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Abstract: Remote sensing technologies have been commonly used to perform greenhouse 

detection and mapping. In this research, stereo pairs acquired by very high-resolution 

optical satellites GeoEye-1 (GE1) and WorldView-2 (WV2) have been utilized to carry out 

the land cover classification of an agricultural area through an object-based image analysis 

approach, paying special attention to greenhouses extraction. The main novelty of this 

work lies in the joint use of single-source stereo-photogrammetrically derived heights and 

multispectral information from both panchromatic and pan-sharpened orthoimages. The 

main features tested in this research can be grouped into different categories, such as basic 

spectral information, elevation data (normalized digital surface model; nDSM), band 

indexes and ratios, texture and shape geometry. Furthermore, spectral information was 

based on both single orthoimages and multiangle orthoimages. The overall accuracy 

attained by applying nearest neighbor and support vector machine classifiers to the four 

multispectral bands of GE1 were very similar to those computed from WV2, for either four 

or eight multispectral bands. Height data, in the form of nDSM, were the most important 

feature for greenhouse classification. The best overall accuracy values were close to 90%, 

and they were not improved by using multiangle orthoimages. 

Keywords: object-based classification; greenhouses; GeoEye-1; WorldView-2; normalized 

digital surface model; multiangle image 
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1. Introduction 

Since the first plastic-covered greenhouses were built in agriculture on a significant scale by the 

early 1950s, the area covered by them has been increasing at a fast rate [1]. North Africa, the Middle 

East and China are growing at 15%–30% annually, while Europe (mainly Spain, Italy and France) 

presents a much lower increase. Currently, there are about 1,600,000 ha of greenhouses and walk-in 

tunnels scattered all over the world [1]. 

The practice of plastic-covered agriculture, also known as plasticulture, is part of the transformation 

of conventional farming into a more industrial and high-tech precision agriculture [2]. It is widely 

recognized that this type of cultivation is linked to a very important anthropic impact [3]. In fact, the 

construction of greenhouses, together with the necessary infrastructure for their commercial 

exploitation (e.g., road networks, rural buildings, reservoirs and irrigation ponds), contribute to 

affecting the environment [4]. Therefore, a careful spatial development planning is required in these 

agricultural areas to minimize their environmental impact [4–6]. 

Automatic mapping of greenhouses from remote sensing methods presents a special challenge, due 

to their unique characteristics [2,5,7–9]. In fact, the spectral signature of plastic changes drastically 

depending on: (i) the plastic material (i.e., thickness, density, transparency, light dispersal, ultraviolet 

and infrared properties, anti-fog additives and color); (ii) seasonal use of greenhouses (e.g., during 

summer, polyethylene sheets may be painted white to protect plants against excessive radiation and to 

lower the temperature inside the greenhouse); (iii) changing the reflectance of the vegetation 

underneath, which contributes to the overall reflectance of the greenhouse; and (iv) the angle of vision 

(i.e., the relationship between the light incidence angle and the remote sensor point of view). All these 

factors may result in different spectral signatures for the same type of land use, which entails a serious 

risk of confusion with other non-greenhouse classes.  

The first works focused on greenhouses detection from satellite data were supported by Landsat 

Thematic Mapper images. Some of them were carried out in the Netherlands [10,11], in a coastal 

province of eastern China, named Shandong [12], in southeastern Spain [13] and in Southern Italy [6]. 

However, the main problem of using Landsat images is related to their large pixel size or ground 

sample distance (GSD). With the advent of the first very high-resolution (VHR) commercial satellites, 

such as IKONOS and QuickBird, in 1999 and 2001, respectively, the aforementioned problem was 

solved. In fact, these VHR satellites are capable of capturing panchromatic (PAN) imagery of the land 

surface with GSD even lower than 1 m. To date, only a few works based on the detection of plastic 

greenhouses from IKONOS or QuickBird images have been performed [5,7,14–17] by using different 

pixel-based approaches.  

More recently, a new breed of VHR satellites with improved geometric and radiometric 

characteristics has been successfully launched. Among them, GeoEye-1 (GE1) and WorldView-2 

(WV2) are the most innovative. Although this couple of sensors has been already tested for automatic 

classification of urban environments and building extraction [18–21], their application to greenhouse 

detection is limited. In fact, only a recent work by Koc-San [22] uses WV2 satellite imagery for the 

pixel-based classification of glass and plastic greenhouses in Antalya (Turkey).  

Regarding VHR satellite imagery, it is worth noting that the higher geometric detail of the PAN 

image and the useful color information provided by the lower resolution multispectral (MS) image can 
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be fused to produce a final pan-sharpened MS image with the geometric resolution of the PAN  

band [23]. With the availability of pan-sharpened VHR satellite imagery, the classification of  

small-scale man-made structures has become of great interest. In this way, object-based image analysis 

(OBIA) has recently proved to be an effective approach to deal with classification tasks, especially in 

urban environments [24–27]. OBIA does not use individual pixels, but pixel groups representing 

meaningful segments (or objects), which have been segmented according to different criteria before 

carrying out the classification stage. Furthermore, unlike traditional pixel-based methods that only use 

spectral information, object-based approaches benefit from different features, such as shape, texture 

and context information associated with the objects [24]. At this point, and regarding remote sensing 

image analysis, it should be clearly stated that much of the work referred to as OBIA has been 

originated around the software known as eCognition (Trimble, Sunnyvale, California, United States). 

Indeed, about half of the papers related to OBIA are based on this package [24]. To the authors’ 

knowledge, OBIA has been only used for greenhouse detection by Arcidiacono and Porto [28] and 

Tarantino and Figorito [9]. Both works applied OBIA techniques to detect plastic greenhouses from 

digital true color (RGB) aerial data in different study areas of Italy (Ragusa, Scicli and Apulia Region). 

In these last two works, a very good review about plasticulture extraction from remote sensing imagery 

was carried out. 

Several works have combined MS imagery and height information, often derived from LiDAR data, 

to improve building automatic detection [29–31]. In fact, the inclusion of elevation data increases the 

ability to differentiate objects with significant height, as compared with other spectrally similar  

classes [19]. However, LiDAR data are often expensive, and they are not always available, especially 

in developing countries. Nowadays, the adaptable stereo imaging capability of the newest civilian 

VHR satellites and their improved geometric resolution allow the generation of very accurate digital 

surface models (DSM) by means of standard photogrammetric procedures. In the cases of GE1 and 

WV2, a vertical accuracy ranging from 0.4 m to 1.2 m has been reported in the literature [32–34]. In 

this way, some authors have recently used single-source height and MS or pan-sharpened information from 

satellite platforms headed up to detailed urban classification or change detection studies [19,21,35,36].  

In the case of greenhouse detection, 2D information delivered by satellite images is often not 

sufficient. For example, it is sometimes difficult to distinguish white plastic greenhouses from white 

buildings, due to their similar spectral characteristics [10]. Likewise, greenhouses only covered by a 

shadow net film can also be confused with bare soil [13]. In order to address this problem, and bearing 

in mind the aforementioned capabilities of satellite stereo imagery to provide height data, the joint use 

of 2D and 3D information from VHR stereo pairs seems to be a promising approach.  

Moreover, the use of multiangle images has significantly improved the classification over the base 

case of a single nadir multispectral image [19,37]. These improvements could be due to the marked 

angular and directional variation of the reflectance for certain surfaces. In fact, a multiangle data set 

from MS WV2 images allowed the differentiation of classes not typically well identified from a single 

image, such as skyscrapers, bridges and flat and pitched roofs [19]. Duca and Del Frate [37] also 

reported significant improvements in the accuracy of asphalt, buildings and bare soil class detection 

from using the multiangle CHRIS-PROBA images (18 m GSD) with respect to the nadir acquisition.  

Therefore, the goal of this article is strictly focused on comparing, in almost the same conditions, 

land cover classification accuracy with emphasis on greenhouses between VHR satellite stereo pairs 
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from GE1 and WV2 by using the most complete data sets that can be retrieved from them  

(i.e., evaluating the implications of adding height and multiangle data to the information contained in a 

single and near-nadir image). The main novelty of this work lies in the joint use of spectral information 

from both PAN and pan-sharpened multiangle orthoimages and height data extracted by stereo 

matching from satellite stereo pairs to greenhouse classification through an OBIA approach. The 

spectral information includes features grouped into different categories, such as basic spectral 

information, band indexes and ratios, texture and the shape geometry of objects.  

2. Study Area and Data Sets  

2.1. Study Site  

The study area is located in the municipality of Cuevas del Almanzora, province of Almería, 

southern Spain (Figure 1). It comprises a rectangular area of about 680 ha around the village of 

Palomares and is centered on the WGS84 geographic coordinates of 37.2465°N and 1.7912°W. 

Figure 1. The location of the study area (red rectangle) using aerial orthophotographs from 

the Spanish Programme of Aerial Orthophotography (PNOA) in 2010. Coordinate system: 

WGS84 UTM zone 30N. 

 

 

The land use between the urban area of Palomares and the Almanzora River is predominantly 

agricultural. In August 2011, the study area housed 124 greenhouses, which showed great 

heterogeneity. Thirty-three of them were covered by plastic material and the rest with different types 

of mesh or shadow net film. While some of them were being prepared for setting a new crop (i.e., they 
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remained uncropped at the time when the satellite image was taken), others were dedicated to 

nurseries, and the rest housed different crops underneath (e.g., watermelon, melon, tomato, pepper and 

cut flowers).  

2.2. Data Sets  

The experimental data sets consist of two stereo pairs from GE1 and WV2 captured over the same 

study area and very close dates. From these stereo pairs, both orthoimages (2D information) and DSMs 

(3D information) were generated.  

Currently, GE1 is the commercial satellite with the highest geometric resolution, presenting 0.41 m 

GSD at nadir in PAN mode and 1.65 m GSD at nadir in multispectral (MS) imagery. It includes the 

four classic bands: blue (B, 450–510 nm), green (G, 510–580 nm), red (R, 655–690 nm) and  

near-infrared (NIR, 780–920 nm). On the other hand, WV2 (0.46 m and 1.84 m GSD in PAN and MS 

modes, respectively) is the first commercial VHR satellite providing 8 bands in MS mode. In this 

sense, it is able to capture the four classical bands already contained in the MS image of its 

predecessors, i.e., B (450–510 nm), G (510–580 nm), R (630–690 nm) and near-infrared-1 or NIR1 

(760–895 nm), and four additional bands, such as coastal (C, 400–450 nm), yellow (Y, 585–625 nm), 

red edge (RE, 705–745 nm) and near-infrared-2 (NIR2, 860–1,040 nm). Images from either GE1 or 

WV2 have to be down-sampled to 0.5 m and 2 m, in PAN and MS modes, respectively, for 

commercial sales, as required by the US Government. 

The first stereo pair from WV2 was acquired on 18 August 2011 (Table 1), presenting a 

convergence angle of 31.35°. It was collected in Ortho Ready Standard Level-2A (ORS2A) format, 

containing both PAN and MS imagery. WV2 ORS2A images present both radiometric and geometric 

corrections. They are georeferenced to a cartographic projection using a surface with constant height 

and include the corresponding RPC sensor camera model and metadata file. The delivered products 

were ordered with a dynamic range of 11 bits and without the application of the dynamic range 

adjustment (DRA) preprocessing (i.e., maintaining absolute radiometric accuracy and the full dynamic 

range for scientific applications). 

Table 1. Characteristics of WV2 and GE1 stereo pairs acquired over the study site. 

ORS2A, Ortho Ready Standard Level-2A. PAN, panchromatic; MS, multispectral. 

Product WV2 ORS2A GE1 GeoStereo 

Image ID WV22 WV10 GE9 GE23 

Acquisition Date 8/18/2011 8/18/2011 8/27/2011 8/27/2011 

Acquisition Time (GTM) 11:22 11:23 10:55 10:56 

Cloud Cover 0% 0% 0% 0% 

Scan Direction Forward Reverse Reverse Reverse 

Sun Azimuth 152.3° 152.8° 144.1° 144.4° 

Sun Elevation 63.7° 63.8° 58.3° 58.4° 

Collection Azimuth 4.7° 216.1° 40.4 ° 183.6° 

Collection Elevation 67.6° 80.0° 81.5 ° 66.9° 

Off-nadir 22.4° 10.0° 8.5 ° 23.1° 

Product Pixel Size (PAN) 0.5 m 0.5 m 0.5 m 0.5 m 

Product Pixel Size (MS) 2 m 2 m 2 m 2 m 
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The second stereo pair was collected on 27 August 2011 (Table 1). It was a bundle (PAN + MS) 

GeoStereo product from GE1 presenting a convergence angle of 30.39°. GE1 GeoStereo images 

present both radiometric and geometric corrections similar to those applied to WV2 ORS2A imagery. 

The delivered products had a dynamic range of 11 bits and without DRA preprocessing. The Sun 

position, the satellite track (north-south) and the stereo geometry of this GeoStereo product were 

similar to those configuring the aforementioned WV2 stereo pair. However, the first image in the case 

of the GE1 stereo pair had an off-nadir of 8.5° (the most single nadir image) and the second 23.1°, 

while in the WV2 case, the second image was the most vertical or near-nadir.  

Besides the two described stereo pairs, a medium resolution 10-m grid spacing digital elevation 

model (DEM) was used. It was compiled from a B&W photogrammetric flight at an approximate scale 

of 1:20,000 and undertaken by the Andalusia Government. This DEM presented an estimated vertical 

accuracy of 1.34 m measured as root mean square error (RMSE). Finally, publicly available 

information, 0.5 m GSD aerial orthophotographs (true color RGB) were also used in this work. They 

were taken and made in 2010 as part of the Spanish Programme of Aerial Orthophotography (PNOA).  

3. Methodology 

3.1. Pre-Processing of Data Sets  

From the WV2 ORS2A stereo pair, two PAN orthoimages (one from the 22.4° off-nadir image 

(WV22) and the second from the 10° off-nadir one (WV10; see Figure 2a)) were generated by using 

the Andalusia DEM as ancillary data. Seven ground control points (GCPs) were always used to 

compute the sensor model based on rational functions refined by a zero order transformation in the 

image space (RPC0). In the same way, two pan-sharpened orthoimages were also generated from the 

corresponding images, WV10 and WV22 (with 0.5 m GSD and containing the spectral information 

gathered from the 8-band MS image) by applying the PANSHARP algorithm included in  

Geomatica 2013 (PCI Geomatics, Richmond Hill, ON, Canada). Both PAN and pan-sharpened 

orthoimages were made up of 4690 × 5800 pixels. The planimetric accuracies (RMSE2D) computed on 

the orthorectified PAN and pan-sharpened images were 0.56 m and 0.86 m for WV10 and WV22 

respectively (see the work recently published by Aguilar et al. [38] for more information about the 

orthorectification process). 

A 1-m grid spacing DSM covering the whole study area was extracted from the WV2 PAN  

stereo pair by means of the photogrammetric software package, OrthoEngine, also included in  

Geomatica 2013 (Figure 2b). It is noteworthy that any editing process was applied to the DSMs 

compiled from VHR satellite imagery in order to keep their production as hands-off as possible. The 

corresponding DSM vertical accuracy, measured as standard deviation, was ranging from 0.53 m over 

flat areas to 2.74 m over urban areas [34]. A normalized digital surface model (nDSM) with 1-m grid 

spacing was calculated by subtracting the Andalusia DEM from the WV2-derived DSM (Figure 2c). 
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Figure 2. (a) PAN orthoimage from WV10; (b) DSM from WV2 stereo pair; (c) nDSM by 

subtracting the Andalusia DEM from the WV2 derived DSM; (d) PAN orthoimage from GE9; 

(e) DSM derived from GE1 stereo pair; (f) nDSM from GE1 derived DSM.  

   

(a) (b) (c) 

   

(d) (e) (f) 

From the GE1 stereo pair and following the same procedure applied to WV2, two PAN and two  

4-band pan-sharpened orthoimages (from the images with 23.1° (GE23) and 8.5° (GE9) off-nadir) 

were produced by using the Andalusia DEM, seven GCPs and the RPC0 sensor model. The RMSE2D 

estimated over the PAN and pan-sharpened orthoimages were 0.48 m and 0.66 m for GE9 and GE23, 

respectively [38]. Figure 2d shows the corresponding PAN orthoimage from GE9 image. As in the 

case of WV2, an nDSM (Figure 2f) was computed by subtracting the Andalusia DEM from the GE1 

PAN stereo pair DSM (Figure 2e). The standard deviation of this GE1-derived DSM ranged from  

0.39 m over flat areas to 2.67 m over urban areas [34]. 

A flowchart is depicted in Figure 3 in order to clarify the pre-processing methodology carried out to 

generate both orthoimages and nDSMs data sets from VHR satellite stereo pairs. 
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Figure 3. Flowchart regarding the pre-processing stage of data sets used in this work. 

 

3.2. Manual Segmentation and Reference Map 

The first step in OBIA consists of image segmentation to produce homogeneous and discrete 

regions, objects or segments, which will be used later as the classification units instead of pixels [24,39]. 

VHR satellite imagery segmentation is a crucial step for attaining high accuracies at the final OBIA 

classification [40,41]. Anyway, generating segmentations from a multiangle data set (two different  

off-nadir viewing angle orthoimages from each stereo pair in our case) presents a unique set of 

challenges related to the geometric changes of elevated objects projections (e.g., buildings or 

greenhouses) depending on the different off-nadir angles (perspective view). For that reason, it is 

necessary to undertake an individual segmentation for each image belonging to the same stereo pair. 

However, this turns out to be excessively time consuming, and the OBIA classification from all 

multiangle images would be much more complex, as the objects created from one image do not fully 

match those coming from the other. Besides, the use of individual segmentations for orthoimages of 

GE1 and WV2 would hamper the direct comparison between both sensors. Hence, only a single manual 

segmentation of the study area was conducted, and it was used for all orthoimages. The 406 objects 

making up this segmentation were generated by manual digitizing performed over the PNOA’s aerial 

orthoimage at an approximate scale of 1:500 (Figure 4). These digitized objects always belonged to the 

nine classes shown in Figure 4a.  

Cropped greenhouses and uncropped greenhouses included the plastic-covered greenhouses 

according to whether or not they were housing horticultural crops when the satellite images were 

taken. Cropped nets and uncropped nets were comprised of mesh-covered greenhouses with or without 

horticultural crops underneath. Dense nets could be defined as greenhouses covered by a green thick 

mesh material. The building class consisted of white buildings ranging from small sheds to large 

industrial buildings. Finally, the last three considered classes were vegetation, orchards and bare soil. 

Since our main goal was focused on greenhouse classification, both with plastic film and shadow 

mesh, all greenhouses present in the study area were digitized and assigned to classes cropped 

greenhouses, uncropped greenhouses, cropped nets, uncropped nets and dense nets. Since in some 
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cases, the spectral differences between cropped and uncropped greenhouses covered by either plastic 

or mesh material were small (mainly depending on the type and the stage of development of the crop 

underneath), it was decided to group all these classes in only greenhouses and nets (Table 2). It should 

be borne in mind that the ground-truth or reference map was only based on the orthoimages from 

PNOA, GE1 and WV2, as well as very valuable information retrieved from the Google Street View 

tool (i.e., there was no field campaign in August 2011). 

Figure 4. Location of the 406 objects digitized over the PNOA’s orthoimage. (a) Classes 

assigned to each object; (b) training and validation sets.  

  

(a) (b) 

Table 2. Characteristics of WV2 and GE1 stereo pairs acquired at the study site. 

Considered Classes Final Classes Training Objects Validation Objects Total 

Cropped Greenhouses 
Greenhouses 

3 8 11 

Uncropped Greenhouses 3 19 22 

Cropped Nets 

Nets 

4 60 64 

Uncropped Nets 4 12 16 

Dense Nets 3 8 11 

Vegetation Vegetation 6 36 42 

Orchards Orchards 4 38 42 

White Buildings Buildings 9 44 53 

Bare Soil Bare Soil 6 139 145 
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The classes, vegetation, orchards, bare soil and buildings, were selected for their spectral similarity 

to greenhouses and nets (Table 2). According to Van der Wel [10], the class, greenhouses (referring to 

plastic greenhouses), could be confused with white buildings. In the same way, Sanjuan [13] reported 

problems discriminating between nets (greenhouses covered with shadow meshes) and bare soil. 

Furthermore, cropped net greenhouses with leafy and overgrown crops underneath could be confused 

with vegetation, as can be seen in Figure 5, where an outdoor lettuce crop can be appreciated on the 

left-hand side of the road, while on the right, a cropped net greenhouse can be distinguished. The six 

final classes selected in this work are very similar to the ones chosen by Tarantino and Figorito [9], 

although they did not consider white buildings.  

Figure 5. WV10 pan-sharpened orthoimages comparing vegetation with cropped net 

objects. (a) False color composite (NIR, R, G); (b) true color composite (R, G, B). 

  

(a) (b) 

Figures 6 and 7 show an industrial building of about 9 m high and a very similar 4-m high plastic 

greenhouse over the four pan-sharpened orthoimages. It is noted that the objects digitized over the 

PNOA’s orthoimage (blue line) do not always match well the object boundaries, which can be made 

out on satellite orthoimagery, due to different off-nadir view angles. This effect is even more 

noticeable in the objects with higher height and smaller area (see the little building digitized on the 

northwest corner of Figure 7).  

Figure 6. Pan-sharpened orthoimages showing an industrial white building. (a) WV22;  

(b) WV10; (c) GE9; (d) GE23. 

  

(a) (b) 
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Figure 6. Cont. 

  

(c) (d) 

Figure 7. Pan-sharpened orthoimages showing a plastic greenhouse and a little white 

building. (a) WV22; (b) WV10; (c) GE9; (d) GE23. 

  

(a) (b) 

  

(c) (d) 

3.3. Classification Procedure 

The OBIA software used in this research was eCognition 8.0. Once the manual segmentation with 

406 objects has been transferred to eCognition by using a previously digitized vector file as a thematic 

layer, it comes time to tackle the classification phase. A very well-known classifier, like nearest 
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neighbor (NN), which is included in eCognition, was applied in this work. NN is a  

non-parametric supervised classifier, which stands out because of its simplicity and flexibility. 

A subset of 42 well-distributed objects (approximately 10% of the 406 previously digitized objects) 

was selected to carry out the training phase, whereas the remaining 364 objects, also evenly distributed 

on the working area, were used for the validation phase (Figure 4b). In a similar work, Tarantino and 

Figorito [9] used 30 training samples to train the eCognition’s NN classifier. Moreover, Aguilar et al. [20] 

reported that, in statistical terms, the most efficient choice dealing with urban areas classification from 

VHR imagery would be about 10% of training samples. In our case, the distribution among classes of 

both subsets is shown in Table 2. The NN classification was initially undertaken on the nine classes 

depicted in Table 2, but the final results were computed based on the final six classes by simply 

aggregating the classes corresponding to greenhouses and nets.  

The object features selected to perform the supervised classification are presented and described in 

Tables 3 and 4. More in-depth information about these features can be found in the Reference Book of 

Definiens eCognition Developer 8 [42]. CRI, EVI and VOGRE in Table 3 are vegetation indices used 

by Oumar and Mutanga [43]. 

Table 3. Image object features based on basic spectral information and band indices used 

in the classification phase. The NIR band of GE1 is expressed as NIR1.  

 Tested Features Applied to Description 

Basic 

Spectral 

Information 

Brightness_4 Both Overall intensity for classical bands (R, G, B and NIR1) 

Brightness_8 Only WV2 Overall intensity for 8-band of WV2 

Coastal Only WV2 Mean, standard deviation and ratio to scene of coastal band 

Blue Both Mean, standard deviation and ratio to scene of blue band 

Green Both Mean, standard deviation and ratio to scene of green band 

Yellow Only WV2 Mean, standard deviation and ratio to scene of yellow band 

Red Both Mean, standard deviation and ratio to scene of red band 

Red Edge Only WV2 Mean, standard deviation and ratio to scene of red edge band 

NIR1 Both Mean, standard deviation and ratio to scene of NIR1 band 

NIR2 Only WV2 Mean, standard deviation and ratio to scene of NIR2 band 

nDSM Both Mean, standard deviation and ratio to scene of nDSM band 

Band Indices 

NDBI Both 
Normalized difference of blue band index, 

(mean NIR1 − mean blue)/(mean NIR1 + mean blue) 

NDGI Both 
Normalized difference of green band index, 

(mean NIR1 − mean green)/(mean NIR1 + mean green) 

NDVI Both 
Normalized Difference Vegetation Index, 

(mean NIR1 − mean red)/(mean NIR1 + mean red) 

NDBI_NIR2 Only WV2 
Normalized difference of blue band index using NIR2, 

(mean NIR2 − mean blue)/(mean NIR2 + mean blue) 

NDGI_NIR2 Only WV2 
Normalized difference of green band index using NIR2, 

(mean NIR2 − mean green)/(mean NIR2 + mean green) 

NDVI_NIR2 Only WV2 
Normalized Difference Vegetation Index using NIR2, 

(mean NIR2 − mean red)/(mean NIR2 + mean red) 

NDYI_NIR2 Only WV2 
Normalized difference of yellow band index using NIR2, 

(mean NIR2 − mean yellow)/(mean NIR2 + mean yellow) 
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Table 3. Cont. 

 Tested Features Applied to Description 

Band Indices 

NDREI_NIR2 Only WV2 
Normalized difference of red edge band index using NIR2, 

(mean NIR2 − mean red edge)/(mean NIR2 + mean red edge) 

NDCI_NIR2 Only WV2 
Normalized difference of coastal band index using NIR2, 

(mean NIR2 − mean coastal)/(mean NIR2 + mean coastal) 

CRI Only WV2 Carotenoid reflectance, (1/mean green) − (1/mean red edge) 

EVI Only WV2 
Enhanced vegetation index, 2.5 × (mean NIR2 − mean red)/(mean 

NIR2 + 6 × mean red – 7.5 × mean blue + 1) 

VOGRE Only WV2 Vogelmann red edge 1, mean red edge/mean red 

Table 4. Image object features based on texture, shape and geometry used in the 

classification phase. More information about these features can be found in [42]. GLCM, 

gray-level co-occurrence matrix. 

 Tested features Applied to Description 

Texture 

GLCMcon Both GLCM contrast sum of all directions from PAN 

GLCMcon WV2-8b GLCM contrast sum of all directions from NIR1 and NIR2 

GLCMent Both GLCM entropy sum of all directions from PAN 

GLCMent WV2-8b GLCM entropy sum of all directions from NIR1 and NIR2 

GLCMmean Both GLCM mean sum of all directions from PAN 

GLCMmean WV2-8b GLCM mean sum of all directions from NIR1 and NIR2 

GLCMstdv Both GLCM standard deviation sum of all directions from PAN 

GLCMstdv WV2-8b GLCM std. dev. sum of all directions from NIR1 and NIR2 

GLCMcor Both GLCM correlation sum of all directions from PAN 

GLCMcor WV2-8b GLCM correl. sum of all directions from NIR1 and NIR2 

Shape and 

Geometry 

Area Both The number of pixels within an image object 

Roundness Both How similar an image object is to an ellipse 

Rectangular fit Both How well an image object fits into a rectangle 

Shape index Both 
The border length of the objects divided by four times the square root 

of its area 

Compactness Both 
The ratio of the area of a polygon to the area of a circle with the same 

perimeter 

Border index Both The number of edges that form the polygon 

Density Both 
The density is calculated by the number of pixels forming the image 

object divided by its approximated radius 

In the case of GE1, three different tests were carried out. The first of them was based on the GE9 

PAN and pan-sharpened orthoimages (Single GE9). The second one used the GE23 PAN and  

pan-sharpened orthoimages (Single GE23). Finally, the third test considered all the information 

included in the two first cases, i.e., it used features from GE9 and GE23 orthoimages (stereo GE1).  

Moreover, the features from image objects were grouped into 10 strategies for classification: 

(1) Super basic (SB): This set only includes the mean values of B, G, R and NIR bands. It has  

4 features for both single GE9 and single GE23 and, therefore, 8 features for stereo GE1.  
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(2) Super basic and elevation (SB + nDSM): It is composed of the SB’s features and the mean and 

standard deviation values computed from the nDSM within every object. It counts on 6 features 

for both single GE9 and single GE23, and 10 features for stereo GE1 (notice that the mean and 

standard deviation values coming from the nDSM have the same value for both single images).  

(3) Basic (B): This set includes the mean and standard deviation values computed from the B, G, R 

and NIR bands. Therefore, it accounts for 8 features for both single GE9 and Single GE23 and 

16 features for stereo GE1. 

(4) Basic and band indices (B + BIs): This strategy is composed of the B’s features and the three 

normalized difference indices (NDBI (Normalized Difference Blue Index), NDGI (Normalized 

Difference Green Index) and NDVI). It adds up 11 features for both single GE9 and single 

GE23 and 22 features for stereo GE1. 

(5) Basic and ratios to scene (B + Rs): This set includes the B strategy plus four ratios to scene for 

R, G, B and NIR. It has 12 features for both single GE9 and single GE23 and 24 features for 

stereo GE1. 

(6) Basic and nDSM (B + nDSM): It is composed of the B’s features and the mean and standard 

deviation values computed from the nDSM. It has 10 features for both single GE9 and single 

GE23 and 18 features for stereo GE1 (note that the mean and standard deviation values from 

nDSM are the same for both single images).  

(7) Basic plus shape and geometry (B + Sh): It is composed of the B’s features plus the seven 

features corresponding to shape and geometry (Table 4). It has 15 features for both single GE9 

and single GE23 and 23 features for stereo GE1 (note that the seven features related to shape 

and geometry present the same value for both single images).  

(8) Basic and texture (B + T): This set includes the B strategy plus five gray-level co-occurrence 

matrix (GLCMs) texture measurements computed on a PAN orthoimage. Only five out of the 

14 GLCM texture features originally proposed by Haralick et al. [44] are considered in this 

work, due to both the strong correlation frequently reported between many of them [45] and 

their large computational burden. The same subset of GLCM texture features (i.e., contrast, 

entropy, mean, standard deviation and correlation) was selected by Stumpf and Kerle [46] 

working on a similar OBIA workflow. Therefore, the B + T set has 13 features for both single 

GE9 and single GE23 and 26 features for stereo GE1. 

(9) Basic plus nDSM and band indices (B + BIs + nDSM): This set includes the features 

corresponding to B + BIs and B + nDSM strategies. It has 13 features for both single GE9 and 

single GE23 and 24 features for stereo GE1 (the mean and standard deviation values from 

nDSM are the same for both single images). 

(10) All features (All): This strategy is composed of the sum of the following groups of features:  

(i) mean, standard deviation and ratio to scene for R, G, B, NIR and nDSM; (ii) Brightness_4; 

(iii) NDBI, NDGI and NDVI; (iv) 7 shape and geometry features; and (v) 5 texture features. 

Thus, it has 31 features for both single GE9 and single GE23 and 51 features for stereo GE1. 

In the case of stereo GE1, the features from nDSM and, shape and geometry are the same for 

both single images. Moreover, brightness is computed for each object as the mean value of the 

8 bands involved (i.e., 4 RGBNIR bands from each image making up the stereo pair). 
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In the case of WV2, six different tests were conducted. On the one hand, three of them were carried 

out by only using the four classical bands included in WV2 MS imagery, i.e., R, G, B and NIR1 (it is 

noted that the NIR1 band in WV2 would correspond to the NIR band in GE1). In those cases, the 

information corresponding to the newest bands (i.e., coastal, yellow, red edge and NIR2) was not 

considered. These first three tests were undertaken in exactly the same way as single GE9, single 

GE23 and stereo GE1, and again, the same aforementioned 10 strategies for GE1 classification were 

applied. These tests were named as: (i) single WV10-4, based on WV10 orthoimages, but only using 

four bands; (ii) single WV22-4, using 4-band WV22 orthoimages; and (iii) stereo WV2-4, using 4-band 

orthoimages from both WV10 and WV22. On the other hand, the last three tests were conducted by 

using the complete 8 bands included in the MS WV2 imagery, and they were named single VW10-8, 

single WV-22-8 and stereo WV2-8.  

Once again, 10 strategies for classification were applied in a similar way to GE1 or WV2 4-band 

cases. They were the following:  

(1) SB: 8 features for both single WV10-8 and single WV22-8 and 16 features for stereo WV2-8. 

(2) SB + nDSM: 10 features for the single tests and 18 features for stereo WV2-8. 

(3) B: 16 features for the single tests and 32 features for stereo WV2-8. 

(4) B + BIs: 22 features for the single tests, i.e., using 6 band indices, such as NDBI_NIR2, 

NDGI_NIR2, NDVI_NIR2, NDYI_NIR2, NDREI_NIR2 and NDCI_NIR2, and so, 44 features 

for stereo WV2-8.  

(5) B + Rs: 24 features for the single tests and 48 features for stereo WV2-8. 

(6) B + nDSM: 18 features for the single tests and 34 features for stereo WV2-8. 

(7) B + Sh: 23 features for the single tests and 39 features for stereo WV2-8.  

(8) B + T: 26 features for the single tests, i.e., using 10 GLCMs from NIR1 and NIR2, as 

recommended by Pu and Landry [47], and 52 features for stereo WV2-8. 

(9) B + BIs + nDSM: 24 features for the single tests and 46 features for stereo WV2-8. 

(10) All features: 57 features are used for the single tests (i.e., single VW10-8 and single WV-22-8), 

including mean, standard deviation and ratio to scene for WV2 8-band and nDSM, plus 

Brightness_8, plus 12 band indices, plus 7 shape and geometry features and plus 10 texture 

features. In the case of stereo WV2-8, 103 features are considered.  

The number of features and strategies used in the classification stage are summarized in Table 5 for 

a better understanding for the reader.  

Regarding non-parametric supervised classification methods, comparative studies have shown that 

classification accuracy obtained from more sophisticated methods, such as support vector machines 

(SVM), may outperform NN [48–50]. Besides, SVM usually turns out to be more stable in  

high-dimensional feature spaces needing a small training sample size [51,52]. However the SVM 

model’s classification accuracy is largely dependent on the selection of the model’s parameters [53]. In 

short, SVM methods try to find a hyperplane that splits a data set into two subsets during the training 

phase [54]. Preliminarily, the input features are mapped into a higher-dimensional space through a 

suitable kernel function to obtain that hyperplane. Herein, we used a radial basis kernel function (RBF) 

and estimated the kernel parameter (γ) and the penalty parameter (C) through cross-validation from the 

training data [53]. The free-distribution library, LIBSVM [53], was employed for applying the SVM 
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classifier to the aforementioned 9 tests (i.e., single GE9, single GE23, stereo GE1, single WV10-4, 

single WV22-4, stereo WV2-4, single WV10-8, single WV22-8 and stereo WV2-8), but only using the 

strategy named All features, which presents the most high-dimensional feature space. 

Table 5. Number of features used in the classification stage for each strategy and test. SB, 

super basic; BI, band index; Sh, shape and geometry; Rs, ratio to scene; T, texture. 

Test 

Strategy 

1 

SB 

2  

SB + nDSM 

3  

B 

4  

B + BIs 

5  

B + Rs 

6  

B + nDSM 

7  

B + Sh 

8  

B + T 

9  

B + BIs + nDSM 

10  

All 

Single GE9 4 6 8 11 12 10 15 13 13 31 

Single GE23 4 6 8 11 12 10 15 13 13 31 

Stereo GE1 8 10 16 22 24 18 23 26 24 51 

Single WV10-4 4 6 8 11 12 10 15 13 13 31 

Single WV22-4 4 6 8 11 12 10 15 13 13 31 

Stereo WV2-4 8 10 16 22 24 18 23 26 24 51 

Single WV10-8 8 10 16 22 24 18 23 26 24 57 

Single WV22-8 8 10 16 22 24 18 23 26 24 57 

Stereo WV2-8 16 18 32 44 48 34 39 52 46 103 

Taking into account the complex experimental design accomplished in this work, a synthetic 

flowchart is presented in Figure 8 in order to clarify the classification procedure section. 

Figure 8. Flowchart of the classification procedure. 

  

3.4. Accuracy Assessment 

Summing up, 9 tests and 10 different strategies (i.e., 90 classification projects) were conducted in 

this work by applying the NN algorithm. Furthermore, the SVM classifier was tested for the 9 tests, 

but only for the strategy named All features (i.e., 9 classification projects). All the classifications tasks 
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carried out in this study were performed over the same training objects (42), and the corresponding 

accuracies were always assessed against the same testing objects (364). 

The classification accuracy assessment undertaken in this work was based on the error matrix [55]. 

Hence, the accuracy measures, always computed on the same validation set, were the following: user’s 

accuracy (UA), producer’s accuracy (PA) and overall accuracy (OA).  

Finally, the Fβ measure [19,56], which provides a way of combining UA and PA into a single 

measure, was also computed according to the Equation (1), where the parameter, β, determines the 

weight given to the user’s and producer’s accuracies. The value used in this study (β = 1) weighs UA 

equal to PA. 

𝐹𝛽 =
(𝛽2 + 1) × PA× UA

𝛽2 × PA+ UA
 (1) 

4. Results and Discussion 

4.1. Classification Accuracy with Regard to the Strategies 

The obtained land cover classification results from using different tests and strategies, but always 

applying the NN algorithm included in eCognition, are depicted in Figure 9.  

Figure 9. Overall accuracy values from classification assessment by using the NN 

classifier. (a) Tests based on GE1 imagery; (b) tests based on WV2 imagery only using the 

four classical bands; and (c) tests based on WV2 imagery using all the eight MS bands. 

  

(a) (b) 

 

(c) 
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The overall accuracies values attained from GE1 projects (Figure 9a), WV2 using only the four 

classical bands (Figure 9b) and WV2 using all eight bands (Figure 9c), showed similar behavior.  

Regarding the strategies tested along this work, and as a general rule, B + nDSM (Strategy 6),  

B + BIs + nDSM (Strategy 9) and All features (Strategy 10) outperformed the others. Both BIs (mainly 

NDVI, NDBI and NDGI) and especially nDSM added valuable information to the basic spectral data 

represented here by the strategy, SB (Strategy 1, where only spectral band mean values are considered) 

and B (Strategy 3, where mean and standard deviations are included). In fact, the average OA of the 

nine tests was improved by approximately 3.6 percentage points when nDSM information was added 

to the B strategy, while a much more modest increase of 1.8% was attained by using BIs features. The 

importance of height data in the classification results can also be quantified by observing the large 

difference in overall accuracy (close to 9%) between the attained results in SB and SB + nDSM 

strategies for all the considered tests. In this way, but working on an urban environment, an 

improvement of 13% in the F-measure (Fβ) was reported by Longbotham et al. [19] when height data 

compiled from a VHR stereo pair was added to the eight-band mean values of the single nadir  

pan-sharpened image of WV2. They achieved even larger increases when the target classes presented 

higher heights (e.g., skyscrapers or buildings). 

Digital height maps have already been extracted from VHR stereo pairs for helping to the classify 

tasks. For example, Mahmoudi et al. [21] and Tian et al. [36] used a robust stereo matching algorithm 

based on semi-global matching (SGM) developed by Hirschmüller [57] on stereo pairs of IKONOS 

and WV2. Anther dense matching method, implemented in the BAE Systems’ Socket Set NGATE 

module, was used by Longbotham et al. [19] to extract DSM from WV2 multiangle images. A more 

conventional matching algorithm included in the OrthoEngine Module of PCI Geomatica was also 

used by Koc-San and Turker [35] over IKONOS stereo pairs. This last algorithm coincided with the 

matching algorithm applied in our work to attain the DSM. Although it usually performed quite well 

for both GE1 and WV2 stereo pairs, as can be seen in Figure 2b,e, it presented several problems 

working on greenhouses covered by shadow nets and also in urban areas (Figure 10). The last issue has 

been already reported by Aguilar et al. [34]. Just to give the reader an idea of the global behavior of 

the matching algorithm used in this work, Figure 11 shows the mean height of each object computed 

from GE1 nDSM with regard to its area (the results for WV2 turned out to be very similar). It can be 

noted that the objects belonging to plastic greenhouses presented a very homogeneous height around  

4 m, indicating that the matching algorithm worked very well on this type of surface. In the case of 

greenhouses covered by shadow nets, the computed mean heights per object were much more 

heterogeneous, ranging from zero to 4 m. Finally, and dealing with buildings, problems due to an 

inaccurate nDSM were only evident when working with small objects. In fact, buildings presenting a 

size bigger than 2,000 pixels were assigned nDSM mean values ranging from 5.6 m to 11.3 m in the case 

of the GE1 stereo pair (from 4.9 m to 11.5 m in the case of WV2 stereo pair). 

Regarding texture features, the second-order textural parameters tested in the Strategy 8 (B + T) did 

not clearly improve the results achieved by the B strategy. However, Longbotham et al. [19] achieved 

improvements higher than 10% by adding to the original spectral information several texture features 

calculated from the WV2 PAN band, such as homogeneity, contrast, dissimilarity, entropy, second 

moment and correlation. In our work, textural information seems to be totally covered by the standard 

deviation values of the spectral bands as a first-order texture measure.  
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Strategy 5 based on ratios to scene (B + Rs) hardly had any influence on the classification results. In 

addition, shape and geometry features included in Strategy 7 not only failed to improve overall 

accuracy values achieved in the B strategy, but they significantly worsened it. 

Figure 10. (a) Pan-sharpened orthoimage from GE9 focused on greenhouses; (b) DSM of 

greenhouses from the GE1 stereo pair; (c) DSM of greenhouses from the WV2 stereo pair;  

(d) pan-sharpened orthoimage from GE9 corresponding to an urban area; (e) GE1’s DSM 

of the urban area; and (f) WV2’s DSM of the urban area. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 11. Mean height values of objects computed from GE1 stereo pair nDSM. 
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4.2. Classification Accuracy with Regard to the Tests 

Considering that manual segmentation was performed on an aerial orthoimage, the digitized objects 

should geometrically match the nearest nadir satellite orthoimagery better than those with a larger  

off-nadir (see Figures 6 and 7). Thus, as for the tests that consider only single images, the classification 

accuracy should be better for projects based on orthoimages presenting the smallest off-nadir  

(i.e., single GE9, single WV10-4 and single WV10_8). However, disregarding the heterogeneous 

Strategy 7, this fact only occurred for the SB and SB + nDSM strategies. Focusing on the three best 

strategies (i.e., B + nDSM, B + BIs + nDSM and All features), OA values were always worse in the 

tests carried out with near-nadir orthoimages, especially in the case of GE1. For instance, using the  

B + nDSM strategy as a reference, OA values of 89.01% and 84.89% were attained for single GE23 

and single GE9, respectively. In the WV2 tests, OA values of 87.91% and 86.26% were computed for 

single WV22-4 and single WV10-4, while 87.39% and 86.81% were achieved for single WV22-8 and 

single WV10-8, respectively. In an attempt to understand these unexpected results, the per-class 

accuracy is shown for the three main strategies in Figure 12. It can be noted that the OA improvements 

corresponding to the tests with the higher off-nadir orthoimages were mainly due to a better effective 

discrimination between greenhouses and buildings classes and, so, increasing the Fβ measure in both 

classes. In fact, misclassification between these two classes often occurred in small buildings, which 

were finally classified as greenhouses. In this way, Figure 13 shows the classification results of a 

detailed area inside our study area, where the existing seven small buildings are highlighted in red 

(Figure 13b). Four and three out of seven buildings were misclassified in single GE9 (Figure 13c) and 

single WV10-8 (Figure 13d), respectively. Bearing in mind that the displacements of the roof of the 

small buildings due to changes in off-nadir are rather variable (see the small building located in the 

upper right corner, Figure 7), the features computed for these small objects in each test also become 

very heterogeneous. In our work, and due to this edge effect, it seems that the small buildings in the 

tests presenting a high off-nadir offered unique spectral characteristics, and this fact improved the 

discrimination between greenhouses and buildings classes. However, this effect strongly depends on 

several factors, such as the segmentation process, the sun and satellite position and the elevation at the 

time of the image collection. Anyway, confusion between small buildings and greenhouses can be 

easily solved in operational conditions by introducing a threshold condition involving the area of these 

objects. A similar procedure was conducted by Agüera et al. [7] and Arcidiacono and Porto [58]. 

Regarding the classification results coming from adding multiangle orthoimages spectral 

information (i.e., stereo GE1, stereo WV2-4 and stereo WV2-8), no significant improvement with 

respect to the single tests was achieved. Furthermore, OA from stereo GE1 were worse than single 

GE23 for the best three strategies. In general, OA from stereo tests achieved the best results when the 

strategy All features was used. In the last case, the per-class accuracies measured as Fβ (Figure 12) 

were much more homogeneous for each of the six classes (Fβ values lower than 80%). So far, and to 

the best knowledge of the authors, multiangle satellite images had been used by Longbotham et al. [19] 

and Duca and Del Frate [37] for the generation of land cover maps. However, the last works were 

carried out by using pixel-based classification schemes, so they did not have to face the problem of 

segmentation, which is vital in an OBIA approach. 



Remote Sens. 2014, 6 3574 

 

 

Figure 12. Per-class accuracy given by the corresponding Fβ index (NN classifier and 

Strategies 6 (B + nDSM), 9 (B + BIs + nDSM) and 10 (All Features)). (a) Single GE9;  

(b) single WV10_4; (c) single WV10_8; (d) single GE23; (e) single WV22_4; (f) single 

WV22_8; (g) stereo GE1; (h) stereo WV2_4; (i) stereo WV2_8.  

 

Another novel contribution of this paper was the comparison between the performance of newly 

developed VHR satellite imagery from WV2 and GE1 to classify land cover in mainly intensive 

agricultural environments with emphasis on greenhouse detection. Looking at Figure 12, any clear 

difference can be observed in the classification accuracy achieved for both GE1 and WV2-4 tests. 

Moreover, the new spectral bands of WV2 could not provide a significant improvement, neither in OA 

nor in per-class accuracy. Regarding the classes related to greenhouses (i.e., greenhouses and nets), 

they reached very acceptable Fβ values ranging from 82% to 95% for any single test involving GE23 

or WV22 orthoimages. According to Marchisio et al. [59], the use of the eight-band WV2 yielded 

improvements in classification accuracy figures ranging from 5% to 20% for certain land-cover types, 

such as man-made materials, selected vegetation targets, soils and shadows. In fact, Pu and Landry [47] 

compared VHR imagery from IKONOS and WV2 to identify and map urban forest tree species, 
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finding that the 8-band WV2 significantly increased the accuracy of identifying tree species with 

respect to IKONOS data. In the same way, Koc-San [22] reported that using all 8 bands of WV2 

satellite imagery was important to differentiate glass and plastic greenhouses. By contrast,  

Aguilar et al. [20] did not find improvements in classification accuracy between GE1 and WV2 

imagery when working on urban environments, whereas Marshall et al. [60] concluded that there was 

no benefit in using the additional four bands of WV2 to discriminate invasive grass species. 

Figure 13. Classification for a detailed area of 700 m × 600 m using NN. (a) GE9  

pan-sharpened orthoimage; (b) segments on GE9 pan-sharpened orthoimage; (c) NN 

classification for single GE9; (d) NN classification for single WV10-8.  

  

 

(a) (b)  

  

 

(c) (d)  

Finally, the best OA values achieved in this work by using OBIA techniques on a very 

heterogeneous greenhouse area were close to 90% for both GE1 and WV2 cases. As it was mentioned 

before in the introduction section, few papers can be found in the literature related to greenhouse 

detection by using different pixel-based approaches. Although Agüera et al. [7] reported a greenhouse 

detection percentage value of 91.45% working with QuickBird images, it was achieved after applying 

two algorithms to refine the raw classification (both to eliminate loops and to define the sides of 

greenhouses). The same authors [5] compared QuickBird and IKONOS imagery in plastic greenhouse 

detection and analyzed the effect of texture in the pixel-based classification accuracy. They concluded 

that the addition of texture information in the classification process did not improve the classification 

accuracy, and the best results in terms of greenhouse detection percentage took values of 89.61% and 

88.26% for QuickBird and IKONOS, respectively. Working on WV2 pan-sharpened imagery,  
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Koc-San [22] reported OA values from 87.80% to 93.88% by using different pixel-based classification 

techniques, such as maximum likelihood, random forest and SVM. Arcidiacono and Porto [15] 

reported a greenhouse detection percentage of 85.71% by using RGB VHR satellite bands only. This 

accuracy was improved to 88.42% by adding texture descriptors. In the same way, Arcidiacono and 

Porto [28] compared both pixel and object-based approaches to classify greenhouses on RGB aerial 

images. The best accuracy results ranging from 83.15% to 94.73% were attained by using OBIA 

techniques (in this case, the commercial software, VLS Feature Analyst
®
 for Leica Erdas Imagine

®
). 

Last, but not least, Tarantino and Figorito [9] achieved an OA of 90.25% by using OBIA classification 

implemented in eCognition for mapping plastic-covered vineyards from aerial photographs. 

In summary, a lot of approaches (mainly grouped into pixel-based and OBIA techniques) have 

already been applied to greenhouse detection on VHR aerial or satellite imagery. However, the 

classification accuracy always was around 90%. Taking into account that the study areas in the 

aforementioned works were very changeable, it is difficult to properly compare these results. In this 

sense, it is important to consider the differences in the cost of each type of imagery and also the 

specialized software needed to perform each approach.  

4.3. Classification Accuracy with Regard to the Classifier 

Classifications algorithms frequently used in object-based approaches, as is the case of NN, do not 

perform well on a high-dimensional feature space, due to problems related to feature correlation (the 

widely known curse of dimensionality). In this section, the SVM classifier, which had previously 

shown a good performance in dealing with large number of features [49], was compared to the NN 

classifier for all features strategy (i.e., nine tests). Although OA values were very similar for NN and 

SVM classifiers, they were always slightly better when NN was applied. Table 6 shows the accuracy 

results in terms of PA and UA measures, but only for the stereo tests, which presented the most  

high-dimensional feature space. For each row, the bold values highlight the best accuracies for both 

PA and UA, respectively. On the whole, NN performed quite well with bare soil, greenhouses and 

nets, whereas SVM only outperformed NN in the case of the buildings class.  

Table 6. PA and UA per class attained for each stereo test by using the NN or SVM 

classifier and the all features strategy.  

NN and SVM 

Multiangle 

Tests 

Stereo GE1 Stereo WV2_4 Stereo WV2_8 

NN SVM NN SVM NN SVM 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

Greenhouses 100 79.4 92.6 89.3 100 87.1 85.2 100 92.6 83.3 81.5 91.7 

Nets 97.5 78 90 75.8 97.5 83.9 90 78.3 100 80.8 96.3 81.1 

Vegetation 75 90 77.8 68.3 77.8 82.4 72.2 61.9 77.8 84.8 83.3 75 

Orchards 89.5 87.2 65.8 75.8 89.5 79.1 55.3 61.8 84.2 82.1 71.1 87.1 

Buildings 70.5 100 90.9 93 75 100 93.2 93.2 72.7 94.1 90.9 87 

Bare Soil 88.5 98.4 87.8 98.4 89.2 98.4 88.5 95.3 88.5 97.6 87.8 95.3 

Overall 

Accuracy (%) 
87.91 85.71 89.01 84.07 87.91 87.36 
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The misclassification between vegetation and net classes (mainly with cropped shadow nets), which 

had been very significant when using Strategies 6 and 9 (Figure 12), seems to have decreased when the 

All features strategy was used with NN. However, the performance of SVM when classifying 

vegetation and orchards was quite poor.  

5. Conclusions 

This work compares the capabilities of stereo pairs from GE1 and WV2 VHR satellite imagery for 

land cover classification with emphasis on detecting greenhouses covered by plastic films or shadow 

nets. To this end, features based on spectral information coming from both PAN and pan-sharpened 

orthoimages and a digital height map extracted by stereo matching from satellite imagery were used 

together through an OBIA approach. As far as we know, this is the first work to use single-source 

height and multispectral information coming from both images of each stereo pair (i.e., multiangle 

orthoimages) for the purpose of greenhouse classification. 

The study was implemented in an agricultural area around the village of Palomares, Almería 

(Spain). Likely, the study site counted on a very low number of greenhouses, especially those covered 

by plastic film. Furthermore, these greenhouses were very heterogeneous, both in terms of type of 

covering and the crop underneath. 

The segmentation process was carried out by manually digitizing on aerial orthoimages. In this 

way, the digitized objects could be used for all the tests conducted in this work, involving orthoimages 

with different off-nadir from both WV2 and GE1. In further practical applications, and working with 

the two multiangle images of one stereo pair by using OBIA techniques, the segmentation step could 

be automatically performed on the most vertical or near-nadir orthoimage. Furthermore, thematic 

vector layers might be also used if they were available. 

The overall accuracies attained by the NN classifier from GE1 tests (four MS bands) turned out to 

be very similar to the ones computed from WV2 (either four or eight MS bands) for every set of 

features tested. In general, nDSM was the most important feature for greenhouse classification. In fact, 

the three best strategies (i.e., B + nDSM, B + BIs + nDSM and all features) included height data 

extracted from the VHR stereo pair. The best overall accuracy values were close to 90%, and they 

were not improved by the use of multiangle orthoimages (stereo tests). The shape and geometric 

features (B + Sh), ratios to scene (B + Rs) and texture features based on GLCM (B + T) did not 

contribute to improving the classification attained by the basic spectral features strategy (B). 

Disaggregating the results by class, the behavior of the three single tests performed with the  

near-nadir orthoimages (i.e., single GE9, single WV10-4 and single WV10-8) became very similar 

when applying the three best strategies. In these tests, there were a lot of misclassification problems 

between greenhouses and buildings classes, presenting Fβ indices usually lower than 75%. In fact, 

many small buildings were misclassified as plastic greenhouses. Curiously, this problem was partially 

solved in the single tests using the higher off-nadir orthoimages, due to the significant displacements 

of the roofs of the small buildings. In this way, these small objects, including pixels from other land 

cover in their edges, presented unique characteristics that helped for their correct classification. 

Anyway, and regarding an operational case, confusion between small buildings and greenhouses can 

be easily solved considering the area of these objects (i.e., introducing a threshold condition). More 
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difficult to solve would be the misclassification between vegetation and nets (when the last are 

cropped), especially taking into account that the DSM extracted over mesh greenhouses was not  

very accurate. 

Finally, NN and SVM non-parametric classifiers were compared through the All features strategy. 

The theoretical superiority of the SVM approach, as compared to NN, was not confirmed in this study. 

In fact, OA values were always slightly better when NN was applied. 

Further works should be focused on testing new dense matching algorithms to improve the DSM 

extraction, especially on greenhouses with mesh covering and urban areas. Furthermore, the accuracy 

of the automatic segmentation process applied to the greenhouse area poses a great challenge. We are now 

planning to address both topics in new Mediterranean study sites mainly dedicated to greenhouse growing. 
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