7 research outputs found

    Detection of interannual vegetation responses to climatic variability using AVIRIS data in a coastal savanna in California

    Get PDF
    11 pages, 10 figures.Ecosystem responses to interannual weather variability are large and superimposed over any long-term directional climatic responses making it difficult to assign causal relationships to vegetation change. Better understanding of ecosystem responses to interannual climatic variability is crucial to predicting long-term functioning and stability. Hyperspectral data have the potential to detect ecosystem responses that are undetected by broadband sensors and can be used to scale to coarser resolution global mapping sensors, e.g., advanced very high resolution radiometer (AVHRR) and MODIS. This research focused on detecting vegetation responses to interannual climate using the airborne visible-infrared imaging spectrometer (AVIRIS) data over a natural savanna in the Central Coast Range in California. Results of linear spectral mixture analysis and assessment of the model errors were compared for two AVIRIS images acquired in spring of a dry and a wet year. The results show that mean unmixed fractions for these vegetation types were not significantly different between years due to the high spatial variability within the landscape. However, significant community differences were found between years on a pixel basis, underlying the importance of site-specific analysis. Multitemporal hyperspectral coverage is necessary to understand vegetation dynamics.This work was supported in part by Foundation Barrie de la Maza, Spain, and NASA EOS Program Grant NAS5-31359.Peer reviewe

    Genetic constraints on temporal variation of airborne reflectance spectra and their uncertainties over a temperate forest

    Full text link
    Remote sensing enhances large-scale biodiversity monitoring by overcoming temporal and spatial limitations of ground-based measurements and allows assessment of multiple plant traits simultaneously. The total set of traits and their variation over time is specific for each individual and can reveal information about the genetic composition of forest communities. Measuring trait variation among individuals of one species continuously across space and time is a key component in monitoring genetic diversity but difficult to achieve with ground-based methods. Remote sensing approaches using imaging spectroscopy can provide high spectral, spatial, and temporal coverage to advance the monitoring of genetic diversity, if sufficient relation between spectral and genetic information can be established. We assessed reflectance spectra from individual Fagus sylvatica L. (European beech) trees acquired across eleven years from 69 flights of the Airborne Prism Experiment (APEX) above the same temperate forest in Switzerland. We derived reflectance spectra of 68 canopy trees and correlated differences in these spectra with genetic differences derived from microsatellite markers among the 68 individuals. We calculated these correlations for different points in time, wavelength regions and relative differences between wavelength regions. High correlations indicate high spectral-genetic similarities. We then tested the influence of environmental variables obtained at temporal scales from days to years on spectral-genetic similarities. We performed an uncertainty propagation of radiance measurements to provide a quality indicator for these correlations. We observed that genetically similar individuals had more similar reflectance spectra, but this varied between wavelength regions and across environmental variables. The short-wave infrared regions of the spectrum, influenced by water absorption, seemed to provide information on the population genetic structure at high temperatures, whereas the visible part of the spectrum, and the near-infrared region affected by scattering properties of tree canopies, showed more consistent patterns with genetic structure across longer time scales. Correlations of genetic similarity with reflectance spectra similarity were easier to detect when investigating relative differences between spectral bands (maximum correlation: 0.40) than reflectance data (maximum correlation: 0.33). Incorporating uncertainties of spectral measurements yielded improvements of spectral-genetic similarities of 36% and 20% for analyses based on single spectral bands, and relative differences between spectral bands, respectively. This study highlights the potential of dense multi-temporal airborne imaging spectroscopy data to detect the genetic structure of forest communities. We suggest that the observed temporal trajectories of reflectance spectra indicate physiological and possibly genetic constraints on plant responses to environmental change

    Detection of interannual vegetation responses to climatic variability using AVIRIS data in a coastal savanna in California

    Get PDF
    11 pages, 10 figures.Ecosystem responses to interannual weather variability are large and superimposed over any long-term directional climatic responses making it difficult to assign causal relationships to vegetation change. Better understanding of ecosystem responses to interannual climatic variability is crucial to predicting long-term functioning and stability. Hyperspectral data have the potential to detect ecosystem responses that are undetected by broadband sensors and can be used to scale to coarser resolution global mapping sensors, e.g., advanced very high resolution radiometer (AVHRR) and MODIS. This research focused on detecting vegetation responses to interannual climate using the airborne visible-infrared imaging spectrometer (AVIRIS) data over a natural savanna in the Central Coast Range in California. Results of linear spectral mixture analysis and assessment of the model errors were compared for two AVIRIS images acquired in spring of a dry and a wet year. The results show that mean unmixed fractions for these vegetation types were not significantly different between years due to the high spatial variability within the landscape. However, significant community differences were found between years on a pixel basis, underlying the importance of site-specific analysis. Multitemporal hyperspectral coverage is necessary to understand vegetation dynamics.This work was supported in part by Foundation Barrie de la Maza, Spain, and NASA EOS Program Grant NAS5-31359.Peer reviewe

    Detection of interannual vegetation responses to climatic variability using AVIRIS data in a coastal savanna in California

    Get PDF
    11 pages, 10 figures.Ecosystem responses to interannual weather variability are large and superimposed over any long-term directional climatic responses making it difficult to assign causal relationships to vegetation change. Better understanding of ecosystem responses to interannual climatic variability is crucial to predicting long-term functioning and stability. Hyperspectral data have the potential to detect ecosystem responses that are undetected by broadband sensors and can be used to scale to coarser resolution global mapping sensors, e.g., advanced very high resolution radiometer (AVHRR) and MODIS. This research focused on detecting vegetation responses to interannual climate using the airborne visible-infrared imaging spectrometer (AVIRIS) data over a natural savanna in the Central Coast Range in California. Results of linear spectral mixture analysis and assessment of the model errors were compared for two AVIRIS images acquired in spring of a dry and a wet year. The results show that mean unmixed fractions for these vegetation types were not significantly different between years due to the high spatial variability within the landscape. However, significant community differences were found between years on a pixel basis, underlying the importance of site-specific analysis. Multitemporal hyperspectral coverage is necessary to understand vegetation dynamics.This work was supported in part by Foundation Barrie de la Maza, Spain, and NASA EOS Program Grant NAS5-31359.Peer reviewe

    Estimation of gap fraction and clumping index with Terrestrial and Airborne Laser Scanner data

    Get PDF
    El dosel forestal es una zona de intercambio de flujos y energ铆a entre la superficie de la tierra y la atm贸sfera. Su estructura est谩 representada por la organizaci贸n espacial de todos los elementos vegetales que se encuentran sobre la superficie. La estructura del dosel condiciona una serie de variables microclim谩ticas en el interior de este espacio, las que influyen en la disponibilidad de los recursos y el comportamiento de las especies que cohabitan en 茅l. Existe una serie de variables que permiten describir la estructura del dosel. Entre las m谩s importantes se encuentran el 铆ndice de 谩rea foliar, cuyo c谩lculo y correcci贸n depende de otros par谩metros como la fracci贸n de huecos (gap fraction, GF) y el 铆ndice de agrupamiento foliar (clumping index, CI). En este documento se estudian y desarrollan m茅todos para la estimaci贸n de GF y CI a partir de esc谩neres l谩ser terrestres y aerotransportados (Terrestrial (TLS) and Airborne (ALS) Laser Scanners). Para lograr esto, se llevaron a cabo mediciones con TLS en Las Majadas del Ti茅tar (C谩ceres, Espa帽a) en el a帽o 2009 y con ALS en Jasper Ridge (California, EE.UU.) en el 2007. En el caso de la estimaci贸n de GF a partir TLS, se desarroll贸 un nuevo m茅todo que calculaba la proporci贸n entre p铆xeles vac铆os y su totalidad a partir de im谩genes angulares, una vez que se conoc铆a su resoluci贸n. La validaci贸n del m茅todo fue realizada mediante simulaciones de datos con diversas resoluciones angulares y patrones de huecos en el dosel. El m茅todo se compar贸 tambi茅n con los resultados de GF a partir de fotograf铆as hemisf茅ricas (hemispherical photography, HP), una vez que los datos TLS se reproyectaron para simular HP (TLS-SHP). La estimaci贸n del CI se llev贸 a cabo aplicando la teor铆a de la distribuci贸n del tama帽o de los huecos de Chen y Cihlar (1995) sobre las TLS-SHP, que se contrast贸 con los valores de CI de las HP. En la zona de Jasper Ridge las estimaciones de GF se realizaron empleando m茅tricas basadas en la ley de transmisividad de Beer-Lambert que miden el porcentaje de retornos l谩ser que llegan al suelo, considerando parcelas circulares de datos ALS con diferentes tama帽os de radio, para compararlas con la GF estimado de las HP. Del mismo modo, se prob贸 tambi茅n con la relaci贸n entre las intensidades de los retornos del suelo y las de todos ellos al interior de las parcelas. El CI se estim贸 a partir de m茅tricas ALS derivadas de la altura de la vegetaci贸n y se relacionaron con el CI de las HP. Adem谩s, se adapt贸 con el mismo prop贸sito el 铆ndice de segregaci贸n espacial de Pielou (1962), que se aplic贸 sobre im谩genes de GF generadas para parcelas de datos ALS con distintos tama帽os de radio y que fueron comparadas con el CI generado desde las HP. Para los experimentos llevados a cabo con los datos TLS, la GF fue sobreestimada en un 14% respecto a las HP, siendo las correlaciones estad铆sticamente significativas. El algoritmo desarrollado es operativo siempre y cuando el ruido en los datos angulares sea inferior al 6% de la resoluci贸n angular. Por encima de este umbral el m茅todo present贸 un alto error, especialmente en los datos simulados con una estructura de huecos agrupados (cluster). El CI se subestim贸 en 27% respecto a los valores obtenidos por las HP. Los principales problemas vienen dados por la diferencia en la distribuci贸n del tama帽o de los huecos registrados por las HP y las TLS-SHP. Por otra parte, la GF derivada de los datos ALS subestim贸 en un 3% y sobrestim贸 en un 43% comparado con las HP, para las parcelas de bosque y matorral, respectivamente. La GF obtenida present贸 una clara dependencia del radio de los datos ALS considerados, que vari贸 seg煤n el tipo de vegetaci贸n. Respecto a las estimaciones del CI, las m茅tricas ALS de las alturas de la vegetaci贸n no mostraron buenos resultados. Esta circunstancia es contraria a estudios previos, lo que parece indicar que estas relaciones emp铆ricas s贸lo funcionar铆an para el tipo de vegetaci贸n y sitio para el que fueron desarrolladas. Sin embargo, la modificaci贸n del algoritmo de Pielou subestim贸 el CI en s贸lo 6% y 4% para las parcelas de bosques y matorrales, respectivamente. Las posibles causas de estas diferencias radican en las distintas perspectivas y resoluci贸n espacial que poseen los datos ALS y HP

    Estimation of gap fraction and clumping index with Terrestrial and Airborne Laser Scanner data

    Get PDF
    El dosel forestal es una zona de intercambio de flujos y energ铆a entre la superficie de la tierra y la atm贸sfera. Su estructura est谩 representada por la organizaci贸n espacial de todos los elementos vegetales que se encuentran sobre la superficie. La estructura del dosel condiciona una serie de variables microclim谩ticas en el interior de este espacio, las que influyen en la disponibilidad de los recursos y el comportamiento de las especies que cohabitan en 茅l. Existe una serie de variables que permiten describir la estructura del dosel. Entre las m谩s importantes se encuentran el 铆ndice de 谩rea foliar, cuyo c谩lculo y correcci贸n depende de otros par谩metros como la fracci贸n de huecos (gap fraction, GF) y el 铆ndice de agrupamiento foliar (clumping index, CI). En este documento se estudian y desarrollan m茅todos para la estimaci贸n de GF y CI a partir de esc谩neres l谩ser terrestres y aerotransportados (Terrestrial (TLS) and Airborne (ALS) Laser Scanners). Para lograr esto, se llevaron a cabo mediciones con TLS en Las Majadas del Ti茅tar (C谩ceres, Espa帽a) en el a帽o 2009 y con ALS en Jasper Ridge (California, EE.UU.) en el 2007. En el caso de la estimaci贸n de GF a partir TLS, se desarroll贸 un nuevo m茅todo que calculaba la proporci贸n entre p铆xeles vac铆os y su totalidad a partir de im谩genes angulares, una vez que se conoc铆a su resoluci贸n. La validaci贸n del m茅todo fue realizada mediante simulaciones de datos con diversas resoluciones angulares y patrones de huecos en el dosel. El m茅todo se compar贸 tambi茅n con los resultados de GF a partir de fotograf铆as hemisf茅ricas (hemispherical photography, HP), una vez que los datos TLS se reproyectaron para simular HP (TLS-SHP). La estimaci贸n del CI se llev贸 a cabo aplicando la teor铆a de la distribuci贸n del tama帽o de los huecos de Chen y Cihlar (1995) sobre las TLS-SHP, que se contrast贸 con los valores de CI de las HP. En la zona de Jasper Ridge las estimaciones de GF se realizaron empleando m茅tricas basadas en la ley de transmisividad de Beer-Lambert que miden el porcentaje de retornos l谩ser que llegan al suelo, considerando parcelas circulares de datos ALS con diferentes tama帽os de radio, para compararlas con la GF estimado de las HP. Del mismo modo, se prob贸 tambi茅n con la relaci贸n entre las intensidades de los retornos del suelo y las de todos ellos al interior de las parcelas. El CI se estim贸 a partir de m茅tricas ALS derivadas de la altura de la vegetaci贸n y se relacionaron con el CI de las HP. Adem谩s, se adapt贸 con el mismo prop贸sito el 铆ndice de segregaci贸n espacial de Pielou (1962), que se aplic贸 sobre im谩genes de GF generadas para parcelas de datos ALS con distintos tama帽os de radio y que fueron comparadas con el CI generado desde las HP. Para los experimentos llevados a cabo con los datos TLS, la GF fue sobreestimada en un 14% respecto a las HP, siendo las correlaciones estad铆sticamente significativas. El algoritmo desarrollado es operativo siempre y cuando el ruido en los datos angulares sea inferior al 6% de la resoluci贸n angular. Por encima de este umbral el m茅todo present贸 un alto error, especialmente en los datos simulados con una estructura de huecos agrupados (cluster). El CI se subestim贸 en 27% respecto a los valores obtenidos por las HP. Los principales problemas vienen dados por la diferencia en la distribuci贸n del tama帽o de los huecos registrados por las HP y las TLS-SHP. Por otra parte, la GF derivada de los datos ALS subestim贸 en un 3% y sobrestim贸 en un 43% comparado con las HP, para las parcelas de bosque y matorral, respectivamente. La GF obtenida present贸 una clara dependencia del radio de los datos ALS considerados, que vari贸 seg煤n el tipo de vegetaci贸n. Respecto a las estimaciones del CI, las m茅tricas ALS de las alturas de la vegetaci贸n no mostraron buenos resultados. Esta circunstancia es contraria a estudios previos, lo que parece indicar que estas relaciones emp铆ricas s贸lo funcionar铆an para el tipo de vegetaci贸n y sitio para el que fueron desarrolladas. Sin embargo, la modificaci贸n del algoritmo de Pielou subestim贸 el CI en s贸lo 6% y 4% para las parcelas de bosques y matorrales, respectivamente. Las posibles causas de estas diferencias radican en las distintas perspectivas y resoluci贸n espacial que poseen los datos ALS y HP

    Monitoring carbon stocks in the sub-tropical thicket biome using remote sensing and GIS techniques : the case of the Great Fish River Nature Reserve and its environs, Eastern Cape province, South Africa

    Get PDF
    The subtropical thicket biome in the Eastern Cape Province of South Africa has been heavily degraded and transformed due overutilization during the last century. The highly degraded and transformed areas exhibit a significant loss of above ground carbon stocks (AGC) and loss of SOC content. Information about land use /cover change and fragmentation dynamics is a prerequisite for measuring carbon stock changes. The main aim of this study is to assess the trends of land use/cover change, fragmentation dynamics, model the temporal changes of AGC stocks in the Great Fish River Nature Reserve and its environs from 1972 to 2010, quantify and map the spatial distribution of SOC concentrations in the partial subtropical thicket cover in the Great Fish River Nature Reserve and environs (communal rangelands). Multi-temporal analyses based on 1972 Landsat MSS, 1982 and 1992 Landsat TM, 2002 Landsat ETM and 2010 SPOT 5 High Resolution images were used for land use/cover change detection and fragmentation analysis. Object oriented post-classification comparison was applied for land use/cover change detection analysis. Fragmentation dynamics analysis was carried out by computing and analyzing landscape metrics in land use/cover classes. Landscape fragmentation analyses revealed that thicket vegetation has increasingly become fragmented, characterized by smaller less linked patches of intact thicket cover. Landscape metrics for intact thicket and degraded thicket classes reflected fragmentation, as illustrated by the increase in the Number of Patches (NP), Patch Density (PD), Landscape Shape Index (LSI), and a decrease in Mean Patch Size (MPS). The use of remote sensing techniques and landscape metrics was vital for the understanding of the dynamics of land use/cover change and fragmentation. Baseline land use/cover maps produced for 1972, 1982, 1992 2002 and 2010 and fragmentation analyses were then used for analyzing carbon stock changes in the study area. To model the temporal changes of AGC stocks in the Great Fish River Nature Reserve and its environs from 1972 to 2010, a method based on the integration of RS and GIS was employed for the estimation of AGC stocks in a time series. A non-linear regression model was developed using NDVI values generated from SPOT 5 HRG satellite imagery of 2010 as the independent variable and AGC stock estimates from field plots as the dependent variable. The regression model was used to estimate AGC stocks for the entire study area on the 2010 SPOT 5 HRG and also extrapolated to the 1972 Landsat MSS, 1982 and 1992 Landsat TM, and 2002 Landsat ETM. The AGC stocks for the period 1972 -1982, 1982-1992, 1992-200) and 2002-2010 were compared by means of change detection analysis. The comparison of AGC stocks was carried out at subtropical thicket class level. The results showed a decline of AGC stocks in all the classes from 1972 to 2010. Degraded and transformed thicket classes had the highest AGC stock losses. The decline of AGC stocks was attributed to thicket transformation and degradation which were caused by anthropogenic activities. To map and quantify SOC concentration in partial (fractional) thicket vegetation cover, the spectral reflectance of both thicket vegetation and bare-soils was measured in situ. Soil samples were collected from the sampling sites and transported to the laboratory for spectral reflectance and SOC measurements. Thicket vegetation and bare soil reflectance were measured using spectroscopy both in situ and under laboratory conditions. Their respective endmembers were extracted from ASTER imagery using the Pixel Purity Index (PPI). The endmembers were validated with in situ and laboratory thicket and bare-soil reflectance signatures. The spectral unmixing technique was applied to ASTER imagery to discriminate pure pixels of thicket vegetation and bare-soils; a residual spectral image was produced. The Residual Spectral Unmixing (RSU) procedure was applied to the residual spectral image to produce an RSU soil spectrum image. Partial Least Squares Regression (PSLR) model was developed using spectral signatures of a residual soil spectrum image as the independent variable and SOC concentration measured from soil samples as the dependent variable. The PSLR prediction model was used to predict SOC concentration on the RSU soil spectral image. The predicted SOC concentration was then validated with SOC concentration measured from the field plots. A Strong correlation (R2 = 0.82) was obtained between the predicted SOC concentration and the SOC concentration measured from field samples. The PSLR was then used to generate a map of SOC concentration for the Great Fish River Nature Reserve and its environs. Areas with very low SOC concentrations were found in the degraded communal villages, as opposed to the higher SOC values in the protected area. The results confirmed that RS techniques are key to estimating and mapping the spatial distribution of SOC concentration in partial subtropical thicket vegetation. Partial thicket vegetation has a huge influence on the soil spectra; it can influence the prediction of SOC concentration. The use of the RSU approach eliminates partial thicket vegetation cover from bare soil spectra. The residual soil spectrum image contains enough information for the mapping of SOC concentration. The technique has the potential to augment the applicability of airborne imaging spectroscopy for soil studies in the sub-tropical thicket biome and similar environments
    corecore