113 research outputs found

    Spectrum Sensing and Mitigation of Primary User Emulation Attack in Cognitive Radio

    Get PDF
    The overwhelming growth of wireless communication has led to spectrum shortage issues. In recent days, cognitive radio (CR) has risen as a complete solution for the issue. It is an artificial intelligence-based radio which is capable of finding the free spectrum and utilises it by adapting itself to the environment. Hence, searching of the free spectrum becomes the key task of the cognitive radio termed as spectrum sensing. Some malicious users disrupt the decision-making ability of the cognitive radio. Proper selection of the spectrum scheme and decision-making capability of the cognitive reduces the chance of colliding with the primary user. This chapter discusses the suitable spectrum sensing scheme for low noise environment and a trilayered solution to mitigate the primary user emulation attack (PUEA) in the physical layer of the cognitive radio. The tag is generated in three ways. Sequences were generated using DNA and chaotic algorithm. These sequences are then used as the initial seed value for the generation of gold codes. The output of the generator is considered as the authentication tag. This tag is used to identify the malicious user, thereby PUEA is mitigated. Threat-free environment enables the cognitive radio to come up with a precise decision about the spectrum holes

    Primary User Emulation Detection in Cognitive Radio Networks

    Get PDF
    Cognitive radios (CRs) have been proposed as a promising solution for improving spectrum utilization via opportunistic spectrum sharing. In a CR network environment, primary (licensed) users have priority over secondary (unlicensed) users when accessing the wireless channel. Thus, if a malicious secondary user exploits this spectrum access etiquette by mimicking the spectral characteristics of a primary user, it can gain priority access to a wireless channel over other secondary users. This scenario is referred to in the literature as primary user emulation (PUE). This dissertation first covers three approaches for detecting primary user emulation attacks in cognitive radio networks, which can be classified in two categories. The first category is based on cyclostationary features, which employs a cyclostationary calculation to represent the modulation features of the user signals. The calculation results are then fed into an artificial neural network for classification. The second category is based on video processing method of action recognition in frequency domain, which includes two approaches. Both of them analyze the FFT sequences of wireless transmissions operating across a cognitive radio network environment, as well as classify their actions in the frequency domain. The first approach employs a covariance descriptor of motion-related features in the frequency domain, which is then fed into an artificial neural network for classification. The second approach is built upon the first approach, but employs a relational database system to record the motion-related feature vectors of primary users on this frequency band. When a certain transmission does not have a match record in the database, a covariance descriptor will be calculated and fed into an artificial neural network for classification. This dissertation is completed by a novel PUE detection approach which employs a distributed sensor network, where each sensor node works as an independent PUE detector. The emphasis of this work is how these nodes collaborate to obtain the final detection results for the whole network. All these proposed approaches have been validated via computer simulations as well as by experimental hardware implementations using the Universal Software Radio Peripheral (USRP) software-defined radio (SDR) platform

    Error rate detection due to primary user emulation attack in cognitive radio networks

    Get PDF
    Security threat is a crucial issue in cognitive radio network (CRN). These threats come from physical layer, data link layer, network layer, transport layer, and application layer. Hence, security system to all layers in CRN has a responsibility to protect the communication between among Secondary User (SU) or to maintain valid detection to the presence of Primary User (PU) signals. Primary User Emulation Attack (PUEA) is a threat on physical layer where malicious user emulates PU signal. This paper studies the effect of exclusive region of PUEA in CRN. We take two setting of exclusive distances, 30m and 50m, where this radius of area is free of malicious users. Probability of false alarm (Pf) and miss detection (Pm) are used to evaluate the performances. The result shows that increasing distance of exclusive region may decrease Pf and Pm

    Enable Reliable and Secure Data Transmission in Resource-Constrained Emerging Networks

    Get PDF
    The increasing deployment of wireless devices has connected humans and objects all around the world, benefiting our daily life and the entire society in many aspects. Achieving those connectivity motivates the emergence of different types of paradigms, such as cellular networks, large-scale Internet of Things (IoT), cognitive networks, etc. Among these networks, enabling reliable and secure data transmission requires various resources including spectrum, energy, and computational capability. However, these resources are usually limited in many scenarios, especially when the number of devices is considerably large, bringing catastrophic consequences to data transmission. For example, given the fact that most of IoT devices have limited computational abilities and inadequate security protocols, data transmission is vulnerable to various attacks such as eavesdropping and replay attacks, for which traditional security approaches are unable to address. On the other hand, in the cellular network, the ever-increasing data traffic has exacerbated the depletion of spectrum along with the energy consumption. As a result, mobile users experience significant congestion and delays when they request data from the cellular service provider, especially in many crowded areas. In this dissertation, we target on reliable and secure data transmission in resource-constrained emerging networks. The first two works investigate new security challenges in the current heterogeneous IoT environment, and then provide certain countermeasures for reliable data communication. To be specific, we identify a new physical-layer attack, the signal emulation attack, in the heterogeneous environment, such as smart home IoT. To defend against the attack, we propose two defense strategies with the help of a commonly found wireless device. In addition, to enable secure data transmission in large-scale IoT network, e.g., the industrial IoT, we apply the amply-and-forward cooperative communication to increase the secrecy capacity by incentivizing relay IoT devices. Besides security concerns in IoT network, we seek data traffic alleviation approaches to achieve reliable and energy-efficient data transmission for a group of users in the cellular network. The concept of mobile participation is introduced to assist data offloading from the base station to users in the group by leveraging the mobility of users and the social features among a group of users. Following with that, we deploy device-to-device data offloading within the group to achieve the energy efficiency at the user side while adapting to their increasing traffic demands. In the end, we consider a perpendicular topic - dynamic spectrum access (DSA) - to alleviate the spectrum scarcity issue in cognitive radio network, where the spectrum resource is limited to users. Specifically, we focus on the security concerns and further propose two physical-layer schemes to prevent spectrum misuse in DSA in both additive white Gaussian noise and fading environments

    A Test Methodology for Evaluating Cognitive Radio Systems

    Get PDF
    The cognitive radio field currently lacks a standardized test methodology that is repeatable, flexible, and effective across multiple cognitive radio architectures. Furthermore, the cognitive radio field lacks a suitable framework that allows testing of an integrated cognitive radio system and not solely specific components. This research presents a cognitive radio test methodology, known as CRATM, to address these issues. CRATM proposes to use behavior-based testing, in which cognition may be measured by evaluating both primary user and secondary user performance. Data on behavior based testing is collected and evaluated. Additionally, a unique means of measuring secondary user interference to the primary user is employed by direct measurement of primary user performance. A secondary user pair and primary user radio pair are implemented using the Wireless Open-Access Research platform and WARPLab software running in MATLAB. The primary user is used to create five distinct radio frequency environments utilizing narrowband, wideband, and non-contiguous waveforms. The secondary user response to the primary user created environments is measured. The secondary user implements a simple cognitive engine that incorporates energy-detection spectrum sensing. The effect of the cognitive engine on both secondary user and primary user performance is measured and evaluated

    Implementation and Performance Evaluation of Distributed Autonomous Multi-Hop Vehicle-to-Vehicle Communications over TV White Space

    Get PDF
    This paper presents design and experimental evaluation of a distributed autonomous multi-hop vehicle-to-vehicle (V2V) communication system over TV white space performed in Japan. We propose the two-layer control channel model, which consists of the Zone Aware Control Channel (ZACC) and the Swarm Aware Control Channel (SACC), to establish the multi-hop network. Several vehicles construct a swarm using location information shared through ZACC, and share route and channel information, and available white space information through SACC. To evaluate the system we carried out field experiments with swarm made of three vehicles in a convoy. The vehicles observe channel occupancy via energy detection and agree on the control and the data channels autonomously. For coarse synchronization of quiet periods for sensing we use GPS driven oscillators, and introduce a time margin to accommodate for remaining drift. When a primary user is detected in any of the borrowed channels, the vehicles switch to a vacant channel without disrupting the ongoing multi-hop communication. We present the experimental results in terms of the time to establish control channel, channel switching time, delivery ratio of control message exchange, and throughput. As a result, we showed that our implementation can provide efficient and stable multi-hop V2V communication by using dynamic spectrum access (DSA) techniques

    Physical Layer Defenses Against Primary User Emulation Attacks

    Get PDF
    Cognitive Radio (CR) is a promising technology that works by detecting unused parts of the spectrum and automatically reconfiguring the communication system\u27s parameters in order to operate in the available communication channels while minimizing interference. CR enables efficient use of the Radio Frequency (RF) spectrum by generating waveforms that can coexist with existing users in licensed spectrum bands. Spectrum sensing is one of the most important components of CR systems because it provides awareness of its operating environment, as well as detecting the presence of primary (licensed) users of the spectrum

    A comparative investigation on performance and which is the preferred methodology for spectrum management; geo-location spectrum database or spetrum sensing

    Get PDF
    A Research Report submitted to the Faculty of Engineering and the Built Environment, University of Witwatersrand, in the partial fulfilment of the requirements for the degree of Master of Science in Engineering Johannesburg, 2015.Due to the enormous demand for multimedia services which relies hugely on the availability of spectrum, service providers and technologist are devising a means or method which is able to fully satisfy these growing demands. The availability of spectrum to meet these demands has been a lingering issue for the past couple of years. Many would have it tagged as spectrum scarcity but really the main problem is not how scarce the spectrum is but how efficiently allocated to use is the spectrum. Once such inefficiency is tackled effectively, then we are a step closer in meeting the enormous demands for uninterrupted services. However, to do so, there are techniques or methodologies being developed to aid in the efficient management of spectrum. In this research project, two methodologies were considered and the efficiency of these methodologies in the areas of spectrum management. The Geo-location Spectrum Database (GLSD) which is the most adopted technique and the Cognitive radio spectrum sensing technique are currently the available techniques in place. The TV whitespaces (TVWS) was explored using both techniques and certain comparison based on performances; implementation, practicability, cost and flexibility were used as an evaluation parameter in arriving at a conclusion. After accessing both methodologies, conclusions were deduced on the preferred methodology and how its use would efficiently solve the issues encountered in spectrum managemen
    corecore