1,268 research outputs found

    AUTOMATIC FAÇADE SEGMENTATION FOR THERMAL RETROFIT

    Get PDF
    Abstract. In this paper we present an automated method to derive highly detailed 3D vector models of modern building facades from terrestrial laser scanning data. The developed procedure can be divided into two main steps: firstly the main elements constituting the facade are identified by means of a segmentation process, then the 3D vector model is generated including some priors on architectural scenes. The identification of main facade elements is based on random sampling and detection of planar elements including topology information in the process to reduce under- and over-segmentation problems. Finally, the prevalence of straight lines and orthogonal intersections in the vector model generation phase is exploited to set additional constraints to enforce automated modeling. Contemporary a further classification is performed, enriching the data with semantics by means of a classification tree. The main application field for these vector models is the design of external insulation thermal retrofit. In particular, in this paper we present a possible application for energy efficiency evaluation of buildings by mean of Infrared Thermography data overlaid to the facade model

    Window Detection from UAS-Derived Photogrammetric Point Cloud Employing Density-Based Filtering and Perceptual Organization

    Get PDF
    Point clouds with ever-increasing volume are regular data in 3D city modelling, in which building reconstruction is a significant part. The photogrammetric point cloud, generated from UAS (Unmanned Aerial System) imagery, is a novel type of data in building reconstruction. Its positive characteristics, alongside its challenging qualities, provoke discussions on this theme of research. In this paper, patch-wise detection of the points of window frames on facades and roofs are undertaken using this kind of data. A density-based multi-scale filter is devised in the feature space of normal vectors to globally handle the matter of high volume of data and to detect edges. Color information is employed for the downsized data to remove the inner clutter of the building. Perceptual organization directs the approach via grouping and the Gestalt principles, to segment the filtered point cloud and to later detect window patches. The evaluation of the approach displays a completeness of 95% and 92%, respectively, as well as a correctness of 95% and 96%, respectively, for the detection of rectangular and partially curved window frames in two big heterogeneous cluttered datasets. Moreover, most intrusions and protrusions cannot mislead the window detection approach. Several doors with glass parts and a number of parallel parts of the scaffolding are mistaken as windows when using the large-scale object detection approach due to their similar patterns with window frames. Sensitivity analysis of the input parameters demonstrates that the filter functionality depends on the radius of density calculation in the feature space. Furthermore, successfully employing the Gestalt principles in the detection of window frames is influenced by the width determination of window partitioning

    Building Energy Model Generation Using a Digital Photogrammetry-Based 3D Model

    Get PDF
    Buildings consume a large amount of energy and environmental resources. At the same time, current practices for whole-building energy simulation are costly and require skilled labor. As Building Energy Modeling (BEM) and simulations are becoming increasingly important, there is a growing need to make environmental assessments of buildings more efficient and accessible. A building energy model is based on collecting input data from the real, physical world and representing them as a digital energy model. Real-world data is also collected in the field of 3D reconstruction and image analysis, where major developments have been happening in recent years. Current digital photogrammetry software can automatically match photographs taken with a simple smartphone camera and generate a 3D model. This thesis presents methods and techniques that can be used to generate a building energy model from a digital photogrammetry-based 3D model. To accomplish this, a prototype program was developed that uses 3D reconstructed data as geometric modeling inputs for BEM. To validate the prototype, an experiment was conducted where a case-study building was selected. Photographs of the building were taken using a small remotelycontrolled Unmanned Aerial Vehicle (UAV) drone. Then, using photogrammetry software, the photographs were used to automatically generate a textured 3D model. The texture map, which is an image that represents the color information in the 3D model, was semantically annotated to extract building elements. The window annotations were iii used as inputs for the BEM process. In addition, a number of algorithms were applied to automatically convert both the 3D model and the annotated texture map into geometry that is compatible for a building energy model. Through the prototype, pre-defined templates were used with the geometric inputs to generate an EnergyPlus model (as an example building energy model). The feasibility of this experiment was verified by running a successful energy simulation. The results of this thesis contribute towards creating an automated and user-friendly photo-to-BEM method

    QUALITY ASSESSMENT OF MAPPING BUILDING TEXTURES FROM INFRARED IMAGE SEQUENCES

    Get PDF

    Methodology for high resolution spatial analysis of the physical flood susceptibility of buildings in large river floodplains

    Get PDF
    The impacts of floods on buildings in urban areas are increasing due to the intensification of extreme weather events, unplanned or uncontrolled settlements and the rising vulnerability of assets. There are some approaches available for assessing the flood damage to buildings and critical infrastructure. To this point, however, it is extremely difficult to adapt these methods widely, due to the lack of high resolution classification and characterisation approaches for built structures. To overcome this obstacle, this work presents: first, a conceptual framework for understanding the physical flood vulnerability and the physical flood susceptibility of buildings, second, a methodological framework for the combination of methods and tools for a large-scale and high-resolution analysis and third, the testing of the methodology in three pilot sites with different development conditions. The conceptual framework narrows down an understanding of flood vulnerability, physical flood vulnerability and physical flood susceptibility and its relation to social and economic vulnerabilities. It describes the key features causing the physical flood susceptibility of buildings as a component of the vulnerability. The methodological framework comprises three modules: (i) methods for setting up a building topology, (ii) methods for assessing the susceptibility of representative buildings of each building type and (iii) the integration of the two modules with technological tools. The first module on the building typology is based on a classification of remote sensing data and GIS analysis involving seven building parameters, which appeared to be relevant for a classification of buildings regarding potential flood impacts. The outcome is a building taxonomic approach. A subsequent identification of representative buildings is based on statistical analyses and membership functions. The second module on the building susceptibility for representative buildings bears on the derivation of depth-physical impact functions. It relates the principal building components, including their heights, dimensions and materials, to the damage from different water levels. The material’s susceptibility is estimated based on international studies on the resistance of building materials and a fuzzy expert analysis. Then depth-physical impact functions are calculated referring to the principal components of the buildings which can be affected by different water levels. Hereby, depth-physical impact functions are seen as a means for the interrelation between the water level and the physical impacts. The third module provides the tools for implementing the methodology. This tool compresses the architecture for feeding the required data on the buildings with their relations to the building typology and the building-type specific depth-physical impact function supporting the automatic process. The methodology is tested in three flood plains pilot sites: (i) in the settlement of the Barrio Sur in MaganguĂ© and (ii) in the settlement of La Peña in Cicuco located on the flood plain of Magdalena River, Colombia and (iii) in a settlement of the city of Dresden, located on the Elbe River, Germany. The testing of the methodology covers the description of data availability and accuracy, the steps for deriving the depth-physical impact functions of representative buildings and the final display of the spatial distribution of the physical flood susceptibility. The discussion analyses what are the contributions of this work evaluating the findings of the methodology’s testing with the dissertation goals. The conclusions of the work show the contributions and limitations of the research in terms of methodological and empirical advancements and the general applicability in flood risk management.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – MaganguĂ©, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 203In vielen StĂ€dten nehmen die Auswirkungen von Hochwasser auf GebĂ€ude aufgrund immer extremerer Wetterereignisse, unkontrollierbarer Siedlungsbauten und der steigenden VulnerabilitĂ€t von BesitztĂŒmern stetig zu. Es existieren zwar bereits AnsĂ€tze zur Beurteilung von WasserschĂ€den an GebĂ€uden und Infrastrukturknotenpunkten. Doch ist es bisher schwierig, diese Methoden großrĂ€umig anzuwenden, da es an einer prĂ€zisen Klassifizierung und Charakterisierung von GebĂ€uden und anderen baulichen Anlagen fehlt. Zu diesem Zweck sollen in dieser Arbeit erstens ein Konzept fĂŒr ein genaueres VerstĂ€ndnis der physischen VulnerabilitĂ€t von GebĂ€uden gegenĂŒber Hochwasser dargelegt, zweitens ein methodisches Verfahren zur Kombination der bestehenden Methoden und Hilfsmittel mit dem Ziel einer großrĂ€umigen und hochauflösenden Analyse erarbeitet und drittens diese Methode an drei Pilotstandorten mit unterschiedlichem Ausbauzustand erprobt werden. Die Rahmenbedingungen des Konzepts grenzen die Begriffe der VulnerabilitĂ€t, der physischen VulnerabilitĂ€t und der physischen AnfĂ€lligkeit gegenĂŒber Hochwasser ein und erörtern deren Beziehung zur sozialen und ökonomischen VulnerabilitĂ€t. Es werden die Merkmale der physischen AnfĂ€lligkeit von GebĂ€uden gegenĂŒber Hochwasser als Bestandteil der VulnerabilitĂ€t definiert. Das methodische Verfahren umfasst drei Module: (i) Methoden zur Erstellung einer GebĂ€udetypologie, (ii) Methoden zur Bewertung der AnfĂ€lligkeit reprĂ€sentativer GebĂ€ude jedes GebĂ€udetyps und (iii) die Kombination der beiden Module mit Hilfe technologischer Hilfsmittel. Das erste Modul zur GebĂ€udetypologie basiert auf der Klassifizierung von Fernerkundungsdaten und GIS-Analysen anhand von sieben GebĂ€udeparametern, die sich fĂŒr die Klassifizierung von GebĂ€uden bezĂŒglich ihres Risikopotenzials bei Hochwasser als wichtig erweisen. Daraus ergibt sich ein Ansatz zur GebĂ€udeklassifizierung. Die anschließende Ermittlung reprĂ€sentativer GebĂ€ude beruht auf statistischen Analysen und Zugehörigkeitsfunktionen. Das zweite Modul zur AnfĂ€lligkeit reprĂ€sentativer GebĂ€ude beruht auf der Ableitung von Funktion von Wasserstand und physischer Einwirkung. Es setzt die relevanten GebĂ€udemerkmale, darunter Höhe, Maße und Materialien, in Beziehung zum erwartbaren Schaden bei unterschiedlichen WasserstĂ€nden. Die MaterialanfĂ€lligkeit wird aufgrund internationaler Studien zur Festigkeit von Baustoffen sowie durch Anwendung eines Fuzzy-Logic-Expertensystems eingeschĂ€tzt. Anschließend werden Wasserstand-Schaden-Funktionen unter Einbeziehung der HauptgebĂ€udekomponenten berechnet, die durch unterschiedliche WasserstĂ€nde in Mitleidenschaft gezogen werden können. Funktion von Wasserstand und physischer Einwirkung dienen hier dazu, den jeweiligen Wasserstand und die physischen Auswirkung in Beziehung zueinander zu setzen. Das dritte Modul stellt die zur Umsetzung der Methoden notwendigen Hilfsmittel vor. Zur UnterstĂŒtzung des automatisierten Verfahrens dienen Hilfsmittel, die die GebĂ€udetypologie mit der Funktion von Wasserstand und physischer Einwirkung fĂŒr GebĂ€ude in Hochwassergebieten kombinieren. Die Methoden wurden anschließend in drei hochwassergefĂ€hrdeten Pilotstandorten getestet: (i) in den Siedlungsgebieten von Barrio Sur in MaganguĂ© und (ii) von La Pena in Cicuco, zwei Überschwemmungsgebiete des Magdalenas in Kolumbien, und (iii) im Stadtgebiet von Dresden, das an der Elbe liegt. Das Testverfahren umfasst die Beschreibung der DatenverfĂŒgbarkeit und genauigkeit, die einzelnen Schritte zur Analyse der. Funktion von Wasserstand und physischer Einwirkung reprĂ€sentativer GebĂ€ude sowie die Darstellung der rĂ€umlichen Verteilung der physischen AnfĂ€lligkeit fĂŒr Hochwasser. In der Diskussion wird der Beitrag dieser Arbeit zur Beurteilung der Erkenntnisse der getesteten Methoden anhand der Ziele dieser Dissertation analysiert. Die Folgerungen beleuchten abschließend die Fortschritte und auch Grenzen der Forschung hinsichtlich methodischer und empirischer Entwicklungen sowie deren allgemeine Anwendbarkeit im Bereich des Hochwasserschutzes.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – MaganguĂ©, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 203El impacto de las inundaciones sobre los edificios en zonas urbanas es cada vez mayor debido a la intensificaciĂłn de los fenĂłmenos meteorolĂłgicos extremos, asentamientos no controlados o no planificados y su creciente vulnerabilidad. Hay mĂ©todos disponibles para evaluar los daños por inundaciĂłn en edificios e infraestructuras crĂ­ticas. Sin embargo, es muy difĂ­cil implementar estos mĂ©todos sistemĂĄticamente en grandes ĂĄreas debido a la falta de clasificaciĂłn y caracterizaciĂłn de estructuras construidas en resoluciones detalladas. Para superar este obstĂĄculo, este trabajo se enfoca, en primer lugar, en desarrollar un marco conceptual para comprender la vulnerabilidad y susceptibilidad fĂ­sica de edificios por inudaciones, en segundo lugar, en desarrollar un marco metodolĂłgico para la combinaciĂłn de los mĂ©todos y herramientas para una anĂĄlisis de alta resoluciĂłn y en tercer lugar, la prueba de la metodologĂ­a en tres sitios experimentales, con distintas condiciones de desarrollo. El marco conceptual se enfoca en comprender la vulnerabilidad y susceptibility de las edificaciones frente a inundaciones, y su relaciĂłn con la vulnerabilidad social y econĂłmica. En Ă©l se describen las principales caracterĂ­sticas fĂ­sicas de la susceptibilidad de edificicaiones como un componente de la vulnerabilidad. El marco metodolĂłgico consta de tres mĂłdulos: (i) mĂ©todos para la derivaciĂłn de topologĂ­a de construcciones, (ii) mĂ©todos para evaluar la susceptibilidad de edificios representativos y (iii) la integraciĂłn de los dos mĂłdulos a travĂ©s herramientas tecnolĂłgicas. El primer mĂłdulo de topologĂ­a de construcciones se basa en una clasificaciĂłn de datos de sensoramiento rĂ©moto y procesamiento SIG para la extracciĂłn de siete parĂĄmetros de las edficaciones. Este mĂłdulo parece ser aplicable para una clasificaciĂłn de los edificios en relaciĂłn con los posibles impactos de las inundaciones. El resultado es una taxonomĂ­a de las edificaciones y una posterior identificaciĂłn de edificios representativos que se basa en anĂĄlisis estadĂ­sticos y funciones de pertenencia. El segundo mĂłdulo consiste en el anĂĄlisis de susceptibilidad de las construcciones representativas a travĂ©s de funciones de profundidad del impacto fĂ­sico. Las cuales relacionan los principales componentes de la construcciĂłn, incluyendo sus alturas, dimensiones y materiales con los impactos fĂ­sicos a diferentes niveles de agua. La susceptibilidad del material se calcula con base a estudios internacionales sobre la resistencia de los materiales y un anĂĄlisis a travĂ©s de sistemas expertos difusos. AquĂ­, las funciones de profundidad de impacto fĂ­sico son considerados como un medio para la interrelaciĂłn entre el nivel del agua y los impactos fĂ­sicos. El tercer mĂłdulo proporciona las herramientas necesarias para la aplicaciĂłn de la metodologĂ­a. Estas herramientas tecnolĂłgicas consisten en la arquitectura para la alimentaciĂłn de los datos relacionados a la tipologĂ­a de construcciones con las funciones de profundidad del impacto fĂ­sico apoyado en procesos automĂĄticos. La metodologĂ­a es probada en tres sitios piloto: (i) en el Barrio Sur en MaganguĂ© y (ii) en la barrio de La Peña en Cicuco situado en la llanura inundable del RĂ­o Magdalena, Colombia y (iii) en barrio Kleinzschachwitz de la ciudad de Dresden, situado a orillas del rĂ­o Elba, en Alemania. Las pruebas de la metodologĂ­a abarca la descripciĂłn de la disponibilidad de los datos y la precisiĂłn, los pasos a seguir para obtener las funciones profundidad de impacto fĂ­sico de edificios representativos y la presentaciĂłn final de la distribuciĂłn espacial de la susceptibilidad fĂ­sica frente inundaciones El discusiĂłn analiza las aportaciones de este trabajo y evalua los resultados de la metodologĂ­a con relaciĂłn a los objetivos. Las conclusiones del trabajo, muestran los aportes y limitaciones de la investigaciĂłn en tĂ©rminos de avances metodolĂłgicos y empĂ­ricos y la aplicabilidad general de gestiĂłn del riesgo de inundaciones.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – MaganguĂ©, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 20

    Recapturing the Breeze: Computational Simulation of Natural Ventilation in a Raised Creole Cottage

    Get PDF
    This research investigates the environmental behavior of naturally ventilated historic, vernacular architecture in hot-humid climates using a computational simulation and analysis methodology to better understand the role of historic adaptive comfort strategies within the contemporary context of sustainable and energy efficient preservation design. The Pitot House, a raised Creole cottage, located in New Orleans, LA that has been heavily modified from its original environmental configuration will be studied in depth to highlight the importance of this approach in its ability to recreate historic configurations, visualize past levels of human thermal comfort, and use this information to make informed, sustainable decisions in the design of preservation strategies

    Machine learning methods in BIM-based applications : a review

    Get PDF
    This paper presents a survey of machine learning (ML) methods used in applications dedicated to the building and construction industry. A building information modeling (BIM) model, being a database system for civil engineering data, is presented. A representative selection of methods and applications is described. The aim of this paper is to facilitate the continuation of research efforts and to encourage bigger participation of database system researchers in the field of civil engineering
    • 

    corecore