1,173 research outputs found

    Object-Based Greenhouse Classification from GeoEye-1 and WorldView-2 Stereo Imagery

    Get PDF
    Remote sensing technologies have been commonly used to perform greenhouse detection and mapping. In this research, stereo pairs acquired by very high-resolution optical satellites GeoEye-1 (GE1) and WorldView-2 (WV2) have been utilized to carry out the land cover classification of an agricultural area through an object-based image analysis approach, paying special attention to greenhouses extraction. The main novelty of this work lies in the joint use of single-source stereo-photogrammetrically derived heights and multispectral information from both panchromatic and pan-sharpened orthoimages. The main features tested in this research can be grouped into different categories, such as basic spectral information, elevation data (normalized digital surface model; nDSM), band indexes and ratios, texture and shape geometry. Furthermore, spectral information was based on both single orthoimages and multiangle orthoimages. The overall accuracy attained by applying nearest neighbor and support vector machine classifiers to the four multispectral bands of GE1 were very similar to those computed from WV2, for either four or eight multispectral bands. Height data, in the form of nDSM, were the most important feature for greenhouse classification. The best overall accuracy values were close to 90%, and they were not improved by using multiangle orthoimages

    Automatic Bright Circular Type Oil Tank Detection Using Remote Sensing Images

    Get PDF
    Automatic target detection like oil tank from satellite based remote sensing imagery is one of the important domains in many civilian and military applications. This could be used for disaster monitoring, oil leakage, etc. We present an automatic approach for detection of circular shaped bright oil tanks with high accuracy. The image is first enhanced to emphasize the bright objects using a morphological approach. Then, the enhanced image is segmented using split-and-merge segmentation technique.  Here, we introduce a knowledge base strategy based on the region removal technique and spatial relationship operation for detection of possible oil tanks from the segmented image using minimal spanning tree. Lastly, we introduce a supervised classifier, for identification of oil tanks, based on the knowledge database of large amount data of oil tanks. The uniqueness of the proposed technique is that it is useful for detection bright oil tanks from high as well as low resolution images, but the technique is always better for high-resolution imagery. We have systematically evaluated the algorithm on different satellite images like IRS – 1C, IKONOS, QuickBird and CARTOSAT – 2A. The proposed technique is detected bright structures but unable to detect the dark structure. If the oil tank structures are bright relative to the background illumination in the image then the detection accuracy by the proposed technique for the high resolution image is more than 95 per cent.Defence Science Journal, 2013, 63(3), pp.298-304, DOI:http://dx.doi.org/10.14429/dsj.63.273

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Object-Based Greenhouse Mapping Using Very High Resolution Satellite Data and Landsat 8 Time Series

    Get PDF
    Greenhouse mapping through remote sensing has received extensive attention over the last decades. In this article, the innovative goal relies on mapping greenhouses through the combined use of very high resolution satellite data (WorldView-2) and Landsat 8 Operational Land Imager (OLI) time series within a context of an object-based image analysis (OBIA) and decision tree classification. Thus, WorldView-2 was mainly used to segment the study area focusing on individual greenhouses. Basic spectral information, spectral and vegetation indices, textural features, seasonal statistics and a spectral metric (Moment Distance Index, MDI) derived from Landsat 8 time series and/or WorldView-2 imagery were computed on previously segmented image objects. In order to test its temporal stability, the same approach was applied for two different years, 2014 and 2015. In both years, MDI was pointed out as the most important feature to detect greenhouses. Moreover, the threshold value of this spectral metric turned to be extremely stable for both Landsat 8 and WorldView-2 imagery. A simple decision tree always using the same threshold values for features from Landsat 8 time series and WorldView-2 was finally proposed. Overall accuracies of 93.0% and 93.3% and kappa coefficients of 0.856 and 0.861 were attained for 2014 and 2015 datasets, respectively

    Case studies on data-rich and data-poor countries

    Get PDF
    The aim of Work Package 5 is to assess the needs of decision-makers and end-users involved in the process of post-disaster recovery and to provide useful guidance, tools and recommendations for extracting information from the affected area to help with their decisions. This report follows from Deliverables D5.1 “Comparison of outcomes with end-user needs” and D5.2 “Semi-automated data extraction” where the team had set out to explore the needs of decision-makers and suggested protocols for tools to address their information requirements. This report begins with a summary of findings from the scenario planning game and a review of end-user priorities; it will then describe the methods of detecting post-disaster recovery evaluation and monitoring attributes to aid decision making. The proposed methods in the deliverables D2.6 “Supervised/Unsupervised change detection” and D5.2 “Semi-automated data extraction” for use in post-disaster recovery evaluation and monitoring are tested in detail for data-poor and data-rich scenarios. Semi-automated and automated methods of finding the recovery indicators pertaining to early recovery and monitoring are discussed. Step-by-step guidance for an analyst to follow in order to prepare the images and GIS data layers necessary to execute the semi-automated and automated methods are discussed in section 2. The outputs are presented in detail using case studies in section 3. In order to develop and assess the proposed detection methods, images from two case studies, namely Van in Turkey and Muzaffarabad in Pakistan, both recovering from recent earthquakes, have been used to highlight the differences between data-rich and data-poor countries and hence the constraints on outputs on the proposed methods

    Using high resolution optical imagery to detect earthquake-induced liquefaction: the 2011 Christchurch earthquake

    Get PDF
    Using automated supervised methods with satellite and aerial imageries for liquefaction mapping is a promising step in providing detailed and region-scale maps of liquefaction extent immediately after an earthquake. The accuracy of these methods depends on the quantity and quality of training samples and the number of available spectral bands. Digitizing a large number of high-quality training samples from an event may not be feasible in the desired timeframe for rapid response as the training pixels for each class should be typical and accurately represent the spectral diversity of that specific class. To perform automated classification for liquefaction detection, we need to understand how to build the optimal and accurate training dataset. Using multispectral optical imagery from the 22 February, 2011 Christchurch earthquake, we investigate the effects of quantity of high-quality training pixel samples as well as the number of spectral bands on the performance of a pixel-based parametric supervised maximum likelihood classifier for liquefaction detection. We find that the liquefaction surface effects are bimodal in terms of spectral signature and therefore, should be classified as either wet liquefaction or dry liquefaction. This is due to the difference in water content between these two modes. Using 5-fold cross-validation method, we evaluate performance of the classifier on datasets with different pixel sizes of 50, 100, 500, 2000, and 4000. Also, the effect of adding spectral information was investigated by adding once only the near infrared (NIR) band to the visible red, green, and blue (RGB) bands and the other time using all available 8 spectral bands of the World-View 2 satellite imagery. We find that the classifier has high accuracies (75%–95%) when using the 2000 pixels-size dataset that includes the RGB+NIR spectral bands and therefore, increasing to 4000 pixels-size dataset and/or eight spectral bands may not be worth the required time and cost. We also investigate accuracies of the classifier when using aerial imagery with same number of training pixels and either RGB or RGB+NIR bands and find that the classifier accuracies are higher when using satellite imagery with same number of training pixels and spectral information. The classifier identifies dry liquefaction with higher user accuracy than wet liquefaction across all evaluated scenarios. To improve classification performance for wet liquefaction detection, we also investigate adding geospatial information of building footprints to improve classification performance. We find that using a building footprint mask to remove them from the classification process, increases wet liquefaction user accuracy by roughly 10%.Published versio
    • …
    corecore