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RESUMEN 

El dosel forestal es una zona de intercambio de flujos y energía entre la 

superficie de la tierra y la atmósfera. Su estructura está representada por la 

organización espacial de todos los elementos vegetales que se encuentran sobre la 

superficie. La estructura del dosel condiciona una serie de variables microclimáticas en 

el interior de este espacio, las que influyen en la disponibilidad de los recursos y el 

comportamiento de las especies que cohabitan en él. Existe una serie de variables que 

permiten describir la estructura del dosel. Entre las más importantes se encuentran el 

índice de área foliar, cuyo cálculo y corrección depende de otros parámetros como la 

fracción de huecos (gap fraction, GF) y el índice de agrupamiento foliar (clumping 

index, CI). 

En este documento se estudian y desarrollan métodos para la estimación de GF 

y CI a partir de escáneres láser terrestres y aerotransportados (Terrestrial (TLS) and 

Airborne (ALS) Laser Scanners). Para lograr esto, se llevaron a cabo mediciones con TLS 

en Las Majadas del Tiétar (Cáceres, España) en el año 2009 y con ALS en Jasper Ridge 

(California, EE.UU.) en el 2007. En el caso de la estimación de GF a partir TLS, se 

desarrolló un nuevo método que calculaba la proporción entre píxeles vacíos y su 

totalidad a partir de imágenes angulares, una vez que se conocía su resolución. La 

validación del método fue realizada mediante simulaciones de datos con diversas 

resoluciones angulares y patrones de huecos en el dosel. El método se comparó 

también con los resultados de GF a partir de fotografías hemisféricas (hemispherical 

photography, HP), una vez que los datos TLS se reproyectaron para simular HP (TLS-

SHP). La estimación del CI se llevó a cabo aplicando la teoría de la distribución del 

tamaño de los huecos de Chen y Cihlar (1995) sobre las TLS-SHP, que se contrastó con 

los valores de CI de las HP.  

En la zona de Jasper Ridge las estimaciones de GF se realizaron empleando 

métricas basadas en la ley de transmisividad de Beer-Lambert que miden el porcentaje 

de retornos láser que llegan al suelo, considerando parcelas circulares de datos ALS 

con diferentes tamaños de radio, para compararlas con la GF estimado de las  HP. Del 

mismo modo, se probó también con la relación entre las intensidades de los retornos 
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del suelo y las de todos ellos al interior de  las parcelas. El CI se estimó a partir de 

métricas ALS derivadas de la altura de la vegetación y se relacionaron con el CI de las 

HP. Además, se adaptó con el mismo propósito el índice de segregación espacial de 

Pielou (1962), que se aplicó sobre imágenes de GF generadas para parcelas de datos 

ALS con distintos tamaños de radio y que fueron comparadas con el CI generado desde 

las HP. 

Para los experimentos llevados a cabo con los datos TLS, la GF fue 

sobreestimada en un 14% respecto a las HP, siendo las correlaciones estadísticamente 

significativas. El algoritmo desarrollado es operativo siempre y cuando el ruido en los 

datos angulares sea inferior al 6% de la resolución angular. Por encima de este umbral 

el método presentó un alto error, especialmente en los datos simulados con una 

estructura de huecos agrupados (cluster). El CI se subestimó en 27% respecto a los 

valores obtenidos por las HP. Los principales problemas vienen dados por la diferencia 

en la distribución del tamaño de los huecos registrados por las HP y las TLS-SHP.  

Por otra parte, la GF derivada de los datos ALS subestimó en un 3% y 

sobrestimó en un 43% comparado con las HP, para las parcelas de bosque y matorral, 

respectivamente. La GF obtenida presentó una clara dependencia del radio de los 

datos ALS considerados, que varió según el tipo de vegetación. Respecto a las 

estimaciones del CI, las métricas ALS de las alturas de la vegetación no mostraron 

buenos resultados. Esta circunstancia es contraria a estudios previos, lo que parece 

indicar que estas relaciones empíricas sólo funcionarían para el tipo de vegetación y 

sitio para el que fueron desarrolladas. Sin embargo, la modificación del algoritmo de 

Pielou subestimó el CI en sólo 6% y 4% para las parcelas de bosques y matorrales, 

respectivamente. Las posibles causas de estas diferencias radican en las distintas 

perspectivas y resolución espacial que poseen los datos ALS y HP.  
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ABSTRACT 

Fluxes and energy exchange between the land surface and the atmosphere 

occur at the forest canopy. Its structure is the detailed spatial organization of all 

aboveground vegetal elements. The forest canopy structure conditions several 

microclimatic variables, which influence in the resources availability and the animal 

behavior that co-habitat in it. There are several variables that allow describing the 

canopy structure. Among these, one of the most relevant is the leaf area index, whose 

calculation and correction depends on other parameters like the gap fraction (GF) and 

the foliar clumping index (CI). 

This document studies and develops methods to estimate GF and CI from 

Terrestrial (TLS) and Airborne (ALS) Laser Scanners. To achieve this, measurements 

were acquired with a TLS in Las Majadas del Tiétar (Cáceres, Spain) in the year 2009 

and with an ALS in Jasper Ridge (California, USA) in 2007. In the case of GF estimated 

from TLS, a new proposed method computed the ratio between the empty and all 

pixels from angular images, once their angular resolution was known. The method was 

validated from data simulations with several angular resolutions and canopy gap 

patterns. They were also compared to the GF results from hemispherical photography 

(HP), once the TLS data were reprojected to simulate HP (TLS-SHP). The CI estimation 

was carried out applying the gap size distribution theory proposed by Chen and Cihlar 

(1995) over the TLS-SHP that was compared to the CI values from HP. 

Based on the transmissivity Beer-Lambert law, the GF estimations at the Jasper 

Ridge site were done from metrics that measure the percentage of laser returns that 

reach the ground, considering circular plots of ALS data at different radii size, to 

compare them with GF estimated with HP. The same way, the relationship between 

the intensity of the returns from the ground and the ones from all of them was also 

tested. CI estimation was carried out using ALS metrics derived from vegetation height 

and they were related to CI from HP. In addition, the spatial segregation index 

proposed by Pielou (1962) was adapted to be applied over GF images generated from 

ALS data of different radii size and compared to the CI computed from HP.  

For the experiments carried out with TLS data, the GF was overestimated in the 

order of 14% respect to HP, being the correlations statistically significant. The 
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algorithm developed is operative as long as the noise in the angular data was below 

6% of the angular resolution. Above this threshold the method showed a high error, 

especially for the simulated data with a cluster gap pattern. The CI was 

underestimated in 27% respect the values obtained from HP. The main problems came 

from the difference in gap size distributions registered by the HP and the TLS-SHP.  

On the other hand, the GF derived from ALS data underestimated in 3% and 

overestimated in 43% respect to HP, for the forest and shrub plots, respectively. The 

GF obtained showed a clear spatial dependence on the radius of the ALS data 

considered, which varied according to the vegetation type. In relation to the CI 

estimations, the vegetation height ALS metrics did not perform well. This circumstance 

is contrary to previous studies and seems to indicate that these empirical relations 

only would work for the vegetation type and site for which they were developed. 

However, the modification to Pieolou’s algorithm underestimated the CI in only 6% 

and 4% for the forest and shrub plots, respectively. The possible causes for these 

dissimilarities rely on the different perspective and spatial resolution that the ALS and 

HP have. 
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STRUCTURE OF THE PHD DISSERTATION 

The document is divided in four chapters. The first is dedicated to a literature 

review of the canopy structural indicators, methods and instruments to characterize 

the canopy and the role of the Terrestrial (TLS) and Airborne (ALS) Laser Scanners to 

specifically estimate two important structural variables: the canopy gap fraction (GF) 

and clumping index (CI), also it includes the hypothesis and objectives of this work. The 

second is the methods section which is organized according to the experiments carried 

out in two study sites: The first study site was Las Majadas del Tiétar (Spain) where GF 

was computed with a new method which uses angular images derived from a TLS. 

Another experiment was based on the estimation of canopy CI, applying the gap size 

distribution theory after transforming the TLS data in hemispherical images. The 

second study site was located in Jasper Ridge (USA) and there it was carried out the 

estimation of canopy GF using height metrics and penetration rates metrics based on 

frequency and intensity data collecting from ALS. An additional experiment was also 

conducted in this site to estimate the canopy CI by means of empirical ALS height 

metrics and the adaptation of Pielou’s algorithm to work over ALS point cloud and 

ground returns images. The third chapter presents the results and discussion for each 

of the experiments described above. The fourth section provides the conclusions 

derived from the work and exposes the main factors which influenced the results 

obtained. 
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1 INTRODUCTION 

1.1 Characterization of the vegetation canopy structure 

Branches, twigs, leaves and crown shape arrange to constitute the vegetation 

canopy (Parker 1995). A detailed organization and arrangement in space and time 

dimensions at various scales of all above ground vegetation elements form the canopy 

structure. This description includes information and attributes about the amount, 

location, connectivity and type of elements (Lefsky et al. 1999). The canopy forms a 

particular and exclusive sub-system, key to understand the interactions between the 

vegetation and its surrounding environment. The canopy structure is one of the most 

influential elements in the microclimate and the habitat that it supports. For example, 

it modulates the wind speed (Lefsky et al. 2002; Parker 1995) or the amount of 

irradiance or visible light (Danson et al. 2007; Panferov et al. 2001; Parker 1995) within 

the canopy. The vertical disposition of the elements inside the canopy controls the 

reduction and the distribution of the photosynthetic active radiation (Dean et al. 

2009), that impacts the growth and mortality rates of seedlings under the canopy 

(Lhotka and Loewenstein 2008). Precipitation is also affected since the canopy 

intercepts and redirects the water. According to Parker (1995), between 10 and 30% of 

the precipitation can be intercepted and evaporated by the canopy.  

The presence of multiple vertical vegetation layers also influences the 

concentration and gradients of particles and gases that move within the canopy 

(Parker et al. 2004). In the CO2 case, the upper and middle layers are a sink, especially 

during the day. Conversely, the layer near the ground surface becomes a source of CO2 

especially during the night as consequence of the roots respiration and decomposition 

of the ground litter. The detailed knowledge of the several canopy layers, as well as 

the variability rates of CO2 contribute to a more accurate simulation of the gases 

exchange to the atmosphere, as part of the photosynthesis and respiration of the 

vegetation (Parker 1995; Reich et al. 1990). Moreover, changes in the structure affect 

the habitat and biodiversity of the ecosystem that the canopy supports. The 

arrangement of the canopy layers and the distribution and complexity of branches and 
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foliage, result in changes in space, light, moisture and food availability that limit the 

resources that species need to survive and develop (Nelson et al. 2003; Pringle et al. 

2003; Skirvin 2007). In the context of fire management, canopy structural parameters 

like fuel loading, vertical profile, canopy bulk density and height of the crown base 

contribute to model fire behavior (García et al. 2012; Hall et al. 2005; Popescu and 

Zhao 2008; Riaño et al. 2003). Finally, the crown dimension, and its relation with 

height and diameter at breast height, is an indicator of competition and forest health 

in order to design of silvicultural treatments and stand management to increase wood 

production (Dean et al. 2009; Popescu and Zhao 2008).    

The canopy structure can be characterized at different scales, from the 

identification of individual plants, to the stand and ecosystem level (Van der Zande et 

al. 2006). The task of producing a complete description of the size, shape and 

orientations of all the vegetal elements (trunks, branches, leaves, flowers, fruits), is 

almost impossible considering the canopy is very dynamic (Welles and Cohen 1996). To 

simply this complexity, a variable such as the maximum tree height, tree density, 

forest biomass, canopy cover or leaf area index (LAI) can summarize the structure in 

most circumstances (Parker 1995). The LAI is defined as the half of total leaf area per 

unit of ground horizontal area (Chen and Black 1992). It is one of the principal input 

variables to model photosynthesis, evapotranspiration and carbon and water fluxes 

interchange between the canopy and the atmosphere (Weiss et al. 2004).  

Two variables are especially relevant to describe the canopy structure, the 

canopy gap fraction (GF) and the canopy clumping index (CI), which are the focus of 

this study. More specifically, the GF is the fraction of sky that is visible under the 

canopy in any particular direction. The GF ranges from zero to one for a completely 

obstructed and a completely open sky, respectively (Welles and Cohen 1996). Fraction 

cover, or sometimes also called canopy cover, is the complementary with a value of 

one for an obstructed sky and zero for an open one. The GF is a valuable measure for 

vegetation analysis to monitor phenological fluctuations, evolution and recovery after 

a disturbance, such as water stress, flood, air and soil contamination or a plague 

(Walter 2009). Besides animals respond the light availability within the canopy (Endler 

1993; Pringle et al. 2003). GF is also an important structural parameter, because its 
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inversion that theoretically follows a Poisson gap frequency distribution estimates LAI 

(Campbell and Norman 1989; Miller 1967; Nilson 1971). This LAI estimation, called 

‘effective LAI’, assumes that the canopy elements are randomly distributed. This 

approach introduces an error because the canopy elements are rarely randomly 

distributed in nature. To account for this, the effective LAI derived from GF inversion 

(Kucharik et al. 1997; Myneni et al. 2002), combined with a factor that measures the 

degree of canopy randomness or clumping index (CI), produces the ‘true LAI’ (Chen 

and Cihlar 1995; Gonsamo and Pellikka 2009; Walter 2009). A CI value of zero indicates 

a very high clumped canopy formed by non-random elements, whereas a value of one 

means a very low clumped canopy of random spatial elements. Chen et al. (2003) 

demonstrated the CI relevance in the segmentation of solar radiation distribution 

between sunlit and shaded leaves to upscale the modelling photosynthesis. In 

addition, Nilson (1971) indicated the significance of CI to compute the interception and 

penetration rate of radiation through the canopy. 

1.2 Measurement of vegetation canopy structural variables 

Canopy complexity, accessibility and time to take the measurements constrain 

the acquisition of representative direct data of the canopy structure (Fournier et al. 

1997; Van der Zande et al. 2006; Welles and Cohen 1996). These are some of the main 

reasons to limit the measurements to one variable and to find an average over similar 

spatial features (Parker 1995). In this context, choosing the proper variable that 

describes suitably the phenomenon to study might be challenging (Campbell and 

Norman 1989). One of the first characterizations of the canopy structure in the field 

was just some sketches of the representative trees in the forest (Parker 1995). 

Furthermore, one of the simplest approaches to describe the structure is to measure 

the canopy height and cover (Lefsky et al. 1999). More advanced methods have 

enabled to describe the vertical distribution of the canopy, such as the two 

dimensional point quadrats by Wilson (1959) first, and later the optical point quadrats 

by MacArthur and Horn (1969) that use an upward view telephoto.  

To get enough, detailed and accurate information, sometimes it is necessary to 

measure additional characteristics manually. Fournier et al. (1997) carried out a multi-
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scale (individual trees, stand and regional) structural characterization to produce a 

complete digital 3D reconstruction of the canopy elements. They measured manually 

the tree position, dominant category, tree height, crown extension, diameter at breast 

height, fractional cover, and a complete characterization of the branches structure 

that included: amount of leaves, coordinates and positions of the segments, 

dimensions and spatial organization of the leaves. Another variable critical to 

summarize the canopy structure such as the LAI is measured directly in two phases: 1) 

leaf collection by means of destructive or non-destructive techniques (Weiss et al. 

2004); 2) the leaf area computation by scanning the leaves (Jonckheere et al. 2004), or 

based on the dry weight correlation to leaf area (Le Roux et al. 1999). 

To deal with some of the difficulties of these direct estimations of the structural 

parameters, different methods relying on the relation between the canopy structure 

and light interception were developed (Weiss et al. 2004). The light that passes 

through the canopy can be estimated by a 3D model that describes the canopy 

structure (Jonckheere et al. 2004). The light transmission through the canopy can be 

collected from the GF measurements with linear and hemispherical sensors (Welles 

and Cohen 1996). 

The linear sensors measure in only one direction at a time during direct sun 

light and require the user to move along a transect to characterize the structure 

(Leblanc et al. 2002a). The leaves absorb almost 90% of the light in the photosynthetic 

active radiation (PAR) region (400 to 700 nanometers). The possibility of linear sensors 

to measure PAR makes these instruments a good indicator of canopy GF (Chen 1996). 

The GF is obtained by dividing the PAR below the canopy over the one above, at a 

place with no vegetation. However, a threshold can be set so that the sensor assumes 

an open sky to avoid the need of taking measurements above the canopy (Jonckheere 

et al. 2004).  

There are several manufactures that build PAR sensors. The AccuPar L-80 from 

Decagon Devices (Box 2365, Pullman, WA 99163 – USA) is a portable PAR sensor with 

80 sensors distributed along a stick every 1 cm and a control unit. The LI-191 is 

manufactured by LI-COR (Box 4425, Lincoln, NE 68504 – USA) and is integrated by one 

sensor of 1 m sensitivity length coupled into a probe of 116 cm long and connected to 
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a data logger with a detachable cable. The Sun Scan SS1 introduced by Delta T Devices 

(130 Low Road, Burwell, Cambridge - UK) is a ceptometer of 100 cm long by 13 mm 

wide with an array of 64 PAR sensors embedded into a probe and connected to 

handheld PDA. This instrument has the possibility to add a reference sensor to 

measure the light above the canopy and transmit the data via radio frequency. The 

Tracing Radiation and Architecture of Canopies (TRAC) manufactured by 3rd Wave 

Engineering (14 Aleutian Rd, Nepean, Ontario – CA) is a system with two PAR sensors 

looking up and one down, amplifiers, clock and an a I/O circuitry. The PAR sensors are 

coupled to a stick with bull eye spirit level and connected to a data control and logger 

unit. In between these linear sensors is also the DEMON instrument built by CSIRO 

(Locked Bag 10, Clayton South VIC 3169 – AU), which uses a detector facing up to 

measure both, the transmittance above and below the canopy. The GF is computed as 

the linear average of transmittance captured along a transect. One of the main 

problems with this instrument is the need to capture data at least three times per day, 

in order to get enough information for different sun inclinations (Jonckheere et al. 

2004). 

Unlike the linear sensors, the hemispherical ones are able to collect 

measurements from multiple angles at once and for some of them there is no need to 

use transects (Welles and Cohen 1996). The Digital Plant Canopy Imager (CI-110) 

manufactured by CID Bio-Science (1554 NE 3rd Ave, Camas, WA 98607 – USA) is a 

system that includes 24 PAR sensors and a hemispherical fisheye camera (180°) 

assembled in an arm of 40 cm length. The user can analyze and compute GF at the 

moment of measurement or store the hemispherical photographs for post-processing 

in a PC. The LAI 2200C plant canopy analyzer manufactured by LI-COR (Box 4425, 

Lincoln, NE 68504 – USA) is an instrument with a fisheye light sensor that collects 

measurements in 5 zenithal bands centered at 7, 23, 38, 53 and 68°. A reference light 

must be measured above the canopy followed by one or more measurements below 

the canopy. The ratio between the two measurements gives the GF for each sky 

sector. The estimations are provided in-situ or stored to be post-processed in a 

console. The system allows simultaneous above and below canopy measurements 

using two LAI 2200C instruments, which helps when the light conditions change rapidly 
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or the canopy is very tall (Welles and Cohen 1996). With this configuration, one of 

them is fix to collect data at regular intervals in a place with no vegetation and the 

other moves around to collect data below the canopy at multiple points. In the 

console, the datasets can be matched by time in a single file that contains readings 

from both sensors.  

The hemispherical photographs (HP) are images captured from cameras with 

hemispherical (fisheye) lens placed under the canopy and oriented towards the zenith 

(Jonckheere et al. 2005). For best measurements, the HP needs to be captured when 

there is a high contrast between the sky and the canopy. This condition is usually given 

when the sky is cloudy or, during the first or last hours of the day (Welles and Cohen 

1996). The HP is a valuable source of information to study the canopy structure, 

because it provides permanent data about position, size and distribution of the canopy 

gaps (Gonsamo and Pellikka 2009). The HP provides an extreme field of view, generally 

180°, producing a projection of the hemisphere in a plane (Herbert 1986). The 

projection varies according the lens deformation. The most common geometrical 

projections used by commercial fisheye lens manufacturers are: polar, orthographic, 

Lambert equal area and stereographic (Gonsamo et al. 2010). A perfect 180° polar 

projection results in a circular image. Such image fits completely in the square frame, 

which leaves blank or black margins. The HP represents the sky view in all azimuthal 

(θ) and zenithal (ϕ) directions (azimuth, zenith), with the ϕ in the center and the 

horizon at the image borders (Jonckheere et al. 2004). According to fisheye lens 

deformation, the image is divided into sky segments which form what is called the 

‘skymap’. The skymap segments are delimited by the intersection of ϕ rings and θ 

sectors (Gonsamo et al. 2010).  

The GF in the HP can be computed as the ratio of number of pixels in a 

particular segment that represent the sky to the total number of pixels in this segment 

(Walter 2009). There are a series of commercial software and freeware to extract the 

GF from HP images: HemiView (Delta T Devices. 130 Low Road, Burwell, Cambridge - 

UK), WinSCANOPY (Regent Instruments Quebec – CA), Gap light analyzer (Frazer et al. 

1999), CIMES (Walter 2009), CAN-EYE (Weiss and Baret 2010), WINPHOT (Steege 1996) 

SOLARCALC (Mailly et al. 2013) and LIA32 (Yamamoto 2004).  
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In order to compute this ratio it is necessary to classify the HP into two classes: 

canopy and sky, which produces a binary image. This is one of the main problems in 

the HP processing, because GF computations mainly depend on a manual image 

threshold to discriminate between the two classes (Jonckheere et al. 2005). The 

simplest way to segment the HP is that the user defines threshold visually, below or 

equal which would represent one class, and above which the other class (Frazer et al. 

2001). This subjective process introduces a source of variability since the user 

threshold values cannot be consistently reproduced on other HP (Hale and Edwards 

2002). Automatic threshold algorithms can help to partly overcome this problem 

(Jonckheere et al. 2005), but the changes in illumination conditions on the HP can 

cause this process to fail. Several studies extracted GF from HP applying either 

interactive (Frazer et al. 2001; Gonsamo and Pellikka 2009; Gonsamo et al. 2010; Hale 

and Edwards 2002) or automatic (Gonsamo and Pellikka 2008; Inoue et al. 2004; 

Jonckheere et al. 2005; Leblanc et al. 2005; Walter et al. 2003) thresholds.  

Current HP images that have a high spatial resolution (e.g. 12 megapixels) can 

be used to derive the foliage CI (Walter 2009). Chen and Cihlar (1995) CI (CCI) is 

generated from the GF and gap size distributions. According to their theory, the 

clumped canopy usually shows large gaps combined with small gaps. The probability of 

appearance of these large gaps within a random canopy can be derived from the gap 

size distribution (Leblanc et al. 2002a). The algorithm works removing iteratively the 

large gaps that are not theoretically possible in a random canopy for a given LAI and 

foliage element width. After the large gap removal process, a new gap size cumulative 

distribution is computed. The removal process continues until the differences between 

consecutive computed distributions are insignificant. Finally, the CI is derived 

comparing the reduced GF closest to a random distribution with the actual measured 

GF distribution (Walter 2009). This method was originally created for the TRAC 

instrument, but it was later modified for HP images (Leblanc et al. 2002b).  

Other CI was proposed by Lang and Xiang (1986) that is based on the 

‘logarithmic gap averaging’ method (CLX). They established that LAI in a discontinuous 

and clumped canopy can be estimated by averaging the canopy GF in a logarithmic 

mode. The average GF is calculated for a sector with a length that is equivalent to ten 
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times the average size of a determined foliage element (Leblanc et al. 2005). The 

method assumes that canopy elements are randomly distributed and that each of the 

segments contains gaps (Gonsamo et al. 2010). The rationale behind this method is 

that the LAI has logarithmic relation with the GF throughout the Beer Lambert’s law, 

therefore the LAI average should follow the logarithm average of the GF (Lang and 

Yueqin 1986). The method shows some drawbacks when there are segments with no 

gaps or with very small GF, because GF values near zero will give infinity high LAI 

values and in consequence wrong estimations of CI (Lang and Yueqin 1986). Moreover, 

the randomness assumption of the canopy foliage in the segments could be not 

accomplished when the algorithm is either applied to segments longer than ten times 

the foliage elements, because large gaps between tree crowns could be found; or 

applied over very small segments, because lower ϕ angles provide short sampling 

segments. In these situations, the Poisson model assumes an infinite canopy and GF 

can not be derived (Gonsamo and Pellikka 2009). To solve this problem, the segments 

with no gaps can be altered artificially inserting a gap of one pixel (Van Gardingen et al. 

1999). Another possible solution is to remove the segments with no gaps from the CI 

calculations (Walter et al. 2003) or merge the null-gap segments with the next found 

non-null gap segment within the same ϕ ring to get the average GF value (Gonsamo et 

al. 2010).  

A new CI method, resulting from the combination of both, CCI and CLX, was 

proposed by Leblanc et al. (2005) to address some of the limitations of the previous 

methods. It computes the ratio between the logarithmic average GF of all segments 

and the product of the CCI by the sum of the logarithm GF of each segment. According 

to Leblanc et al. (2005), the CI will be affected with this method just by the large gaps 

in the segments. 

A hierarchical modification of the CLX was also proposed by Walter et al. (2003) 

to overcome the problem of empty segments. The GF values are linearly averaged over 

a sector with a specific θ width, assuming randomness at this specific scale. 

Subsequently, it computes logarithms on each sector to give an overall logarithmic 

average (Gonsamo and Pellikka 2009). The process is repeated for the whole θ range 

and for each ϕ ring. Finally, the CI is computed as the ratio of average GF and the 
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overall logarithmic average (Gonsamo and Pellikka 2009). The averaging scale can vary 

from a full linear with a θ width equal to 360°, to full geometric with a θ width equal to 

10°. Between these extreme scales others ones can be evaluated to average the GF 

and to avoid the empty gaps segments (Walter et al. 2003).  

Pielou’s spatial segregation coefficient (PCS) (Pielou 1962) can be also 

considered as a CI when it is applied under dense and clumped canopies (Walter et al. 

2003). The method records the absence or presence of one plant species in a field 

transect. Then the field observations are compared with those that would be expected 

from an unsegregated population with the same numerical composition. This provides 

the randomness deviation of each species respect to the other (Pielou 1962). Walter et 

al. (2003) implemented PCS on HP, in which the black and white pixels represented 

canopy and gaps, respectively. CI was computed for each angle based on the 

measured gap size distribution and the probability of find a black or white pixel in a 

theoretical random distribution function (Gonsamo and Pellikka 2009). 

1.3 Estimation of vegetation canopy structure using Terrestrial (TLS) and 

Airborne (ALS) Laser Scanners 

The Light Detection And Ranging (LiDAR) is a laser that measures ranges 

(distances) using the time elapsed between an emitted laser pulse and its return to the 

sensor after reflecting from an intercepted object (Lim et al. 2003). To measure the 

distances with LiDAR systems two main principles are used, one is the time of flight 

that measures the distance based on the speed of the light and the time traveled 

between the emitted and received pulse, and the other is by measuring the difference 

in the transmitted and received signal phase that is converted into travel time (Wehr 

and Lohr 1999).  

The type of information that LiDAR systems collect can be grouped into two 

broad classes. The discrete return devices can measure either one laser pulse return 

(single-returns) or several returns from each pulse (multiple-returns). On these 

sensors, the objects are represented as major peaks in the return signal and the 

systems usually store the distance and the power of each peak (Lefsky et al. 2002). The 

other LiDAR class are the waveforms devices that record for each pulse return the 
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time-power variability in small time intervals, almost in a continuous way, giving 

detailed distribution of all the objects intercepted by laser pulse (García et al. 2009). 

Due to high amount of information that the waveform records, these devices usually 

have a large laser pulse footprint size at the ground of a few meters. Conversely, the 

discrete return devices employ small footprint size of a few centimeters.  

A scanner combined with the LiDAR laser allows acquiring data along and 

across the movement of the device. When the instrument is mounted on a tripod or a 

plane is called Terrestrial (TLS) or Airborne (ALS) Laser Scanner, respectively. ALS also 

need to include other instruments like a Global Positioning System (GPS) to collect the 

platform position, an Inertial Navigation Systems (INS) to record the scanner 

orientation in relation to the movement of the plane (yaw, pitch and roll) and a 

control-storage unit (Lim et al. 2003). The combination of all this information provides 

the three dimensional (3D) coordinates of the objects intercepted by the sensor 

(García et al. 2009; Lefsky et al. 2002). 

TLS and ALS can measure forest structure, because they can provide detailed 

descriptions of either the horizontal and vertical spatial organization of the elements 

inside the canopy (Lefsky et al. 1999; Lefsky et al. 2002; Lim et al. 2003; Parker et al. 

2004). These instruments overcome some of the problems that direct or semi-direct 

methods show (Henning and Radtke 2006; Lovell et al. 2003). The sensor records the 

lasers reflected from one or several surfaces within the canopy, the rest of the pulses 

continue travelling to intercept with lower vegetation or ground surface. The ability of 

these instruments to record laser returns at different depths in the canopy or even the 

ground sets the foundation to measure the gaps within the canopy (Hopkinson and 

Chasmer 2007). GF follows the Beer Lambert’s Law, which can be assumed equivalent 

to canopy Transmittance (T) from LiDAR:  

             
  
  

            
(1) 

where II is the light intensity after travelling a path length (I) throughout the canopy, Io 

is the sky light intensity above canopy and k is the extinction coefficient, which is the 

fraction of foliage area projected onto a perpendicular plane. 
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GF has been estimated from TLS and ALS. In the case of TLS, Danson et al. 

(2007) developed a new model to estimate the GF based on the ratio between the 

actual number of laser returns that a discrete TLS obtains and the theoretical total 

number of returns that this instrument would have acquired according to its angular 

resolution, θ and ϕ range in the case of a canopy with no gaps. The same approach 

was applied later by Calders et al. (2011) and Moorthy et al. (2011; 2008), but with a 

modification using the point density measurements instead of the returns to compute 

the GF. Similarly, (Garcia et al. 2011) adjusted the data to a grid of occupied/non 

occupied cells. Those cells occupied by at least one return were codified as 1, whereas 

the empty cells were considered a canopy gap and codified as 0. The GF was computed 

as the ratio between the non-occupied pixels and the total pixels in the image.  

Parker et al. (2004) used a TLS (Riegl LD90-3100HS), able to record the direction 

of the non-return laser pulses and computed the GF as the ratio between them and all 

laser pulses. The same method but using a waveform TLS (ECHIDNA™) was proposed 

by Lovell et al. (2003), to estimate the GF. They modified the software to repeat pulses 

when a non-return was detected. According to this configuration if a pulse reached a 

number of repetitions, this return was classified as a gap.  

The use of volumetric pixels (voxels) has been shown useful to summarize the 

huge data recorded from TLS (Hosoi et al. 2010). The returns are grouped into this 

voxel structure that has a pre-defined dimension. A voxel can be considered then as an 

individual element in a 3D array structure (Hosoi and Omasa 2006). Van der Zande et 

al. (2006) and Henning et al. (2006) used voxels to group the laser returns and 

subsequently classify them as occupied or empty. The same approach was proposed 

by Van der Zande et al. (2011) but applying a ray tracing algorithm to identify if a voxel 

was occupied or not. A modification of the use of voxels was proposed by Seidel et al. 

(2012). They transformed the voxels into a simulated HP using a polar projection and 

later compute the GF with the Gap light analyzer software mentioned earlier.  

The estimation of GF from the intensity of the TLS laser returns is uncommon. 

Hopkinson et al. (2013) and Zhao et al. (2011) employed a waveform TLS with the 

‘apparent reflectance’ to relate it with GF. This is a target reflectance that would 

return almost the same intensity value as if it were obtained by the actual target (Zhao 
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et al. 2011). The integral of this apparent reflectance can be considered as a reduction 

of the outgoing signal, which can be linked with GF. To compute GF, they estimated 

some target thresholds that are between the fully and partially intercept beam. Finally, 

following the same rational of HP classification, all the samples above the thresholds 

were considered a true gap in the canopy. 

In regards to the GF estimation from ALS, one of the simplest methods is to 

measure the penetration rates based on fraction of laser returns below the canopy to 

the total of returns (Hopkinson and Chasmer 2009; Lovell et al. 2003; Riaño et al. 

2004). Another approach is to derive GF empirically from ALS metrics. In that context, 

Riaño et al. (2004) tested P50th, P75th and P95th height percentiles and Hall et al .(2005) 

derived metrics like the density of first returns.  

When the sensors are able to record more than one return per pulse (first, last, 

intermediate or single), it is possible to test more complex models that define the 

penetration rate for which is it is necessary to account for the nature of the return 

type and the possibility that a pulse produces more than one return. To correct pulses 

than can produce first and last returns, Solberg et al. (2009, 2010 #60) and Korhonen 

et al. (2011) chose 0, 0.5 and 1 weight factors for canopy-single, canopy-first plus 

ground-last or ground single, respectively. There are some problems of GF under and 

overestimation for models based only on first or last returns (Lovell et al. 2003; 

Morsdorf et al. 2006). For those cases, it is possible to look for the better choice than 

reduces the bias caused by the interactions between return types, footprint 

dimension, gap size and return thresholds. The combined use of first, last and intensity 

return seems to be a good alternative to reduce at least the issue of footprint size 

(Lovell et al. 2003). To account for this, Hopkinson and Chasmer (2009) preferred 

models that employed first returns. Morsdorf et al. (2006) tested models with first, 

last, and single returns to find the best agreement. Sasaki et al. (2008) used ground 

single returns because these returns ensure the pulse fully hits either the canopy or 

the ground, avoiding mixed returns.  

The estimation of GF from the intensity of the ALS laser returns is also less 

common than the methods above. Solberg et al. (2010) proposed the ratio between 

the intensity of ground and all laser returns for first and first and last returns, 
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considering that all the returns had the same weight. Using the same rationale, 

Hopkinson and Chasmer (2007; 2009) considered that there are some returns 

(intermediate or last) that according to its nature modify the transmission lost, 

especially when they passed throughout the canopy. Therefore, they considered the 

square root factor for these returns type. Similarly to frequencies models, the GF can 

be estimated from the fraction of the ground energy to the total energy recorded by 

full waveform sensors. Lovell et al. (2003), Lefsky et al. (1999) and Hall et al. (2005) 

applied the fraction of a waveform return at a set height threshold and incorporated a 

factor to correct the reflectance difference between canopy and ground, using a factor 

of one for canopy and two for ground. 

The number of studies that estimate CI is fewer than GF from either TLS or ALS. 

In the case of TLS sensors, the CI was estimated by Moorthy et al. (2011; 2008) based 

on the theory of gap size distribution developed by Chen and Cihlar (1995). They 

computed the CI by comparing the GF for a tree crown based on (Danson et al. 2007) 

and for a simulated spatial random distribution of the laser returns for the same area. 

In addition, Zhao et al. (2012) estimated the CI also based on Chen and Cihlar (1995) 

theory applied over the gap size distribution data derived from a nominal spatial index 

obtained from a waveform TLS ECHIDNA™ sensor. Respect to ALS, Thomas et al. (2011) 

applied an one empirical approach based on several ALS metrics that included mean, 

median and standard deviation which were derived from the point cloud and from 

different height percentiles for first, last returns and for both of them.  

1.4 Hypothesis and objectives 

1.4.1 Hypothesis 

The laser pulse returns and their intensity from TLS and ALS can provide an 

estimate of the vegetation canopy structural parameters GF and CI and they can be 

considered an alternative to reduce the limitations of other methods like HP. 

1.4.2 Objectives 

1. To develop a new approach to estimate canopy GF at individual tree scale using 

angular images from TLS data. 
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2. To apply the gap size distribution theory adapted to HP to estimate the canopy 

CI from TLS data. 

3. To apply height empirical metrics and canopy penetration models based on the 

Beer Lambert´s law to estimate the canopy GF from ALS data. 

4. To apply height empirical metrics to estimate the canopy CI and to develop a 

new approach based on the adaptation of the spatial segregation algorithm to 

ALS data. 
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2 METHODS 

The methods section is organized according the experiments done in the two 

study sites. The first site was Majadas del Tiétar and the second was Jasper Ridge, for 

both sites the estimation of vegetation canopy GF and CI was carried out using TLS and 

ALS data for the first and second site respectively.  

2.1 Description of the study sites 

2.1.1 Majadas del Tiétar 

The Majadas study site is located in the Tiétar valley, Cáceres, Spain (39°56'27" 

N latitude and 5°46'27" W longitude) (Figure 1). On the place there is an eddy 

covariance flux tower part of the FLUXNET network (http://fluxnet.ornl.gov/site/440, 

last accessed on December 21st, 2013). The site belongs to an ecological and 

biodiversity corridor that was declared in 2003 because of the high diversity of bird 

species associated to forest ecosystem. The climate is Continental with few rains (400-

800 mm annually) concentrated in spring and autumn seasons and with hot and dry 

summer. The site is a savanna type (Dehesa) managed for grazing, comprised by Pyro 

bourgeaneae Decne., Querceto rotundifoliae quercetum mesomediterranean series 

(Rivas Martínez and Gandullo 1987), which has been transformed into a wooded 

(Quercus ilex L.), with few individuals of Quercus suber L., grassland (herbaceous 

species) and containing some shrub species (Cistus ladanifer L., and Lavandula 

pedunculata Mill.). Tree density is about 20 trees/ha, with an average height of 8 m 

and a breast height diameter (DBH) 0.4 m. 

 

 

 

 

 

http://es.wikipedia.org/wiki/Ti%C3%A9tar
http://es.wikipedia.org/wiki/Ti%C3%A9tar
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Figure 1. Majadas del Tiétar study site and scanned tree distribution in red circles. 

2.1.2 Jasper Ridge  

Jasper Ridge study site is located on the northeastern foothills of the Santa Cruz 

Mountains in Portola Valley (37°24’N latitude and 122°13’30”W longitude), San Mateo 

County, California, USA (Garcia and Ustin 2001) (Figure 2). The site is a Biological 

Preserve of about 500 ha owned by Stanford University (http://jrbp.stanford.edu/, last 

accessed December 21st, 2013). It provides a natural laboratory for researchers from 

all over the world. This site has a Mediterranean climate with hot and dry summers 

and an annual average precipitation is about 650 mm (Dahlin et al. 2011). In the 

sampling plots, the elevation ranges from 52 to 161 m above sea level and the slope 

varies from a minimum of 2% to a maximum of 34% with an average of 14%. According 

to Garcia and Ustin (2001) the site is integrated mainly by five vegetation types: 

shrubland, evergreen and deciduous forest, herbaceous perennial wetlands and 

annual grasslands. The shrub vegetation type comprises a wide range of Californian 

http://en.wikipedia.org/wiki/Portola_Valley,_California
http://en.wikipedia.org/wiki/Stanford_University
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chaparral species like woodbalm (Lepechinia calycina (Benth.) Epling ex Munz); 

buckbrush (Ceanothus cuneatus (Hook.) Nutt.); coyotebrush (Baccharis pilularis DC.); 

chamise (Adenostoma fasciculatum Hook. & Arn); California yerba santa (Eriodictyon 

californicum (Hook. & Arn.) Torr.); toyon (Heteromeles arbutifolia (Lindl.) M. Roem.); 

coastal sagebrush (Artemisia californica Less.); and orange bush monkey flower 

(Mimulus aurantiacus W. Curtis). The forest vegetation type includes blue oak 

(Quercus douglasii Hook. & Arn., also present in the shrubs plots), California live oak 

(Quercus agrifolia Née); and valley oak (Quercus lobata Née) (Casas et al. In review). 

 

Figure 2. Jasper Ridge study site and plot distributions. 
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2.2 Vegetation canopy GF from TLS 

2.2.1 Data collection 

Four holm oak (Quercus ilex L.) trees (treeId: Z1P5, Z1P7, Z2P6 and Z2P11) were 

sampled on October 9, 2009 with a TLS Leica HDS-6000 (Leica Geosystems, 

Switzerland, www.leica-geosystems.com) (Table 1). The instrument has fully integrated 

a scanner, controller, data storage and battery. Its laser is a 3R class, which is 

considered safe if handled carefully (Voegtle and Wakaluk 2009). The 3mm laser 

footprint at the sensor exit and a 0.22 mrad beam divergence, which translates into 5 

mm footprint at 8 m from the sensor. Based on the phase difference between the 

transmitted and received signal, the TLS measures the time delay to determine the 

position hit at the object. The system records only the first pulse returns as XYZ 

positions and the intensity of such returns.  

Table 1. Technical specifications of the HDS-6000 scanner (Leica-Geosystems 2008). 

Measurement principle Phase shift 

Dynamic scanning range 1-79 m 

Data sampling rate Up to 508.000 pulses/s 

Footprint size 3 mm at exit (based on Gaussian)   

Laser divergence angle 0.22 mrad  

Minimum spot step 1.6 x 1.6 mm@10m 

Accuracy 
                Positioning 

                Range 

 
+- 6 mm (25 m) 

+- 4 mm (90% albedo, 25 m) 
+- 5 mm (18% albedo, 25 m) 

Laser wavelength 670 nm 

Laser class Class 3R 

Scan field of view 360° x 310° 

Control interface Side touch panel, optional PDA or laptop 

Power supply 24 V DC 

Dimensions 190mm D x 244mm W x 351mm H 

Weight 14 kg 

Data storage Integrated hard drive 60 GB 

Digital camera Externally mounted. 

 

The TLS system was deployed approximately at the midpoint between the tree 

trunk and the edge of the canopy to capture a horizontal perspective of 0°-360° in 

azimuth (θ) and 0°-154° in zenith (ϕ) with an angular sampling interval of 

approximately 6.3 mm at 10 m distance (Figure 3). To reduce the occlusion effect, a 

second TLS data collection occurred in a diametrically opposite position (180°) to the 

first one in relation to the tree trunk (Moorthy et al. 2011). Cyclone software (Leica 
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Geosystems, Switzerland, www.leica-geosystems.com) was used for post processing 

and to generate the point cloud. Following Seidel et al. (2012) to remove the noisy 

returns, only were considered data with intensity values between 0.01 and 1.0, range 

under 80 m and laser returns at least separated by 1.6 mm. Moreover, eight trunk 

sections from the TLS models were extracted in order to have data without gaps and 

with similar range and laser pulse return density. Subsequently, the TLS point cloud 

from the tree canopy was isolated from the rest of the TLS scene and exported as XYZ 

ASCII files. The ASCII XYZ data were transformed to compute spherical coordinates 

(R,θ,ϕ) from Cartesian (X,Y,Z) coordinates using the following equations: 
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where X, Y, Z are the components for the Cartesian coordinates; R is the point´s 

distance from the origin, S is the distance projected on the plane XY. 

  

Figure 3. TLS data tree Z2P6-SCAN1 (left), Z2P6-SCAN2 (right) and position of the TLS instrument. 
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The TLS dataset was complemented with two HP per tree that were taken using 

a Canon camera EOS 400D with Nikkor 8-mm f/2.8 fisheye lens adaptor coupled to the 

TLS head. The HP were taken at the same time of TLS data collection and stored in 

.JPEG format with an image size of 3888 x 2592 pixels (Figure 4). 

  

Figure 4. HP taken from a camera coupled to TLS head for first scan position (left) and second scan 

position (right). 

2.2.2 The angular resolution algorithm 

We designed an algorithm to compute the angular resolution of the TLS data 

(Figure 5). Knowing the angular resolution allows determining the theoretical direction 

of the laser pulses. Therefore, if each and all missing returns can be identified, this 

provides the direction of all gaps in the canopy. Angular resolution refers to the 

sampling interval angle in the θ and ϕ directions. This definition considers the angular 

distance between the centers of two adjacent laser footprints, without taking into 

account its beam width as proposed by Lichti (2004). The angular distance between 

two adjacent laser pulses was used instead of the Euclidean distance since the former 

is constant and independent of distance between the TLS and the objects hit by the 

laser, i.e. the sensor-object range. In order to compute the angular resolution, only 

were used returns corresponding to adjacent pulses, both horizontally and vertically. 

The process to calculate the resolution is iterative. Firstly, the algorithm sets an initial 

large value for θ and ϕ resolution. For each return the algorithm looks for its four 

nearest neighbors and their angular distance between them is calculated. Secondly, 

the angular distance between the return and either of its neighbors is recorded only if 

1) the slope between the two returns is less than 10° respective to any of the four 
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cardinal directions N, S, E or W; and 2) its angular distance is less than 1.5 the initial 

resolution in either θ or ϕ. These thresholds were empirically adopted after analyzing 

a subset of returns over an area with no gaps. To conclude the first iteration step, the 

algorithm computes the average of all the angular distances recorded in the N-S and E-

W direction to obtain the θ and ϕ resolution, respectively. The iterations continue until 

the difference between the angular resolutions calculated in two consecutive steps is 

close to zero. A convergence threshold was established to 1.0e-07 to stop the 

iterations (Figure 6).  

 

Figure 5. Flow chart of the angular resolution algorithm. 
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Figure 6. Example of resolution convergence after three iterations. 

2.2.3 Computing angular GF images 

Once the average angular resolution is determined it is possible to generate an 

angular grid with cells containing the angular location of the actual gaps, in addition to 

the already known location of the laser returns that hit the canopy. Under ideal 

circumstances, the angular location of a laser return should correspond to the center 

of a cell. However, this is not the case since TLS data is subject to angular noise. The 

factors that cause this noise are related to the distance to the object, the object 

surface itself and the mechanical components of the scanner (Kremen et al. 2006). 

Most TLSs use a scanner with a servomotor or rotational mirrors to produce the 

angular displacement in both horizontal and vertical directions (Reshetyuk 2006). 

Therefore, to reduce the difference between the position of the grid and the actual 

data, the location of the grid was shifted to make the distance between the center of 

each laser pulse and its corresponding cell the shortest. The grid was tested in twenty-

five different positions at -1/2, -1/4, 0, 1/4 and 1/2 of the angular resolution in both θ 

and ϕ directions. Finally, a binary image was created taking into account the number 

of returns that lay within each cell. Thus, if a cell did not contain any laser returns, it 
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was marked as a gap, whereas if it contained one return, it was considered occupied 

by a canopy element (Figure 7). GF images were computed as the ratio of cells 

identified as gaps to the total cells in the image. 

 

Figure 7. Algorithm to compute the angular GF images. 

2.2.4 Validation of the angular resolution algorithm and GF images 

A sensibility analysis was carried out using simulated TLS data to evaluate the 

performance of the algorithm to retrieve the angular resolution and the GF images 

derived from it. We simulated TLS data with known GF and compared it to the one 

calculated by the algorithm. In order to simulate different situations found in the 

actual TLS data, several sources of variation were considered: 1) angular noise; 2) the 

angular spatial pattern distribution of the gaps; and 3) the amount of GF itself. A 

multivariate normal distribution available in Matlab (The Mathworks; Natick, MA, USA; 

www.mathworks.com) was used to mimic the angular noise. Such noise is a function of 

1) the amplitude of the angular noise (sigma) that was modeled as a percentage of the 

angular resolution, 2) its variance (sigma2) and 3) its covariance. The second source of 

variation consisted in modeling several canopy gap spatial pattern distributions, such 
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as random gaps (R), clusters of gaps (C) and a combination of both of them, which is 

closer to the actual vegetation canopies (RC) (Figure 8). 

 

Figure 8. GF images (series above) and hemispheric 3D views (bottom series) of simulated angular data 
with 50% GF and with either R (left), C (center) or RC (right) gaps. 

The GF was increased for each gap pattern by removing progressively simulated 

laser returns. The R laser pulse extraction relied on the extraction of random returns 

individually without replacement. Random numbers were produced using a Matlab 

function (The Mathworks; Natick, MA, USA; www.mathworks.com). These random 

numbers pointed to the identifiers of the laser returns to be extracted. The C gap 

pattern combined the random selection described above with a convex hull function to 

extract all the laser returns within a dynamic random radius size from the random 

point, which could range from one to ten times the angular resolution. The RC gap 

pattern mixed the two algorithms described before creating 30% R and 70% C gaps. 

These percentages were selected arbitrarily; nevertheless, the main objective was to 

simulate laser returns corresponding to a canopy with a known GF and pattern, 

therefore, the actual value of the percentage used was not relevant. 

The algorithm was validated over this simulated dataset that contained a pre-

defined known GF. A total of 1890 files were generated with an angular noise ranging 
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from 2%-14%, the three R, C and RC gap patterns, and a GF ranging between 10-90%. A 

Kruskal-Wallis test (KW) evaluated the algorithm sensitivity to the sigma noise in 

relation to the GF estimations (Hollander and Wolfe 1999). The KW test is a non-

parametric test and therefore not subject to the assumption of normal distribution of 

the residuals. This test, which is the equivalent to ANOVA parametric test, is an 

extension of the Mann-Whitney U test to more than 2 groups, and compares the 

medians of two or more samples to determine if they come from the same population 

(null hypothesis) or from different populations (alternative hypothesis). 

In order to validate the results an independent technique was applied to the 

simulated dataset. The analysis of HP is one of the most widely accepted indirect 

methods used to estimate GF (Bréda 2003; Welles and Cohen 1996). Considering that, 

the simulated TLS data was converted into simulated HP (SimTLS-SHP) for additional 

testing on Hemiview (Delta-T Devices, UK, www.delta-t.co.uk), a commercial software 

that analyzes HP. A low angular noise from 2% to 6% was used to match the noise 

quantified in previous studies of similar TLS instruments (Kersten et al. 2008; Kremen 

et al. 2006; Reshetyuk 2006). SimTLS-SHP in essence produces a planar projection of a 

hemisphere. The simplest and most common hemispherical lens geometries are the 

polar or also called equiangular projection (Gonsamo et al. 2010; Jonckheere et al. 

2004). In this case, the following polar transformation was applied: 

          (6) 

where R is the radius of the whole field of view and l is the radial distance on the HP 

image plane. Seidel et al. (2012) also used this projection to estimate GF from 

simulated HP produced from TLS voxels. 

Using as pixel size the TLS’s angular resolution, SimTLS-SHP were generated as 

the ratio between the laser pulse canopy returns and the sum of returns and gaps. Due 

to the change in projection, the number of returns/gaps per pixel is redistributed, 

becoming more heterogeneous (Figure 9). A pixel was considered a canopy return (0, 

black) if the number of laser returns was above 50% or a gap (255, white) if below this 

threshold, producing a SimTLS-SHP that was saved in BMP format, so that it could be 

imported on Hemiview. Each SimTLS-SHP was then divided in a skymap with 18 θ and 8 

ϕ angular sections (Figure 10). Finally, the GF was computed in Hemiview from the 
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SimTLS-SHP using a 128 fixed threshold value that separated the canopy returns from 

the gaps. 

 

Figure 9. Number of laser returns per pixel for a simulated C gap pattern GF image (left) and its 
correspondent SimTLS-SHP (right). 

 

 

Figure 10. From left to right: the skymap divisions, and SimTLS-SHP with R, C and RC gap patterns. 

2.2.5 Estimation of GF on real TLS data 

Given the large TLS data volume, the TLS acquisition for each tree was sliced in 

2° zenithal widths () similarly to previous studies (Moorthy et al. 2008; Zhen et al. 

2011). The average angular resolution of all ϕ slices was calculated using the algorithm 

described in 2.2.2. This average excluded below 4° ϕ slices that contained a lower laser 

pulse density and showed a higher angular noise, due to the lower accuracy of these 
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canopy returns, since they are coming from more remote locations (Antonarakis et al. 

2010; Seidel et al. 2012). In addition, angular resolution was also estimated the same 

way for tree trunk sections, where gaps rarely occur. As it will be shown in the results 

and discussion 3.1 section, this latter angular resolution value was selected for further 

analysis since it was more accurate. An angular grid was adjusted based on this angular 

resolution to transform it into a GF image and then into a HP (TLS-SHP) as described 

above in sections 2.2.3 and 2.2.4.  

The GF was computed not only for the TLS-SHP but also for the HP taken from 

the camera coupled to the TLS head. For the HP, only the blue channel was chosen, 

since it gives the maximum contrast between canopy objects and sky (Zhao et al. 

2011). As Jonckheere et al. (2005) described, manual thresholds are a subjective and 

hard task to reproduce consistently, which can introduce an additional error into the 

GF computation. For that reason, an automatic threshold method developed by Ridler 

and Calvard (1978) was implemented to classify the pixels in the HP as canopy (black) 

or sky/gaps (white) and are described in deep in section 2.4.1. For both type of images, 

HP and TLS-SHP (Figure 11), the GF computation was constrained to the 0°-60° ϕ range 

in order to avoid fuzzy pixels that would comprise a mix of vegetation canopy and sky 

information (Jonckheere et al. 2004) and also to consider only the ϕ range common in 

the HP and the TLS-SHP . 

 

Figure 11. Tree ID Z2P6 seen from the HP (left) and TLS-SHP (right). 
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2.3 Vegetation canopy CI from TLS data 

The Chen and Cihlar´s clumping index (CI) that quantifies the gap size 

accumulation was computed for the eight TLS data that were transformed into HP 

(TLS-SHP) (for details see section 2.2.4 and 2.2.5). This method needs the images has 

been already segmented in two categories, sky (white pixels) and canopy (black pixels). 

However, as mentioned in section 2.2.4 the TLS-SHP images no needs this pre-

processing step. Due to the size of the HP camera sensor is smaller than the fisheye 

lens, the final HP image was cropped. That resulted in HP images with an angular ϕ 

range that reached until the 55° for effective analysis. Since the estimation of the 

clumping degree of foliage elements using indirect methods is affected by the ϕ angles 

used (Walter 2009), CI was estimated considering the following different ϕ ranges: 5-

55°; 20-55°; 30-55°; 40-55°; 50-55° and 54-55°.  

2.3.1 Chen & Cihlar’s clumping index (CI) 

Chen and Cihlar (1995) developed a method to estimate CI based on the gap 

size distribution. This method, which is an improvement of the one developed by Lang 

and Xiang (1986), can be used for heterogeneous canopies. Although it was originally 

developed for the TRAC instrument, it has also been used on HP (Gonsamo and 

Pellikka 2009; Walter et al. 2003). For the exact same LAI, a clumped canopy presents 

larger canopy GF than a random one, in addition to changing its gap size distribution. 

Thus, the method estimates the gap size distribution of the canopy assuming its 

randomness, by removing large gaps iteratively, until there are no significant 

differences when comparing with the gap size distribution of the real canopy (Figure 

12). Finally, the distribution function of GF closest to a random distribution 

(compacted canopy) is compared with the actual distribution to derive the CI (equation 

7) 
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Figure 12. The measured gap size distribution (a1) and the first distribution estimate for a random 
canopy (b1). After the two largest gaps are removed, its gap size is redistributed (a2) and a second 
random canopy is estimated (b2) adapted from (Chen and Cihlar 1995). 

 

   
  [       ]

  [        ]
 (7) 

where, Fm(0,θ) is the measured GF, Fmr(0,θ) is the GF for an imaginary canopy with a 

random spatial distribution. 

This approach was subsequently modified by Leblanc et al. (2002a) to consider 

the effect of canopy compactness when large gaps are removed: 

 

   
  [       ]

  [        ]
 
[          ]

[         ]
 (8) 

The final CI estimation that incorporated the modification by Leblanc et al. 

(2002a) integrated all of the CI values for each ϕ interval.  

To validate all of the CI estimations from TLS-SHP, the CI was also calculated 

from real HP processed in CIMES package (program CLMPML) using the same ϕ ranges 

as above. The CLMPML needs the images binarized to compute the gap size 

distribution and then the CI. Unlike the TLS-SHP images, these HP were pre-processed 

to segment them according to methods described in the section 2.2.5.   
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2.4 Vegetation canopy GF from ALS 

2.4.1 Description of the HP equipment, data collection and pre-processing 

The HP data were supplied by the Center for Spatial Technologies and Remote 

Sensing (CSTARS) from the University of California, Davis 

(http://cstars.metro.ucdavis.edu). A total of 347 HP were collected on thirteen forest 

and thirteen shrub plots between May 12th – 17th of 2006, September 20th – 21th of 

2006 and August 13th – 14th of 2007 in Jasper Ridge (Figure 13). To acquire the HP, a 

digital camera Nikon Coolpix 4300 was attached to a Nikon FC-E8 fisheye lens 

converter. The Coolpix 4300 has a focal length of 8-24 mm and effective resolution of 4 

megapixels in a charge-coupled-device (CCD) array. The FC-E8 has a maximum FOV of 

180° with a polar projection (Frazer et al. 2001). The HP were overexposed, two stops 

more exposure than the automatic reference exposure. This way sky appear whiter 

and the contrast between sky and leaves will be greater, following Zhang et al. (2005). 

The images were stored at the maximum resolution (2272x1704 pixels .JPEG format). 

To avoid the understory vegetation, a tripod elevated the camera approximately 0.7 m 

and 0.2 m above the ground for the forest and shrub plots, respectively. The lens was 

leveled to point the ϕ and was oriented so that the magnetic north was located at the 

top of the photograph (Walter et al. 2003). Each plot center was geo-located using 

survey grade differentially corrected Trimble GPS receiver. With a compass and 

measuring tape, HP were taken at the center (not always) and 2.5 m away from the 

center along the four cardinal directions (N, S, E, W). All HP were taken under indirect 

sunlight conditions, to minimize glare from direct sunlight; that is at predawn, after 

sunset, or when the sky was overcast (Figure 14). 
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Figure 13. Plot distribution in Jasper Ridge site. 

 

  

Figure 14. HP (RGB composite) from a forest (left) and shrub plot (right). 

Before computing the GF, The Fiji freeware software (http://fiji.sc/Fiji) served to 

carry out a series of pre-processing steps in the HP. The circular limit in the HP marked 

the horizon beyond which the HP was black and therefore excluded from the analysis. 

From the true color HP, only the blue band was selected since the vegetation canopy in 

the blue appears darker than in the red or green bands, and hence it has a better 

contrast with the sky (Frazer et al. 2001; Gonsamo et al. 2010). In addition, large 

canopy openings cause a blooming effect with very high digital values in the red and 

green that mostly disappear in the blue (Leblanc et al. 2005).  
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One of the backwards of the digital HP is the poor sharpness in comparison with 

film cameras according to Frazer et al. (2001). For this reason, digital HP appears 

blurred, and many of the fine canopy structural details are poorly defined. This was 

especially evident in zones with high contrast: outside edges of stems, branches, 

shoots and the inside edges of canopy gaps. To minimize this effect and enhance small 

gaps within dense foliage, we applied an edge enhancement 3x3 filter [-1 -1 -1;-1 12 -

1;-1 -1 -1] which was proposed by Kucharik et al. (1997). 

The final pre-processing step is to define the optimal threshold value in the HP to 

produce a binary image separating the vegetation canopy from the sky, which is critical 

to calculate GF (Jonckheere et al. 2004). Jonckheere et al. (2005) tested several 

automatic threshold algorithms and concluded that clustering performed the best 

compared to histogram, entropy, object-attribute, spatial and local based methods. 

Bearing this in mind, we chose as optimal the average threshold value from the four 

clustering algorithms within Fiji software: Isodata (Ridler and Calvard 1978), Otsu (Otsu 

1979), Intermode (Prewitt and Mendelsohn 1966) and IsodataMod 

(http://fiji.sc/Auto_Threshold#Default) (Figure 15). Clustering methods initially 

segments the histogram of the color image into two parts, using a starting threshold 

value for the vegetation canopy and sky classes (T0=2p-1; i.e. half of the maximum 

dynamic range). The distances to the center of each class are computed and each pixel 

is assigned to its closest class based on any of the four algorithms above (Jonckheere 

et al. 2005). A new threshold (T1) is then computed and the process is repeated 

interactively, until the threshold value remains constant.  After the clustering process, 

vegetation canopy/sky pixels were converted to black/white (0/1) if the digital value 

was below/above the optimal threshold and then, the binary HP were exported to 

.bmp files. All this process was carried out automatically using a mixed Java and Fiji 

script. The resulting HP were all visually inspected and compared to its original HP to 

search for any cases of anomalous clustering classifications.  
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Figure 15. Binary HP after applying Isodata(a), Otsu (b), Intermodes (c) and IsodataMod (d) clustering 
threshold algorithms to HP in Figure 14 left. 

2.4.2 Description of the ALS sensor, data collection and pre-processing 

The ALS data was supplied by the Carnegie Airborne Observatory (CAO) from 

Stanford University (http://cao.ciw.edu/). The airborne system flown, called CAO Beta, 

combined three instruments into a single package: 1) the Jet Propulsion Laboratory´s 

Airborne Visible/Infrared Spectrometer (AVIRIS); 2) a small footprint full waveform 

ALS; and 3) a global positioning system-inertial measurement unit (GPS-IMU) (Dahlin et 

al. 2011). The AVIRIS, which was not used in this study, samples reflected sunlight in 10 

nm increment across the 380-2510 nm range. The GPS-IMU subsystem provides the 3D 

positioning and altitude data for the sensor package on board the aircraft, allowing for 

highly precise and accurate projection of ALS (and AVIRIS) observations to the ground. 

The ALS instrument was a customized version of the Optech ALTM-3100EA 

(http://www.optech.ca/prodlatm.htm) with a new waveform digitization system 

(Table 2). This ALS can provide the data in two modes: discrete-return and full 

waveform (Asner et al. 2007; Mallet and Bretar 2009).  

a) b) 

c) 
d) 
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Table 2. The ALS instrument, ALTM-3100EA, in the CAO Beta. 

Wavelength 1064 nm 

Pulse repetition frequency  programmable up to 100 kHz 

Scan angle  programmable up to 44 ° 

Scan frequency programmable up to 70 Hz 

Laser beam divergence 0.56 mrad (1/e) 

Intensity capture 12 bit dynamic range 

Waveform digitization up to 44 slices or elevation per laser shot 

 

The CAO Beta flew over Jasper Ridge and the surrounding area in August of 2007 

at an average 2700 m above ground level, capturing eighteen flight lines and covering 

5.93 km2. The ALS data was provided as discrete-return laser points and each pulse 

was labeled either first, intermediate, last or single. It operated at 33 kHz pulse 

repetition frequency and 36° scan angle. This configuration rendered a laser spot 

spacing of 0.5 m, a footprint of 1.5 m and an average laser pulse density of 5 

points/m2. The integration of the GPS-IMU and the ALS determined the 3-D location of 

the laser returns that was projected into UTM WGS84 (Dahlin et al. 2011).  

An exploratory analysis of the ALS data demonstrated the existence of replicated 

laser returns elements in the point cloud with the exact same 3D position and intensity 

values. This issue happened systematically along the border of perfect tiles. More than 

probably CAO pre-processed the data subdividing them in such tiles with an 

overlapping buffer for each one and then merged all tiles back in a single dataset. 

Since this issue would affect the ALS metrics that relate to GF, a Matlab script 

identified these identical replicated laser returns and removed them from the point 

cloud. This filtered ALS dataset contained a final average laser pulse density of 4 

points/m2. 

The absolute and relative (between flight lines) accuracies of the ALS 3D-models 

depend on several error sources: 1) the alignment between the laser, the aircraft and 

navigation system; 2) the accuracy in range determination; 3) vibration and oscillation 

on the scanner mirror; and 4) other problems in the GPS-IMU system (Huising and 

Gomes Pereira 1998). These errors cause planimetry (X and Y) and altimetry (Z) 

displacements that impact the extraction of meaningful information and hence the 

quality of the final product (Lee et al. 2007). Several methods have been proposed to 

quantify these displacements in order to match the overlapping areas between flight 
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lines: 1) least squares between point clouds (Maas 2002); 2) point cloud object 

segmentation of lines or surfaces (Pfeifer et al. 2005); and 3) point cloud intensity 

images (only X and Y) (Vosselman 2002).  

An adaptation of the methods proposed by Pfeifer et al. (2005) quantified the Z 

displacement between flight lines in this study. Thirty-two flat surfaces, such as cross 

roads or flat roofs, of at least 25 m2 and a minimum of 50 laser pulses that felt on 

overlapping areas between flight lines were extracted from the point cloud. The 

average all Z laser pulses within each surface for each flight line was computed and 

their difference determined their Z displacement (Table 3). The flight lines 

demonstrated to be inter-calibrated since the absolute average Z difference between 

flight lines of all surfaces was 0.02 m. In addition, the standard deviation of all surfaces 

in Table 3 provided an average of 0.09 m that verified that all the surfaces were 

actually flat in either flight line.  

Table 3. Surface identifier (ID), flight line number (FL), Z average (Z̅), Z standard deviation () and Z̅ 
absolute difference between FL. 

ID FL1 Z̅ (m)   Z 1    FL2 Z̅ (m)   Z 2(m) | ̅   ̅ |(m) 

01 26 69.02 0.10 28 69.09 0.11 0.07 

02 26 69.17 0.11 28 69.24 0.12 0.07 

03 28 73.55 0.09 29 73.52 0.11 0.03 

04 28 73.41 0.10 29 73.38 0.09 0.02 

05 28 73.33 0.09 29 73.33 0.09 0.00 

06 28 73.18 0.10 29 73.17 0.10 0.01 

07 28 73.09 0.09 29 73.10 0.09 0.01 

08 28 72.98 0.09 29 73.00 0.10 0.02 

09 28 72.89 0.10 29 72.90 0.10 0.01 

10 28 72.77 0.10 29 72.77 0.07 0.00 

11 29 71.94 0.09 30 71.94 0.11 0.00 

12 29 71.85 0.10 30 71.85 0.10 0.01 

13 29 71.70 0.08 30 71.74 0.10 0.04 

14 29 71.62 0.11 30 71.63 0.10 0.02 

15 29 71.52 0.10 30 71.54 0.10 0.02 

16 30 70.79 0.08 31 70.78 0.11 0.01 

17 30 70.68 0.09 31 70.65 0.08 0.02 

18 30 70.59 0.09 31 70.59 0.08 0.00 

19 30 70.52 0.09 31 70.50 0.09 0.02 

20 30 70.39 0.09 31 70.38 0.09 0.02 

21 30 70.29 0.09 31 70.31 0.12 0.02 

22 30 70.17 0.11 31 70.20 0.11 0.04 

23 30 70.04 0.08 31 70.08 0.11 0.04 

24 30 69.94 0.08 31 69.98 0.11 0.04 

25 30 69.85 0.09 31 69.88 0.10 0.03 

26 30 69.73 0.11 31 69.78 0.10 0.05 
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27 30 69.62 0.10 31 69.65 0.08 0.03 

28 31 69.13 0.10 33 69.07 0.10 0.06 

29 31 68.93 0.08 33 68.89 0.09 0.04 

30 31 68.80 0.10 33 68.80 0.08 0.00 

31 31 68.70 0.10 33 68.69 0.10 0.01 

32 31 68.62 0.08 33 68.59 0.09 0.03 

 

A method based on Lee et al. (2007) evaluated in this work the X and Y 

displacement between objects sampled in overlapping flight lines. Triangular shaped 

roofs were manually identified and isolated from the rest of the point cloud (Figure 

16). Only three roofs were found for this validation exercise due to the absence of 

these human-made elements in the study site. For each roof flank, a planar surface 

was fitted using a least square approach to obtain its equation and its vector’s director 

(Figure 17). This process was done for the two flight lines data in each selected roof. 

The intersection of these two planes provided the equation which describes the 

position of the roof top. Therefore, the distance between the roof top in each flight 

line measured the X and Y displacement (Table 4). This distance averaged 0.15 m 

which agreed with expected error presented by the ALS system manufacturer (Optech 

2013), as also did the 0.02 m error in Z. In addition, an ALS intensity image with 0.5 m 

pixel size was generated using the nearest neighbor algorithm and later a filter 

proposed by Lee (1980) was applied to correct the noise. Coordinates XY from points in 

road cross and corners were collected from an orthophoto and the intensity image to 

ensure co-registration between the ALS and the plot locations. The Euclidian distance 

was computed between coordinates and the average distance obtained. This 

difference was considered the displacement between the ALS and the orthophoto. The 

RMSE was 2.07 m for 17 ground control points identified in both images (Table 5). 
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Figure 16. One of the roofs isolated from the point cloud (first row), XZ projection for the roof (second 
row). 
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Figure 17. Planar surface fitted to laser pulses on the East and West side of the roof in Figure 16. 

 

Table 4. Roof identifier (ID), flight lines number (FL), angle between vectors () and distance 
between intersection lines (XY). 

ID FL  (°) XY (m) 

1 20 & 22 4.24 0.23 

2 26 & 28 4.47 0.07 

3 20 & 22 0.51 0.13 

XY̅   0.15 

 

 Table 5. Coordinates taken from orthophoto and ALS intensity image. 

ID Orthophoto X Orthophoto Y Intensity X Intensity Y Distance 
(pixel) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

4077.3283 
1338.3894 
1376.9107 
1512.9478 
1470.7508 
1360.3390 
5272.3446 
5646.9932 
5997.9831 
7182.2854 
7262.5266 
4082.4929 
1758.0738 
2224.7918 
5652.9904 
1654.4971 
1835.2868  

592.53950 
1092.9101 
2484.1009 
2554.2244 
2597.8711 
2466.9829 
2739.5181 
3026.7469 
3310.8618 
2155.5778 
2130.2138 
590.42350 
540.99150 
437.88800 
1343.1522 
2376.7907 
2545.5954 

4072.1743 
1332.4983 
1373.5022 
1508.9037 
1467.5238 
1355.6331 
5270.5407 
5647.2355 
5995.5098 
7177.5610 
7256.9431 
4078.3698 
1754.4230 
2223.5302 
5646.9774 
1649.0211 
1831.4280 

590.90750 
1092.4959 
2483.0013 
2553.2985 
2596.0837 
2465.5315 
2737.7142 
3026.4016 
3309.3478 
2155.3631 
2129.3548 
587.05630 
539.81040 
436.57990 
1344.8702 
2377.2202 
2545.2599 

5.4062 
5.9056 
3.5815 
4.1487 
3.6889 
4.9246 
2.5511 
0.4218 
2.8999 
4.7293 
5.6492 
5.3233 
3.8371 
1.8173 
6.2536 
5.4928 
3.8734 

 Average                                                                                                    4.1422 
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Once the replicated ALS laser pulses were removed and the data accuracy was 

verified, the algorithm proposed by Streutker and Glenn (2006) and implemented in 

the BCAL LiDAR Tools software (BCAL 2013) classified the laser pulses in two 

categories: ground and vegetation canopy (non-ground). It was assumed that at least 

one laser pulse every 4 m fully penetrated de canopy with which an initial ground 

surface was created using natural neighbor interpolation. All laser pulses on or below 0 

m were reclassified as ground and a maximum 50 m height was allowed. With these 

additional ground points, a new ground surface was re-interpolated and the process 

continued for fifteen interactions. Ninety nine percent of the laser pulses converged 

after six iterations. Outliers were found near the edges of the dataset which belonged 

to electrical power lines. Heights above this ground surface were calculated for all 

remaining non-ground points. 

In addition to the X, Y and Z position of the laser pulses, this ALS system recorded 

the intensity of the returns, which is a measure of the amount of energy reflected back 

to the sensor (García et al. 2010). Intensity varies according to the sensor-target 

distance (range) among other factors (Coren and Sterzai 2006). As demonstrated in 

several studies before (Donoghue et al. 2007; García et al. 2010; Starek et al. 2006), 

this effect can be easily eliminated to provide values equivalent to the intensity that 

would have been recorded if all points were sampled at the same range (equation 9).  

     
  

   
 

(9) 

where I′ is the normalized intensity, I is the raw intensity value, R is the range and Rs is 

the standard 1000 m range used here.  

2.4.3 Calculation of GF from HP 

The Gap Fraction Analysis tool within the CIMES freeware package 

(http://jmnw.free.fr/) processed GF from the binary HP using a batch script in MS-DOS. 

The program needed 1) the coordinates (X,Y) of three points on the horizon in order to 

determine the limits of the HP; 2) the geometric distortion of the fisheye lens; 3) the 

magnetic declination to rotate the image to its true North; 4) the number of skymap 

divisions in the ϕ and θ angles required to build the GF statistics; and 5) the ϕ range 
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needed to calculate GF. The number of skymap divisions in the HP must be a 

compromise of the following criteria for a reliable GF estimate: 1) low enough so that 

GF statistics are meaningful and also invertible; 2) high enough so that the assumption 

of randomness of leaf distribution within a skymap segment remains valid. Taking 

these two factors into account, the minimum number of pixels in any skymap segment 

should contain at least ten pixels (Lang and Yueqin 1986). Therefore, we decided on 9 

ϕ rings and thirty six θ radial lines to divide the skymap in a total of 324 segments, 

which assured at least 700 pixels for each one (Figure 18). Instead of the full 

hemispherical range, 30-60° ϕ angles were preferred to calculate GF following 

Gonsamo et al. (2010) and Leblanc et al. (2005). The intense scattering of diffuse light 

at very low ϕ angles specially affects digital HP (Frazer et al. 2001). In addition, very 

low ϕ angles present higher errors due to the foliage being poorly sampled and very 

high ones also do due to being close to the edge of the lens (Jonckheere et al. 2012). 

The non- parametric Kruskal Wallis test evaluated if there was a statistical difference in 

terms of GF between the three dates in which the HP data were acquired. 

  

Figure 18. HP skymap grid sampling composed by 9 ϕ annuli and 36 θ segments for forest plot (left) 

and shrub plot (right). 
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2.4.4 Calculation of ALS metrics to estimate GF  

The plot radius size of the ALS data that needs to be considered to fit the GF 

calculated from HP depends on the canopy structure (Riaño et al. 2004). Several 

authors  have extracted ALS data with different plot radii in diverse ecosystems 

(Morsdorf et al. 2006; Riaño et al. 2004; Solberg 2010; Solberg et al. 2009), but no one 

analyzed a mixture of forest and shrub cover like our study site in Jasper Ridge. For this 

reason, we tested 10-20 m radius sizes, at 1 m increments. For each plot radius size, all 

the laser pulses were extracted and separated into ground and canopy returns at a 1.3 

m threshold as suggested by Jonckheere (2005), which ensures that all laser returns 

above such height come from the vegetation canopy and avoid ground pulses coming 

from steep slopes (Figure 19).  

 

Figure 19. Forest plot point cloud classified according height from the ground. 

Several ALS metrics were computed for each specific plot radius size to relate 

with GF, which is complementary of FC: 1) laser returns percentiles; 2) laser 

penetration rates; and 3) intensity ratios. The premise of these metrics is that the 

interaction of the vegetation canopy with the laser pulses emitted from a ALS system 
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can be considered in some ways analogous to the one with the direct beam solar 

radiation (Hopkinson and Chasmer 2007). Riaño et al. (2004) assumed and tested an 

empirical relationship between GF and the 50th 75th and 95th percentiles of all laser 

pulse returns, their average (AverageH) and the maximum (MaxH) plot height. ALS 

metrics based on laser penetration rate assume that GF may be directly inferred by a 

pulse return ratio of the number of canopy to total returns (Hopkinson and Chasmer 

2009; Morsdorf et al. 2006; Solberg 2010) (Equation 10). Moreover, Morsdorf et al. 

(2006) also tested last and single returns (Equations 11 and 12). However, these 

methods do not account for the fact that an emitted pulse can encounter only a small 

area of the canopy foliage and there might be insufficient reflected energy to actually 

record a canopy first return. Bearing these this in mind, all returns types provide an 

increased in sampling density to alternatively predict GF (Equation 13) (Hopkinson and 

Chasmer 2007; Hopkinson and Chasmer 2009; Morsdorf et al. 2006; Riaño et al. 2004; 

Sasaki et al. 2008). Meanwhile, Sasaki et al. (2008) proposed to combine first and 

single returns (Equation 14) while Solberg et al. (2009) weighted the first and last 

returns in a different way than the single ones (Equation 15). 

GFF 
∑ RGroundF
∑RTotalF

 
(10) 

GF  
∑        

∑       
 

(11) 

GF  
∑        

∑       
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GF  
∑        

∑       
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GF   
∑        

∑        ∑       
 

(14) 

GFc2 
∑RGroundS  0.5 ∑RGroundF  ∑RGroundL 

∑RTotalS      ∑RTotalF ∑ RTotalL 
 

(15) 



Methods 

48 

where RGround is the frequency of the laser first (F), last (L), single (S) or all (A) pulse 

returns classified as ground while RTotal is the frequency of vegetation canopy plus 

ground F, L, S or A ones. 

ALS metrics based on laser pulse intensity have implicitly estimated GF from full 

waveform ALS data (Lefsky et al. 1999). In this situation, the strength of the returned 

signal from within or below the vegetation canopy is related to the transmittance 

through it (Lefsky et al. 2002). At near nadir scan angles, we can assume that the total 

reflected energy from the ground and vegetation canopy is a function of the total 

emitted energy, whereas the reflected energy from the ground is a similar function of 

the transmitted energy (Hopkinson and Chasmer 2007) (Equation 16). However, this 

model does not explicitly account for potentially different probabilities associated with 

the transmission loss in and out of the canopy. For discrete laser return data, first and 

single returns generally incurs in a similar proportion of transmission loss, assuming 

uniform transmission losses per unit path length travelled. Instead, intermediate or 

last returns are a reflected component of the residual energy left over after a previous 

return was reflected from a surface encountered earlier in the travel path of the 

emitted pulse. According to Beer’s law, Hopkinson and Chasmer (2007) proposed the 

square root of these intermediate or last returns to account for the likelihood of two 

way transmission losses and the combination of all return types to build Equation 17. 

GFI 
∑ IGroundA
∑ ITotalA

 (16) 

GFIC 

∑ IGroundS
∑ ITotalA

 √
IGroundL
ITotalA

∑ ITotalF ∑ ITotalS
∑ ITotalA

 √
∑ ITotalI ∑ ITotalL

ITotalA

 (17) 

where IGround is the intensity of the laser, first (F), intermediate (I), last (L), single (S), 

or all (A) pulse returns classified as ground while ITotal is the intensity of vegetation 

canopy plus ground pulse returns. 



Estimation of Gap Fraction and Clumping Index with Terrestrial and Airborne Laser Scanner 

49 

2.4.5 Computing the GF models from ALS metrics 

Bivariate linear regression technique evaluated the relationships between the 

predictor ALS metrics and GF from HP. This approach was preferred over multivariate 

to avoid the risk of multicollinearity and inflated correlations from a high number of 

predictor variables, especially when all these metrics are derived from the same source 

(Thomas et al. 2011). In addition, the goal was to find metrics that were directly 

related to GF, instead of choosing complex combinations which could render a very 

site specific model (Xu and Zhang 2001). The regressions models were tested they 

satisfied the bivariate linear regression assumptions. For this reason, the Shapiro-Wilk 

test was applied to the models residuals. Residuals are normally distributed when the 

Shapiro-Wilk statistic (W) is near to 1 and p-value is not significant (Royston 1995). 

Besides this, the root mean square error (RMSE equation 18) goes down as R2 goes up 

when comparing regression models, as in our case, with the same dependent variable 

and estimation period. Hence, this fact points to the model with the highest adjusted 

R2, which will have the lowest RMSE and finally preferred because of it (Korhonen et al. 

2011). 

RMSE √
∑(GFiyi GFî)

2

n
 

(18) 

where n is the number of samples, and GFi and GFî  are each measured and estimated 

GF by the model. 

2.5 Vegetation canopy CI from ALS 

2.5.1 Calculation of CI from HP 

In order to validate CI estimates from ALS, CI was computed with CIMES 

package using the steps described in the section 2.3.1 from the same binary HP images 

pre-processed with Fiji freeware in section 2.4.1. Since HP were acquired at three 

different times of the year (see section 2.4.1), we tested if there was a significant 

difference in CI in between dates.  
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The whole process to generate CI was automatized running a batch MS-DOS 

script. CIMES calculates first the gap size distribution for each binary HP and saves it as 

an ASCII file. This file contains a series of three lines: (1) each 1° ϕ interval; (2) the 

length in pixel units of the sequence of white (sky) pixels; and (3) length also in pixel 

units of the black (canopy) pixels. The CLMPML program within CIMES generates a CI 

value integrating the lengths of white/black pixels for the selected ϕ range. A 30-60°  ϕ 

range for the HP was applied here since this range captures better the overall average 

CI according to Gonsamo et al. (2010) and Gonsamo and Pellikka (2009). In addition, 

avoiding pixels in the lower and upper ϕ angles reduces the errors in the estimation of 

gap size distributions (Frazer et al. 2001). More specifically, lower ϕ pixels represent a 

very tiny section of the canopy and upper ones occupy a very broad section with mixed 

values due to the light scattering (Gonsamo and Pellikka 2008). 

2.5.2 Estimation of CI from ALS metrics and ground laser returns ALS images (GRI) 

Most of the few efforts to estimate CI from ALS data relate empirically the non-

random leaf spatial distribution with simple ALS metrics. For example, Thomas et al. 

(2011) predicted CI in a boreal mixed wood forest testing the mean, standard 

deviation, and 25th, 50th, 75th and 95th percentiles of either all or only vegetation 

canopy laser returns within a plot. In addition, Thomas et al. (2011) also calculated the 

mean, median and standard deviation of only the selection of laser pulses higher than 

the mentioned percentiles in the vegetation canopy ones. Bivariate regression models 

were proposed to estimate CI using each of these ALS metrics as predictor variables 

and their performance was evaluated in terms of the best RMSE. 

Alternatively to ALS metrics, ground laser returns ALS images (GRI) served to 

apply here the current methods available that compute CI from sequences of 

canopy/sky pixels using HP or others optical instruments like TRAC (Chen and Cihlar 

1995; Pielou 1962). We generated circular binary GRI of 10-20 m radii by classifying the 

laser returns into canopy (0) or ground (1) based on 1.3 m height threshold discussed 

earlier in section 2.4.4 (Figure 20). Several pixels sizes were tested to produce the GRI, 

starting from the ALS 0.5 m nominal point spacing to 1 m at 0.10 m steps. A pixel size 

of 0.80 m was chosen, which minimizes the number of pixels with multiple laser 

returns and the ones with no laser returns. In case a pixel contained more than one 
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laser return, it was considered ground as long as there was at least one ground laser 

return. Once the GRI were generated we computed the CI applying the spatial 

segregation coefficient (PCS). 

 

Figure 20. GRI from 10 to 20 radii step 2 m. First row, forest plots. Second row, shrub plots. 

2.5.3 Pielou’s coefficient of segregation (PCS) 

Pielou (1962) proposed a coefficient to estimate the degree of segregation to 

determine the relationship between two plant species growing together. The method 

is based on recording the sequences in which a given species occurs in a sampling 

transect for a two-species population. Subsequently, the observations are compared 

to those to be expected from an unsegregated population of the same numerical 

composition, providing a measure of the amount of randomness of each species in 

respect to the other (Pielou 1962). The probability of encountering species A and B are 

given by a and b respectively, and for a two-species population it is clear that a+b=1. 

Provided that the two populations are unsegregated, that is, randomly distributed; it 

follows that with 95% probability:   

     ̂   ̂  
 

  
 

 

  
       √      

  (19) 

 

where  ̂ and  ̂ are the maximum likelihood estimates of A and B, a and b are their 

mean length of occurrence and, sa and sb are their variances. For PCS<1, PCS=1 or 

PCS>1 the distribution of the species is clumped, random or uniform, respectively. 
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This method was adjusted to be applied to HP by Walter et al. (2003) and later 

by Gonsamo and Pellikka (2009), where the segregation of black and white pixels was 

computed for each circle with constant ϕ angle. Similarly to Walter et al. (2003), we 

adapted the PCS method to the GRI data by computing the segregation of 

occupied/unoccupied pixels. We applied three variations of the PCS method to the 

GRI: (1) an analysis of the GRI row by row; (2) a direct application of the PCS-CIMES 

algorithm to the GRI and (3) the PCS-CIMES algorithm restricted to certain ϕ angles.  

For the analysis of the GRI row by row, a Matlab script was developed to 

compute an average PCS index from the ones calculated for each row based on the 

length of sequences of 1 and 0 pixels throughout the GRI, avoiding the outer corner 

pixels. The second option applied directly the PCS-CIMES algorithm developed for HP 

to the GRI even though pixel resolution, view perspective and projection of HP and GRI 

are different. This method applied to GRI therefore assumes a linear relation between 

ϕ angle distribution and the plots radii. The GRI were segmented by annular ϕ ring 

instead of the row by row analysis of the first case (Figure 21). The PCS-CIMES 

calculates the gap size distribution files according to details in section 2.5.1 and 

integrates PCS index value for the whole GRI. The third method takes into account that 

the maximum ALS scans angle value of 36° to adjust the ϕ angles in PCS-CIMES. The 

gap size distribution files were modified so that the ϕ between 0-90° were replaced 

and rescaled for a value between 0-18°. This range maintained the order between ϕ 

rings for a closer match to the ALS ϕ angles, but it was fictitious since the actual ϕ was 

not given by the data provider. Similarly to ALS metrics, bivariate regression models 

estimated CI using as predictor variables each of the three proposed PCS methods and 

their performance was evaluated in terms of the best RMSE. 
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Figure 21. GRI 0.80 m pixel size and 20 m radius for a forest plot (left) and shrub plot (right). 

 



Results and discussions 

54 

3 RESULTS AND DISCUSSIONS 

3.1 Vegetation canopy GF from TLS 

Figure 22 shows the differences between the reference θ and ϕ angular 

resolution and the computed ones for the R, C and RC gap patterns with GF from 10 to 

80% and for noise sigma values ranging from 0 to 14%. Results showed that R and RC 

gap patterns kept resolution values closer to the reference until sigma reached 6% and 

over. Instead, C gap pattern showed good resolutions values only for a sigma less than 

4%. Above 6% sigma, the R and RC gap patterns had coarser resolutions than the 

reference values, except for GF data between 10-20%, whereas C gap pattern was the 

opposite, with finer resolution than its reference. 

 

Figure 22. Difference between reference θ and ϕ angular resolution and the computed ones. 

Computed GF showed an average difference with the reference that was close 

to zero for noise sigma values ranging from 2 to 6% for all the gap patterns simulated. 

For sigma values between 8 to 14%, average differences were from 2% to a maximum 

of 5% for R and RC gap patterns, respectively. As for the C gap pattern for the same 

sigma values, it systematically showed higher differences with values ranging between 

2% and 7% (Figure 23). The KW test demonstrated that GF estimates are sensitive to 

the angular noise of the data for all the gap patterns and GF amounts (p-value<0.05). 

The test was also carried out to assess the effect of the gap patterns in the amount of 

GF estimated. The results demonstrated that this variable does not influence the GF 

calculation as long as the noise remains below 6% of the angular resolution. For higher 
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sigma noise, the test showed that there were significant differences between GF 

obtained from different gap patterns (Table 6). 

 

Figure 23. GF comparison for R, C and RC gap patterns simulated with several sigma noises. 

Figure 24 shows a comparison between GF obtained from the angular grids and 

its SimTLS-SHP. Comparison was made only for simulated TLS data with 2-6% sigma 

values, since this level of noise did not affect GF estimates. The results showed that 

the best agreement was for the C gap pattern with an average 1% difference, followed 

by the R and RC gap patterns, presenting around 7% and 8% difference, respectively. 

Table 6. P-values significance between R/C/RC gap patterns for KW test carried out over angular GF 

images with sigma noise from 2 to 14%. 

GF10% GF20% GF30% GF40% GF50% GF60% GF70% GF80% GF90% 

2%(*) 2%(*) 2%(*) 2%(*) 2%(*) 2%(*) 2%(*) 2%(*) 2%(*) 

4%(*) 4%(*) 4%(*) 4%(*) 4%(*) 4%(*) 4%(*) 4%(*) 4%(*) 

6%(*) 6%(*) 6%(*) 6%(*) 6%(*) 6%(*) 6%(*) 6%(*) 6%(*) 

8%(**) 8%(**) 8%(**) 8%(**) 8%(**) 8%(**) 8%(**) 8%(**) 8%(**) 

10%(**) 10%(**) 10%(**) 10%(**) 10%(**) 10%(**) 10%(**) 10%(**) 10%(**) 

12%(**) 12%(**) 12%(**) 12%(**) 12%(**) 12%(**) 12%(**) 12%(**) 12%(**) 

14%(**) 14%(**) 14%(**) 14%(**) 14%(**) 14%(**) 14%(**) 14%(**) 14%(**) 

(*) There is no significant difference. 

(**) There is significant difference. 
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Figure 24.Comparison between GF estimated from an angular grid and SimTLS-SHP with simulations 
with 6% sigma. 

Computation of the angular resolution for the actual TLS tree models yielded an 

average resolution of 6.3e-04 rad for both the θ and ϕ, whereas the sigma noise was 

5.81% and 3.29% of the angular resolution, respectively (Table 7). GF ranged between 

27% and 39%, with an average value of 33.5%. Figure 25 shows an example of an 

angular grid and its transformation to TLS-SHP. For the subset TLS data from the 

selected trunks, the results showed a very similar angular resolution of 6.28e-04 rad 

for both the θ and ϕ, whereas the sigma noise decreased to 4.43% and 1.27% of the 

angular resolution, respectively (Table 8). On the other hand, lower ϕ TLS slices (<4°) 

showed different resolutions 5.3e-04 rad and 4.4e-04 rad for θ and ϕ and higher sigma 

noise of 42.54% and 64.76% of the angular resolution, respectively (Table 9). 

Moreover, some noisier sectors in the canopy showed angular resolutions which 

deviated from the average computed values (Figure 26).  
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Table 7. Computed angular resolution for the TLS data. 

Tree ID Resolution (θ) Sigma (θ)(%) Resolution ( ϕ) Sigma (ϕ)(%) GF 

Z1P5_SCAN1 6.30e-04 6.66 6.30e-04 3.22 34 

Z1P5_SCAN2 6.30e-04 5.81 6.30e-04 3.16 36 

Z1P7_SCAN1 6.30e-04 5.65 6.30e-04 2.67 39 

Z1P7_SCAN2 6.20e-04 6.26 6.30e-04 3.50 37 

Z2P6_SCAN1 6.30e-04 5.29 6.30e-04 3.06 27 

Z2P6_SCAN2 6.30e-04 5.64 6.30e-04 2.95 27 

Z2P11_SCAN1 6.30e-04 5.38 6.30e-04 3.17 30 

Z2P11_SCAN2 6.30e-04 5.81 6.20e-04 4.60 38 

AVERAGE 6.30e-04 5.81 6.30e-04 3.29 33.5 

 

 

Figure 25. Angular grid GF image (left) and its transformation into TLS-SHP (right). 

Table 8. Computed angular resolution for the reference TLS data (tree trunks). 

TrunkID Resolution (θ) Sigma (θ)(%) Resolution ( ϕ) Sigma (ϕ)(%) 

Z1P5_S1 6.27e-04 4.43 6.29e-04 1.29 

Z1P5_S2 6.28e-04 4.22 6.29e-04 1.18 

Z1P7_S1 6.27e-04 5.07 6.28e-04 1.29 

Z1P7_S2 6.28e-04 4.99 6.28e-04 1.27 

Z2P6_S1 6.28e-04 4.11 6.29e-04 1.24 

Z2P6_S2 6.28e-04 4.63 6.28e-04 1.27 

Z2P11_S1 6.27e-04 3.57 6.29e-04 1.53 

Z2P11_S2 6.28e-04 4.39 6.28e-04 1.11 

AVERAGE 6.28e-04 4.43 6.28e-04 1.27 

 

Table 9. Computed angular resolution for upper ϕ slices of the tree models. 

Tree ID Resolution (θ) Sigma (θ)(%) Resolution ( ϕ) Sigma (ϕ)(%) 

Z1P5_SCAN1 4.6e-04 47.83 5.2e-04 44.42 

Z1P5_SCAN2 5.2e-04 45.24 3.4e-04 91.18 

Z1P7_SCAN1 5.2e-04 45.24 4.2e-04 70.67 

Z1P7_SCAN2 5.2e-04 43.33 4.0e-04 73.50 

Z2P6_SCAN1 5.7e-04 31.27 5.5e-04 37.41 

Z2P6_SCAN2 5.6e-04 35.91 4.8e-04 54.89 
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Z2P11_SCAN1 5.4e-04 56.46 3.7e-04 83.38 

Z2P11_SCAN2 5.6e-04 35.06 4.5e-04 62.64 

AVERAGE 5.3e-04 42.54 4.4e-04 64.76 

 

 

Figure 26. Canopy section (left), histogram for regular points (middle), histogram for noisy points (right). 

Figure 27 on the left shows comparison between GF computed from HP and 

TLS-SHP. The TLS-SHP underestimated GF by an average 4% compared to HP. Figure 27 

on the right shows a comparison between GF values computed from the angular grids 

and values derived from HP and TLS-SHP. The GF from angular grid showed 14% and 

17% values higher than computed by HP and TLS-SHP respectively. 

 

Figure 27. GF comparison between TLS-SHP and HP (left), GF comparison for angular grid and HP and 
TLS-SHP (right). 

The figure 28 shows the GF distribution according the ϕ range for the eight TLS 

tree models. The average absolute differences between TLS-SHP and HP was a 
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maximum of 12% in the lower ϕ ranges (2.5°), a minimum of 2% in the medium part of 

the ϕ range (32.5°) and an average value of 5% for all the angular range. The figure 29 

shows the comparison for GF computed from TLS-SHP and HP. The R2 were 0.88 and 

0.89, and statistically significant (p-value<0.05) for the 0-60° and 30-60° ϕ range 

respectively. The TLS-SHP underestimated the GF in about 4% and 2% respect to HP as 

both as in the 0-60° and 30-60° ϕ range. 

 

Figure 28. Distribution of GF for zenithal angles for the TLS models. 
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Figure 29. GF comparison for TLS-SHP and HP, considering (0-60) ϕ range (left), considering (30-60) ϕ 
range (right).  

Angular grids estimate accurately the angular resolution on simulated TLS data 

which included variations in sigma, gap patterns and GF. However, when the noise 

level used to simulate TLS data exceeds the 6% threshold, the computed angular 

resolutions become unreliable (Table 6). This error in the angular resolution estimation 

causes an error in the GF estimation, as it determines the size of the grid cell as so the 

level of detail that can be captured. For example, the angular resolution estimated is 

smaller than the reference for high sigma in the case of the C gap pattern. This error 

increases as sigma increases (Figure 22). Its smaller calculated angular resolution 

causes an increase of cells in the angular grid, appearing as false gaps or as extra rows 

or columns, hence overestimating GF, especially when lower GF is simulated (Figure 

23). For this C gap pattern, there will always be a higher chance of selecting groups of 

points with adjacent neighbors, closer to each other and, therefore, smaller angular 

resolution even for low sigma. 

The probability of selecting points coming from non-consecutive returns 

increases when simulated GF higher than 80% for R and RC gap patterns. Therefore, 

the distance between returns augments and so does its computed angular resolution. 

As a result, an angular grid with fewer cells reduces the chance of having gaps and thus 

underestimating GF, but only for extreme 12-14% sigma values (Figure 23). On the 

other hand, the same problems of overestimation as earlier described for C gap 

patterns were observed for R and RC, selecting returns closer to each other than 
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expected, but in this case only for low GF (10-40%) and only when sigma was higher 

than 6%.  

Regarding the real TLS data, the manufacturer of the TLS Leica HDS-6000 

system used in this study reported a priori angular noise sigma value of 1.25e-04 rad, 

but the actual sigma value calculated here was much lower, 2.8e-05 rad (4.43%) in θ 

and 8.0e-06 rad (1.27%) in ϕ (Table 8). This angular noise found in the TLS data is 

optimal for the estimation of GF using angular grids since for all the conditions tested 

on simulated TLS, the algorithm performed consistently well as long as sigma is below 

6% (Figures 22 and 23). Several other studies have demonstrated also lower sigma 

values than reported a priori by the manufacturer. For example, Kersten et al. (2008) 

and Kremen et al. (2006) estimated 4.7e-05 rad deviations in both θ and ϕ; and 

Reshetyuk (2006) found 2.79e-05 and 1.57e-05 rad in θ and ϕ with a Leica HDS-3000 

TLS system. The difference between horizontal and vertical deviations can be 

attributed to the mechanism used in the scanner where vertical precision is about 

twice as good as horizontal precision, because the scanning mirror shows lower inertia 

than the servomotor which is used to get horizontal angles (Reshetyuk 2006). 

The TLS Leica HDS-6000 system produced an oversample of about 0.07 rad in 

the θ direction (Figure 30) that was confirmed by Leica Geosystems technical support 

in a personal communication. This problem could be identified with the angular grid 

method since due to the higher point density in those areas, the estimated angular 

resolution was smaller than the average value, generating false gaps and therefore 

higher GF. Danson et al. (2007) calculated GF as a ratio of the pulse return to the total 

number of lasers emitted from the theoretical resolution of the instrument without 

knowing the exact location of the gaps. In this case, the oversampling error would be 

overlooked since their method cannot determine exactly where these gaps occur in 

the vegetation canopy, causing a higher ratio between pulse returns and total number 

of pulses emitted and, as a consequence, lower GF. 
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Figure 30. Oversampled scanned zone (dashed line) shown in Cartesian XY plane. 

The low ϕ slices in the TLS tree data contained high noise and their angular 

resolution was biased from the average (Table 9 and Figure 26). Such noisier returns 

can occur due to movement of the canopy objects during the TLS data scanning 

produced by the presence of mild to moderate wind conditions (Cote et al. 2009; 

Seidel et al. 2012). Moreover, the higher noise obtained for this section is due to the 

occlusion effect which prevent the laser beam from reaching the upper canopy, 

therefore the algorithm fails to find suitable neighbor pixels. That occlusion effect was 

also described by Van der Zande et al. (2006) and causes that the number of laser 

returns decreases as the distance from the TLS system to the canopy increases. As a 

consequence, objects in the upper part of the canopy are usually represented by fewer 

returns and with less accuracy than the ones closer to the TLS system (Seidel et al. 

2012). Moreover, when a laser beam partially hits a canopy object, only a fraction of 

the beam reaches back to the TLS system, causing a return only if the intensity is 

strong enough. The other part of the laser beam continues travelling, but it is generally 



Estimation of Gap Fraction and Clumping Index with Terrestrial and Airborne Laser Scanner 

63 

too weak to trigger a return (Eitel et al. 2010). As a result, the edge of the canopy 

objects will lack laser returns (Figure 31). Vegetation canopies contain complex 

discontinuous rough elements to scan, such as trunks, branches and leaves, resulting in 

a noisier laser return that can affect subsequent data processes (Van der Zande et al. 

2011).  

 

Figure 31. Edge effect on TLS data (XYZ subset) (left), GF angular image from XYZ subset (right). 

SimTLS-SHP underestimated GF, especially for data between 10-50% GF (Figure 

24). Average differences on this range reached 9% and 14% for RC and R gap patterns 

respectively. The lower GF values obtained by SimTLS-SHP can be explained in part by 

the deformation caused by this projection. Polar projection generates a transformation 

in which each return is shown in its true direction and exact distance from projection 

center point, whereas all other directions and distances are deformed. In 

consequence, area distortion and shapes increase as it moves away from the center 

(Maling 1992). As a result of the deformation, pixels in the center zone and in the 

outer border of the image had a higher return frequency producing, therefore, an 

underestimation in GF values. Since the method used to classify pixels as occupied or 

empty is based on the proportion of returns to the total number of gaps and returns, 
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variation in the return point frequency within each pixel (Figure 9), greatly affects the 

generation of the binary image and so, the GF computation. This problem is 

exacerbated for the R and RC gap patterns, because small random gaps are part of 

pixels with several returns, masking such gaps.  

The angular grid method showed an average GF overestimation of 14% when it 

compared with HP. (Figure 27 right). Danson et al. (2007) also found a light 

overestimation of 9% on average respect to HP. These differences can be attributed to 

processing doing over the HP that can be influenced by the different light conditions 

present in the images, the lack of returns in the scanned objects edges and also the 

position of the HP relative to the position of the TLS system. However, Calders et al. 

(2011) and Lovell et al. (2003) obtained that TLS underestimated the GF from HP. 

These discrepancies could be related with the different forest height, crown cover, 

scanner characteristics and HP camera position (Danson et al. 2007). The last factor 

can be supported also by results of Calders et al. (2011), because they did not took the 

HP at the same position of the TLS, instead of that, they took several HP in the plot and 

computed the average, but their HP GF values greatly varied within the plot. 

GF derived from the TLS-SHP was about 17% lower than the angular grid GF 

(Figure 27 left). This difference could be explained in part by deformations associated 

to the hemispherical projection of the TLS-SHP and the lack of returns in the objects 

edge that is noticeable in the angular grids. As it was seen for the SimTLS-SHP, the 

effect of re-projecting caused a systematic underestimation of GF, which is noticeable 

in R and RC gap patterns with lower GF values (Figure 24).  

The GF showed to be a ϕ dependent structural variable, highly variable near 

lower ϕ angles for both approaches, HP and TLS-SHP (Figure 28). The main differences 

between the HP and TLS-SHP were between 2.5-22.5° with a better agreement near 

32°. Similar trends were found by Fournier et al. (1997) for HP and simulated HP. Their 

poor agreement was between 0-20°, but with better results for the range between 25-

70°. In our case, one possible explanation of these differences could be in the method 

we used to produce the TLS-SHP images and the number of pixels per ϕ ring (Figure 

32). This method measures the TLS returns frequencies within each pixel to assign a 

gap or return class to it. Considering this fact and that the number of samples for lower 
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ϕ ranges is lower, it could explain the higher differences for these ϕ ranges. Besides, 

GF from TLS-SHP was an average 4% smaller than the one from HP (Figure 29 right), 

and the correlation (R2 =0.89) between them is in concordance with values obtained by 

Seidel et al. (2012), who found R2 =0.88 in a forest with large gaps. An explanation 

could be the threshold selection when classifying the HP which could still be 

erroneous, even though an automatic method was applied (Jonckheere et al. 2005). In 

some cases the sky light illumination was too bright causing blooming effects in parts 

of the HP. Another reason that could influence was that the small and thin branches 

were not visible in the classified HP images, even when they showed up in the original 

HP (Seidel et al. 2012). Moreover, no filtering was applied to the HP to improve 

contrast between sky and foliage, particularly for the small gaps and for the foliage in 

the periphery (Walter et al. 2003). Even so, canopy geometry seems to be well 

represented in both approaches, although small gaps which are visible in HP seemed 

to be smaller or even absent in the TLS-SHP (Figure 11). This effect could be related to 

the approximately 5 mm footprint at 8 m from the TLS system, which impeded the 

detection of smaller gaps than this size. In that context, Lovell et al. (2003) indicated 

that this effect is cause for the beam divergence, because the laser beam increased 

with the range, and the presence of small canopy gaps will not be detected if there is 

an object within the beam that produces a return. In this respect, the existence of 

canopy scenes with gaps larger than the laser footprint seems to shows better 

agreements with TLS measurements than canopy mainly conformed by small gaps 

(Seidel et al. 2012). In addition, since the exact position for the coordinates system and 

the field of view of the TLS scanner and the HP were not the same, it was necessary to 

select a common ϕ angular range for match both sensors. The matching of both 

images was carried out manually, aiming at obtaining all processed ϕ sectors 

coincident in the canopy. This selection causes also additional uncertainty, that is 

especially noticeable at the lower ϕ angles (Calders et al. 2011), which contributing to 

the differences between GF values obtained from each instrument. 
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Figure 32. Distribution for the number of pixels in the ϕ rings for a TLS-SHP. 

3.2 Vegetation canopy CI from TLS 

Figure 33 shows the CI computed using the CI from HP and TLS-SHP for the 

eight trees and for different ϕ angles ranging from 5-55°, at 1° steps. The lower the CI 

means higher clumping in the canopy. A general underestimation of the CI values was 

observed for the TLS-SHP versus the real HP, which was considered the reference 

value. Differences ranged from 3 to 51%, with an average underestimation of 27%. The 

regressions between the CI computed from TLS-SHP and HP were statistically 

significant (p-value<0.05) for all  ranges except for 5-55° which yielded a p-value of 

0.145 (Figure 34a). For the significant regressions, the R2 values ranged from 0.54 to 

0.92, and the RMSE from 0.07 to 0.04 for the ϕ range comprised between 20-55° and 

54-55°, respectively (Figure 34b).  

Regarding to the number of gaps, the closest match between methods after 

varying the  range occurred on Figure 35c, with 217 and 142 gap segments for HP and 

TLS-SHP, respectively. For the worst case (Figure 35d), these differences were higher, 
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with 123 versus 30 gap segments, respectively. The average gap run-length showed 

values very similar for the best case (Figure 35a), with 4 and 3 pixels, but high 

differences for the worst one (Figure 35b), with values of 5 and 70 pixels for HP and 

TLS-SHP, respectively.  

 

Figure 33. CI derived from HP and TLS-SHP. 

 

   

Figure 34. R
2
 (a), RMSE (b) and slope (c) between CI from the TLS-SHP and HP for each ϕ range. 

 

a) b) c) 



Results and discussions 

68 

 

Figure 35. Average gap size and gap number for best (a,c) and worst (b,d) cases. 

The CI underestimation for the TLS-SHP compared to the HP can be attributed 

to differences in the gap size distributions. Furthermore, the size of the gaps in the 

TLS-SHP, accounted as a run-length in pixel units, was larger and therefore, the 

number of gap sequences was lower than the HP. Precisely, larger but fewer gaps are 

characteristic of clumped canopies, with lower CI values (Chen and Cihlar 1995), which 

happens to coincide with the tree with highest disagreement between the two 

methods (Figure 33h). On the other hand, the best agreement occurs for the tree with 

shorter gaps segments but more numerous (Figure 33e).  

Differences in the gap size distributions between HP and TLS-SHP can be 

attributed at least to three sources. The first one is the lack of returns from the edge of 

the canopy objects on the TLS-SHP, an effect earlier described in the discussion section 

3.1. This issue is related to the TLS beam divergence, which measures the laser beam 

widening with the distance travelled and therefore, influences the position uncertainty 

of the measured canopy objects (Van Genechten et al. 2008). When a laser pulse hits 

an object edge, the pulse is split in two or more parts. One part of the pulse reflects 



Estimation of Gap Fraction and Clumping Index with Terrestrial and Airborne Laser Scanner 

69 

here, while the other portion continues travelling to intercept an object further away 

in the canopy. This laser returns towards the TLS from two different locations and with 

less intensity. As a consequence, the coordinates for that point might not be recorded 

by the TLS or at most the sensor will average the returns and their position will be 

computed in the wrong place (Rosell et al. 2009; Van Genechten et al. 2008). The laser 

footprint size at the canopy object is driven by the TLS-object distance and the 

instrument’s beam divergence. For the same laser footprint size, the probability to hit 

an edge increases with the number of laser pulses, namely higher TLS resolution (Lichti 

2004). Our resolution was very high with one laser point every 6.3 mm at a 10 m 

distance, increasing the chances of creating gaps at the border of the canopy objects. 

This fact contributes to a bias in the gap size distribution, with larger gaps of fewer 

segments, and as a consequence lower CI values. It seems that this effect is more 

pronounced in the dense areas of the canopy, especially for the larger ϕ angles (Figure 

36). In addition, the presence of woody material with cylindrical shapes, such twigs 

and branches, also difficulties the representation the canopy as also shown by Runions 

et al. (2007). 

The second factor to be considered is the multipath effect that laser returns 

experience in complex scenarios such as the canopy (Gatziolis and Andersen 2008). 

The problem is the change in direction that sometimes occurs when a laser pulse hits 

objects of appreciable mass, such as trunks, wide branches or fruits. For those pulses, 

the actual path is unknown and the registered laser returns are recorded further away 

or are even missing, increasing the final sensor noise. Vaaja et al. (2013) mentioned 

that these noisy returns especially occur on phase difference instruments, like our TLS, 

rather than on the ones that measure time-of-flight, mainly because their higher laser 

frequency tend to cause sometimes a slight fluctuation on the phase. A TLS system 

able of recording first and last returns and with smaller beam width could minimize the 

described problems (Van Genechten et al. 2008).  

The third factor affecting the results is the different resolution and field of view 

of the HP and TLS sensors. A HP contained ~10M pixels whereas the TLS-SHP included 

the information of approximately ~15M laser returns and it was 3D. This effect was 

also pointed out by Zhao et al. (2012) as a contribute factor for the differences. As it 
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was stated by Frazer et al. (2001), digital HP produces blurred images. Pre-processing 

steps including channel selection were carried out in order to improve the contrast 

and find the best threshold to binarize the image. In addition, this binarization process 

is required and subjective (even if we used an automatic thresholding approach) for HP 

but it is unnecessary for TLS-SHP, causing additional differences between the two 

methods. Finally, perfect angular matching between the two sensors is challenging and 

slight changes in the field of view leads to differences in the observed gaps and in 

consequence their CI, even though the HP were taken supposedly in the exact same 

position as the TLS instrument. 

 
 
 
 
 
 
 
 
 

 

Figure 36. Canopy section from HP (left) and TLS-SHP (right). 

As for the effect of the ϕ angle on the CI estimates, TLS-SHP showed more 

variability in the very low (<30°) ϕ values. This is related to the fact that the GF and gap 

size distributions are highly variable for extreme ϕ and the resolution worsens 

(Fournier et al. 1997), which affects the CI computation. Moreover, the CI algorithm 

did not converge to provide a CI value for the lower ϕ angles (0-5°), probably because 

the number of gap segments is so small, less than five, which is the minimum the 

program CIMES needs to compute CI. In general, this translates into lower CI values 

(higher clumping) closer to the ϕ, which agreed with the results mentioned by 

Kucharik et al. (1997). Walter et al. (2003) also pointed out that as the view direction 

changes from the horizon to the ϕ, the clumping effect in the canopy becomes more 

evident.  
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A comparison between TLS-SHP and HP was only possible for ϕ<60°, due to the 

observation angle limitation in the camera that acquired the HP. The CI relationships 

between these two instruments that included the lower ϕ (5-55°) was not statistical 

significant (p-value>0.05), but the middle ϕ range (20-55° and 30-55°) showed a better 

fit with higher R2 and slope near to 1 (Figure 34a and Figure 34c). This agreed with the 

results showed by Leblanc and Cheng (2001) where measurements in the ϕ range 

between 30-60° indicated small variations, because the CI in this range represents the 

mean CI of all the angles.  Similar variations in CI by ϕ angle were also mentioned by 

Leblanc et al. (2005). However, the determination coefficient increased by constraining 

the ϕ range to contain only higher values, especially in the ϕ range 54-55° (Figure 34). 

Nevertheless, further research is needed to demonstrate if this ϕ range performs well 

on other datasets or if it is just the result of an over fitting to our reduced number of 

samples.  

3.3 Vegetation canopy GF from ALS 

An automatic threshold was able to compute GF for most of the HP images. 

After visual inspection, 12 out of 347 HP (~3%) had to be reprocessed with a manual 

threshold. The affected HP happened on 05 and 13 forest plots and 06 shrub plot for 

September 2006. After re-processing these HP, their GF per plot increased 5, 9 and 9%, 

respectively. We compared the GF estimated with this automatic threshold for all HP 

versus a manual one calculated in Casas et al. (In review). Figure 37 shows that there is 

a statistically significant agreement between the two methods (R2 = 0.77, p-

value<0.01), where the automatic threshold underestimated GF overall in 12%. When 

separating by cover type, forest demonstrated a better performance than shrubs, with 

an R2 of 0.89 versus 0.62 and an average 0.6% overestimation versus a 20% 

underestimation, respectively. When comparing the GF computed for the three 

different dates, the box-plot obtained for the KW test in Figure 38 showed no 

significant difference between dates. 
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Figure 37. Comparison between the GF data derived with an automatic versus a manual threshold. 

 

 

Figure 38. KW test box-plot for forest (top), shrub (middle) and forest and shrub plots together 
(bottom). 
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Figure 39 shows the relationship between the GF calculated from HP and the 

ALS metrics for different ALS radii size. In the case of the forest plots, the R2 values 

ranged from 0.1 to 0.9 for the GFL and GFS metrics, respectively. The highest 

correlations for most of the ALS metrics happened at 11 m radius; however for the 

GFc1 metric it was at 15 m. The R2 values in the case of the shrubs ranged from 0.007 

(MaxH) to 0.65 (GFF) with the highest correlations also at 11 m. When considering 

forest and shrub data together, R2 values ranged from 0.007 (GFF) to 0.80 (GFS), 

remaining the highest correlations also at 11 m. Table 10 shows the best models 

obtained from GFS and GFI that tend to underestimate the forest and overestimate the 

shrubs GF when compared to HP. The W-statistic and its p-value demonstrated that all 

the models residuals were normally distributed.  

 

Figure 39. R
2
 between GF from HP and all the ALS metrics for different ALS radii on the forest, shrub 

and both plots together. 
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Table 10. Selected models for the GF estimation from frequency (f) and intensity (I) ALS metrics with 
11 m radius. 

 Model (GF) R2 RMSE Bias (%) W-statistic W-statistc 
p-value   

Forest(f) 0.445xGFS+0.230 0.94 0.022 -36 0.912 0.196 

Forest(I) 0.465xGFI+0.176 0.92 0.027 -3 0.917 0.230 

Shrub(f) 0.297xGFS+0.237 0.57 0.042 +43 0.907 0.119 

Shrub(I) 0.257xGFI+0.228 0.46 0.047 +74 0.908 0.150 

Forest+Shrub(f)  0.302xGFS+0.246 0.81 0.039 +8 0.968 0.576 

Forest+Shrub(I) 0.276xGFI+0.227 0.73 0.045 +29 0.945 0.156 

 

Several reasons could explain the differences between the automatic and 

manual thresholds to compute GF. Casas et al. (In review) chose the whole ϕ range (0-

90°) to compute the manual thresholds and masked out the woody materials. In 

contrast, this work selected 30-60° to calculate the automatic threshold but did not 

mask anything. Shrub plots showed a higher proportion of woody materials than forest 

ones in the HP, leading to more gaps in Casas et al. (In review) after applying the mask 

and hence the 20% GF underestimation on this work. Other possible reason for 

discrepancy is that the manual threshold is usually biased, since an operator is in 

charge of finding the edge between the foliage and sky to set a threshold value, which 

sometimes is only useful for some areas in the image (Jonckheere et al. 2005). Instead 

of that, clustering is applied to set an automatic threshold that differentiates foliage 

from sky in the HP. Finally, Casas et al. (In review) preferred the three RGB channels in 

the HP, whereas here we chose only the blue channel, because it has a better contrast 

between foliage and sky elements (Gonsamo et al. 2010). 

Despite of the presented differences in the HP pre-processing, the algorithm 

applied here to automatically classify the HP in two clusters successfully estimated GF, 

and this option was a good choice compared to other automatic thresholds. For 

example, choosing as threshold the DN with the lowest frequency in the HP histogram 

is not recommend, because there is a large range of DN with very similar low 

frequencies (Figure 40). Using this criterion would cause masking small gaps in the 

canopy (Walter 2009). With the clustering automatic threshold, only 3% of the HP 

needed to be re-processed after visual inspection. These HP were taken when it was 

too dark, and even if the exposure was modified, the resulting GF was still too low. In 
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addition, Jonckheere et al. (2005) pointed out that clustering algorithms perform 

better in lighter than darker conditions. 

  

Figure 40. Histograms for a forest (left) and a shrub plot (right). 

 

HP and ALS observe the vegetation canopy from a different perspective which 

could explain at least partially the differences in the GF estimates (Morsdorf et al. 

2006; Riaño et al. 2004). The ALS captures the canopy from the top facing down with 

18° scan angle, whereas HP does it from the bottom facing up with 30-60° ϕ range. In 

consequence, there will be some areas that would be visible from the HP and invisible 

from the ALS and vice versa. Besides, Morsdorf et al. (2006) mentioned that HP cannot 

discriminate the gaps within and between the crowns whereas ALS could. In regards to 

the plot radii, Morsdorf et al. (2006) found the best agreement at 15 m with 7.15° scan 

angle, but 11 m was the optimal radius in this study, like reported also by Hopkinson et 

al. (2007)  (Figure 39). Despite of these discrepancies, we chose an adequate radii 

range that contained a maximum correlation that decreased in either direction (Figure 

39). The optimal radius size was the same for the forest and shrub canopies. Contrary, 

Riaño et al. (2004) found a different optimal radius size for a pine and an oak forest 

that authors explained due to the size and distribution of the elements within canopy. 

ALS metrics, GFS and GFI, estimated GF accurately but results differed by 

canopy type. For the forest plots, GFS provided a very high R2=0.94 (Table 10). This 

simple ratio of only the single laser returns from either the canopy or the ground 

avoids the divergence generated by those returns that hit two different surfaces to 

produce a first and a last return (Sasaki et al. 2008). A similar agreement for GFS 
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(R2=0.83) was found on an evergreen and deciduous forest by Sasaki et al. (2008). 

These authors demonstrated that laser point density influences the GF estimation, 

which was 1.13 points/m2 in their case whereas ours was 4.0 points/m2. Slighter lower 

performances (R2=0.73 and 0.70) were found by Morsdorf et al. (2006) and Hopkinson 

et al. (2009) with points density of 20.0 and 1.0 points/m2 respectively. Regarding to 

metrics which considered different weight for return types, the GFc2 showed a better 

performance of 0.89 compared with 0.61 obtained by Solberg et al. (2009), however it 

was still lower than GFs. According to Solberg et al. (2009) the rate of penetration of 

GFc2 metric is conditioned by the weight factors, which were assigned arbitrarily.   

The GFI metric based on the intensity of the laser returns performed well 

(R2=0.91 Table 10), similarly to Hopkinson et al. (2007) who reached an R2 of 0.89 with 

a density of 3.0 points/m2 and for the same radius of 11 m as our study. Similarly to 

GFI, GFIC provided also a good GF estimate (R2=0.89). This metric simulates the power 

loss transmission by the intermediate and last returns according to the Beer’s Law. 

Hopkinson et al. (2007) also found a good agreement, but in their case GFIC slightly 

improved over GFI, which could be related to how this metric accounts for the power 

loss in relation to the difference in canopy structure between the two works. 

Hopkinson et al. (2009) indicated that GFI underestimated GF in 6% and our study only 

did in 3% (Table 10). 

Shrub plots showed weaker correlations with GFS and GFI than the forest ones 

(Table 10). In addition, these metrics overestimated GF on shrub plots whereas the 

opposite occurred for forest plots (Table 10). These differences could be related to 

canopy structure and height according to Hopkinson et al. (2009). Forest GF estimated 

from HP is only 9 % lower than the shrub GF, with 32% versus 41%, but GFS predicted a 

39% difference, with 20% versus 59%, respectively. Relatively fewer ground returns are 

expected on taller canopies where laser pulses cannot penetrate as much, and as 

consequence lower GF values (Sasaki et al. 2008). Contrary, shorter canopies such as 

the shrub allow relatively more ground returns, overestimating GF. Furthermore, 

Hopkinson et al. (2009) reported that ALS metrics based on the penetration rates like 

GFS are more dependent on canopy height than metrics based on the intensity of the 

laser returns like GFI. The intensity metrics would be more sensitive to the ‘peak pulse 
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power concentration’ parameter, calculated as the ratio between the peak pulse 

power and the footprint area (Hopkinson 2007). For our case, the trends found by 

Hopkinson et al. (2009) did not perpetuate, because both kind of metrics are similarly 

dependent on canopy height (Figure 41).   

  

Figure 41. Correlation between GFS (left) or GFI (right) with maximum canopy height. 

 

The lack of first and last ground returns on the forest and shrub plots causes 

the failure of GFF and GFL, respectively (Figure 39). Although the GFF showed some 

peaks in the shrubs plots, they were not significant (p-value>0.05), because it still 

presented several cases for which it was not possible to compute it. For the GFL, this 

return type is residual from reaching multiple surfaces and therefore rare or inexistent 

in either canopy for the plot radii considered. However, Hopkinson et al. (2009) 

applied the GFF metric and got an agreement of R2=0.65 with an underestimation of 

30% respect to HP GF measurements. Besides, Morsdorf et al. (2006) got a R2=0.73 for 

the same metric with also an underestimating trend. Hopkinson et al. (2009) 

mentioned that this metric is influenced by the canopy structure and height, giving a 

better result in a mixed wood forest than in a closed conifer forest. In addition, Lovell 

et al. (2003) indicated that these metrics from first and last returns are biased by the 

interaction between the canopy structure in term of its gaps size and the footprint 

size. The empirical metrics derived from vegetation height (P50,th P75,th  P95,th 

AverageH and MaxH) did not provide results close to GFS for forest plots but did so for 

shrub ones. The P50th offered an R2=0.62 on shrub plots. Similar correlation magnitude 

were found by Riaño et al. (2004) for the same metric and radii size on an oak forest. 
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Moreover, Riaño et al. (2004) found that regression parameters with these metrics are 

canopy type specific like it happens in our case (Figure 39). 

3.4 Vegetation canopy CI from ALS 

The statistical analysis carried out over the CI derived from HP indicated that 

there was no significant difference between the three sampling dates (Figure 42). The 

CI models computed from the ALS height metrics are in Figure 43. For the forest plots, 

the best three were StdP50plot, MedianP75plot and P50plot, all of them with R2 of 

0.47. For the shrub plots, the best three were Stdup95c, MedianP25plot, Stdup75c 

with R2 0.36, 0.35 and 0.33, respectively. For both plots together, the best three were 

MedianP25plot, MeanP25plot and MeanP50plot with R2 0.35, 0.31 and 0.30 

respectively. 

 

Figure 42. KW test box-plot for the CI calculated by date for forest (top), shrub (middle), and both 
plots together (bottom). 
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Figure 43. R
2
 for the CI regression models computed using ALS height metrics for forest (top), shrub 

(middle), and both plots together (bottom). 

 

The PCS algorithm applied row by row to the GRI estimated the CI in the best 

case scenario with an R2 of 0.57, 0.32 and 0.45 for the forest, shrub and both plots 

together, respectively (Figure 44 and 45). A different plot radius size accomplished 

these best results for each of the plots considered (Figure 44). Presuming GRI were 

angular data coming from HP, a direct application of the PCS-CIMES algorithm 

provided higher R2 values that reached 0.65, 0.61 and 0.50 for the same three cases as 

above. When the PCS-CIMES algorithm was restricted to ϕ<18°, the R2 values reached 

a higher value than the previous case for the forest (0.72), lower for the shrub (0.50) 

and the same for both plots together (0.50). Finally, Table 11 shows the selected 

models in each case after the application of the best PCS algorithm, for which the 

residuals were always normally distributed according to their W statistic and p-value. 
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Figure 44. R

2
 for the CI regression models from the PCS by plot radii using a row average (top), ϕ angle 

average (middle) and ϕ <18 (bottom). 

 

 

Figure 45. Best CI models PCS algorithm using row average (left), ϕ average (middle) and ϕ <18 (right). 
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Table 11. Selected CI regression models for the PCS algorithm. 

 Model (CI) Radius 
 (m) 

R
2
 RMSE Bias 

 (%) 
W 

statistic 
W  

p-value 

Forest 0.584xPCSangle18+0.361 15 0.7238 0.0289 -6 0.8769 0.0648 

Shrub 0.593xPCSangleaverage+0.321 13 0.5377 0.0539 -4 0.9558 0.6888 

Forest+Shrub 0.471xPCSangleaverage+0.426 14 0.4986 0.0499 -5 0.9875 0.9822 

 

The CI obtained from HP were on average 0.799 and 0.746 for the forest and 

shrub plots, respectively (Figure 42). The forest was a mixture of semi open broadleaf 

with dense understory and the shrub was chaparral. Gonsamo et al. (2009) got a 

similar average CI value (0.769) for several forest types that included: natural tropical 

cloud forest with dense under and overestory and plantations of Cupressus, Eucalyptus 

and Pinus. In another study, CI oscillated between 0.82–1.02 for a forest of sugar 

maple, black spruce, European beech and Scots pine (Walter et al. 2003). According to 

Leblanc et al. (2005), the CI can be quite similar across multiple species, which is 

supported by the comparison above between the three studies, where the vegetation 

significantly differed. 

The main source of error and variation in CI estimated from HP according to 

Leblanc et al. (2005) comes from the type of threshold applied to process the HP. The 

threshold method particularly influences and changes the amount of GF and gap size 

distribution than later impacts the CI computation. This work preferred an automatic 

one based on clustering. Gonsamo et al. (2009) chose a visual threshold to separate 

sky from the foliage. Instead, Walter et al. (2003) computed the threshold by means of 

a linear interpolation for the frequency peaks between a full covered canopy and a 

clear sky, a method developed by Olsson et al. (1982). 

Another source of variation between these studies is the ϕ range selected to 

compute the CI. In our study we computed the CI for a 30-60° ϕ range, Gonsamo et al. 

(2009) chose 0-60° and Walter et al. (2003) decided on 5-75°. According to Walter et 

al. (2009), the CI is an angular dependent variable that increases with ϕ, so a different 

ϕ range can lead to dissimilar CI values. Figure 42 shows a higher CI value for the forest 

than for the shrub plots. This has a relation with the GF values that were lower for the 

forest than for the shrub plots (Figure 37). In general, the lower the GF the higher the 
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CI values and vice versa, according to the gap size theory developed by Chen and Cihlar 

(1995). 

The CI derived from empirical ALS height metrics (Figures 43), contradicts the 

good results obtained by Thomas et al. (2011) in which the median of the 25th 

percentile and higher (Medianup25c) rendered R2=0.81. However in our case, the 

same metric performed poorly for either forest (0.28) or shrub (0.02) plots. Instead of 

applying linear relations like in our study, Thomas et al. (2011) chose more complex 

power or polynomial equations that could be potentially more site specific. In addition, 

their study comprised a boreal forest whose canopy structure is more homogeneous 

than our mixed Mediterranean forest and chaparral.  

Despite of the differences in perspective and resolution between the HP and 

GRI images, the application of the PCS algorithm to the GRI seems to be a better 

approach to estimate the CI than the empirical ALS height metrics (Figure 44). The best 

model of Thomas et al. (2011) showed a higher R2 than our PCS results, but their 

model residuals were not normally distributed, an assumption accomplished for all our 

PCS models (Table 11). In order to figure out if more complex relations could improve 

our results, we decided to test the same height metric chose by Thomas et al. (2011) in 

a form of polynomial regression. The results improved substantially for the forest plots 

(R2=0.71, p-value<0.05), but not for the shrub ones (R2=0.06 p-value>0.05) (Figure 46). 

That clarifies that, rather than an empirical fit like the one based on Medianup25c 

metric, our models based on the gap size distribution have the potential to be applied 

to other vegetation conditions. 

  

Figure 46. Regressions for CI derived from Medianup25c for forest plots (left) and shrub plots (right). 
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The CI from the PCS algorithm was tested for multiple plot radii and validated 

with the CI from HP (Figure 44). The best plot radius to estimate CI was not as clear as 

for the other structural variable (GF), where we found an optimal and strong 

relationship for a radius size decreasing in both directions (see Figure 39 in section 

3.3). For the CI, forest plots always performed better for larger radius size than shrub 

ones. This fact could be related to the gap size distribution which is very dependent on 

the footprint size (Lovell et al. 2003). Shrub plots presented higher GF values (see 

Figure 38 in section 3.3), so the ALS pulses could penetrate more often the canopy to 

reach the ground and describe better the gap size distribution to determine the right 

CI for smaller radii. However, the denser forest plots needed larger ALS radii to allow 

more chances to penetrate to the ground and capture better the variability in the gap 

size distribution. 

The PCS algorithm applied to the GRI performed better when GRI were treated 

as angular data than when processed row by row (Figure 45). This improvement could 

be related to the way the directions of the gap sequences are processed. Despite the 

difference in perspective between sensors, angular GRI sequences are likely to match 

the HP ones since they are also treated by ϕ angle. When the ϕ was restricted <18°, 

the results only improved for the forest plots (Figure 45). This issue addresses the need 

to match the viewing geometry between the observed angles by the ALS sensor and 

the HP images to find better agreement between sensors (Korhonen et al. 2011). 

All the selected ALS PCS models (Table 11) presented an underestimation of the 

CI value when compared to HP (Figure 45). Gonsamo and Pellikka (2009) and Walter et 

al. (2003) also observed this and indicated that it could be related to the sensibility of 

PCS algorithm to the small variances in the gap size distribution of the ALS data. The 

dissimilarities between CI from HP and ALS PCS could also be in part due to the 

different resolution of these sensors. ALS it has a much lower resolution, with only 

~1700 laser pulses for 15 m radius plot, than the HP, with ~4M pixels per image that 

prevents the ALS from capturing more canopy details. Another factor that affects the 

CI comparison between sensors is related to their difference in perspective and 

geometry. Firstly, the ALS captures the gaps data almost at nadir (18° scan angle), 

meanwhile HP does for almost the whole range of ϕ angles, which affects the captured 
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gap distribution and therefore the CI estimation. This difference in the view 

perspective and its consequences was mentioned by Demarez et al. (2008) who found 

significant differences in LAI and CI estimation from HP images when they took them 

facing upwards and downwards over crops. 
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4 CONCLUSIONS 

 

In this dissertation we have tested, adapted and developed new methods 

based on the gap frequency, the Beer Lambert’s law and the gap size theory in order 

to estimate GF and CI from TLS and ALS data. These two essential canopy structural 

variables play an important role in the estimation of LAI through indirect optical 

methods and in the correction of LAI to account for the fact that the foliage is not 

always randomly distributed (Chen and Cihlar 1995; Walter et al. 2003). They also are 

critical in the study and modelling of the microclimate that exists within the vegetation 

canopies, which in turn affects growth, photosynthesis, evapotranspiration, nutrients 

distribution and conditions the animal behavior (Gonsamo et al. 2010; Leblanc et al. 

2005; Panferov et al. 2001).  

These conclusions section is organized according to the experimental cases 

described in the methods chapter. The results exposed here confirm that the methods 

developed from TLS and ALS can help describing GF and CI, becoming an alternative 

that can reduce the limitations of suitable illumination conditions, unbiased image 

thresholds and more comprehensive spatially than traditional HP methods. 

4.1 Vegetation canopy GF from TLS  

A new method to compute GF from TLS angular data was developed. This 

method computes the proportion of empty cells in binary angular grid generated after 

calculating the angular resolution of the TLS data. By working with angular data instead 

of projecting the data into a plane with Cartesian coordinates, the distortion due to 

the increase in distance between laser pulses as they move away from the TLS scanner 

was removed. The angular grid method predicted accurately GF for simulated angular 

data of known GF value, as long as the sigma noise did not exceed 6% of the angular 

resolution. Above this threshold the algorithm failed to compute the angular 

resolution accurately and, as a consequence, to obtain adequate GF values. The 

angular resolution was more difficult to predict for the simulated C gap pattern than 

the R and RC ones.  
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The angular grid GF obtained over actual experimental TLS data is also affected 

by noisy angular returns, which are far from the average behavior, causing false gaps 

and hence a GF overestimation. Another noticeable problem is the lack of returns at 

the edge of the canopy objects, which also contributes to the GF overestimation. The 

actual TLS data demonstrated to have lower noise than the manufacturer indicated a 

priori. This noise level was below 6%, within which the angular grid algorithm performs 

accurately. The transformation of the simulated angular data into a hemispherical 

projection (Sim-TLS-SHP) causes a deformation that underestimates GF which is also 

more critical for the R gap pattern. An advantage of the proposed method when 

applied to actual TLS data (TLS-SHP) is that is independent from the illumination 

conditions unlike the HP. Furthermore, TLS could identify the location of the gaps in 

the canopy to accomplish a characterization of the gap size distribution and the CI in 

the 3D space, for which further investigation is needed.  

4.2 Vegetation canopy CI from TLS  

An implementation of the gap size theory to compute the Chen and Cihlar CI 

from TLS data was developed. The method requires previous knowledge of the angular 

resolution of the TLS to determine the right pixel size to transform the TLS data into HP 

(TLS-SHP). TLS-SHP underestimated the CI values when compared to the one derived 

from HP. This underestimation is directly related to the difference in the gap size 

distributions. Two factors can affect the canopy gap distribution of the TLS-SHP: Firstly, 

the transformation into HP causes the elimination of small canopy gaps. Secondly, 

false gaps appear at the edge of the canopy objects when the laser return dissipates 

due to hitting partially one or more objects.  

The difference between sensors to estimate CI is also affected by their 

resolution, meanwhile a HP had about 10M pixels, the TLS-SHP was composed of 

approximately 15M returns. In addition, the field of view of both sensors might be 

slightly different, even though the TLS and HP were placed in the same position; a 

perfect alignment is not always possible. An advantage of TLS-SHP is that the laser 

returns or no return separates automatically the canopy from the gaps, but HP 

requires identifying an image threshold to separate between them which is always 
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subjective. The CI presents high variability for the extreme low ϕ values due to the 

lower resolution. A lower variability in the CI values occurs for the middle ϕ range. The 

TLS-SHP delivered promising results to be used as a reference data for the CI 

estimations from ALS. 

4.3 Vegetation canopy GF from ALS 

Based on the Beer Lambert’s law, ALS systems estimate the canopy GF using 

different metrics built from the ground laser returns frequency and their intensity. 

These metrics had a different performance depending on the vegetation and the 

radius size of the ALS data. The best GF predictor was the GFS followed by the GFI, for 

both the forest and shrub plots. The ALS estimations showed a clear underestimation 

for the forest plots, but an overestimation trend for the shrub ones. There is a relation 

between the GF metrics and the vegetation height which suggests that the 

incorporation of height data in the GF models could improve their performance. 

Contrary to other previous studies (Solberg 2010; Solberg et al. 2009), the GFC2 metric 

that considered diverse weight factors for the different laser return types did not 

improve compared with the simple GFS frequency metric. Similarly, the intensity 

metric GFIC, modified to account for the transmission loss of the intermediate and last 

returns, did not improve either the simple ratio GFI metric. This metric considered a 

spatial randomly canopy and in our case this assumption was not accomplished, 

especially for the shrub plots. The metrics based on first (GFF) or last (GFL) laser returns 

only did not work due to the minimal amount of these return types in our dataset. The 

empirical ALS height metrics were not able to estimate the GF, except for the P50th 

that showed a good result for the shrub plots. The ALS metrics have the advantage to 

be more spatially extensive than HP or TLS measurements to produce GF maps once 

the best models have been selected and validated. 

4.4 Vegetation canopy CI from ALS 

Unlike other previous works (Thomas et al. 2011), the ALS height metrics did 

not predict well CI, therefore a new method to estimate the canopy CI from ALS data 

was tested and proposed. This method was an adaptation of the Pielou´s segregation 

algorithm (PCS) applied to a GRI derived from ALS data. The PCS performed better 



Conclusions 

88 

when GRI were treated as angular data, probably because the gap sequences were 

processed also as angular for the validation HP data. This issue also demonstrates the 

need to match as best as possible the perspective and ϕ angles of the observation 

point of view between sensors. The relationship between the PCS performance and 

the ALS radius size for the plots was not as evident as for the GF. Forest needed larger 

radius than shrub plots for an accurate estimate probably because the higher and 

denser the canopy the harder to find enough ground laser returns to characterize 

properly the gap size distribution.  

The PCS presented an underestimation compared to the CI values from HP. The 

GRI resolution is much smaller than HP which causes that GRI must have a larger size 

to allow the PCS algorithm to collect enough spatial variability of the gaps to 

characterize the CI. Despite of the multiples differences between the HP and GRI, the 

application of PCS on GRI demonstrated an improvement over the traditional approach 

of empirical height metrics in the CI estimation. Unlike the empirical methods that are 

restricted to the calibration sites, the PCS method based on the gap size distribution 

has the potential to be extrapolated to other vegetation conditions.  
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