
π∈Π(c)

E0

[
ξV1(R1)I(R1, γV1)

]
. (7.9)

The equality in (7.8) follows from the stationarity of R(n). The inequality in (7.9) is

obtained by considering a local policy (τv̄, δv̄)v̄∈V̄ , where V̄ = {1, . . . , n} × [0, 1] × V,

defined as follows. Let V̄ = (J, U, V ), where J is uniform on {1, 2, . . . , n}, U is uniform

on [0, 1], and J , U and V are independent. Let δV̄ = γJ,V , and for every r ∈ R, let

τV̄ (r) =





1, if U ≤ ξ̃J,V (r),

0, otherwise.

In particular, if J = i, U = u and V = v, the new local policy (τv̄, δv̄)v̄∈V̄ ap-

plies the pure transmission policy γi,v, and censors if u > ξ̃i,v(r), when the local

side-information is r. Then, (τv̄, δv̄)v̄∈V̄ ∈ Π(c) and the R.H.S. of (7.8) is equal to

E0[τV̄ (R1)I(R1, δV̄ )]. Hence, (7.9) follows.

Combining the above with (7.7), we obtain

lim inf
n→∞

E0[Λn1An]

≥ −E0

[
log

dµ0

dµ1

(R1)
]
− sup

π∈Π(c)

E0[ξV1(R1)I(R1, γV1)]

= λ∗(c),

and the lemma is proved.

Lemma 7.5. For all α ∈ (0, 1) and c ≥ 0, we have

lim inf
n→∞

1

n
log β∗

n(c, α) ≥ λ∗(c)

1 − α
.

Proof. Fix some η > 0. For every n, consider an admissible strategy π(n) and a fusion

rule with P0(Ĥn = 0) ≥ 1−α. We use a change of measure argument, similar to that
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in the proof of Stein’s Lemma in [39], to get

βn = P1

(Sn
n

≤ Tn

)

= E0

[
eSn1

(Sn
n

≤ Tn

)]

≥ E0

[
eSn1

(
Λn − η <

Sn
n

≤ Tn

)]

≥ E0

[
en(Λn−η)1

(
Λn − η <

Sn
n

≤ Tn

)]
. (7.10)

Let An = {ω : Λn − η < Sn

n
≤ Tn}. Then,

lim inf
n→∞

P0(An)

≥ lim inf
n→∞

(
P0

(Sn
n

≤ Tn

)
+ P0

(Sn
n
> Λn − η

)
− 1

)

≥ 1 − α > 0,

where we have made use of Lemma 7.3. Hence, for sufficiently large n, we can

condition on An and obtain

1

n
log βn ≥ 1

n
log E0

[
en(Λn−η)1An

]

=
1

n
log P0(An) +

1

n
log E0

[
en(Λn−η)

∣∣∣ An
]

≥ 1

n
log P0(An) + E0[Λn| An] − η, (7.11)

where the last step follows from Jensen’s inequality. Applying Lemma 7.4, we have

lim inf
n→∞

1

n
log β∗

n ≥ lim inf
n→∞

E0[Λn1An]

P0(An)
− η

≥ λ∗(c)

1 − α
− η.

The result follows by letting η → 0.

Lemma 7.5 concludes the proof of the lower bound (part (i) of Theorem 7.1).
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7.4.2 Proof of the Upper Bound.

In this section we construct a sequence of admissible homogeneous local strategies

(one for each n), under which the lower bound is asymptotically attained.

For each n, consider a strategy involving a common local policy πn = (ξnv , γ
n
v )v∈V0 ∈

Π(c), such that

lim
n→∞

λ(πn) = λ∗(c). (7.12)

Consider the fusion rule Ĥn = φn(Y
(n), R(n), V ) that selects H0 if and only if

Sn
n

≤ λ(πn) + n− 1
4 .

Let

S(R(n), V ) =
{
Y (n) | φn(Y (n), R(n), V ) = 0}. (7.13)

Since the random variables Zi are i.i.d., with mean λ(πn) and variance bounded

by some constant a (cf. Assumption 7.2), we have

1

n2
E0

[(
Sn − nλ(πn)

)2] ≤ a

n
,

and hence

P0

(∣∣∣
Sn
n

− λ(πn)
∣∣∣ ≤ n− 1

4

)
→ 1. (7.14)

This implies that P0(Ĥn = 1) → 0 as n→ ∞. It follows that for any given α > 0, the

constraint P0(Ĥn = 1) ≤ α will be satisfied for large n. We let β̃n be the minimum

possible Type II error (over all fusion rules), when we use the common local policy

πn at all sensors. In particular, β̃n ≤ P1(Ĥn = 0).

The next lemma is a modification of Stein’s Lemma. The proof is almost the same

as the standard proof (see [53]) but we include it for completeness, and because we

want to check that it remains valid in the case where µ0 = µ1 and the variables Ri
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are stationary and ergodic (as opposed to i.i.d.), as will be discussed in Section 7.6.

Lemma 7.6. For the above defined common local policy πn, we have

lim
n→∞

1

n
log β̃n = λ∗(c).

Proof. We have

P1

(
Ĥn = 0 | R(n), V

)

=

∫

S(R(n),V )

∏

i:ξn
Vi

(Ri)=1

ν
γn

Vi
1 (dyi | Ri)

=

∫

S(R(n),V )

{
e−

∑n
i=1 ξ

n
Vi

(Ri) log ℓ
γn
Vi

01 (yi|Ri) ·
∏

i:ξn
Vi

(Ri)=1

ν
γn

Vi
0 (dyi | Ri)

}
.

Hence,

β̃n ≤ P1(Ĥn = 0)

= E1

[
P1(Ĥn = 0 | R(n), V )

]

= E0

[
P1(Ĥn = 0 | R(n), V ) exp

(
−

n∑

i=1

log
dµ0

dµ1
(Ri)

)]

= E0

[ ∫

S(R(n),V )

eSn
∏

i:ξn
Vi

(Ri)=1

ν
γn

Vi
0 (dyi | Ri)

]
.

Recall that on the set S(R(n), V ), we have Sn ≤ n(λ(πn) + n−1/4), which yields

β̃n ≤ exp
(
n(λ(πn) + n− 1

4 )
)
E0[P0(Ĥn = 0 | R(n), V )]

≤ exp
(
n(λ(πn) + n− 1

4 )
)
.

Thus,

lim sup
n→∞

1

n
log β̃n ≤ lim

n→∞

(
λ(πn) + n− 1

4

)

= λ∗(c). (7.15)
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To show the lower bound, we mimic the proof of Lemma 7.5, with λ(πn) replacing

Λn in that proof. Then from (7.10), with Tn as the threshold for the optimal Neyman-

Pearson test,

β̃n ≥ en(λ(πn)−n−1/4)P0

(
λ(πn) − n− 1

4 <
Sn
n

≤ Tn

)

≥ en(λ(πn)−n−1/4)
(
1 − α + P0

(Sn
n
> λ(πn) − n− 1

4

)
− 1

)
.

Taking logarithms, dividing by n, and then letting n→ ∞, and using (7.14),

lim inf
n→∞

1

n
log β̃n ≥ λ∗(c). (7.16)

The lemma is proved.

This concludes the proof of the upper bound (part (ii) of Theorem 7.1). Part (iii)

is an immediate consequence of parts (i) and (ii). The last part, involving a stationary

and ergodic sequence of random variables Ri will be discussed in Section 7.6.

7.4.3 The Role of Randomization

Suppose that the cost function is independent of the transmission function, i.e.,

ρ(r, γ) = ρ̃(r) for some nonnegative function ρ̃. Suppose also that the set of pure

transmission policies Γ is of the form Γ =
∏

r∈R Γ(r), where Γ(r) is a set of allowed

pure transmission policies γ(·, r), when the side-information takes the value r. We in-

terpret this as each sensor i being able to choose its own transmission policy separately

for each possible value of the side-information Ri. Then, finding an asymptotically

optimal strategy is simplified because

λ∗(c) = −E0

[
log

dµ0

dµ1

(R1)
]
− sup E0

[
ξV1(R1) sup

γ∈Γ(R1)

I(R1, γ)
]
,

where the first supremum is taken over all local censoring policies (ξv)v∈V0 that satisfy

E0[ξV1(R1)ρ̃(R1)] ≤ c.
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In particular, a pure transmission policy γ can be used. In achieving λ∗(c), we choose

transmission policies that maximize the Kullback-Leibler (KL) divergence between

the distributions of the messages Yi, separately for each possible value of Ri. It

is intuitively clear that this has to be the case, since the KL divergence quantifies

the discrimination between two distributions. Randomization goes a long way to

simplify the form of an optimal policy, as can be seen in the proof of Lemma 7.4. If

we are restricted to pure strategies, then homogeneous local strategies need not be

asymptotically optimal. Indeed, suppose that R and Γ are finite, so that we have to

choose from a finite set of pure local policies, {(ξk, γk) : k = 1, . . . , K}. We are then

faced with the optimization problem

max
x1,...,xK

K∑

k=1

xkE0

[
ξk(R1)I(R1, γ

k)
]
,

s.t.
K∑

k=1

xkE0

[
ξk(R1)ρ(R1, γ

k)
]
≤ c,

K∑

k=1

xk = 1,

xk ≥ 0, ∀i,

where xk is the proportion of sensors that use the pure policy (ξk, γk). This is a

linear program with two constraints, and generically, an optimal solution will have

two nonzero variables. Let x∗ and 1−x∗ be the optimal values of these two variables,

and assume (to simplify the discussion) that x∗n is integer. As long as we are restricted

to pure local strategies, then we have to divide the sensors into two groups, one group

consisting of x∗n sensors that use one local policy and another group consisting of

(1−x∗)n sensors that use another local policy. Thus, in the Neyman-Pearson problem,

randomization and non-homogeneity are alternatives to each other.
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7.5 Discussion of the Neyman-Pearson Results

In this section, we discuss some variations, extensions and generalizations of the

results in Section 7.4.

7.5.1 Cooperation can Improve Performance

We observe that if α ∈ (0, 1) is held fixed, there is a gap between the upper and lower

bounds in Theorem 7.1. We discuss here the extent to which cooperation among the

sensors improves detection performance.

If we do not allow cooperation among the sensors, i.e., if π(n) is local, we can use an

argument similar to the proof of Lemma 7.6 to show that λ∗(c) is a lower bound, for

any fixed α ∈ (0, 1). In particular, homogeneous local strategies are asymptotically

optimal.

If cooperation is allowed, and α is fixed, the optimal exponent can be less than

λ∗(c), as shown in Proposition 7.1 below. In that case, asymptotically optimal strate-

gies are difficult to find, and we do not believe that a simple closed form expression

for the optimal error exponent is possible.

Proposition 7.1. For a fixed α ∈ (0, 1), we have

lim inf
n→∞

1

n
log β∗

n(c, α) ≤ λ∗
( c

1 − α

)
.

Proof. Let us fix n and α, and some ǫ ∈ (0, α). Consider the following strategy. With

probability p = α− ǫ, we use the censoring policy ξi ≡ 0 for all i, and always declare

H1. In this case, we satisfy the resource constraint (7.1) with c replaced by c1 = 0,

and have a Type I error probability of α1 = 1. Let

α2 =
ǫ

1 − α + ǫ
, c2 =

c

1 − α + ǫ
.

With probability 1 − p, we use a homogeneous local strategy involving a common
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local policy π ∈ Π(c2) that satisfies

λ(π) ≤ λ∗(c2) +
1

n
,

and a fusion rule that achieves a Type I error probability of α2. Note that α =

pα1 + (1 − p)α2 and c = pc1 + (1 − p)c2, so that the composite strategy we have

constructed is admissible. Using Lemma 7.6, its Type II error probability βn satisfies

lim inf
n→∞

1

n
log β∗

n(c, α) ≤ lim
n→∞

1

n
log βn = λ∗(c2) = λ∗

( c

1 − α + ǫ

)
.

Taking ǫ→ 0 and using the continuity of λ∗(·), we obtain the desired result.

From Proposition 7.1, the improvement in the error exponent when using cooper-

ation instead of using homogeneous, local strategies has a magnitude of at least

λ∗(c) − λ∗
( c

1 − α

)
,

which is strictly positive when c is small enough, and is upper bounded by (cf. Lemma

7.5) (
1 − 1

1 − α

)
λ∗(c) =

α

1 − α
|λ∗(c)|.

We see that in a severely constrained network (small c), the price paid for not co-

operating is positive but not very large. Thus, the communications overhead and

resulting complexity may not justify the use of cooperative censoring.

7.5.2 Generalized Sensor Policies

In this section, we provide a generalization of our framework, by allowing a more gen-

eral class of policies. In the preceding, each sensor could choose separately a censoring

policy and a transmission policy. Here, these two choices will be subsumed under a

single choice of a “generalized policy” ζ̄i. We will see that when specialized to our

earlier setting, the generalized formulation will also allow the choice of transmission

functions to be made cooperatively, on the basis of the global side-information vector
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R(n).

Formally, we define a (generalized) policy as a function ζ̄ : X ×R(n) × V 7→ Y . A

sensor that uses policy ζ̄ , transmits Yi = ζ̄(Xi, R
(n), V ) to the fusion center. Assuming

independent randomization, the notion of a local policy for sensor i is defined as

before, namely, the dependence on (R(n), V (n)) is only through (Ri, Vi). Once more,

a local strategy is called homogeneous if every sensor uses the same mapping from

(Xi, Ri, Vi) to Yi.

Let r(n,i) be the vector r(n) after removing the ith component. As before, for every

r(n,i) ∈ Rn−1 and for every v ∈ V, we require that the function ζr(n,i),v, defined by

ζr(n,i),v(x, ri) = ζ̄(x, (r(n,i), ri), v) be in a given set Γ of functions from X × R to Y .

The function ζr(n,i),v is called a pure local policy. A generalized policy ζ̄ can be viewed

as a random choice of a pure local policy ζR(n,i),V , based on the value of R(n,i) and V .

We assume that every pure policy ζ consumes an amount ρ̃(ζ) of a certain resource.

Given a generalized policy ζ̄ for sensor i, the policy of that sensor is chosen to be

ζR(n,i),V . The cost is defined to be E0

[
ρ̃(ζR(n,i),V )

]
, where the expectation is taken over

R(n,i) and V . Similar to (7.1), we are interested in admissible strategies (ζ̄1, . . . , ζ̄n),

that satisfy the constraint
∑n

i=1 E0

[
ρ̃(ζ i

R(n,i),V
)
]
≤ nc.

Example 7.5 (Censoring). Consider the setting of Section 7.2, and assume without

loss of generality, that that there is a special element y∗ of Y that is never used, i.e.,

γ(x, r) 6= y∗, for every x ∈ X , r ∈ R, and γ ∈ Γ. Given a pure local policy (ξ, γ), we

will represent a sensor i that decides to censor (ξi(Ri) = 0) as one that transmits a

“dummy” message equal to y∗. Such a dummy message carries the same information

to the fusion center as censoring (the absence of a message). We let ζ(x, r) = y∗

whenever ξ(r) = 0, and ζ(x, r) = γ(x, r) otherwise. If ρ(·, ·) is the resource function

used in our earlier formulation, it is natural to define ρ̃(ζ) = E0[ξ(R1)ρ(R1, γ)]. �

Example 7.6 (Power Constraints). Suppose that Y = R, and that the cost of a pure

local policy ζ at sensor i is ρ̃(ζ) = E0[|ζ(Xi, Ri)|2]. Then, ρ̃(ζ) corresponds to the

expected power consumed by ζ. In this setting, a message with value equal to zero can

also be viewed as a censoring decision. �
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When specialized to the censoring problem of earlier sections, the main difference

introduced by the current framework is the following: the transmission function γi

used by sensor i can now be chosen on the basis of not only the randomization variable

V , but also the side-information R(n,i) at the other sensors.

For any pure local policy ζ for sensor 1, let I(r, ζ) be the KL divergence associated

with the measurement Y1 = ζ(X1, R1). For a randomized local policy ζ̄ : X×R×V0 7→
Y for sensor 1, let ζV1 be a random variable whose realized value is the pure local

policy ζv(·, ·) = ζ̄(·, ·, v) whenever V1 = v. We have the following generalization of

Theorem 7.1, where β∗
n(c, α) is, as before, the optimal error probability.

Theorem 7.2. Suppose that Assumptions 7.1 and 7.2 hold, and that the random

variables Ri are i.i.d., under either hypothesis. Then, for every c > 0,

lim
α→0

lim inf
n→∞

1

n
log β∗

n(c, α)

= −E0

[
log

dµ0

dµ1
(R1)

]
− sup E0[I(R1, ζV1)],

where the supremum is taken over all local policies ζ̄ for sensor 1 that satisfy E0[ρ̃(ζ̄)] ≤
c. Furthermore, there exists a sequence of homogeneous local strategies that asymp-

totically achieves the optimal error exponent.

The proof of Theorem 7.2 is similar to the proof of Theorem 7.1. The main

difference is that we need to replace the transmission policies γi,V with generalized

policies ζ̄i, and eliminate the censoring policies. However, with generalized policies,

an extension to the case where the Ri are stationary and ergodic is not apparent (in

contrast to the results of Section 7.6).

7.5.3 Unknown Side-Information

So far, we have been assuming that even in the case of no cooperation (local strate-

gies), the fusion center has access to the entire vector R(n). We will now consider the

case of no cooperation when the fusion center does not have access to R(n). Thus,

the only information available at the fusion center is V (n) = (V1, . . . , Vn), the identity
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of the sensors that are censoring, and the messages of the sensors that do not censor.

(Note that just the act of censoring provides some information to the fusion center.)

Reference [27] considers a setting in which (when translated to our framework) we

have Ri equal to the local likelihood ratio li(Xi) of the measurement, ρ(r, γ) ≡ 1, and

the transmission policy is γi(Xi, Ri) = Xi. Reference [27] shows that for any fixed n,

it is optimal to choose the censoring regions to be intervals, i.e., if li(Xi) falls within

some interval (ti,1, ti,2), then the sensor does not send its measurement to the fusion

center. Note that [27] assumes only that the measurements Xi are independent, but

even when they have identical distributions, each sensor uses a different censoring in-

terval. Optimizing over (ti,1, ti,2), for all i, can be a daunting task even if the number

of sensors n is moderate [27]. Hence it is of interest to examine whether the problem

simplifies when the variables Ri are i.i.d. and n is large.

From our discussion in Section 7.5.1, we expect that homogeneous local censoring

strategies are asymptotically optimal. This is indeed the case if we assume that

the fusion center knows each sensor’s policy. For example, V (n) can be determined

beforehand, and made known at every sensor and the fusion center, while the fusion

center has a table of all the censoring policies employed by the sensors. For j = 0, 1,

let υγj be the distribution of Y1 = γ(X1, R1), under hypothesis Hj. Let

Ĩ(γ) = E0

[
log

dυγ0
dυγ1

]
.

We have the following result.

Proposition 7.2. Suppose Assumptions 7.1 and 7.2 hold and that the random vari-

ables Ri are i.i.d., under either hypothesis. Suppose that the fusion center knows V

but not R(n), and that we are restricted to local strategies. Then, homogeneous strate-

gies are asymptotically optimal as n → ∞, for every α ∈ (0, 1). Furthermore, the

optimal exponent is equal to λ̂(c), defined by

λ̂(c) = − sup
π∈Π(c)

E0

[
ξV1(R1)Ĩ(γV1) + (1 − ξV1(R1)) log

P0(ξV1(R1) = 0 | V1)

P1(ξV1(R1) = 0 | V1)

]
.
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Proof. (Outline) We first note that using Assumption 7.2, and an argument as in

Lemma 7.1, there exists b ∈ (0,∞), such that for all γ ∈ Γ we have E0[log2 dυγ
0

dυγ
1
] ≤ b.

In the current setting, a censoring decision can be viewed as a transmission of a

special symbol to the fusion center. We redefine Zi so that

Zi = −ξi,Vi
(Ri) log

dυγ0
dυγ1

(Yi) − (1 − ξi,Vi
(Ri)) log

P0(ξi,Vi
(Ri) = 0 | Vi)

P1(ξi,Vi
(Ri) = 0 | Vi)

.

We first check the inequality lim inf
n→∞

E0[Λn] ≥ λ̂(c), which is obtained as in Lemma

7.4. The rest of the proof proceeds as in Section 7.4.

7.6 The Ergodic Case

We now consider the case where (Ri)
∞
i=1 is a stationary and ergodic sequence, and

each Ri has the same distribution under either hypothesis. This case is of interest,

because in many situations, the side-information at the sensors is correlated. For

example, in the sensor network described in Example 7.1 of Section 7.1, if the sensors

are geographically densely co-located, then we would expect the fading channels from

the sensors to the fusion center to have correlated characteristics. Note also that

in that example, the side-information does not provide any information on the true

hypothesis.

We now assume that µ0 = µ1.
1 We have the following result, which shows that

cooperation is unnecessary in the asymptotic regime of large n and small α.

Theorem 7.3. Suppose (Ri)
∞
i=1 is a stationary and ergodic sequence, µ0 = µ1, and

Assumptions 7.1 and 7.2 hold. Then,

lim
α→0

lim inf
n→∞

1

n
log β∗

n(c, α) = − sup
π∈Π(c)

E0

[
ξV1(R1)I(R1, γV1)

]
.

The proof of the above theorem is similar to that in Section 7.4. The proof of

the lower bound in Section 7.4.1 still holds. For the upper bound, we require the

1One of the reasons for this assumption is that the asymptotic KL rate of the stochastic process
(Ri)i≥1 may not exist [54].
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following result.

Lemma 7.7. Suppose that (Ri)
∞
i=1 is a stationary ergodic sequence, and that Assump-

tions 7.1 and 7.2 hold. Then under hypothesis H0, for any homogeneous local strategy

involving a common local policy π, we have Sn/n→ λ(π) in probability.

Proof. We have

Sn
n

=
1

n

n∑

i=1

Zi

=
1

n

n∑

i=1

E0[Zi | Ri] +
1

n

n∑

i=1

(
Zi − E0[Zi | Ri]

)
. (7.17)

Since the sequence (Ri)i≥1 is stationary and ergodic, the first term 1
n

∑n
i=1 E0[Zi |

Ri] on the R.H.S. of (7.17) converges in probability to λ(π) (cf. Birkhoff’s Ergodic

Theorem [46]). For the second term, we have for each ǫ > 0,

P0

(∣∣
n∑

i=1

(
Zi − E0[Zi | Ri]

)∣∣ > nǫ
)

≤ 1

n2ǫ2
var

( n∑

i=1

(
Zi − E0[Zi | Ri]

))

=
1

n2ǫ2
E0

[
var

( n∑

i=1

(
Zi − E0[Zi | Ri]

)∣∣∣R(n)
)]

(7.18)

=
1

n2ǫ2
E0

[ n∑

i=1

var
(
Zi − E0[Zi | Ri] | R(n)

)]
(7.19)

≤ 1

n2ǫ2
E0

[ n∑

i=1

a(Ri)
]

(7.20)

=
1

nǫ2
E0[a(R1)],

where (7.18) follows because E0[Zi | Ri] = E0[Zi | R(n)], and (7.19) follows because

given R(n), the Zi are independent. The last inequality (7.20) follows from Lemma

7.1. Therefore, as n → ∞, the second term on the R.H.S. of (7.17) converges in

probability to 0, and the lemma is proved.

To complete the proof of Theorem 7.3, we proceed as in Section 7.4.2, except that
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we fix an ǫ > 0 and consider a homogeneous local strategy involving a common local

policy πǫ ∈ Π(c) that satisfies λ(πǫ) ≤ λ∗(c) + ǫ. With this strategy, from Lemma

7.7, Sn/n → λ(πǫ) in probability under hypothesis H0. Hence, we have the same

result as (7.14) with πǫ replacing πn, and η replacing n−1/4, for some fixed η > 0.

Corresponding changes are made in Lemma 7.6. The proof of Theorem 7.3 is now

complete.

7.7 Optimal Censoring

To find an optimal common local policy π, we need to maximize

f(π) = E0[ξV1(R1)I(R1, γV1)]

over all π = (ξv, γv)v∈V0 ∈ Π(c), i.e., over all π that satisfy

ρ(π) = E0[ξV1(R1)ρ(R1, γV1)] ≤ c.

We now show that it is sufficient to consider local policies that randomize between

only two pure local policies. In particular, each sensor need only use an extra bit to

communicate to the fusion center which policy it has chosen.

Suppose that a common local policy π has been fixed, including the range V0 of the

randomization variable V1, except that the distribution µ of V1 is left unspecified. Let

πv be the pure local policy obtained when V1 = v. To optimize the distribution of V1,

we have to maximize
∫
f(πv)µ(dv), subject to

∫
ρ(πv)µ(dv) ≤ c, over all measures

µ on V0. If V0 were finite, this would be a linear programming problem over the unit

simplex, together with one additional constraint. As is well known, the optimum

would be attained on an edge of the feasible set, that is, there would exist an optimal

µ whose support consists of at most two points [55]. The lemma that follows states

that the optimality of two-point distributions remains valid even when V0 is infinite

(except that the optimum need not be attained), and establishes our claim that we

only need to consider local policies that randomize between two pure local policies.
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(As in the rest of the chapter, we omit the standard measurability conditions that

are needed in this lemma.) The proof is provided in Section 7.11 for completeness.

Lemma 7.8. Let M be the set of probability measures on a set V0, and let f , g be

given nonnegative functions from V0 into [0,∞). Then,

sup
{∫

f(v)µ(dv) : µ ∈ M,

∫
g(v)µ(dv) ≤ c

}
(7.21)

= sup{uf(v1) + (1 − u)f(v2)) : u ∈ [0, 1], v1, v2 ∈ V0, ug(v1) + (1 − u)g(v2) ≤ c},
(7.22)

Furthermore, if the supremum in (7.21) is finite and is attained, then the supremum

in (7.22) is also attained.

We close with a characterization of an optimal local censoring policy (ξv)v∈V0 , given

that a local transmission policy (γv)v∈V0 and the distribution of V1 have been fixed.

Let ξ̄(r, v) = ξv(r), Ĩ(r, v) = I(r, γv) and ρ̃(r, v) = ρ(r, γv). We then need to optimize

E0

[
ξ̄(R1, V1)Ĩ(R1, V1)

]
over all ξ̄ : R×V0 7→ {0, 1} that satisfy E0

[
ξ̄(R1, V1)ρ̃(R1, V1)

]
≤

c. It is an easy exercise (whose proof is omitted) to show that there exists an optimal

censoring policy of the following form. There is a threshold t such that ξ̄(r, v) = 1 if

Ĩ(r, v)/ρ̃(r, v) > t and ξ̄(r, v) = 0 if Ĩ(r, v)/ρ̃(r, v) < t. Randomization is only used

to make a censoring decision when Ĩ(r, v)/ρ̃(r, v) = t, and a binary randomization

variable at each sensor suffices. This is a solution of the “water-filling” type, whereby

the uncensored “states” (r, v) are chosen starting with those with a higher value of

Ĩ(r, v)/ρ̃(r, v), and continuing until the resource constraint is met. Note also that

for a pure transmission policy γ, the relevant ratio is I(r, γ)/ρ(r, γ), which has the

intuitive interpretation of information content per unit resource consumed.

7.8 Applications

In this section, we revisit Examples 7.1 and 7.2 from Section 7.1, and illustrate the

form of an optimal censoring policy. Given our focus on the censoring policy, we will

assume that all sensors send their observations “in the clear” to the fusion center,
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i.e., the pure local transmission policy γ(x, r) = x is employed at all the sensors.

Accordingly, γ will be suppressed in our notation below.

7.8.1 Fading Channels

We will focus on a special case of the problem posed in Example 7.1. We consider

a wireless sensor network transmitting measurements to a fusion center over slowly

fading Gaussian channels. We assume that ρ(r) = 1 for all r, so that we are only

concerned with restricting the number of sensors transmitting. Depending on the

condition of the channel, we will naturally want to allow sensors to transmit over

good channels and allow sensors that have bad channels to censor. This raises the

issue of identifying the key parameters of the channel on the basis of which censoring

decisions should be made.

Suppose that

H0 : Xi ∼ N(−m, σ2),

H1 : Xi ∼ N(m, σ2),

and that the fusion center receives

Yi = QiXi +Wi,

where Qi is the fading coefficient, with a known density g(·), and Wi ∼ N(0, σ2
i ).

Assume that the channel characteristics Ri = (Qi, σi) are stationary and ergodic,

with the same stationary distribution under either hypotheses. This can be used to

model the case where sensors are placed in a line so that an ergodic assumption on the

distribution of the variables Ri is reasonable. (Random (i.i.d.) placement of sensors

is another example.) Since this is a slow fading channel, each sensor can measure Ri.

From Theorem 7.3, the important design parameter is

I(Qi, σi) = E0

[
− (Yi +Qim)2

2(Q2
iσ

2 + σ2
i )

+
(Yi −Qim)2

2(Q2
iσ

2 + σ2
i )

]
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=
2Q2

im
2

Q2
iσ

2 + σ2
i

.

According to Theorem 7.3 and the discussion in the previous section, we want to

censor when |Qi/σi| is small. Thus, an asymptotically optimal censoring policy (where

censoring is based on the channel characteristics) is of the form

ξ(Ri) =





1, if

∣∣∣Qi

σi

∣∣∣ > η,

0, otherwise,

where η depends on the value of c and the density g(·). Note that randomization

when |Qi/σi| = η is unnecessary, because this event happens with zero probability.

7.8.2 Detection of Spatial Signals

Consider n sensor nodes, placed uniformly and independently in [−1, 1], with the

fusion center at the origin, for the purpose of detecting a spatial signal. Consider the

hypotheses

H0 : Xi = s0(Ri) +Wi ∀i,

H1 : Xi = s1(Ri) +Wi ∀i,

where each sj(·) is a known spatial signal, and Wi ∼ N(0, σ2) is Gaussian noise.

When sensor i sends its measurement Xi to the fusion center, it consumes power

ρ(Ri) (assumed positive), which depends on its relative position to the fusion center.

We constrain the overall average power to be less than a given positive constant c.

From Theorem 7.1, each sensor should use a common local censoring policy (ξv)v∈V0 ,

obtained by maximizing E0[ξV1(R1)I(R1)] subject to E0[ξV1(R1)ρ(R1)] ≤ c. According

to the discussion in Section 7.7, a sensor i should be censored when I(Ri)/ρ(Ri) is

below a threshold. As a specific illustration, let s0(r) = 1−r and s1(r) = 1+r. Then

I(r) = E0

[
− 1

2σ2

(
(X1 − 1 + r)2 − (X1 − 1 − r)2

)]
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=
2r2

σ2
.

Suppose ρ(r) = 1 + a|r|d, where 2 ≤ d ≤ 4. (This is in line with standard models

used for power decay in a wireless network, see [49]. The unit cost is due to the power

used to make the measurement Xi.) Then, we have

I(r)

ρ(r)
=

2r2

σ2(1 + a|r|d) .

A specific case is shown in Figure 7-1. We have taken a = 1, d = 2, σ = 1, and a

constraint of c = 19/12. As shown, only sensors at a large enough distance from the

fusion center should transmit their measurements Xi.

7.9 The Bayesian Problem with Local Censoring

We now consider the decentralized detection problem with censoring in the Bayesian

context. Let the prior probability of Hj be qj > 0, for j = 0, 1. We define P =

q0P0+q1P1 and let E be the expectation operator w.r.t. P. As in the Neyman-Pearson

case, we allow sensors to use randomized sensor policies. In contrast to unconstrained

Bayesian problems, simple examples show that randomization results in improved

performance when the number of sensors n is finite. However, we will show that for the

asymptotic problem considered here (no cooperation), randomization is unnecessary.

In the process, we will also characterize the optimal error exponent and associated

local policies.

A strategy π(n) is admissible if (7.1) is satisfied, with E replacing E0. For any

admissible strategy π(n), let Pe,n(π
(n)) denote the resulting probability of error at the

fusion center. We will always assume that the fusion center uses an optimal fusion

rule, namely the MAP rule. Let P ∗
e,n be the infimum of Pe,n(π

(n)) over all admissible

strategies. We are interested in finding asymptotically optimal local strategies that

achieve

lim inf
n→∞

1

n
logP ∗

e,n.
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Figure 7-1: The first graph shows the spatial signals plotted as a function of sensor
location. Let c = 19/12. The second graph shows a plot of I(r)/ρ(r). A sensor is
censored unless its location is in [−1,−0.5] or [0.5, 1].

Before we launch into the analysis, let us consider a simple example that shows

that cooperation among the sensors is strictly better than using local strategies.

Example 7.7. Suppose that the random variables Ri belong to {0, 1}, are i.i.d. under

either hypothesis, and that Pj(R1 = 0) = Pj(R1 = 1) = 1/2, for j = 0, 1. We assume

that all sensors are restricted to using the transmission function γ(x, r) = x.

We assume that the distribution of X1 under the two hypotheses is the same when

R1 = 0, but different when R1 = 1. Thus, it is only those sensors with R1 = 1 that

have useful information to transmit. Under mild conditions (including the special case
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where X1 has a finite range), it is a well-known consequence of the Chernoff bound

that if exactly m sensors have Ri = 1 and transmit to the fusion center, the probability

of error is of the form emΛ∗

g(m), where Λ∗ is a negative constant determined by the

distributions of X1 and where g(m) satisfies lim
m→∞

(log g(m))/m = 0. In particular,

for every ǫ > 0, we can find some positive a, b, such that ae−ǫm ≤ g(m) ≤ beǫm.

Let ρ(r, γ) = 1 and c = 1/4. Thus, the resource constraint (7.1) becomes E[N ] ≤
n/4, where N is the (random) number of sensors that are not censored.

Assume for simplicity that n/4 is integer. Consider the following cooperative cen-

soring strategy.

1. If
∑n

i=1Ri ≤ n/4, sensor i transmits if only if Ri = 1.

2. If
∑n

i=1Ri > n/4, among those sensors with Ri = 1, arbitrarily choose n/4 of

them to transmit.

Using the Chernoff bound, we have P(N < n/4) ≤ e−dn for some positive constant d.

Let Pe,n be the probability of error at the fusion center. We have

Pe,n ≤ P(N < n/4) + P(N = n/4)eΛ
∗n/4g(n/4)

≤ e−dn + be(Λ
∗+ǫ)n/4.

Suppose that when R1 = 1, the distribution of X1 is such that −d < Λ∗, which is

certainly possible. Since ǫ > 0 is arbitrary, we obtain lim inf
n→∞

(1/n) logPe,n ≤ Λ∗/4.

Consider now a local and pure censoring strategy. In a best strategy of this kind,

every sensor with R1 = 0 is censored, and E[N ] = n/4. The only way to achieve this

is as follows: n/2 sensors are always censored; the remaining sensors are censored

if and only if R1 = 0. Thus, N is binomial with parameters n/2 and 1/2. After

averaging over all possible values of N , the probability of error satisfies

Pe,n = E[eΛ
∗Ng(N)] ≥ aE[e(Λ

∗−ǫ)N ]

= a
(1

2
+

1

2
eΛ

∗−ǫ
)n/2

.
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Since ǫ > 0 is arbitrary, we obtain lim inf
n→∞

(1/n) logPe,n ≥ (1/2) log((1+ eΛ
∗

)/2). This

is strictly greater than Λ∗/4, which shows that the cooperative strategy constructed

earlier has a better error exponent. Later on, we show that randomization cannot

improve performance, bringing us to conclude that cooperative strategies can be strictly

better than local ones.

The essence of this example is that in the local case, we have much less control

over the tails of the distribution of N ; the possibility of N having a large deviation

results in a deterioration in the error exponent. �

In general, optimal cooperative strategies are difficult to find. As the cooperative

strategy may also be practically infeasible, we will focus our attention on finding an

optimal local strategy. For the remainder of this chapter, the words “policy” and

“strategy” will always mean “local policy” and “local strategy,” respectively.

7.9.1 Notation and Assumptions

Let ℓ10(· | r) be the Radon-Nikodym derivative of the measure ν1(· | r) w.r.t. ν0(· | r).
For γ ∈ Γ, let ℓγ10(· | r) be the Radon-Nikodym derivative of the measure νγ1 (· | r) w.r.t.

νγ0 (· | r). Let ℓµ(R1) = dµ1

dµ0
(R1), and for any s ∈ [0, 1], and pure local transmission

policy γ ∈ Γ, let

Λ(s, r, γ) = log E0

[
es log ℓγ10(Y1|r) | R1 = r

]
.

Finally, for a randomized local policy π = (ξv, γv)v∈V0 , let

Φ(s, π) = log E0

[
es(ξV (R1) log ℓ

γV
10 (Y1|R1)+log ℓµ(R1))

]

= log E0

[(
ξV (R1)e

Λ(s,R1,γV ) + 1 − ξV (R1)
)
ℓsµ(R1)

]
. (7.23)

For a policy π = (ξv, γv)v∈V0 , if ξv(r) = 1 for all r ∈ R and v ∈ V0, we will write

π = (1, γv)v∈V0 . We will make the following assumptions.

Assumption 7.3.

(i) Conditioned on either hypothesis, the random variables Ri are i.i.d. Further-

more, µ0 and µ1 are equivalent measures.
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(ii) The (regular) conditional distributions ν0(· | r) and ν1(· | r) are equivalent for

every r ∈ R.

(iii) We are restricted to local strategies.

(iv) We have ρ(r, γ) > 0, for every r ∈ R and pure policy γ ∈ Γ.

(v) There exists an open interval I = (τ1, τ2) ⊂ [0, 1], such that for all pure policies

γ ∈ Γ, we have arg mins∈[0,1] Φ(s, (1, γ)) ∈ I. Furthermore, for k = 1 and 2, the

following holds:

∣∣E0

[(
ℓ10(X1|R1)ℓµ(R1)

)τk log
(
ℓ10(X1|R1)ℓµ(R1)

)]∣∣ <∞.

(vi) For the same open interval I as in (v) above, there exists a b ∈ (0,∞) such that

d2

ds2
E0[ℓ

s
µ(R1)] ≤ b,

and

d2

ds2
E0

[
(ℓγ10(Y1 | R1)ℓµ(R1))

s
]
≤ b,

for all s ∈ I and all γ ∈ Γ.

Note that there is little loss of generality in imposing Assumption 7.3(iv). Indeed,

if ρ(r, γ) = 0 for some r and some pure policy γ, then we can always transmit Yi

when Ri = r, without incurring any cost. So instead of censoring in the state Ri = r,

the sensor can always choose to transmit using this particular γ.

Assumptions 7.3(v)-(vi) are required for the same technical reasons as in [22],

which also gives rather general conditions under which they are satisfied.2 In general,

the open interval I can be taken to be (0, 1). Indeed, it can be shown that, under

Assumptions 7.3(i)-(ii), and for any pure transmission policy γ ∈ Γ, the minimizer s∗

of mins∈[0,1] Φ(s, (1, γ)) is in the interior of [0, 1]. If we take I = (0, 1), Assumption

2Although [22] deals with the case of a finite transmission alphabet Y, the results therein can be
easily generalized to the case of infinite alphabets.
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7.3(v) reduces to the condition that the KL divergences −E0[log
(
ℓ10(X1 |R1)ℓµ(R1)

)
]

and E1[log
(
ℓ10(X1 |R1)ℓµ(R1)

)
] are bounded. But we only need the weaker version

of Assumptions 7.3(v)-(vi), as stated. This allows us to include cases where Assump-

tions 7.3(v)-(vi) hold automatically. For example, if Γ is a finite set of transmission

policies, the interval I only needs to include certain, finitely many, values of s, and

we can choose I = (a, b), where 0 < a < b < 1. Then, it is easy to show that

under Assumptions 7.3(i)-(ii), Assumptions 7.3(v)-(vi) hold automatically. We will

make use of this fact in Sections 7.10.3 and 7.10.4. Another sufficient condition for

Assumptions 7.3(v)-(vi) is Assumption 7.3(i)-(ii) together with an assumption similar

to Assumption 7.2 (see Proposition 3 of [22]).

The main reason for introducing Assumption 7.3 is the following lemma, which is

proved in Section 7.11.

Lemma 7.9. Suppose that Assumption 7.3 holds. Then, there exists some b1 ∈ (0,∞)

such that for all s ∈ I and for all π, |Φ(s, π)| ≤ b1,
∣∣∣ d
ds

Φ(s, π)
∣∣∣ ≤ b1 and d2

ds2
Φ(s, π) ≤

b1.

We record a result from [22], based on the results in [56], which will underlie the

rest of our development. This result can also be obtained from Theorem 1.3.13 of [40].

The result states that, if the conclusion of Lemma 7.9 holds, then

1

n
logPe,n(π

(n)) = min
s∈I

1

n

n∑

i=1

Φ(s, πi) + o(1)

= min
s∈[0,1]

1

n

n∑

i=1

Φ(s, πi) + o(1), (7.24)

where o(1) stands for a term that vanishes as n → ∞, uniformly over all sequences

π(n). Given this result, we can just focus on the problem of optimizing the R.H.S. of

(7.24), while ignoring the o(1) term.

7.9.2 Optimal Strategy

In this subsection, we prove that asymptotic optimality can be obtained by dividing

the sensors into two groups with sensors in each group using a common pure policy.
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Theorem 7.4. Under Assumption 7.3,

lim
n→∞

1

n
logP ∗

e,n = inf min
s∈[0,1]

{uΦ(s, π1) + (1 − u)Φ(s, π2)} (7.25)

where the infimum is taken over all u ∈ [0, 1], and all pure policies π1 and π2 that

satisfy uρ(π1) + (1 − u)ρ(π2) ≤ c.

Proof. Fix some s ∈ [0, 1]. Let ψ̄1, . . . , ψ̄n be some (possibly randomized) policies.

Let ψi,v be the pure policy obtained when Vi = v. Using the definition (7.23) of

Φ(s, ψ̄i) and Jensen’s inequality, we have

1

n

n∑

i=1

Φ(s, ψ̄i) =
1

n

n∑

i=1

log
(
exp(Φ(s, ψ̄i))

)

=
1

n

n∑

i=1

log E
[
exp(Φ(s, ψi,Vi

))
]

≥ 1

n

n∑

i=1

E
[
Φ(s, ψi,Vi

)
]
. (7.26)

Similarly,

1

n

n∑

i=1

ρ(ψ̄i) =
1

n

n∑

i=1

E
[
ρ(ψi,Vi

)
]
.

Note that taking the average over all i in the above expressions is equivalent to

taking an expectation over a uniformly chosen random i. Let U = (J, VJ), where J

is chosen uniformly over {1, . . . , n}. We minimize the R.H.S. of (7.26), E[Φ(s, ψU )],

subject to the constraint E[ρ(ψU )] ≤ c. Applying Lemma 7.8, with f(u) = Φ(s, ψu)

and g(u) = ρ(ψu), we obtain

1

n

n∑

i=1

Φ(s, ψ̄i) ≥ inf{uΦ(s, π1) + (1 − u)Φ(s, π2)},

where the infimum is taken over all u ∈ [0, 1], and pure policies π1, π2, satisfying the
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resource constraint uρ(π1) + (1 − u)ρ(π2) ≤ c. Hence from (7.24),

lim inf
n→∞

1

n
logP ∗

e,n ≥ inf min
s∈[0,1]

{uΦ(s, π1) + (1 − u)Φ(s, π2)}. (7.27)

To achieve the lower bound, suppose that u and πi, i = 1, 2, attain the infimum

in (7.27) to within ǫ > 0 and that s∗ is a minimizing value of s in (7.27). We assign

⌊un⌋ sensors to use policy π1, and ⌊(1−u)n⌋ sensors to use policy π2. We censor any

remaining sensor. Then, from (7.24),

lim sup
n→∞

1

n
logP ∗

e,n ≤ uΦ(s∗, π1) + (1 − u)Φ(s∗, π2)

≤ inf min
s∈[0,1]

{uΦ(s, π1) + (1 − u)Φ(s, π2)} + ǫ,

and taking ǫ → 0 completes the proof.

Let us remark that similar results are easily obtained for the case where the side-

information is not transmitted to the fusion center (cf. Section 7.5.3).

7.9.3 Characterization of the Optimal Exponent

In this section and the next, we will consider the case where R is finite, for two

reasons. First, in many practical cases, because of the limited channel between each

sensor and the fusion center, the side-information can be assumed to take values from

a finite alphabet. Second, when R is finite, the analysis is simplified and results in

a simple form for the censoring policies. So without loss of generality, we will take

R = {1, 2, . . . , |R|}. Let pjr = Pj(R1 = r) and pr = q0p0r + q1p1r.

Let us fix two pure local transmission policies γ1 and γ2. Let

Ks(c, {γ1, γ2}) = inf
ξ1,ξ2,u

{uΦ(s, (ξ1, γ1)) + (1 − u)Φ(s, (ξ2, γ2)))}, (7.28)

where the infimum is taken over all u ∈ [0, 1] and pure censoring policies ξ1, ξ2 that

satisfy

uE[ξ1(R1)ρ(R1, γ1)] + (1 − u)E[ξ2(R2, γ2)ρ(R2, γ2)] ≤ c.
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From Theorem 7.4 and under Assumption 7.3, we have

lim
n→∞

1

n
logP ∗

e,n = inf
γ1,γ2∈Γ

min
s∈[0,1]

Ks(c, {γ1, γ2}). (7.29)

Note that given γ1 and γ2, the minimization in (7.28) has an optimal solution. (This is

because R is finite, and therefore there are only finitely many possible pure censoring

policies.) Let z1 be the value of E[ξ1(R1)ρ(R1, γ1)] in such an optimal solution. It

follows that ξ1 must minimize Φ(s, (ξ1, γ1)) (and therefore exp
(
Φ(s, (ξ1, γ1))

)
as well),

subject to the constraint E[ξ1(R1)ρ(R1, γ1)] ≤ z1. Note that exp
(
Φ(s, (ξ1, γ1))

)
is

equal to

E0[ξ(R1)hs(R1, γ)] + E0[ℓ
s
µ(R1)],

where hs(r, γ) = (eΛ(s,r,γ) − 1)ℓsµ(r) ≤ 0.

We can now give a characterization of the optimal ξ1, similar to the one at the

end of Section 7.7. For any r ∈ R, let

ms,γ(r) =
p0rhs(r, γ)

prρ(r, γ)
.

Proposition 7.3. Suppose Assumption 7.3 holds. Suppose that R is finite and that

optimal choices of u, s, γ1, γ2 have been fixed. Then, there exist thresholds t1, t2 such

that the corresponding optimal censoring functions ξ1, ξ2 satisfy the following: for

each r ∈ R, if ms,γi
(r) < ti, then ξi(r) = 1, otherwise ξi(r) = 0.

7.10 Special Cases and Examples for the Bayesian

Problem

We now examine some special cases that will lead to simplified versions of Theorem

7.4.
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7.10.1 No Side-Information

In this subsection, we consider the case of no side-information, which is equivalent

to having R = {1}. Accordingly, r will be suppressed from our notation below. For

example, the cost incurred by a sensor making a measurement and transmitting it via

a transmission function γ ∈ Γ is denoted by ρ(γ). We will show that when c in the

resource constraint (7.1) is sufficiently small, we can restrict all uncensored sensors

to use the same policy.

Note that there are only two possible pure censoring policies, ξ = 0 and ξ = 1.

In the absence of side-information, the likelihood ratio ℓµ(R1) is identically equal to

1. Using the definition of Φ(s, (ξ, γ)), for ξ = 1 and ξ = 0, respectively, we obtain

Φ(s, (1, γ)) = Λ(s, γ) ≤ 0, and Φ(s, (0, γ)) = 0. Let Λ∗(γ) = mins∈[0,1] Λ(s, γ).

Corollary 7.1. Suppose that Assumption 7.3 holds, and 0 < c ≤ infγ∈Γ ρ(γ). Then,

in the absence of side-information, the optimal exponent is equal to infγ∈Γ cΛ
∗(γ)/ρ(γ).

This remains the optimal error exponent even under the additional restriction that

censored sensors are chosen in advance, and all uncensored sensors use the same

policy.

Proof. From Theorem 7.4, we know that at most two different pure policies πi =

(ξi, γi), i = 1, 2, need be considered. Suppose that one of those policies, say π2,

involves censoring, namely ξ2 = 0. Then, Φ(s, π2) = 0 and ρ(π2) = 0. Clearly,

the other policy should not censor, so that π1 = (1, γ1). For any choice of γ1, the

optimal choice of u in (7.25) is to let u = c/ρ(γ1) ∈ [0, 1], leading to an exponent of

cΛ∗(γ1)/ρ(γ1). Optimizing over all γ1 ∈ Γ, we obtain the claimed error exponent.

Suppose now that neither of the policies π1 and π2 involves censoring. Since c ≤
ρ(γ) for all γ ∈ Γ, in order to satisfy the resource constraint uρ(γ1)+(1−u)ρ(γ2) ≤ c,

we must have ρ(γ1) = ρ(γ2) = c. In this case, for all u ∈ [0, 1] and all s ∈ [0, 1],

uΦ(s, π1) + (1 − u)Φ(s, π2) ≥ mini=1,2 Λ∗(γi) ≥ infγ∈Γ cΛ
∗(γ)/ρ(γ). The corollary is

now proven.
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7.10.2 Finite Transmission Policy Sets

In the next two subsections, we study problem formulations in which there is no side-

information, and in which we temporarily restrict transmission policies to belong to a

finite subset G of Γ. According to the discussion in Section 7.9.1, this restriction im-

plies that under Assumptions 7.3(i)-(ii), Assumptions 7.3(v)-(vi) hold automatically.

This will allow us to apply Corollary 7.1 to two problems that have been considered

in [29] and [30]. Let P ∗
e,n(G) be the minimum error probability, when we are restricted

to transmission policies in G.

7.10.3 Total Power Constraint

In [29], the authors consider the Bayesian problem with no side-information and a

power constraint of the form
LA∑

i=1

ρ(γi) ≤ A, (7.30)

where LA, the number of sensors is not fixed in advance. The cost ρ(γ) is assumed

to be positive for all γ.

Let G be a finite subset of Γ, and let G be the collection of all such subsets G. Let

Pe(G,A) be the minimum probability of error when using transmission policies from

G that satisfy (7.30). Recall that we define Λ∗(γ) = mins∈[0,1] Λ(s, γ). Reference [29]

shows that

inf
G∈G

lim inf
A→∞

1

A
logPe(G,A) = inf

γ∈Γ

Λ∗(γ)

ρ(γ)
, (7.31)

so that it is asymptotically optimal to have all sensors use the same transmission

policy. We will re-derive (7.31) from Corollary 7.1.

To see the connection with our framework, fix a G ∈ G. Note that for all γ ∈ G,

there exists a δ > 0, such that ρ(γ) ≥ δ. Under the constraint (7.30), the number of

sensors that can be used is bounded by n = ⌊A/δ⌋. With n defined in this manner,
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the constraint (7.30) is equivalent to the constraint

n∑

i=1

ξiρ(γi) ≤ nδ,

where ξi ∈ {0, 1}. Note that the limit A→ ∞, considered in [29], is equivalent to the

limit n→ ∞ in our framework.

Therefore, under Assumptions 7.3(i), (ii), and (iv), Corollary 7.1 shows that the

optimal error exponent is

lim
n→∞

1

n
logP ∗

e,n(G) = δ inf
γ∈G

Λ∗(γ)

ρ(γ)
.

By taking the infimum over all G ∈ G, we recover (7.31). This argument shows that

it is asymptotically optimal to use ⌊A/ρ(γ)⌋ sensors, all of which employ the same

pure transmission policy γ, chosen by carrying out the minimization in the R.H.S. of

(7.31).

This discussion elucidates the relationship of a power constraint (in which the

number of transmitting sensors is not fixed) to our constrained censoring problem.

The decentralized detection problem considered in [22] can be viewed as one where

c is so large that censoring is never needed. The problem in this subsection can

be viewed as one involving a very small c. In this case, one group of sensors sets

ξ ≡ 0, and another uses the transmission policy that asymptotically achieves (7.31).

In comparison, the general formulation in this chapter also gives the solution for all

c, in between these two extremes.

7.10.4 Constrained Capacity

Yet another connection can be made to the problem considered in [30], which is

summarized as follows. Consider a network of L sensors, zl, l = 1, 2, . . . , L. Each

sensor zl observes a sequence of measurements {Xl,t : t = 1, 2, . . . , T}, and there is no

side-information. All the measurements are assumed to be conditionally i.i.d. given

the hypothesis, over time and across sensors. At each time t, sensor zl sends Yl,t =
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γl(Xl,t) to the fusion center, where the transmission function is a bl-bit quantizer,

where bl is a positive integer. Let the set of allowed b-bit transmission functions be

Γb. We are interested in minimizing the error exponent

lim inf
T→∞

1

T
logPe,T (γ(L)),

where Pe,T (γ(L)) is the probability of error at the fusion center, assuming that a MAP

fusion rule is used. The minimization is to be carried out over the number of sensors

L and transmission strategies satisfying the overall capacity constraint,

L∑

l=1

bl ≤ B, (7.32)

where B is a given positive integer. Let us call the above problem Q1. This problem,

in general, does not have a closed form solution. Reference [30] finds sufficient con-

ditions under which using B identical sensors (sensors using the same transmission

policy), each sending one bit of information, is optimal. We will apply our results to

arrive at the same conditions as in [30], and also characterize the solution for special

values of B.

As a first step, we will relax the constraints in problem Q1. We view each sensor

zl over the time periods 1, 2, . . . , T , as T different sensors zl,t, and hence remove the

constraint that all zl,t must use the same transmission policy γl. Because of (7.32),

L ≤ B. Hence, we can imagine that we are starting with n = TB sensors, some of

which will be censored, and rewrite (7.32) as

T∑

t=1

B∑

l=1

ξl,tbl,t ≤ TB, (7.33)

where ξl,t ∈ {0, 1}. For each b ∈ {1, . . . , B} for which Γb is nonempty, consider a

nonempty finite subset of Γb, and use G to denote the union of these subsets over b.
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Let G be the collection of all such G. With n = TB, we wish to minimize

B inf
G∈G

lim
n→∞

1

n
logP ∗

e,n(G).

We will obtain an optimal solution to the latter problem, which we call problem

Q2. If from that optimal solution we can derive a strategy that does not change the

error exponent and yet meets the constraints that γl,t = γl and ξl,t = ξl for all t,

then we will have found an optimal solution to problem Q1. In particular, sufficient

conditions for problem Q2 to have all sensors using the same one-bit transmission

policy are also sufficient for problem Q1 to have B identical one-bit sensors.

To put problem Q2 into our constrained censoring context, let ρ(γ) = b for every

γ ∈ Γb, and note that c = 1. Let K∗
b = infγ∈Γb

Λ∗(γ). (If Γb is empty, we set K∗
b = ∞.)

Proposition 7.4. Suppose Assumptions 7.3(i)-(ii) hold.

(i) For problem Q2,

inf
G∈G

lim
n→∞

1

n
logP ∗

e,n(G) = min
1≤b≤B

1

b
K∗
b .

In particular, using the same one-bit transmission function at all uncensored

sensors is asymptotically optimal iff K∗
1 = min1≤b≤B(K∗

b /b).

(ii) Let b∗ = arg min1≤b≤B(K∗
b /b). For problem Q1, if B/b∗ is an integer, we can

restrict to using L = B/b∗ sensors, all of them using the same b∗-bit transmission

policy, without affecting the optimal exponent.

Proof. Part (i) follows from Corollary 7.1. For part (ii), let γb∗ achieve K∗
b∗ to within

ǫ > 0. Let each of the L sensors in problem Q1 use γb∗ . This comes within ǫ of the

optimal exponent for problem Q2, and therefore for problem Q1 as well.

Let H = −mins∈[0,1] log E0

[(
dν1
dν0

)s]
, and note that K∗

b ≥ −H . Hence, for any

b ∈ {2, . . . , B},
1

b
K∗
b ≥ −H

2
.
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So if K∗
1 ≤ −H/2, we meet the sufficient conditions for problem Q2 to achieve the

optimal error exponent with identical one-bit sensors. In that case, it is also optimal

for problem Q1 to have B identical one-bit sensors. This recovers Proposition 2

of [30].

On the other hand, suppose that B is an even integer and that K∗
2/2 < K∗

1 . Then,

it is strictly suboptimal to use B identical one-bit sensors for problem Q1. This is the

content of Proposition 3 in [30]. For a general B that is not an integer multiple of b∗,

the solution to Q1 involves an integer program, which can be difficult to solve for large

B. However, as B increases to infinity, we can approach the optimal performance by

using ⌊B/b∗⌋ b∗-bit sensors.

7.10.5 ρ Independent of the Transmission Function

Suppose that for every value r of the side-information, all the transmission functions

in Γ have the same cost, e.g., that the process of transmission under state r requires

the same energy for all γ. Then, we can assume ρ(r, γ) = ρ̃(r) for some nonnegative

function ρ̃. Suppose also that the set of transmission policies Γ is of the form Γ =
∏

r∈R Γ(r), where Γ(r) is the set of allowed transmission policies γ(·, r), when the

side-information takes the value r. Let

Λ∗(s, r) = inf
γ∈Γ(r)

Λ(s, r, γ),

and

Φ∗(s, ξ) = log E0

[(
ξ(R1)e

Λ∗(s,R1) + 1 − ξ(R1)
)
ℓsµ(R1)

]
.

Corollary 7.2. Assume that ρ(r, γ) = ρ̃(r) for all γ ∈ Γ(r), and that Assumption

7.3 holds. Then,

lim
n→∞

1

n
logP ∗

e,n = inf min
s∈[0,1]

(uΦ∗(s, ξ1) + (1 − u)Φ∗(s, ξ2)), (7.34)
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where the infimum is taken over all u ∈ [0, 1] and censoring policies ξi that satisfy

uE[ξ1(R1)ρ̃(R1)] + (1 − u)E[ξ2(R1)ρ̃(R1)] ≤ c.

Furthermore, it is optimal to use the same transmission policy for all sensors.

Proof. The result is obtained from Theorem 7.4, by observing that the constraints do

not affect the optimization with respect to γ1 and γ2, and that

inf
γ1,γ2

(
uΦ(s, (ξ1, γ2)) + (1 − u)Φ(s, (ξ2, γ2))

)

= uΦ∗(s, ξ1) + (1 − u)Φ∗(s, ξ2).

In this case, we use the same transmission policy at all sensors, and at most

two different censoring policies. Suppose that s∗ is a minimizing value of s in (7.34).

Then, for any r ∈ R, we can use a transmission function γ(·, r) ∈ Γ(r) that minimizes

Λ(s∗, r, γ), if the minimum is attained.

7.11 Proofs

In this section, we prove some of the results in this chapter.

Proof of Lemma 7.8.

Let a = sup
{∫

f(v)µ(dv) : µ ∈ M,
∫
g(v)µ(dv) ≤ c

}
and b = sup{uf(v1) +

(1 − u)f(v2) : u ∈ [0, 1], v1, v2 ∈ V0, ug(v1) + (1 − u)g(v2) ≤ c}. Clearly, a ≥ b. It

remains to show that a ≤ b. Assume that a <∞, and fix an ǫ > 0. Choose a µ ∈ M
such that

∫
g(v)µ(dv) ≤ c, and

a ≤
∫
f(v)µ(dv) + ǫ. (7.35)

Let C be the convex hull of the set {(f(v), g(v)) : v ∈ V0}. It can be shown that

the point
( ∫

f(v)µ(dv),
∫
g(v)µ(dv)

)
∈ C (see for example pg. 25 of [57]). There-
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fore, there exists a finite set of points {v1, . . . , vk} ⊂ V0, and nonnegative scalars

α1, . . . , αk summing to 1, such that
∫
f(v)µ(dv) =

∑k
i=1 αif(vi) and

∫
g(v)µ(dv) =

∑k
i=1 αig(vi). Consider the linear program in which we maximize

∑k
i=1 αif(vi) over

the nonnegative scalars α1, . . . , αk so that
∑k

i=1 αig(vi) ≤ c and
∑k

i=1 αi = 1. From a

well known result in linear programming [55], there exists an optimal solution to this

linear program with at most two of the αi being non-zero. Hence,
∫
f(v)µ(dv) ≤ b.

From (7.35), we have a ≤ b + ǫ, and since ǫ is arbitrary, we obtain a ≤ b. The case

where a = ∞ has a similar proof. The proof is now complete.

Proof of Lemma 7.9.

For any fixed pure policy π and a given s ∈ I = (τ1, τ2), it is well known that the

first and second derivatives of Φ(s, π), w.r.t. s, are finite. What needs to be proved,

is that these derivatives are uniformly bounded for all policies π.

For a given π = (ξv, γv)v∈V0 , let

ϕ(s) = E0

[
(ξV (R1)e

Λ(s,R1,γV ) + 1 − ξV (R1))ℓ
s
µ(R1)

]

= E0

[
ξV (R1)(ℓ

γV
10 (Y1 | R1)ℓµ(R1))

s +
(
1 − ξV (R1)

)
ℓsµ(R1)

]
, (7.36)

so that Φ(s, π) = logϕ(s). Then, for each s ∈ I,

d2

ds2
Φ(s, π) =

1

ϕ(s)

d2

ds2
ϕ(s) −

( d

ds
Φ(s, π)

)2

. (7.37)

To prove the lemma, it suffices to show that for all policies π and all s ∈ I, ϕ(s)

is uniformly bounded away from 0, and d
ds
ϕ(s) and d2

dssϕ(s) are uniformly bounded.

We do this in several steps below. To keep the notation simple, we will abbreviate

ℓ10(X1 | R1) to ℓ10, ℓ
γV
10 (Y1 | R1) to ℓγV

10 , and ℓµ(R1) to ℓµ.

(a) For every pure transmission policy γ ∈ Γ, and every s ∈ [0, 1] and r ∈ R, we

have Λ(s, r, γ) ≤ 0, because Λ(0, r, γ) = Λ(1, r, γ) = 0, and Λ(s, r, γ) is a convex

function of s for each r (see Lemma 2.2.5 of [39]). Therefore, using Jensen’s
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inequality,

ϕ(s) ≥ E0

[
eΛ(s,R1,γV )ℓsµ

]
= E0

[
(ℓγV

10 ℓµ)
s
]

≥ E0

[
(ℓ10ℓµ)

s
]

= ψ(s). (7.38)

Using the same technique as in the proof of Proposition 3 of [22], we can show

that ψ(s) ≥ ǫ ∈ (0, 1), for all s ∈ I, hence ϕ(s) ≥ ǫ. This implies that |Φ(s, π)| ≤
| log ǫ|, for all s ∈ I.

(b) Let Ψ(s) = logψ(s). Then, from (7.38), for all s ∈ [0, 1],

Φ(s, π) = logϕ(s) ≥ Ψ(s).

It is easily shown that Φ(0, π) = Φ(1, π) = Ψ(0) = Ψ(1) = 0, and that both

functions are convex in s ∈ [0, 1]. Then, for s ∈ I,

∣∣∣
d

ds
Φ(s, π)

∣∣∣ ≤ sup
s∈I

∣∣∣
d

ds
Ψ(s)

∣∣∣

= sup
s∈I

1

ψ(s)

∣∣E0

[
(ℓ10ℓµ)

s log(ℓ10ℓµ)
]∣∣

≤ 1

ǫ
max{

∣∣Ej

[
(ℓ10ℓµ)

τk log(ℓ10ℓµ)
]∣∣ : k = 1, 2} <∞. (7.39)

(We used here the convexity of Ψ, which implies that the magnitude of its deriva-

tive is maximized at one of the end points τk.) The finiteness of the R.H.S. of

(7.39) follows from Assumption 7.3(v).

(c) From (b) above, | d
ds
ϕ(s)| <∞ for all s ∈ I. So, for the same reason as in Lemma

2.2.5(c) of [39], we can differentiate ϕ(s) twice under the expectation operator.

Hence, from (7.36), we have

d2

ds2
ϕ(s) = E0

[
ξV (R1)(ℓ

γV
10 ℓµ)

s log2
(
ℓγV
10 ℓµ

)]

+ E0

[(
1 − ξV (R1)

)
ℓsµ log2 ℓµ

]

≤ E0

[
(ℓγV

10 ℓµ)
s log2

(
ℓγV
10 ℓµ

)]
+ E0

[
ℓsµ log2 ℓµ

]
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= E0

[ d2

ds2
E0

[
(ℓγV

10 ℓµ)
s | V

]]
+

d2

ds2
E0[ℓ

s
µ] ≤ 2b,

from Assumption 7.3(vi).

The steps above show that d2

ds2
Φ(s, π) is uniformly bounded and completes the proof

of the lemma.
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Chapter 8

Summary and Future Work

We have studied the asymptotic detection performance of tree networks with bounded

height, under both a Neyman-Pearson criterion and a Bayesian criterion. Similar to

the parallel configuration, we have shown that the optimal error probability decays

exponentially fast with the number of nodes in the network. In addition, we have

shown, rather surprisingly, that under the Neyman-Pearson formulation, if the num-

ber of leaves dominates, the network can achieve the same performance as if all nodes

were transmitting directly to the fusion center. Moreover, this can be achieved (after

performing a height uniformization procedure) by a simple strategy in which all leaves

use the same transmission function, while all other nodes act as 1-bit relays and use

a LLRQ with a common threshold. Of course, in practice, it would be wasteful to

have only the leaf sensors make observations, if n is not large enough.

Several other issues remain outstanding, and are areas for further research. An

intriguing question, which has been left unanswered, is whether the inequality g∗P ≤ g∗

is always true under the bounded height assumption, when every node is constrained

to sending the same number of bits. Another issue is that although the error exponents

are the same for relay networks in which leaves dominate, the performance of a relay

network could be significantly worse than that of a parallel configuration, in the sense

that the ratio β∗(Tn)/β
∗
P , where β∗

P is the optimal error probability of the parallel

configuration, could be diverging to infinity as n increases. Therefore, it is of interest

to study the exact asymptotics of this problem. Additionally, we have not addressed
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the case when there is feedback from a node to its immediate predecessors [20, 58].

We expect that similar techniques to the ones developed in Chapter 3 may be useful

for characterizing the error exponent when there is feedback.

Under the Bayesian formulation, the error exponent is generically worse than that

of the parallel configuration. To provide insights into the Bayesian detection perfor-

mance, we study specific classes of tree networks that are restricted to simple strate-

gies. In particular, we consider simple counting strategies in symmetric tree networks,

and characterize the optimal detection performance over this class of strategies. Al-

though we have not been able to show that restricting to counting strategies results in

no loss of optimality, we conjecture this to be the case. We also compare the detection

performance of symmetric tree networks (with a fixed number of relay nodes) to that

of rapidly branching tree networks. It is shown that for these classes of tree networks

and transmission strategies, the Bayesian detection performance deteriorates with the

height of the tree architecture.

We also studied the effects of node failures and unreliable communications in a

dense sensor network, arranged as a tree of bounded height. In the case of node

failures, we showed that the optimal error probability falls exponentially with the

expected number of leaves in the network. In the case of unreliable communications,

the optimal error probability falls exponentially with the number of immediate prede-

cessors of the fusion center, regardless of the height. This suggests that, in practice,

it is preferable to have a node faced with an unreliable channel remain silent (as if it

had failed). It also suggests that, when designing a large scale sensor network, it is

more important to ensure that nodes can communicate reliably with each other (e.g.,

by boosting the transmission power) than to ensure that nodes are robust to failures.

We have assumed that the leaves make (conditionally) i.i.d. observations, even

though our sensor network is dense. While this assumption may sometimes hold

(e.g., in the context of detecting a known signal in white noise), our assumption is

restrictive and will often be violated. On the other hand, without the i.i.d. assump-

tion, finding exact optimal strategies is a NP-complete problem, even in the case of

a parallel configuration [38]. It is therefore important to investigate the possibility of
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approximately optimal approaches to the case of dependent observations, and simple

strategies with appealing approximately optimal properties. For some recent work

in the case of correlated observations in a parallel configuration, we refer the reader

to [59–64].

Other than node failures and unreliable communications, another threat to a sen-

sor network is malicious tampering of some nodes so that they report false information

to the fusion center [65,66]. It would be of interest to characterize the impact of such

Byzantine sensors on the detection performance.

We have shown that, in Bayesian decentralized detection, using a long tandem of

sensors, the rate of decay of the error probability is sub-exponential. In order to obtain

more precise bounds, we introduced a modified tandem network, which outperforms

the original one, and used tools from Large Deviations Theory. Under the assumption

of bounded KL divergences, we have shown that the error probability is Ω(e−cn
d
), for

all d > 1/2. Under the further assumption that the moments (under H0) of order s of

the likelihood ratio are finite for all s in an interval that contains [0, 1] in its interior,

we have shown that the lower bound can be improved to Ω(e−c(logn)d
), for all d > 1,

and that this latter bound is tight.

In our model, we have assumed binary communication between sensors, and we

have been concerned with a binary hypothesis testing problem. The question of

whether k-valued messages (with k > 2) will result in a faster decay rate, or even an

exponential decay rate, remains open. In the case of m-ary hypothesis testing using

a tandem network where each sensor observation is a Bernoulli random variable, [50]

shows that using (m + 1)-valued messages is necessary and sufficient for the error

probability to decrease to 0 as n increases. However, it is unknown what the decay rate

is. Nevertheless, we conjecture that the error decay rate is always sub-exponential.

We finally note that under a Neyman-Pearson formulation, the picture is less

complete. We have shown the sub-exponential decay of the Type II error probability,

but only for a particular (myopic) sensor strategy. The case of general strategies is

an interesting open problem.

We have studied the tandem network, thus as a next step, it is worthwhile to
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understand the rate at which the error probability decays for general tree networks

that do not have the bounded height constraint, and the dependence of the error

exponent on the rate at which the height of the tree increases. Although the technique

developed in Chapter 3 can be extended to determine bounds on the error exponent

of tree sequences whose height grows very slowly compared to n (on the order of

log | log(n/ln(f) − 1)|), we have not been able to find the optimal error exponent for

the general case of unbounded height. A more detailed analysis of how the architecture

of the network affects the error exponent will be required to achieve this.

Finally, we have formulated a general framework involving censoring in a sensor

network. We allow the sensors to censor based on some side-information, while taking

into account a general cost function that depends only on the side-information and

the transmission policy used by the sensor. We allow the sensors to cooperate with

each other and show that for a Neyman-Pearson formulation, such cooperation is not

necessary in the asymptotic regime of large number of sensors and small Type I error.

Every sensor can independently use the same (generally, randomized) local policy. An

optimal policy is found by maximizing an informational quantity subject to a cost

constraint. This maximization captures the tradeoff between the error exponent and

the resource constraint.

In the Bayesian context, we have shown that, in the absence of sensor cooperation,

asymptotic optimality is obtained by dividing the sensors into two groups, with every

sensor in each group using the same pure policy. We have also shown how to find

optimal strategies in some special cases, and the relationship of our results to other

works.

Most of our results on censoring networks can be extended in various directions.

For example, we may have multiple resource constraints. With k constraints, we will

generally need the local randomization variable V1 to have a range of cardinality k+1

(Neyman-Pearson case), or to divide the sensors into k+ 1 groups, with every sensor

in each group using the same policy (Bayesian case). Extensions to the case of more

than two hypotheses are also possible, along the lines of [22].
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