531 research outputs found

    CEUS: What is its role in abdominal aortic diseases?

    Get PDF

    Abdominal aortic aneurysm: Treatment options, image visualizations and follow-up procedures

    Get PDF
    Abdominal aortic aneurysm is a common vascular disease that affects elderly population. Open surgical repair is regarded as the gold standard technique for treatment of abdominal aortic aneurysm, however, endovascular aneurysm repair has rapidly expanded since its first introduction in 1990s. As a less invasive technique, endovascular aneurysm repair has been confirmed to be an effective alternative to open surgical repair, especially in patients with co-morbid conditions. Computed tomography (CT) angiography is currently the preferred imaging modality for both preoperative planning and post-operative follow-up. 2D CT images are complemented by a number of 3D reconstructions which enhance the diagnostic applications of CT angiography in both planning and follow-up of endovascular repair. CT has the disadvantage of high cummulative radiation dose, of particular concern in younger patients, since patients require regular imaging follow-ups after endovascular repair, thus, exposing patients to repeated radiation exposure for life. There is a trend to change from CT to ultrasound surveillance of endovascular aneurysm repair. Medical image visualizations demonstrate excellent morphological assessment of aneurysm and stent-grafts, but fail to provide hemodynamic changes caused by the complex stent-graft device that is implanted into the aorta. This article reviews the treatment options of abdominal aortic aneurysm, various image visualization tools, and follow-up procedures with use of different modalities including both imaging and computational fluid dynamics methods. Future directions to improve treatment outcomes in the follow-up of endovascular aneurysm repair are outlined

    Contrast-enhanced ultrasound and/or colour duplex ultrasound for surveillance after endovascular abdominal aortic aneurysm repair : a systematic review and economic evaluation

    Get PDF
    Study registration: This study is registered as PROSPERO CRD42016036475. Funding: The National Institute for Health Research Health Technology Assessment programme.Peer reviewedPublisher PD

    Evidence for Contrast-Enhanced Ultrasound in Fenestrated EVAR Surveillance

    Get PDF

    Maximum diameter measurements of aortic aneurysms on axial CT images after endovascular aneurysm repair: sufficient for follow-up?

    Full text link
    PURPOSE: To assess the accuracy of maximum diameter measurements of aortic aneurysms after endovascular aneurysm repair (EVAR) on axial computed tomographic (CT) images in comparison to maximum diameter measurements perpendicular to the intravascular centerline for follow-up by using three-dimensional (3D) volume measurements as the reference standard. MATERIALS AND METHODS: Forty-nine consecutive patients (73 ± 7.5 years, range 51-88 years), who underwent EVAR of an infrarenal aortic aneurysm were retrospectively included. Two blinded readers twice independently measured the maximum aneurysm diameter on axial CT images performed at discharge, and at 1 and 2 years after intervention. The maximum diameter perpendicular to the centerline was automatically measured. Volumes of the aortic aneurysms were calculated by dedicated semiautomated 3D segmentation software (3surgery, 3mensio, the Netherlands). Changes in diameter of 0.5 cm and in volume of 10% were considered clinically significant. Intra- and interobserver agreements were calculated by intraclass correlations (ICC) in a random effects analysis of variance. The two unidimensional measurement methods were correlated to the reference standard. RESULTS: Intra- and interobserver agreements for maximum aneurysm diameter measurements were excellent (ICC = 0.98 and ICC = 0.96, respectively). There was an excellent correlation between maximum aneurysm diameters measured on axial CT images and 3D volume measurements (r = 0.93, P < 0.001) as well as between maximum diameter measurements perpendicular to the centerline and 3D volume measurements (r = 0.93, P < 0.001). CONCLUSION: Measurements of maximum aneurysm diameters on axial CT images are an accurate, reliable, and robust method for follow-up after EVAR and can be used in daily routine

    A multidetector tomography protocol for follow-up of endovascular aortic aneurysm repair

    Get PDF
    OBJECTIVE: The purpose of this study was to improve the use of 64-channel multidetector computed tomography using lower doses of ionizing radiation during follow-up procedures in a series of patients with endovascular aortic aneurysm repair. METHODS: Thirty patients receiving 5 to 29 months of follow-up after endovascular aortic aneurysm repair were analyzed using a 64-channel multidetector computed tomography device by an exam that included pre-and postcontrast with both arterial and venous phases. Leak presence and type were classified based on the exam phase. RESULTS: Endoleaks were identified in 8/30 of cases; the endoleaks in 3/8 of these cases were not visible in the arterial phases of the exams. CONCLUSION: The authors conclude that multidetector computed tomography with pre-contrast and venous phases should be a part of the ongoing follow-up of patients undergoing endovascular aortic aneurysm repair. The arterial phase can be excluded when the aneurism is stable or regresses. These findings permit a lower radiation dose without jeopardizing the correct diagnosis of an endoleak
    corecore