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Abstract

Cognitive Radio (CR) is a promising technology that works by detecting unused parts

of the spectrum and automatically reconfiguring the communication system’s param-

eters in order to operate in the available communication channels while minimizing

interference. CR enables efficient use of the Radio Frequency (RF) spectrum by gen-

erating waveforms that can coexist with existing users in licensed spectrum bands.

Spectrum sensing is one of the most important components of CR systems because

it provides awareness of its operating environment, as well as detecting the presence

of primary (licensed) users of the spectrum.

Current CR spectrum sensing research efforts tend to focus on the development

of new mechanisms to detect Primary User (PU) or improve existing ones. However,

previous researchers have identified that a Primary User Emulation Attack (PUEA)

can disrupt the operation of a CR system by significantly reducing the spectrum

available to unlicensed users. This dissertation presents three methods to counteract

PUEAs: Radio Frequency Distinct Native Attribute (RF-DNA), Constellation-Based

Distinct Native Attribute (CB-DNA), and signal watermarking.

RF-DNA fingerprinting extract identifying features from RF signals using a Re-

gion of Interest (ROI) that remains constant for all transmissions such as preambles,

midambles, pilot tones, etc. The true source of a transmission was correctly identified

%C ≈ 78% in a test case that involves Ndevices = 15 devices using Time Domain (TD)

RF-DNA fingerprints.

CB-DNA fingerprinting uniquely identifies emissions from a radio by comput-

ing statistical features of the received signal projected into a constellation space.

These features can be used to obtain device-specific information such as manufac-

iv



turer, model, serial number, etc. In a test case involving Ndevices = 15 devices, the

mean correct classification rate was %C ≈ 95% using CB-DNA fingerprints.

The watermarking method establishes a side-channel that enables the exchange of

a Hash Based Message Authentication Code (HMAC) that authenticates the source of

a signal. The established side channel provides a reliable communication link even at

low Signal to Noise Ratio (SNR) conditions. For example, the Bit Error Rate (BER)

of the extracted watermark at an SNR=8 Eb/N0 dB was 1.47×10−4. The intellectual

contributions of this dissertation are validated through experimentations.

v
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PHYSICAL LAYER DEFENSES AGAINST PRIMARY USER EMULATION

ATTACKS

I. Introduction

The rapid growth of wireless devices has created a strain on the available spectrum.

This strain is further aggravated by the fixed allocation of spectrum resources dictated

by current regulations. Spectrum surveys conducted within several cities in the United

States revealed that licensed portions of the spectrum are sparsely utilized leaving

large spectrum gaps unutilized [8, 9]. It is evident that a new licensing scheme to

access the spectrum will be required in the near future.

Cognitive Radio (CR) is a new idea proposed by researchers at the beginning

of the century to alleviate the spectrum scarcity. CR creates two classes of users:

Primary User (PU) and Secondary User (SU). PUs are licensed users of the spec-

trum and they have priority above everybody else. SUs are unlicensed users who

have equal access to the spectrum, whenever the PUs are not transmitting in their

allocated space. Since SUs are unlicensed, they must access the spectrum in a way

that does not cause interference with the PU. Additionally, CR aims to implement

intelligent radio communication systems that are aware of their environment, and ad-

just their transmitter and receiver parameters to maximize spectrum efficiency while

maintaining the ability of obtaining highly reliable communication system.

A Dynamic Spectrum Access (DSA) system that has two classes of users (PU

and SU) who can be exploited by a malicious user who wants exclusive access of

the spectrum by emulating the PU. A Primary User Emulation Attack (PUEA) is

conducted by mimicking the PU signal’s characteristics, causing SUs to identify the
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attacker as a licensed user of the spectrum [10]. Researchers have identified that a

PUEA can be used to generate a Denial of Service (DOS) – disrupting the operation

of a cognitive radio system by significantly reducing the spectrum available to SUs.

Researchers have identified three main defenses against a PUEA: Naive detection,

Localization based, and Physical Layer (PHY) coding. Naive detection methods de-

tect a PUEA by estimating the mean and variance of the PU’s signal and use these

measurements to validate the source of transmission [11]. Localization-based defenses

against PUEAs estimate the location of the source of the signal, and compare it to

known PU locations for authentication [10]. PHY coding defenses estimate the loca-

tion of the source of emissions by allowing a reference signal interfere with the PU’s

emissions and analyzing the results from the point-of-view at multiple receivers [12].

While these techniques are effective to some degree, security schemes based on geolo-

cation are increasingly difficult to implement as they require obtaining measurements

from several different sensors that are widely spaced around the PU location.

This dissertation presented three methods to detect a PUEA that are imple-

mented at the PHY. The first method created Radio Frequency Distinct Native

Attribute (RF-DNA) fingerprints and used them to authenticate the PU. The sec-

ond method projected the received communication symbols into a constellation space

and used these projections to create Constellation-Based Distinct Native Attribute

(CB-DNA) fingerprints. Finally, the last method used watermarks to establish a com-

munication channel that enables the exchange of Hash Based Message Authentication

Code (HMAC) that authenticates the PU.
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II. Detection of Primary User Emulation Attack Using
Radio Frequency Distinct Native Attribute Fingerprinting

Techniques

Abstract

Cognitive Radio (CR) is a promising technology that works by detecting un-

used parts of the spectrum and automatically reconfiguring Modulator/Demodula-

tor (MODEM) parameters to operate in the available communication channels while

minimizing interference. CR enables efficient use of the Radio Frequency (RF) spec-

trum by generating waveforms that can coexist with existing users in licensed spec-

trum bands. Spectrum sensing is one of the most important components of CR

systems, because it provides awareness of the operating environment, as well as de-

tecting the presence of primary (licensed) spectrum users. Current CR research efforts

are focused on the development of new mechanisms to detect Primary Users (PUs)

or improve existing ones. However, previous researchers have identified that a Pri-

mary User Emulation Attack (PUEA) can disrupt the operation of a CR system by

significantly reducing the spectrum available to unlicensed users. This research pro-

posed a transmitter verification scheme to validate PUs using RF fingerprinting. RF

fingerprinting uniquely identifies a commercial radio by extracting features from the

collected emissions. These features can be used to obtain device-specific information

such as manufacturer, model, serial number, etc.

2.1 Introduction

Dynamic Spectrum Access (DSA) is a new paradigm that permits reutilization of

unused portions of the spectrum, when the Primary User (PU) (licensed user) is not

occupying its allocation of the spectrum. The Institute of Electrical and Electronics
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Engineers (IEEE) is currently developing a new standard for DSA users. The Wireless

Regional Area Networks (WRAN) standard provides means for DSA usage of the TV

portion of the spectrum. This standard specifies the frequency allocation for the

United States as: 54-60, 76-88, 174-216, 470-608 and 614-698 MHz, for a total of

282MHz spanning 47 TV channels [13].

Figure 1. ATSC Digital Television Standard: RF/Transmission System Characteristics
[1]

Traditional cognitive radio research centers around the parts of the spectrum set

aside for TV stations, as a primary target for secondary user utilization. Digital

TV signals transmit a synchronization pattern that can be exploited by using Radio

Frequency Distinct Native Attribute (RF-DNA) to identify the emitter. The syn-

chronization portion for digital TV signals is illustrated in Figure 1. This research

assumed that the signal of interest contained a synchronization field that remained

constant for all collections.

Software-Defined Radios (SDRs) are highly configurable and have the capability

to generate arbitrary signals. It is possible for a SDR, such as the Universal Software

Radio Peripheral (USRP) X310, to generate signals that closely resemble a digital

TV station’s transmissions. Such an attack can be easily accomplished by storing
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samples of a digital TV signal and replaying them later. This research proposed a

mechanism to generate RF-DNA fingerprints that can be used to classify and verify

signals that contain a fixed synchronization field.

Prior researchers have determined mechanisms to detect a Primary User Emula-

tion Attack (PUEA) based on estimating the transmitter location [10, 11, 14, 15, 16,

17, 18, 19] and comparing it to known PU emitter locations. Emitter geolocation

solutions require measurements from several sensors, which are widely spaced around

the emitter. This research described a novel method to verify the identity of the PU

using Radio Frequency (RF) fingerprinting without the aid of a sensor network. The

ability to verify the identity of the PU, without cooperation from other nodes, is one

key advantage of this research.

The PU verification scheme relied on examining waveforms at the Physical Layer

(PHY), which will uniquely identify devices based on inherent differences in their

transmissions. This verification scheme required prior signal collection of PU’s trans-

missions. RF fingerprints were generated using the synchronization parameters (pream-

bles, postambles, midambles, pilot tones, etc) of the protocol used by the PU. PUEA

need to mimic the protocol used by the PU in order to fool secondary users. The

forged transmissions needed to include the synchronization parameters of the protocol

used by the PU– enabling the verification of the signal source using RF fingerprinting.

Every device that emits RF signals has unique characteristics that are very difficult

to duplicate. Thus, these characteristics may be used to uniquely identify transmit-

ters. These characteristics are observed as transient behavior with respect to the

instantaneous amplitude, phase, and frequency of the radiated signal. This behavior

can be caused due to a variety of reasons, such as precision of frequency synthesis

systems, modulator subsystems, and RF amplifiers. Unique transient signals can be

observed even among transmitters of the same type and model. This differentiation is
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due to manufacturing tolerances and component aging used in the device [20]. These

transmitter anomalies can be used to create RF fingerprints.

2.2 Background

This section provides the technical background supporting the methodology de-

scribed in section 2.3. The topics covered in the section include: generation of Time

Domain (TD) Radio Frequency (RF) fingerprints, generation of spectral domain RF

fingerprints, and classification of systems using Multiple Discriminant Analysis / Max-

imum Likelihood (MDA/ML).

Time Domain RF Fingerprinting.

RF fingerprints were generated by passively collecting signals generated by MODEMs,

as they transmit communication symbols. The collected signal were represented in

the TD as the complex vector x[n] = sI(n)+ jsQ(n) for n = {0, 1, 2, ..., N −1}, where
n specified the time when the sample was measured, and the variable N specified the

total number of samples stored in the vector. The instantaneous amplitude, phase,

and frequency of x can be computed as follows [3]:

a(n) =

√
(sI(n) + jsQ(n))

2, n = {0, 1, 2, ..., N − 1}, (1)

φ(n) = tan−1

[
sQ(n)

sI(n)

]
, sI(n) �= 0, n = {0, 1, 2, ..., N − 1}, (2)

f(n) =
1

2π

[
dφ(n)

dn

]
n = {0, 1, 2, ..., N − 1}. (3)

The quality of RF fingerprints generated using instantaneous amplitude, phase,

and frequency can be improved by normalizing and centering the collected signal of
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interest. Centering and normalization of the signal can be obtained by

ac(n) =
a(n)− μa

max(ac(n))
, (4)

φc(n) =
φ(n)− μφ

max(φc(n))
, (5)

fc(n) =
f(n)− μf

max(fc(n))
, (6)

where μa, μφ, μf , were the respective amplitude, phase, and frequency means [3].

RF fingerprints were obtained by dividing the sequences ac(n), φc(n), fc(n) into

R equal-length sequences. The distinct fingerprints were generated by computing

the standard deviation (σ), variance (σ2), skewness (γ), and kurtosis (κ) of these

sequences to create new vectors as follows:

Fa
r = [σa, σ

2
a, γa, κa], (7)

Fφ
r = [σφ, σ

2
φ, γφ, κφ], (8)

Ff
r = [σf , σ

2
f , γf , κf ]. (9)

The composite fingerprint was generated by concatenating the individual Fσ se-

quences, where σ denotes a specific amplitude, phase, or frequency sequence by

Fσ =

[
Fσ

1

... Fσ
2 · · · Fσ

R

]
. (10)

The composite amplitude, phase, and frequency fingerprints may be combined in

order to generate a complete TD fingerprint as follows:
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FTD =

[
Fa ... Fφ ... Ff

]
(11)

A visual depiction of the generated RF fingerprints is shown in Figure 2. The Fig-

ure shows the RF fingerprints for eight different devices. The values for the variance,

skewness, and kurtosis of the signal generated by the devices are shown in the hori-

zontal bands. The colors represent the average value for each statistical measurement

scaled to span 0 to 1 [2].

Figure 2. RF Fingerprint Visualization for 8 Devices [2]
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Spectral Domain RF Fingerprinting.

Spectral Domain (SD) RF fingerprints were generated using the Power Spectral

Density (PSD) of the TD signal represented in vector x. The SD representation of

x was computed using the Discrete Fourier Transform (DFT). The mathematical

model to compute the DFT is as follows:

X(k) =
1

N

N−1∑
n=0

x(n)e
−j2πkn

N for k = {0, 1, 2, ..., N − 1} (12)

In this mathematical model, X(k) is a complex number representing the frequency

component of a signal at band k, while x(n) represents the signal as it is being

sampled in the time domain [21]. The PSD of the signal is normalized with respect

to power in order to mitigate collection effects that may affect signal classification [3].

The average power of the signal is computed by:

PX =
1

N

N−1∑
n=0

X(n)X(n)∗, (13)

and the normalized-power PSD sequence is obtained by:

X(k) =
1

PX

|X(k)|2 . (14)

Once the normalized PSD signal was obtained, the SD fingerprints were generated

by dividing the sequence into R equal length sequences. The distinct fingerprints were

generated by computing the standard deviation (σ), variance (σ2), skewness (γ), and

kurtosis (κ) of these sequences to create new vectors as follows:

Fr = [σ, σ2, γ, κ]. (15)

9



The composite fingerprint was generated by concatenating the individual F se-

quences by:

F =

[
F1

... F2 · · · FR

]
. (16)

The resultant full-dimensional fingerprint vector F from 16 contained a total of

Nf = (# of Features)×(# of Statistical Metrics)×(# of Regions) elements. This

vector is illustrated in Figure 3.

Figure 3. RF-DNA Statistical Fingerprint Generation for Centered and Normalized
Feature Sequences and NR + 1 Total Subregions [3]

Multiple Discriminant Analysis/Maximum Likelihood.

The purpose of RF fingerprints is to extract features from a signal, so that it

can be classified. Classification of RF fingerprints requires additional processing,

because they can generate a multivariate statistical model with hundreds of inde-

pendent variables. Obtaining a Maximum Likelihood Estimate (MLE) of the source

of a RF emanation can be computationally intensive due to the high dimensional-

ity of the statistics. This problem was simplified by using an Multiple Discriminant
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Analysis (MDA) algorithm.

Figure 4. MDA Projection of 3D Space into 2D Space [2]

MDA is a multivariate statistical technique to apply linear discriminant analysis

[22]. The objective of MDA is to classify objects into two or more mutually-exclusive

classes by reducing the dimensionality of a set of independent variables. The dimen-

sionality reduction is accomplished by identifying the smallest linear combination of

variables with normal errors that best discriminate between classes [23]. For example,

the 3D model shown in Figure 4 was projected onto 2D models in order to reduce the

dimensionality of the problem. The 2D projections were defined by the norm vectors

W1 and W2 respectively. Classification and discrimination along theW2 projections

were significantly more difficult because the projections overlap. However, the W1

subspace facilitated classification and discrimination, because the projections do not

overlap. The MDA protocol aimed to determine projections such as those provided

by the W1 vector.

The MDA algorithm started by defining two scatter matrices, the inter-class ma-
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trix (Sb) and the intra-class matrix (Sw) of the dataset x. The MDA projection

maximized inter-class distances while minimizing intra-class spread. These matrices

are defined by [3]:

Sb =
Nc∑
i=1

Pi

∑
i

, (17)

SB =
Nc∑
i=1

Pi(μi − μ)(μi − μ)T , (18)

Where Nc is the number of classes, Pi is the prior probability of class ci, and
∑

i

is the covariance matrix. Using the two scatter matrices the projection matrix W

was formed using the eigenvectors of S−1
w Sb [3]. The multivariate statistics can be

projected into a (Nc − 1) dimensional subspace by [3]:

FW
i = WTF, (19)

where F is the matrix representing the fingerprint.

2.3 Methodology

Wireless communication systems are susceptible to a myriad of attacks, because

the transmission medium is hard to constrain to specific locations – making it acces-

sible to unauthorized users. This research aimed to characterize a security mecha-

nism that operated at the Physical Layer (PHY) in order to prevent Primary User

Emulation Attack (PUEA). The proposed solution generated a unique PHY Radio

Frequency Distinct Native Attribute (RF-DNA) fingerprint that can be used to au-

thenticate the Primary User (PU). This section describes the methodology used to

obtain the experimental results described in section 2.4.
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Figure 5. X310 SDR Methodology for Assessing RF-DNA Fingerprinting Using
MATLAB R© [4]

SDR Receiver Configuration.

The receiver/transmitter used in this research was a National Instruments (NI)

Universal Software Radio Peripheral (USRP) X310 Software-Defined Radio (SDR).

This research departed from the norm by using a relatively inexpensive Radio Fre-

quency (RF) transmitter/receiver. Research of RF-DNA fingerprinting is normally

conducted using highly precise and accurate collection receivers that cost over $150,000.

The X310 SDR is available Commercial Off-The-Shelf (COTS), with a retail price of

approximately $7,000. In addition to its price tag, the RF transmitter/receiver was

chosen for this research because it had a very capable Field Programmable Gate

Array (FPGA) that can be used for signal processing.
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ZigBee Signal.

The RF-emitting devices used in this research included AVR RZUSBsticks and

X310 SDRs. RZUSBstick is a device designed by Atmel Corporation for the de-

velopment, debugging, and demonstration of Institute of Electrical and Electronics

Engineers (IEEE) 802.15.4, 6LoWPAN, and ZigBee [24]. The RZUSBstick uses the

Universal Serial Bus (USB) for configuration, transmission, and reception of ZigBee

data.

The RZUSBstick devices were configured to transmit a beacon request at a rate

of BRrate = 10 BR/s (Beacon Request per second). The devices were configured to

transmit using ZigBee channel 26, which has a center frequency of Fcarr = 2.48GHz.

Only one ZigBee device was radiating RF signal at a time, and were positioned

TxDistance = 8.0 cm from the receiver antenna at the time of collection.

Each beacon request transmitted had Nsymbols = 32 Offset Quadrature Phase

Shift Keying (O-QPSK) symbols. The signal had two fields: the preamble and the

payload. The preamble consisted of Nsymbols = 8 O-QPSK symbols and the payload

consisted of Nsymbols = 24 O-QPSK symbols. The symbols were transmitted at a

rate of Chiprate = 2 MChips/s (250 kbps). Each symbol was mapped to one of

16 pseudo-random, 32-chip sequences in order to create a Direct Sequence Spread

Spectrum (DSSS) signal. The characteristics of the ZigBee beacon request signal is

illustrated in Figure 6.

ZigBee specifications require that the Nsymbols = 8 O-QPSK symbols that form

the preamble are mapped to the [1100101] bit sequence. Therefore, the first eight

symbols of every ZigBee burst are identical. Fingerprints were generated based on

the preamble, since all preambles are identical at the bit-level regardless of the device

transmitting. The preamble was divided into Nregions = 8 regions, one region per

symbol, in order to compute the statistical characteristics required for a RF-DNA
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Figure 6. Time Domain Response of Experimentally-Collected ZigBee Burst

fingerprint. Figure 7 illustrates the eight regions used to generate the fingerprints.

Experimental Signal Collection.

The devices under test were inside a Ramsey STE6000 RF Shielded Test Enclo-

sure. This test enclosure was designed for use with Industrial Scientific and Medi-

cal (ISM) band signals including Bluetooth, WiFi, and ZigBee. The STE6000 pro-

vided isolation greater than 90dB at the 2.4Ghz ISM band. Additionally, the interior

had an RF absorbent foam liner that attenuated signal reflections within the test

enclosure by more than 24dB. The STE6000 was equipped with Ethernet and USB

connections, in order to control the devices operating inside test enclosure while it

was sealed. Figure 8 shows the test enclosure used for this research.
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Figure 7. ZigBee Preamble Time Domain Response

The X310 SDR has transmit and receive capabilities covering from DC to 6.0 GHZ

depending on daughterboard installed. For this research, the SBX-40 daughterboard

was installed in the collection receiver, which provided a receive frequency range of

400-4400 MHz with a maximum instantaneous bandwidth of 40MHz. The receiver

was configured to collect signals with a center frequency of Fcarr = 2.48 GHz and a

sampling rate of Fsamp = 5MS/s. The collection receiver configuration remained fixed

throughout all trials.

2.4 Results and Analysis

The simulation scenario consisted of Ndevices = 4 devices. Nfprints = 1000 Time

Domain (TD) Radio Frequency Distinct Native Attribute (RF-DNA) fingerprints
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Figure 8. Ramsey STE6000 Shielded Test Enclosure

were generated for each device. The first three devices were RZUSBStics, and the

fourth device was an X310-Software-Defined Radio (SDR) emulating the RZUSBStick

device-3. The emulation was accomplished by capturing and playing back the signal

radiated by RZUSBStick-3 using the X310-SDR. The signal was collected at a sample

rate of Fsamp = 25MS/s and replayed at the same rate of Fsamp = 25MS/s.

The signal collected from the RZUSBStick had an SNR = 55 dB. The transmitter

gain emulating RZUSBStick-3 was adjusted to obtain a Signal to Noise Ratio (SNR)

of 55dB, in order to match the signal power collected for the other devices. The SNR

was computed by taking the ratio of two measurements: the average power of the

signal plus noise, and the average power collected without any signal present (noise).

The Multiple Discriminant Analysis / Maximum Likelihood (MDA/ML) algo-

rithm was used to project the RF fingerprints onto a 2D subspace. Nfprints = 500

fingerprints per device were used to develop the 2D model. Additive White Gaussian

Noise (AWGN) was used to create two noise realizations per fingerprint for a total
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Figure 9. MDA/ML Projection for Three RZUSBStick Devices

of 1,000 fingerprints per device. The collected signal quality was degraded from a

SNR=55dB down to SNR=18dB, in order to simulate transmitter normal operat-

ing conditions. The signal degradation was accomplished by adding a scaled Pseudo

Random Number Generator (PRNG) to the signal of interest.

Each fingerprint had Nregions = 9 and Nfeats = 81 different features. The features

were generated by computing the variance (σ2), skewness (γ), and kurtosis (κ) for

the instantaneous amplitude ac(n), instantaneous frequency fc(n), and instantaneous

phase φc(n) of each region. The 2D projections of the fingerprints are illustrated

in Figure 9. The illustration shows that the vast majority of the fingerprints were

clustered according to their respective devices (classes), but there are some outliers

that may results in misclassification.

18



RF Fingerprints Classification.
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Figure 10. Fingerprint Classification Performance for Three RZUSBStick Devices

Nfprints = 500 fingerprints per device were used to compute the fingerprint classi-

fication performance. The fingerprints used to determine classification performance

were different than the fingerprints used to generate the MDA/ML model. The signal

quality was gradually degraded from a SNR=18dB down to a SNR=0dB using 1dB

decrements. Signal degradation was accomplished by adding a scaled PRNG to the

signal of interest. The scaled PRNG was used to represent the presence of AWGN in

the communication channel. The PRNG used had an approximate mean of zero and

an approximate standard deviation of one. Therefore, the scaling factor required to

achieve an average noise power Pavg can be obtained by
√

Pavg.

Each step of the different curves shown in Figure 10 was computed using Nz=2
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noise realizations per fingerprint, for a total of Nfprints = 1000 fingerprints per device.

The resultant fingerprints were classified one at a time. The projection of each fin-

gerprint was compared to the mean of the fingerprints projection of the four devices

in the MDA/ML model. The unknown fingerprint was projected into a Fisher space.

The Euclidian distance was computed for the unknown fingerprint, as well as the

mean of every known device. The classification algorithm associated the unknown

fingerprint with the device with the shortest Euclidian distance.

Classification algorithm performance varied depending on the SNR of the signal,

as illustrated in Figure 10. The system correctly classified nearly %C=100% of the

fingerprints, when the SNR was greater than 20dB and misclassified %C=50% of the

fingerprints on average when the SNR equaled 0dB. The projections for Device 1 have

the most compact cluster with maximum separation in respect to other devices. This

separation allowed the system to correctly classify Device 1 fingerprints %C=70%

of the time on average with a SNR of 3dB. However, the system correctly classified

about %C=35% of the fingerprints for Device 3, when the SNR equaled 3dB, due to

the widespread projections for this device.

RF Fingerprint Verification.

The MDA/ML model may be used to verify the identity of a transmitter. Verifi-

cation was accomplished by measuring how similar an unknown fingerprint obtained

from a signal claiming to be device-x to a model developed with actual fingerprints of

device-x. For example, comparing the similarity between the fingerprint of a collected

WiFi signal from a device claiming to have a Media Access Control (MAC) address

(01:23:45:67:89:ab), to fingerprints previously collected from the device with MAC

address (01:23:45:67:89:ab).

This test included the Ndevices = 3 devices that were used for the MDA/ML clas-
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sification model and introduced a new device not part of the MDA/ML classification

model. Devices 1, 2, 3 were the original RZBUSBStick devices used to generate the

MDA/ML model, and Device 4 was a RZBUSBStick rogue device. Table 1 shows the

relationship among devices.

Table 1. RZBUSBStick Devices Plus a Rogue Device

Device Color Code

RZUSBStick-1 Blue
RZUSBStick-2 Green
RZUSBStick-3 Red

RZUSBStick (Rogue) Dev 4
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Figure 11. Fingerprints Verification Performance For Rogue RZUSBStick Device

The performance of verification system is typically characterized using Receiver

Operating Characteristic (ROC) curves. The vertical axis represents the True Verifi-
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cation Rate (TVR) defined as [25]:

True Verification Rate =
Positives correctly classified

Total positives
. (20)

The horizontal axis represents the False Verification Rate (FVR) defined as [25]:

False Verification Rate =
Negatives incorrectly classified

Total negatives
. (21)

Figure 11 illustrates system performance verifying device identity. The measure

of similarity used for this system was Euclidian distance. The system classified fin-

gerprints with a SNR≥ 11dB for Device 1 nearly perfectlu (TVR > 99% and FVR

< 3%). Device 2 achieved a TVR≥ 90% with a FVR≤ 6%, while Device 3 yielded

a TVR≥ 90% with a FVR≤ 36%. The difference of verification performance among

devices was explained by the distribution for the different devices, the similarity be-

tween the transmission of the rogue device and the known devices, as well as the

different covariances of the distributions.

RF-DNA Fingerprint Verification for X310-SDR Replay Attack.

This test included the Ndevices = 3 RZUSBStick devices that were used for the

MDA/ML classification model and introduced a new device, which has not been

profiled before. Devices 1, 2, and 3 were the original RZBUSBStick devices used to

generate the MDA-ML model, and Device 6 was a X310-SDR replaying the signal

generated by RZUSBStick Device 3. Table 2 shows the relationship among devices.

Figure 12 illustrates the performance of discriminating an SDRs identity when it

is replaying the signal from a device known to the classification model. The mea-

sure of similarity used for this system was Euclidian distance. When the system was

operating with an SNR greater than 11dB, device classification was perfect, i.e. the
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Table 2. RZBUSBStick Devices plus X310-SDR Replay Attack

Device Color Code

RZUSBStick-1 Blue
RZUSBStick-2 Green
RZUSBStick-3 Red

X310-SDR (Replay Dev-3) Dev 6

SDR-replay was rejected (FVR=0%), while the actual device transmitting was clas-

sified correctly (TVR=100%). The signal was degraded using AWGN to 5dB, and
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Figure 12. Fingerprints Verification Performance For X310-SDR Replay Attack

the system performance was recorded, as shown in Figure 12. The system classified

fingerprints with a SNR≥ 5dB for Device 1 nearly perfectly with TVR > 94% and a

corresponding FVR < 3%. Device 2 and Device 3 also achieved high performance, as

well with a TVR≥ 90% and a corresponding FVR≤ 6%. The difference of verifica-

23



tion performance among devices was explained by the distribution closeness for the

different devices, the similarity between the transmission of the rogue device and the

known devices, as well as the different covariances of the distributions.

RF-DNA Fingerprint Model Development for X310-SDR Devices.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

X1

X2

MDA/ML 2−D Fisher Space , M = 3 Classes , SNR = 35 dB
TST FPrnts: 500 Brsts x 2 Nz Real per Dev/Cls

TST Mean (*) & TNG Mean (o)

Figure 13. RF-DNA Fingerprints MDA/ML Projection of Three X310-SDR

The simulation scenario consisted of three X310-SDR. The objective of this test

was to characterize the performance of the classification/verification algorithm for

SDRs with like-configuration. The first two devices were X310 SDRs with an SBX

daughterboard. The SBX daughterboard provided a transmit/receive frequency range

of 400-4400 MHz with a maximum instantaneous bandwidth of 40 MHz. The third

device was an X310 SDR configured with a CBX daughter board and a Global Po-

sitioning System Disciplined Oscillator (GPSDO). The GPSDO provided a high-
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accuracy reference clock signal that minimized frequency and phase artifacts of the

transmitter/receiver. The signal was collected by a X310 SDR equipped with an SBX

daugtherboard at a sample rate of Fsamp = 5MS/s. The collection receiver and its

configuration remained fixed throughout all trials.

The signal generated by the X310-SDR was captured over-the-air with an an-

tenna separation of Ndistance = 8cm. The software controlling the SDR was config-

ured to play samples stored in a binary file. The software configuration remained

fixed throughout for all SDR transmissions. The transmitter gain was adjusted via

software to obtain a SNR of 55dB. This SNR was computed by taking the ratio of

two measurements: the average power of the signal plus noise and the average power

collected without any signal present (noise).

RF Fingerprints Classification for X310-SDR.

Nfprints = 500 fingerprints per device were used to compute the fingerprint classi-

fication performance. The fingerprints used to determine classification performance

were different than the fingerprints used to generate the MDA/ML model. Signal

quality was gradually degraded from a SNR=35dB down to a SNR= 0dB using 2dB

decrements. This signal degradation was accomplished by adding a scaled PRNG to

the signal of interest. The scaled PRNG was used to represent the presence of AWGN

in the communication channel.

Each step of the different curves shown in Figure 14 was computed using Nz=2

noise realizations per fingerprint for a total of Nfprints = 1000 fingerprints per device.

The resultant fingerprints were classified one at a time. Each fingerprint projection

was compared to the mean of four devices’ fingerprint projections in the MDA/ML

model. The unknown fingerprint was projected into a Fisher space. The Euclidian

distance was computed for the unknown fingerprint and the mean of every known
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device. The classification algorithm associated the unknown fingerprint with the

device with the shortest Euclidian distance.

The performance of the classification algorithm varies depending on the SNR of

the signal as illustrated in Figure 14. The system correctly classify nearly %C=100%

of the fingerprints when the SNR is greater than 35dB, and misclassify %C=50% of

the fingerprints on average when the SNR equals 3dB. The projections for Ndevices =

3 have the most compact cluster with maximum separation with respect to other

devices. This separation allows the system to correctly classify device one fingerprints

%C=70% of the time on average with a SNR of 3dB. However, the system correctly

classifies about %C=30% of the fingerprints for device 1 when the SNR equals 3dB

due to the widespread of the projections for this device.
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Figure 14. Fingerprint Classification Performance for Three X310-SDRs

The MDA/ML algorithm was used to project the RF fingerprints onto a 2D sub-
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space as shown in Figure 13. Nfprints = 500 fingerprints per device were used to

develop the 2D model. AWGN was used to create Nz=2 realizations per fingerprint,

for a total of Nfprints = 1000 fingerprints per device. The quality of the signal was

degraded from a SNR=55dB down to a SNR=35 in order to simulate transmitter

normal operating conditions. The signal degradation was accomplished by adding a

scaled PRNG to the signal of interest.

RF Fingerprints Verification for X310-SDR.
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Figure 15. Fingerprints Verification Performance for Rogue X310-SDR

This test includes the Ndevices = 3 X310-SDR devices that were used for the

MDA/ML classification model and introduces a new device that has not been profiled

before. Device 1 , 2, 3 are the original X310 devices used to generate the MDA-

ML model. The rogue device (device-4) is a X310-SDR with a CBX daughterboard

27



and a GPSDO. All devices are using identical software configuration, and they are

transmitting identical digital samples. Table 3 shows the relationship among devices.

Table 3. Device Configuration for RF Fingerprint Verification

Device Color Code

X310-SBX-1 Blue
X310-SBX-2 Green

X310-CBX-GPSDO-1 Red
X310-CBX-GPSDO-2 Dev 4

The configuration of devices is so similar that it is very difficult to classify and ver-

ify the identity of the devices at low SNR. A very high SNR=35dB was used in order

to obtain acceptable results. The system classifies fingerprints with a SNR≥ 35dB for

device-1 and device-2 nearly perfect (TVR > 98% and FVR < 2%). Device-3 yields

a TVR≥ 90% with a corresponding FVR≤ 10%. The difference of verification per-

formance among devices is explained by the configuration of the devices. The phase

and frequency features for device-3 and the rogue device are very simmilar because

both devices are configured with a GPSDO. Figure 15 illustrates the performance of

the system verifying the identity of devices. The measure of similarity used for this

system was Euclidian distance.

2.5 Conclusions and Future Research Recommendations

Current Radio Frequency (RF) communication systems are limited because they

need to operate in spectrally dense environments. Cognitive Radio (CR) systems are

a new area of research that focus on maximizing the performance of communication

systems in spectrally dense environments by dynamically adjusting transmitter and

receiver parameters to operate in under-utilized areas of the spectrum.

One of the goals of CR systems is to avoid interference with the primary (licensed)

users of the spectrum. This goal can be accomplished by avoiding transmissions in

28



the areas of the spectrum currently utilized by the primary user. Spectrum sensing is

needed in CR systems to provide information about the surrounding radio spectrum

and to be able to detect the presence of the primary user. Current CR research efforts

are focused on the development of new mechanisms to detect primary user (PU) or

improve existing ones. However, previous researchers have identified that a Primary

User (PU) emulation attack can disrupt the operation of a cognitive radio system by

significantly reducing the spectrum available to secondary (unlicensed) users.

Figure 16. IQ Channel Deviation for 4QAM Constellation Projection

This paper describes an algorithm that detects a primary user emulation attack us-

ing Radio Frequency Distinct Native Attributes (RF-DNA) fingerprinting techniques.

Several tests were conducted to characterize the performance of the algorithm.

Test results demonstrated that the proposed solution can detect a Software-

Defined Radio (SDR) replaying the signal of a primary user. Even under a relatively

low Signal to Noise Ratio (SNR) 5dB, the true verification rate of the primary user

exceeds 90%, while the false verification rate of the replay was less than 6%. These
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experiments consider the most challenging scenario case by classifying devices from

the same manufacturer and model number. Results are expected to improve in cases

where the devices are from different manufacturers.

Future research includes the generation of fingerprints based on the unavoidable

In-Phase/Quadrature-Phase (I/Q) channel deviations generated by the transmitter

while they emit communication symbols. The I/Q channel deviations from the ideal

symbol are illustrated in Figure 16. Features that have the potential to discriminate

devices can be obtained by computing the variance (σ2), skewness (γ) and kurtosis

(κ) for the symbol magnitude ac(n), and the phase angle φc(n) between the in-phase

and quadrature phase axes.

This research highlighted that it is possible to provide reliable discrimination of

devices through Radio Frequency Distinct Native Attribute (RF-DNA) fingerprinting

techniques using relatively inexpensive (∼$7,000) equipment such as the National

Instruments (NI) X310 Software Defined Radio (SDR). The ability to verify the

true source of an RF emission can be used to prevent a Primary User Emulation

Attack (PUEA).
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III. Detection of Primary User Emulation Attack Using
Constellation-Based Distinct Native Attribute Techniques

3.1 Introduction

Cognitive-Radio refers to a new development of intelligent radio communication

systems that are aware of their environment, and adjust their transmitter and re-

ceiver parameters in order to maximize spectrum efficiency while maintaining the

ability of a highly reliable communication system. Understanding current and fu-

ture spectrum usage is one of the most difficult problems in the design and imple-

mentation of Cognitive Radios (CRs). Detection and classification of signals is a

critical design problem in cognitive radios in order to detect the presence of Pri-

mary User (PU) (licensed) of the spectrum. Current CR spectrum sensing research

efforts tend to focus on developing new mechanisms to detect PU presence or improv-

ing existing ones [26]. However, previous researchers have identified that a Primary

User Emulation Attack (PUEA) can disrupt the operation of a cognitive radio sys-

tem by significantly reducing the spectrum available to secondary (unlicensed) users

[10, 11, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

Traditional security techniques for preventing PUEAs are based on identifying the

location of the transmission source in order to compare it to the known PU location

[10, 28]. While these techniques are effective to some degree, security schemes that

are geolocation based are increasingly difficult to implement as they require obtaining

measurements from several different sensors that are widely spaced around the PU

location. Additionally, geolocation based algorithms do not work well when the PU

is a mobile node. Recent research demonstrates that the analysis of signals at the

Physical Layer (PHY) layer can be used to thwart PUEAs [31, 37, 38, 19, 15, 39,

40, 12]. This paper describes an innovative algorithm that detects PUEAs using
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Constellation-Based Distinct Native Attribute (CB-DNA) fingerprinting techniques.

The proposed PU verification system relies on examining waveforms at the PHY

layer to uniquely identify devices based on inherent differences in their transmissions.

This verification scheme requires prior signal collection of PU’s transmissions. Every

device that emits Radio Frequency (RF) signals has unique characteristics that are

very hard to duplicate, making these features useful to uniquely identify transmit-

ters. These characteristics are observed as transient behavior with respect to the

instantaneous amplitude, phase, and frequency of the radiated signal. This behavior

can be caused due to a variety of reasons such as precision of frequency synthesis

systems, modulator subsystems, and RF amplifiers. Unique transient signals can be

observed even among transmitters of the same type and model due to manufacturing

tolerances and aging of used components [20]. These transmitter anomalies can be

used to create Radio Frequency Distinct Native Attribute (RF-DNA) fingerprints.

3.2 Background

This section provides the technical background supporting the methodology de-

scribed in section 3.3. The topics covered in the section include: generation of Time

Domain (TD) Radio Frequency Distinct Native Attribute (RF-DNA) fingerprints,

generation of Spectral Domain (SD) RF-DNA fingerprints, generation of Constellation-

Based Distinct Native Attribute (CB-DNA) fingerprints, and classification of signals

using Multiple Discriminant Analysis / Maximum Likelihood (MDA/ML).

Time Domain RF-DNA Fingerprinting.

RF-DNA fingerprints can be generated by passively collecting signals generated

by Modulator/Demodulators (MODEMs) as they transmit communication symbols.

The collected signal can be represented in the TD as the complex vector x[n] =
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sI(n)+ jsQ(n) for n = {0, 1, 2, ..., N −1}, where n specifies the time when the sample

was measured and the variable N specifies the total number of samples stored in the

vector. The instantaneous amplitude, phase, and frequency of x can be computed as

follows [41]:

a(n) =

√
(sI(n) + jsQ(n))

2, n = {0, 1, 2, ..., N − 1}, (22)

φ(n) = tan−1

[
sQ(n)

sI(n)

]
, sI(n) �= 0, n = {0, 1, 2, ..., N − 1}, (23)

f(n) =
1

2π

[
dφ(n)

dn

]
n = {0, 1, 2, ..., N − 1}. (24)

The quality of RF-DNA fingerprints generated using instantaneous amplitude,

phase, and frequency can be improved by normalizing the range and subtracting

their respective means in order to remove any existing bias. Bias removal and signal

normalization can be obtained by:

ac(n) =
a(n)− μa

max(ac(n))
, (25)

φc(n) =
φ(n)− μφ

max(φc(n))
, (26)

fc(n) =
f(n)− μf

max(fc(n))
, (27)

where μa, μφ, μf , are the respective amplitude, phase, and frequency means [41].

RF-DNA fingerprints are obtained by dividing the sequences ac(n), φc(n), fc(n),

into R equal length sequences. The distinct fingerprints are generated by computing
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the standard deviation (σ), variance (σ2), skewness (γ), and kurtosis (κ) of these

sequences to create new vectors as follows:

Fa
r = [σa, σ

2
a, γa, κa], (28)

Fφ
r = [σφ, σ

2
φ, γφ, κφ], (29)

Ff
r = [σf , σ

2
f , γf , κf ]. (30)

The composite fingerprint is generated by concatenating the individual Fσ se-

quences, where σ denotes a specific amplitude, phase or frequency sequence by

Fσ =

[
Fσ

1

... Fσ
2 · · · Fσ

R

]
. (31)

The composite amplitude, phase, and frequency fingerprints can be combined in

order to generate a complete TD fingerprint as follows:

FTD =

[
Fa ... Fφ ... Ff

]
(32)

A visualization depiction of the generated Radio Frequency (RF) fingerprints is

shown in Figure 17. The figure shows the RF fingerprints for 4 different devices. The

values for the variance, skewness, and kurtosis of the signal generated by the devices

is shown in the horizontal bands. The colors represent the average value for each

statistical measurement scaled to span 0 to 1.

Spectral Domain RF-DNA Fingerprinting.

SD RF-DNA fingerprints are generated using the Power Spectral Density (PSD) of

the TD signal represented in vector x. The SD representation of x can be computed

using the Discrete Fourier Transform (DFT). The mathematical model to compute
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Figure 17. Visualization for RF-DNA Fingerprints for 4 Devices [5]

the DFT is as follows:

X(k) =
1

N

N−1∑
n=0

x(n)e
−j2πkn

N for k = {0, 1, 2, ..., N − 1} (33)

In this mathematical model X(k) is a complex number that represents the frequency

component of a signal at band k, while x(n) represents the signal as it is being

sampled in the time domain [21]. The PSD of the signal is normalized with respect

to power in order to mitigate collection effects that may affect signal classification [3].

The average power of the signal is computed by:

PX =
1

N

N−1∑
n=0

X(n)X(n)∗, (34)
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and the normalized-power PSD sequence is obtained by:

X(k) =
1

PX

|X(k)|2 . (35)

Once the normalized PSD signal is obtained, the SD fingerprints are generated

by dividing the sequence into R equal length sequences. The distinct fingerprints are

generated by computing the standard deviation (σ), variance (σ2), skewness (γ), and

kurtosis (κ) of these sequences to create new vectors as follows:

Fr = [σ, σ2, γ, κ]. (36)

The composite fingerprint is generated by concatenating the individual F se-

quences by:

F =

[
F1

... F2 · · · FR

]
. (37)

The resultant full-dimensional fingerprint vector F from (37) contains a total of

Nf = (# of Features)×(# of Statistical Metrics)×(# of Regions) elements. This

vector is illustrated in Figure 18.

…

s(1) s(2) … s(m) s(m+1) s(m+2) … s(2m) … s((N-1)*m+1) s((N-1)*m+2) … s(N*m)

Region N+1

FR1=[ 2, , ] FR2=[ 2, , ] FRN=[ 2, , ]

Region N

Variance ( 2) RN

Skewness ( ) RN

Kurtosis ( ) RN

Region 1 Region 2

Variance ( 2) R1

Skewness ( ) R1

Kurtosis ( ) R1

Variance ( 2) R2

Skewness ( ) R2

Kurtosis ( ) R2

Figure 18. RF-DNA Statistical Fingerprint Generation for Centered and Normalized
Feature Sequences and N + 1 Total Subregions
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Constellation-Based RF Fingerprinting.

RF-DNA fingerprints are generated using synchronization parameters (pream-

bles, postambles, midambles, pilot tones, etc) of the protocol used by the Primary

User (PU). Primary User Emulation Attacks (PUEAs) need to mimic the protocol

used by the PU in order to fool secondary users. The forged transmissions need

to include the synchronization parameters of the protocol used by the PU, enabling

the verification of the source of the signal using RF-DNA fingerprinting. RF-DNA

generates features based on the portions that remain constant in the Signal of Inter-

est (SOI). In contrast, CB-DNA uses the entire SOI by generating features from the

projections of communication symbols.

It is possible to extract unique features from a transmitter that is operating in

a steady state condition using Constellation-Based Distinct Native Attribute (CB-

DNA) [6, 42, 43] . A constellation projection is computed using a linear transforma-

tion, which projects each received symbol as a single point in the I/Q plane. A given

modulation scheme will have an ideal location for each symbol in the alphabet, which

will maximize the performance of the communication link [44]. The projection of re-

ceived symbols collected over-the-air will have unintended and unavoidable deviations

compared to ideal symbol locations due to variability in the receiver and transmitter’s

hardware. These imperfections are introduced by: component tolerances, oscillators’

phase noise, spurious tones from mixers and power amplifiers, manufacturing pro-

cesses, etc [42].

Transmitter’s modulated signals plus imperfections can be modeled as follows:

Z(t) =I(t) cos(2πfct+ φ/2)

+Q(t) sin(2πfct− φ/2),

(38)
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where Z(t) represents the TD transmitted signal, I(t) the in-phase component of

the signal, Q(t) the quadrature phase component of the signal, fc the intermediate

carrier frequency, and φ the quadrature error induced by the transmitter’s components

[42]. The individual I(t) and Q(t) bands can be modeled as follows:

I(t) = GI/Q

∞∑
k=−∞

Ik(t− kTs − τ) +OI(t), (39)

Q(t) =
∞∑

k=−∞
Qk(t− kTs − τ − τD) +OQ(t), (40)

where GI/Q is the I/Q gain imbalance, Ik and Qk represent the modulated sym-

bols in their respective I and Q bands, τD is the time delay between the I and Q

channels, OI(t) and QI(t) represents the I/Q offsets, and Ts is the symbol period

[42]. The imperfections GI/Q, τD, OI(t), and OQ(t) are generated by the transmit-

ter’s hardware components and are unique for each transmitter. The projection of

I(t) and Q(t) in the constellation space will deviate from the ideal symbol locations

due to imperfections described by (39) and (40).

Prior research shows that constellation projection deviations reflect a bias that

is conditional to the previous symbol transmitted, and the next symbol to be trans-

mitted. If the projections are grouped based on prior estimated symbol, current

estimated symbol, and next estimated symbol, then these bias show as clusters in the

I/Q plane. Figure 19 illustrates this phenomenon by color coding constellation points

according to the symbol values preceding and succeeding the symbol being estimated,

i.e., [0 X 0], [0 X 1], [1 X 0], and [1 X 1], where X denotes the symbol being esti-

mated. The clusters formed by applying conditional constellation are caused by the
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Figure 19. Binary Constellation for Unintentional Ethernet Cable Emissions Symbol
Estimation Showing Non-Gaussian Multimodal Symbol Sub-Clusters and Linear Bit
Estimation Boundary (ZC). [6]

transmitter’s hardware components and can be used to uniquely identify the source

of the RF emanations [6].

Multiple Discriminant Analysis/Maximum Likelihood.

The purpose of RF fingerprints is to extract features from signals so that they

can be classified. Classification of RF fingerprints requires additional processing be-

cause they can generate a multivariate statistical model with hundreds of independent

variables. Obtaining a Maximum Likelihood Estimate (MLE) of the source of a RF

emanation can be computationally intensive due to the high dimensionality of the

statistics. This problem can be simplified using MDA algorithm.

MDA is a multivariate statistical technique to apply linear discriminant analysis

[22]. The objective of MDA is to classify objects into two or more mutually exclusive

classes by reducing the dimensionality of a set of independent variables. The dimen-
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Figure 20. MDA Projection of 3D Space into 2D Space [7]

sionality reduction is accomplished by identifying the smallest linear combination of

variables with normal errors that best discriminate between classes [23]. For example,

the 3D model shown in Figure 20 is projected onto 2D models in order to reduce the

dimensionality of the problem. The 2D projections are defined by the norm vectors

W1 and W2 respectively. It is significantly more difficult to classify and discriminate

the W2 projections because the projections overlap. However, the W1 subspace fa-

cilitates classification and discrimination because the projections do not overlap. The

MDA algorithm aims to find projections such as those provided by the W1 vector.

The MDA algorithm starts by defining two scatter matrices, the inter-class matrix

(Sb) and the intra-class matrix (Sw) of the dataset x. The MDA projection maximizes

inter-class distances while minimizing intra-class spread. These matrices are defined

by [7]:

Sb =
Nc∑
i=1

Pi

∑
i, (41)
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SB =
Nc∑
i=1

Pi(μi − μ)(μi − μ)T , (42)

Where Nc is the number of classes, Pi is the prior probability of class ci and
∑

i

is the covariance matrix. Using the two scatter matrices, the projection matrix W is

formed using the eigenvectors of S−1
w Sb. The multivariate statistics can be projected

into a (Nc − 1) dimensional subspace by [7]:

FW
i = WTF, (43)

where F is the matrix representing the fingerprint.

3.3 Methodology

This section outlines the methodology used to determine the applicability of the

Constellation-Based Distinct Native Attribute (CB-DNA) concept to detect the pres-

ence of a Primary User Emulation Attack (PUEA). Additionally, this section outlines

the goals and hypotheses of this research, elaborates on the problem, and describes

the measures of merit on which the results of the algorithm will be judged. An outline

of the experiments to be performed as well as the hardware and software configura-

tion is given. The expected results are given and the expected performance factors

are stated.

Research Objectives.

Wireless communication systems are susceptible to a myriad of attacks because the

transmission medium is hard to constrain to specific locations, making it accessible

to unauthorized users. This research aims to characterize a security mechanism that

operates at the Physical Layer (PHY) layer in order to detect a PUEA. The proposed
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solution generates unique CB-DNA fingerprints that can be used to authenticate the

Primary User (PU).

The objective of this research is to develop an algorithm that capitalizes on the

unavoidable spurious signals emitted by transmitters, as they try to radiate com-

munication symbols, by generating CB-DNA fingerprints that uniquely identify the

transmitter. The algorithm requires prior collections of the PU Radio Frequency (RF)

emanations in order to generate a Multiple Discriminant Analysis / Maximum Like-

lihood (MDA/ML) classification model that will be used to discriminate unidentified

signals.

Research Hypotheses.

There are three hypotheses that will be considered throughout this research:

• CB-DNA fingerprints can be used to uniquely identify the source of a transmis-

sion.

• CB-DNA fingerprints can provide a better RF source discrimination perfor-

mance than Radio Frequency Distinct Native Attribute (RF-DNA) fingerprints.

• The average correct classification rate of devices will exceed %C=90% for like-

model devices, passband device discrimination, and baseband device discrimi-

nation.

Measure of Merit.

The measure of merit of this algorithm is its ability to persistently perform cross-

device discrimination, and more specifically like-model discrimination. Like-model

discrimination presents a greater classification challenge because the devices use iden-

tical components, assembly line procedures, quality assurance standards, etc. The
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measure of merit will be quantified as %C: the average percentage of correct classi-

fication.

Quadrature Phase Shift Keying Transmitter Design.

Figure 21. Block Diagram for Burst-Mode QPSK Transmitter Implementation

A QPSK modulated signal was developed to serve as a proof of concept as there

are currently no standardized CR systems. The signal is constructed from a data

packet that consists of three fields: Plength = 64 bits training sequence, Pidlength = 16

bits packet index, and Ploadlength = 6400 bits payload.

The training sequence serves as a preamble, and it is used to aid the receiver during

the synchronization process. This Plength = 64 bits sequence has very good periodic

autocorrelation properties [45], which enables the receiver to detect burst presence,

estimate symbol boundaries, and estimate phase offset between the transmitter and

receiver. The autocorrelation function of this binary sequence is shown in Figure

22. The Pidlen = 16 bits packet index field is used to identify the specific packet

transmitted, in order to conduct Bit Error Rate (BER) computations. Finally, the

Ploadlen = 6400 bits payload is used to represent the data to be transmitted and

is populated with a sequence obtained from a Pseudo Random Number Generator
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Figure 22. Autocorrelation Function for the Preamble Sequence

(PRNG).

The QPSK transmitter implemented for this research takes the preamble, packet

index and data payload as inputs, and converts them into QPSK symbols. Following

this conversion, these communication symbols are upsampled by a factor of sps =

8 by inserting seven zeros in between each symbol. Finally, a pulse-shaping root-

raised-cosine Nyquist filter is applied to the signal in order to minimize Intersymbol

Interference (ISI) and interpolate the samples in between symbols. The implemen-

tation of this QPSK transmitter is illustrated in Figure 21. The resultant signal

generated by the transmitter has a bandwidth of Txbandwidth = 1 MHz as shown in

Figure 23.

The impulse response of the pulse shaping filter is shown in Figure 24. This filter

implementation minimizes ISI because the only non-zero component is the symbol
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that is currently being sampled.

This QPSK transmitter was implemented in MATLAB R© and the resulting discrete

waveform samples were stored in a binary file. The file contained NBursts = 1000

individual bursts with a random number of zeros in between each burst. The zeros

in between bursts are used to disable the transmitter, so that the system operates

in burst-mode. GNU-Radio was configured to open the binary file and send those

samples to National Instruments (NI) Universal Software Radio Peripheral (USRP)

X310 and the BladeRF respectively.

Software-Defined Radio Receiver Configuration.

The collection receiver used in this research was a NI USRP X310 Software-Defined

Radio (SDR). This research departs from the norm by using a relatively inexpensive

RF transmitter and receiver. Research of RF-DNA fingerprinting is normally con-

ducted using very precise and accurate collection receivers equipped with high quality

expensive analog components especially designed for sensitive measurements in or-

der to minimize receiver coloration effects [31, 46, 47]. The X310 SDR is available

Commercial Off-The-Shelf (COTS) with a retail price of approximately $7,000. In

addition to its price tag, this RF transmitter/receiver was chosen for this research

because it has a very capable Field Programmable Gate Array (FPGA) that can be

used for signal processing.

GNU Radio was used as the controlling software for all RF transmissions and

signal collections. The transmissions were preprocessed using MATLAB R© and stored

in a file. GNU Radio was configured to read the preprocessed file and play the samples

through the SDR platform. Signal collection was accomplished by configuring GNU

Radio to store the collected samples in a file. Signal postprocessing was accomplished

using MATLAB R©.
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Quadrature Phase Shift Keying Receiver Design.

The main objective of this research is to assess the performance of a device dis-

crimination algorithm based on CB-DNA fingerprints. A burst-mode QPSK receiver

was implemented to project the received symbols in constellation space. The con-

stellation points obtained from this receiver were used to generate CB-DNA based

fingerprints. Figure 25 illustrates the burst-mode QPSK receiver implemented in this

project.

The choice of implementation for the burst detector, carrier frequency recovery,

and phase recovery components can significantly affect the resulting constellation

projection. The respective implementations for these components are detailed in this

document.

Burst Detector.

Burst detection is normally implemented using an energy detection algorithm.

Using this scheme, the beginning of a burst is detected by computing when the input

signal power exceeds a specified threshold. However, this research cross-correlates the

received signal with the known preamble sequence to detect the presence of a burst.

Using this technique it is possible to estimate symbol boundary, since the peak of the

cross-correlation aligns with the beginning of the preamble. This technique only works

Figure 25. Block Diagram for Burst-Mode QPSK Receiver Implementation
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when the preamble has very good correlation properties, and the center frequency

offset between the transmitter and receiver is relatively small.

Intermediate Carrier Frequency Recovery.

Communication systems implemented using Phase Shift Keying (PSK) modula-

tion have zero average energy transmitted at the carrier frequency [44].

A QPSK signal sampled at the output of the receiver’s matched filter can be

modeled as the complex vector:

R(n) = Sa(n) exp(j2πfct) + ω(n), for n = 1, ..., N (44)

where S is a real scalar, a(n) is the transmitted QPSK symbols of unit magnitude, fc

is the carrier frequency, and ω(n) represents the noise in the communication channel

[48].

The carrier frequency of a M-PSK signal can be estimated by raising the sampled

M-PSK signal to the M power in order to remove the modulation. Raising the signal

to the M power creates a significant tone at M times the carrier frequency, revealing

the suppressed carrier [49]. In the specific case of QPSK the tone at four times the

carrier frequency is evident in the following expression:

R4(n) =S4a4(n) exp(j8πfct)+

4S3a3(n) exp(j6πfct)ω(n)+

6S2a2(n) exp(j4πfct)ω
2(n)+

4Sa(n) exp(j2πfct)ω
3(n) + ω4(n).

(45)

This research estimated the intermediate carrier frequency in a burst-by-burst

basis by computing F̂Carr = (argmaxn(|F {R4(n)}|) /4. This technique produces
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Figure 26. Probability of Bit Error vs Eb/N0 for SDR QPSK Receiver

reliable intermediate frequency estimates when the Signal to Noise Ratio (SNR)

Eb/N0=4 dB. It is not possible to synchronize the receiver when the SNREb/N0 ≤
4 dB because the intermediate frequency estimates obtained are unreliable as illus-

trated in Figure 26. These limitations in the computation of intermediate frequency

estimates is consistent with the Cramer-Rao Lower Bound (CRLB) for QPSK signals

[50, 51].

Each data point in Figure 26 was computed with at least NbitErrors=2500 bit errors.

This large number of trials reduced the mean error bars to within the vertical extent

of the plotted data markers. Therefore, trial mean error bars are intentionally omitted

to enhance visual clarity.

49



In-Phase Amplitude

Q
ua

dr
at

ur
e 

A
m

pl
itu

de

Constellation Projection

−1

−

√
2

2

√
2

2

1

Figure 27. Derotated and Normalized Constellation Projection for One Received Burst
with Eb/N0=20dB

Phase Recovery.

Typical implementations of QPSK receivers use a Phase-Locked Loop (PLL) to re-

construct the suppressed carrier. PLL algorithms use feedback to detect and compen-

sate for phase errors [52]. The auto-compensation feature inherent in PLL algorithms

could potentially hide some of the features used to uniquely identify a transmitter.

Therefore, this research implements a phase detection algorithm that rotates the re-

ceived constellation points from 0 radians to π/2 radians in N = 100 increments, and

finds the phase angle that projects symbols closer to ideal locations. The pseudo-code

for this algorithm is presented in Algorithm 1.

There are four different phase angle ambiguities after derotating the constellation.

This research resolves these ambiguities by comparing the four possible phase angles

with the known preamble. Finally, the constellation projection is normalized by
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Algorithm 1 Phase Angle Estimator

Require: Received Constellation Projections(rxConstProj)
rotationVariances ← ∞
for N = 1 to 100 do
θ ← Nπ

2×100

rotatedCProj ← rxConstProj ·ejθ
temp ← |real(rotatedCProj)|+ j |imaginary(rotatedCProj)|
rotationVariances(N)← variance(temp)

end for
N ← argminN(rotationVariances)

return rxConstProj ·e jNπ
2×100

scaling each constellation point as follows:

constPoint =
constPoint

mean (|rxConstProj|) . (46)

The derotated and normalized constellation projections for one burst is illustrated in

Figure 27.

Experimental Signal Collection.

The experiments were conducted in the AFIT Cognitive Radio (ACRO) Labora-

tory located at the Air Force Institute of Technology (AFIT). The devices under test

were inside a Ramsey STE6000 RF Shielded Test Enclosure. This test enclosure was

designed for use with Industrial Scientific and Medical (ISM) band signals including

Bluetooth, WiFi, and ZigBee. The STE6000 provides isolation greater than 90dB

at the 2.4Ghz ISM band. Additionally, the interior has an RF absorbent foam liner

that attenuates signal reflections within the test enclosure by more than 24dB. The

STE6000 was equipped with Ethernet and USB connections in order to control the

devices operating inside test enclosure while it was sealed.

The X310 SDR has transmit and receive capabilities covering from DC to 6.0 GHz

depending on daughterboard installed. For this research, the CBX daughterboard
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revision 3 serial number F59192 was installed in the collection receiver, providing a

receive frequency range of 1200-6000 MHz with a maximum instantaneous bandwidth

of 40MHz. The collection receiver was configured to collect signals with a center

frequency of fc = 2.48 GHz, and a sampling rate of FSamp = 5MS/s. The collection

receiver configuration remained fixed throughout all trials.

The performance of the MDA/ML discrimination algorithm is a function of the

collected signal’s Eb/N0, with higher Eb/N0 achieving better performance. Four

independent Additive White Gaussian Noise (AWGN) realizations were generated to

assess the performance of the MDA/ML discrimination algorithm at varying Eb/N0.

The AWGN realizations were power scaled to represent Eb/N0 ∈ [0, 3, 6, ..., 27]. The

AWGN realizations used to generate RF-DNA fingerprints were like-filtered to match

the QPSK receiver passband. These AWGN noise realizations facilitate analysis of

RF-DNA and CB-DNA fingerprint generation and device classification under various

degraded SNR conditions. The block diagram that depicts the process to generate

RF-DNA and CB-DNA fingerprints at varying Eb/N0s is illustrated in Figure 28.

CB-DNA Features Extraction and Fingerprints Generation.

The constellation projections were grouped based on the previous estimated sym-

bol, current estimated symbol, and the next estimated symbol. Figure 29 illustrates

this phenomenon by placing each constellation point in one of the following four

groups: [Sj, Sx, Sk], [90, Sx, 90], [180, Sx, 180], [Sx, Sx, Sx], where Sx denotes current

estimated symbol, and the other variables indicate a different communication symbols

or angular relationship in degrees.

There are 64 possible permutations of prior, current and next estimated symbols

in QPSK (i.e., [(S1,S1,S1),(S1,S1,S2), ..., (S4,S4,S4)]). CB-DNA fingerprints were

generated by placing each received symbol in one of the 64 different groups. The
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Figure 28. Block Diagram for CB-DNA and RF-DNA Fingerprint Generation Proce-
dure

Figure 29. Conditional QPSK Projection. Sx denotes current estimated symbol, and
the other variables indicate a different communication symbol or angular relationship
in degrees.
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identifying features were extracted by computing the following features for each of

the conditional projections:

• Variance of the projected phase angle (radians)

• Variance of the projected magnitude

• Skewness of the projected phase angle (radians)

• Skewness of the projected magnitude

• Kurtosis of the projected phase angle (radians)

• Kurtosis of the projected magnitude

• Main diagonal of the covariance(real(const),imag(const))

The variance σ, skewness γ, and kurtosis κ where computing as follows:

σ2 =
1

Nx

∑
n=1

Nx (x̄c(N)− μ)2 , (47)

γ =
1

Nxσ3

∑
n=1

Nx (x̄c(N)− μ)3 , (48)

κ =
1

Nxσ4

∑
n=1

Nx (x̄c(n)− μ)4 . (49)

54



0 50 100 150 200 250 300

ROI Sample Number: 256 Total

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
M

ea
n(

T
st

S
ig

)

Desired TimeDom Feature SubRegions
N

R
 = 17 SubRegions (Red) Within ROI (Black)

Figure 30. Mean of 1000 Bursts Preamble Response Depicting the NR = 17 Sub-
Regions Used for RF-DNA Fingerprint Generation. Each Sub-Region Contains 2 QPSK
Symbols.

RF-DNA Features Extraction and Fingerprints Generation.

RF-DNA fingerprints are generated by extracting identifying features from por-

tions of the signal that remain constant in between bursts such as: preambles, postam-

bles, midambles, pilot tones, etc. This research utilizes the preamble portion of the

signal as the Region of Interest (ROI). The ROI was divided into 17 subregions as

shown in Figure 30. The first subregion FR1 shows the transmitter response as it

switches from standby mode to transmit mode. Each subregion FR2 to FR17 contains

the transmitter response as it emits two QPSK communication symbols.

The normalized and centered instantaneous amplitude ac, the normalized and

centered instantaneous phase φc, and the normalized and centered frequency fc was

computed for each subregion. The vector ac was computed using (22) and (25), the

vector φc using (23) and (26), and the vector fc using (24) and (27).

The RF-DNA features were extracted by computing the standard deviation σ2,

the skewness γ, and kurtosis κ for each subregion. The values for σ2 were computed
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using (47), γ were computed using (48), and κ computed using (49).

3.4 Results

This section presents and analyzes the results of the Multiple Discriminant Anal-

ysis / Maximum Likelihood (MDA/ML) discrimination algorithm using Radio Fre-

quency Distinct Native Attribute (RF-DNA) and Constellation-Based Distinct Native

Attribute (CB-DNA) fingerprints. Until recently it was very hard to design a test

that isolates the effects of baseband components on device discrimination from the ef-

fects of passband components. Nowadays we have Commercial Off-The-Shelf (COTS)

Software-Defined Radio (SDR) platforms that have separable baseband and passband

components. This research designed six test cases that address the worst-case sce-

narios for Primary User Emulation Attacks (PUEAs). The objectives of the six test

cases are as follows:

• Discrimination performance based on passband components

• Discrimination performance based on baseband modulators

• Discrimination performance of like-model devices

• Discrimination performance of large number of like-model devices with mixed

configurations

• Discrimination performance based on passband components across multiple

baseband boards

• Discrimination performance based on baseband boards across multiple passband

components

Classification experiments were conducted usingNbursts = 1000 independent bursts;

Ntrainbst = 500 bursts were used for MDA/ML training, and Ntstbst = 500 bursts were
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used for testing. For each burst NNz = 4 Monte Carlo noise realizations were cre-

ated at each Eb/N0. Each test described in this section has a total of Ntests=(500

bursts)×(NNz = 4)=2000 independent tests per each Eb/N0.

Passband Classification Performance.

CB-DNA and TD RF-DNA classification performance was assessed using one NI

X310 SDR with seven different configurations. The NI X310 SDR configuration

was modified by swapping the daughterboard seven times. The objective of these

tests was to demonstrate the algorithm’s ability to differentiate features generated

by the passband components (daughterboard) while ignoring features generated by

the baseband modulator (X310 mainboard). Individual configuration and average

MDA/ML %C correct classification performance at Eb/N0 ∈ [0, 27.0] dB using TD

RF-DNA is shown in Figure 31, and the performance using CB-DNA fingerprints is

shown in Figure 32.

For TD RF-DNA fingerprints, five of the seven individual X310 configurations

achieve %C=90% or better correct classification at Eb/N0 ≥ 21 dB. Individual clas-

sification of the remaining two X310 configurations fail to achieve %C=90% using TD

RF-DNA fingerprints. The average classification performance using TD RF-DNA fin-

gerprints exceeded %C=90% for Eb/N0 ≥ 24 dB.

CB-DNA fingerprints achieve %C=90% or better for three configurations atEb/N0 ≥
21 dB, four configurations at Eb/N0 ≥ 24 dB, and six configurations at Eb/N0 = 27

dB. Individual classification of the remaining X310 configuration fails to achieve

%C=90% using CB-DNA fingerprints. The average classification performance using

CB-DNA fingerprints exceeded %C=90% for Eb/N0 ≥ 24 dB.

The mean classification rate for both TD RF-DNA and CB-DNA fingerprints at

Eb/N0 = 24 dB is %C ≈ 91% as shown in Table 4. Individual classification perfor-
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Figure 31. Passband MDA/ML Classification Performance Using TD RF-DNA Fin-
gerprints from Seven Daughterboards and One NI X310 SDR
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Figure 32. Passband MDA/ML Classification Performance Using CB-DNA Finger-
prints, from Seven Daughterboards and One NI X310 SDR
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Table 4. Confusion Matrix for Nd = 7 Devices Passband Classification Performance
using RF-DNA/CB-DNA Fingerprints at Eb/N0 = 24 dB

RF-DNA/CB-DNA
X310F57899 
CBXF5636A

X310F57899 
CBXF56350

X310F57899 
CBXF56375

X310F57899 
SBXF509D7

X310F57899 
SBXF509D8

X310F57899 
SBXF509DD

X310F57899 
UB30B6D2C

X310F57899 
CBXF5636A

100.0% / 85.2% 0.0% / 12.4% 0.0% / 2.3% 0.0% / 0.1% 0.0% / 0.0% 0.0% / 0.1% 0.0% / 0.1%

X310F57899 
CBXF56350

0.0% / 12.1% 98.5% / 85.3% 0.0% / 2.6% 0.0% / 0.0% 0.0% / 0.0% 0.0% / 0.0% 1.5% / 0.0%

X310F57899 
CBXF56375

0.0% / 1.1% 0.0% / 1.8% 99.3% / 96.7% 0.0% / 0.0% 0.8% / 0.0% 0.0% / 0.5% 0.0% / 0.0%

X310F57899 
SBXF509D7

0.0% / 0.0% 0.0% / 0.1% 0.0% / 0.0% 68.2% / 92.6% 28.2% / 5.2% 0.0% / 1.7% 3.6% / 0.1%

X310F57899 
SBXF509D8

0.0% / 0.0% 0.0% / 0.0% 0.1% / 0.0% 22.6% / 8.0% 77.3% / 86.4% 0.0% / 0.9% 0.1% / 4.8%

X310F57899 
SBXF509DD

0.0% / 0.0% 0.0% / 0.0% 0.0% / 0.1% 0.0% / 0.9% 0.0% / 0.7% 100.0% / 98.4% 0.0% / 0.1%

X310F57899 
UB30B6D2C

0.0% / 0.0% 0.6% / 0.1% 0.0% / 0.1% 3.1% / 0.6% 0.1% / 3.6% 0.0% / 0.6% 96.3% / 95.1%

Called Class

Input 
Class

mance for TD RF-DNA is %C≥ 68%, while the individual classification performance

for CB-DNA is %C≥ 85%. The confusion matrix shows that the majority of misclas-

sifications are for daughterboards from the same family (i.e., SBX is mostly confused

with another SBX, CBX is mostly confused with another CBX and so forth).

Baseband Classification Performance.

CB-DNA and TD RF-DNA classification performance were assessed using four

NI X310 SDRs and one daughterboard, which corresponds to four different config-

urations. These configurations were assembled by putting the same daughterboard

into each of the four NI X310 SDRs. The objective of these tests was to demon-

strate the algorithm’s ability to differentiate features by the baseband modulators

(X310 mainboard), while ignoring features generated by the passband component

(daughterboard). Individual configuration and average MDA/ML %C performance

at Eb/N0 ∈ [0, 27.0] dB using TD RF-DNA is shown in Figure 33, and the perfor-

mance using CB-DNA fingerprints is shown in Figure 34.
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Figure 33. Baseband MDA/ML Classification Performance Using TD RF-DNA Fin-
gerprints from One Daughterboard and Four NI X310 SDR
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Figure 34. Baseband MDA/ML Classification Performance Using CB-DNA Finger-
prints, from One Daughterboard and Four NI X310 SDR
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Table 5. Confusion Matrix for Nd = 4 Devices Baseband Classification Performance
using RF-DNA/CB-DNA Fingerprints at Eb/N0 = 24 dB

RF-DNA/CB-
DNA

X310F5788F 
CBXF56375

X310F57899 
CBXF56375

X310F5B4B0 
CBXF56375

X310F4F038 
CBXF56375

X310F5788F 
CBXF56375

71.1% / 89.4% 0.0% / 2.5% 29.0% / 8.2% 0.0% / 0.1%

X310F57899 
CBXF56375

0.0% / 1.6% 100.0% / 98.3% 0.0% / 0.2% 0.0% / 0.0%

X310F5B4B0 
CBXF56375

28.0% / 9.0% 0.0% / 0.4% 72.1% / 90.7% 0.0% / 0.0%

X310F4F038 
CBXF56375

0.0% / 0.0% 0.0% / 0.0% 0.0% / 0.0% 100.0% / 100.0%

Called Class

Input 
Class

For TD RF-DNA fingerprints, two of the four individual X310 configurations

achieve %C=90% or better correct classification at Eb/N0 ≥ 12 dB. Individual clas-

sification of the remaining two X310 configurations fail to achieve %C=90% using TD

RF-DNA fingerprints. The average classification performance using TD RF-DNA fin-

gerprints fails to achieve %C=90%.

CB-DNA fingerprints achieve %C=90% or better for two configurations atEb/N0 ≥
18 dB and for three configurations at Eb/N0 ≥ 24 dB. Individual classification of

the remaining X310 configuration achieves %C=90% at Eb/N0 ≥ 27 dB. The av-

erage classification performance using CB-DNA fingerprints exceeded %C=90% for

Eb/N0 ≥ 21 dB.

The mean classification rate for TD RF-DNA fingerprints at Eb/N0 = 24 dB is

%C ≈ 86%, and CB-DNA fingerprints is %C ≈ 95% as shown in Table 5. Individ-

ual classification performance for TD RF-DNA is %C≥ 71%, while the individual

classification performance for CB-DNA is %C≥ 89%. The confusion matrix shows

that the majority of misclassifications are for devices X310 serial number F5788F and

X310 serial number F5B4B0. The other two devices have nearly perfect classification
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performance.

Like-Model Classification Performance.

CB-DNA and TD RF-DNA classification performance were assessed using eight

BladeRF SDRs. The BladeRF SDR configurations are unlike the X310 configurations,

because they do not have interchangeable daughterboards, therefore each BladeRF

SDR is a separate configuration. The objective of these tests was to demonstrate the

algorithm’s ability to differentiate features of like-model SDR by exclusively using

BladeRF SDRs. Individual configuration and average MDA/ML %C performance at

Eb/N0 ∈ [0, 27.0] dB using TD RF-DNA is shown in Figure 35, and the performance

using CB-DNA fingerprints is shown in Figure 36.

For TD RF-DNA fingerprints, five of the eight individual BladeRF SDRs achieve

%C=90% or better correct classification at Eb/N0 ≥ 21 dB. Individual classifica-

tion of the remaining three X310 configurations fail to achieve %C=90% using TD

RF-DNA fingerprints. The average classification performance using TD RF-DNA

fingerprints exceeded %C=90% for Eb/N0 ≥ 24 dB.

CB-DNA fingerprints achieve %C=90% or better for two configurations atEb/N0 ≥
6 dB, five configurations at Eb/N0 ≥ 12 dB, and eight configurations at Eb/N0 = 18

dB. The average classification performance using CB-DNA fingerprints exceeded

%C=90% for Eb/N0 ≥ 15 dB.

The mean classification rate for TD RF-DNA fingerprints at Eb/N0 = 24 dB is

%C ≈ 86%, and for CB-DNA fingerprints is %C ≈ 99% as shown in Table 6. The

confusion matrix shows that TD RF-DNA misclassifies the Blade-RFs with serial

numbers 2592, 31C4, and E078, which have an average classification rate of %C ≈
70%. Meanwhile, the lowest classification rate for CB-DNA is %C = 96.0% for the

Blade-RF with serial number CDF8.
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Figure 35. Like-Model MDA/ML Classification Performance Using TD RF-DNA Fin-
gerprints from Eight BladeRFs and One NI X310 SDR with Seven Daughterboards
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Figure 36. Like-Model MDA/ML Classification Performance Using CB-DNA Finger-
prints, from Eight BladeRFs and One NI X310 SDR with Seven Daughterboards
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Table 6. Confusion Matrix for Nd = 8 Like-Model Device Classification Performance
using RF-DNA/CB-DNA Fingerprints at Eb/N0 = 24 dB

RF-DNA/CB-DNA Blade 1C5F Blade  2592 Blade 55E0 Blade 31C4 Blade E078 Blade  94A4 Blade 92EA Blade CDF8

Blade 1C5F 93.0% / 100.0% 0.6% / 0.0% 0.0% / 0.0% 0.5% / 0.0% 5.9% / 0.0% 0.1% / 0.0% 0.0% / 0.0% 0.0% / 0.0%

Blade  2592 0.7% / 0.0% 73.6% / 96.3% 0.0% / 0.0% 16.3% / 0.3% 6.9% / 0.0% 1.5% / 0.0% 0.8% / 0.0% 0.1% / 3.4%

Blade 55E0 0.0% / 0.0% 0.0% / 0.0% 95.0% / 100.0% 0.1% / 0.0% 0.0% / 0.0% 0.1% / 0.0% 4.8% / 0.1% 0.1% / 0.0%

Blade 31C4 1.5% / 0.0% 21.0% / 0.6% 0.1% / 0.0% 64.8% / 98.0% 11.7% / 0.0% 0.5% / 0.0% 0.1% / 0.0% 0.5% / 1.4%

Blade E078 3.9% / 0.0% 9.5% / 0.0% 0.0% / 0.0% 13.5% / 0.0% 72.2% / 100.0% 1.0% / 0.0% 0.0% / 0.0% 0.1% / 0.0%

Blade  94A4 0.8% / 0.0% 0.6% / 0.0% 0.1% / 0.0% 0.2% / 0.0% 0.4% / 0.0% 96.2% / 100.0% 0.0% / 0.0% 1.8% / 0.0%

Blade 92EA 0.1% / 0.0% 0.2% / 0.0% 1.2% / 0.1% 0.1% / 0.0% 0.0% / 0.0% 0.1% / 0.0% 98.4% / 100.0% 0.0% / 0.0%

Blade CDF8 0.0% / 0.0% 0.1% / 2.9% 0.2% / 0.0% 0.6% / 1.2% 0.2% / 0.0% 0.8% / 0.0% 0.0% / 0.0% 98.3% / 96.0%

Called Class

Input 
Class

Mixed Device Configuration Classification Performance.

CB-DNA and TD RF-DNA classification performance was assessed using one NI

X310 SDR, seven daughterboards, and eight BladeRF SDRs. Seven of the fifteen

configurations were assembled with one NI X310 SDR and seven daughterboards,

while the other eight configurations were BladeRF SDRs. The objective of these

tests was to demonstrate the algorithm’s ability to differentiate a large number of like-

model devices from two different manufacturers with mixed configurations. Individual

configuration and average MDA/ML %C performance at Eb/N0 ∈ [0, 27.0] dB using

TD RF-DNA is shown in Figure 37, and the performance using CB-DNA fingerprints

is shown in Figure 38.

For TD RF-DNA fingerprints, two of the fifteen individual configurations achieve

%C=90% or better correct classification for Eb/N0 ≥ 18 dB, five of the fifteen indi-

vidual configurations achieve %C=90% or better correct classification for Eb/N0 ≥ 21

dB, and seven of the fifteen individual configurations achieve %C=90% or better cor-

rect classification for Eb/N0 ≥ 24 dB. Individual classification of the remaining eight
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Figure 37. Mixed Device Configuration MDA/ML Classification Performance Using
TD RF-DNA Fingerprints from Eight BladeRFs and Seven X310 Configurations
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Figure 38. Mixed Device Configuration MDA/ML Classification Performance Using
CB-DNA Fingerprints from Eight BladeRFs and Seven X310 Configurations
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Table 7. Confusion Matrix for Nd = 15 Mixed Device Classification Performance using
RF-DNA/CB-DNA Fingerprints at Eb/N0 = 24 dB

configurations fail to achieve %C=90% using TD RF-DNA fingerprints. The average

classification performance using TD RF-DNA fingerprints did not exceed %C=90%.

CB-DNA fingerprints achieve %C=90% or better for two configurations forEb/N0 ≥
9 dB, five configurations for Eb/N0 ≥ 12 dB, seven configurations for Eb/N0 ≥ 18

dB, and eleven configurations at Eb/N0 = 21 dB. Individual classification of the re-

maining four configurations fail to achieve %C=90% using CB-DNA fingerprints. The

average classification performance using CB-DNA fingerprints exceeded %C=90% for

Eb/N0 ≥ 18 dB.

The detailed performance of TD RF-DNA and CB-DNA fingerprints at Eb/N0=

24dB is shown in Table 7. The algorithm correctly classified BladeRF devices with

%C≥62% and the X310 devices with %C≥43% using TD RF-DNA. The mean clas-

sification rate for BladeRF devices is %C≈ 84%, for X310 devices is %C≈ 71%, and

for all devices is %C≈ 78% using TD RF-DNA. The algorithm correctly classified

BladeRF devices with %C≥95% and the X310 devices with %C≥83% using CB-DNA.

The mean classification rate for BladeRF devices is %C≈ 99%, for X310 devices is

%C≈ 90%, and for all devices is %C≈ 95% using CB-DNA. The X310 misclassifi-
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cations were from configurations using passband components from the same family

(i.e., SBX is mostly confused with another SBX, CBX is mostly confused with an-

other CBX and so forth). The classification rate of the UB30B6D2C for TD RF-DNA

fingerprints was low, even though there were no other UBX daughterboards within

the group of devices. The confusion matrix shows that TD RF-DNA misclassifies the

Blade-RFs with serial numbers 2592, 31C4, and E078, which have an average classi-

fication rate of %C ≈ 65%. Meanwhile, the lowest classification rate of Blade-RFs

using CB-DNA is %C = 95.7% for the Blade-RF with serial number 2592. These

results are consistent with previous tests conducted in this research.

Passband Component Classification Across Multiple Baseband Boards.

CB-DNA and TD RF-DNA classification performance was assessed for all seven

passband components (daughterboards), with each passband component being tested

across four baseband components (mainboards). Fingerprints that came from the

same daughterboard were combined into a single class disregarding the mainboard

in which the daughterboard was installed. Seven new classes were created using

this technique, one class for each daughterboard. The objective of this test was to

demonstrate the algorithm’s ability to differentiate passband components regardless

of the baseband component in which it was installed. Individual classes as well as

average MDA/ML %C performance at Eb/N0 ∈ [0, 27.0] dB using TD RF-DNA is

shown in Figure 39, and the performance using CB-DNA fingerprints is shown in

Figure 40.

For TD RF-DNA fingerprints, individual classification of the seven configurations

fail to achieve %C=90%. Individual classification did not show much improvement

as Eb/N0 increased, however the performance of individual classifications converged.

The average classification performance using TD RF-DNA fingerprints did not exceed
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Figure 39. MDA/ML Classification Performance Using TD RF-DNA Fingerprints for
Seven Daugtherboards, Each Daughterboard Tested Across Four Mainboards
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Figure 40. MDA/ML Classification Performance Using CB-DNA Fingerprints for
Seven Daugtherboards, Each Daughterboard Tested Across Four Mainboards
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Table 8. Confusion Matrix for MDA/ML Classification Performance Using
RF-DNA/CB-DNA Fingerprints for Nd = 7 Daugtherboards, Each Daughterboard
Tested Across Four Mainboards at Eb/N0 = 27 db

RF-DNA/CB-DNA CBXF5636A  CBXF56350  CBXF56375  SBXF509D7  SBXF509D8  SBXF509DD  UB30B6D2C

CBXF5636A 46.7% / 71.4% 24.7% / 16.2% 14.1% / 12.4% 6.2% / 0.0% 3.6% / 0.0% 4.0% / 0.0% 0.8% / 0.0%

 CBXF56350 38.0% / 27.2% 33.9% / 63.6% 15.8% / 9.0% 4.7% / 0.2% 3.9% / 0.0% 2.9% / 0.0% 0.9% / 0.0%

 CBXF56375 31.5% / 26.0% 22.8% / 15.8% 25.2% / 58.2% 5.8% / 0.0% 4.2% / 0.0% 9.8% / 0.0% 0.9% / 0.0%

 SBXF509D7 12.9% / 0.0% 6.9% / 0.0% 7.2% / 0.0% 30.0% / 69.8% 23.0% / 16.4% 18.9% / 13.8% 1.3% / 0.0%

 SBXF509D8 8.8% / 0.0% 7.3% / 0.0% 7.0% / 0.0% 23.3% / 14.4% 37.3% / 84.4% 14.3% / 0.6% 2.1% / 0.6%

 SBXF509DD 9.6% / 0.0% 5.7% / 0.0% 9.5% / 0.0% 21.9% / 18.2% 16.0% / 1.2% 35.6% / 80.6% 2.0% / 0.0%

 UB30B6D2C 9.8% / 0.0% 11.3% / 0.0% 5.2% / 0.0% 5.7% / 0.2% 19.6% / 1.6% 3.6% / 0.0% 44.9% / 98.2%

Called Class

Input 
Class

%C=90% and only achieved %C≈37% at Eb/N0= 27dB.

CB-DNA fingerprints achieve %C=90% or better for one configuration for Eb/N0 ≥
24 dB. Individual classification of the remaining six configurations fail to achieve

%C=90% using CB-DNA fingerprints. Unlike TD RF-DNA, individual classifica-

tion did show improvement as Eb/N0 increased, and individual classifications were

clustered closer together. The average classification performance using CB-DNA fin-

gerprints did not exceed %C=90%, but achieved %C≈77% at Eb/N0= 27dB. The

detailed performance of TD RF-DNA and CB-DNA fingerprints at Eb/N0= 27dB

is shown in Table 8. The algorithm correctly classified passband components from

the CBX family with %C≥25%, SBX family with %C≥30%, and UBX family with

%C=44.9% using TD RF-DNA. The algorithm correctly classified passband compo-

nents from the CBX family with %C≥58%, SBX family with %C≥69%, and UBX

family with %C=98.2% using CB-DNA. The mean classification rate for the CBX

family is %C≈ 35%, SBX family is %C≈ 34%, and for all passband components is

%C≈ 36% using TD RF-DNA. The mean classification rate for the CBX family

is %C≈ 68%, SBX family is %C≈ 78%, and for all passband components is %C≈
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75% using CB-DNA. The misclassifications were from passband components from

the same family (i.e., SBX is mostly confused with another SBX and CBX is mostly

confused with another CBX), although there were more misclassifications between

families for TD RF-DNA.

Baseband Board Classification Across Multiple Passband Components.

CB-DNA and TD RF-DNA classification performance were assessed for all four

baseband components (mainboards), with each baseband component tested across

seven passband components (daughterboards). Fingerprints that came from the same

mainboard were combined into a single class disregarding the daughterboard that

was installed. Four new classes were created using this technique, one class for each

mainboard. The objective of this test was to demonstrate the algorithm’s ability to

differentiate baseband components regardless of the passband component installed.

Individual configuration as well as average MDA/ML %C performance at Eb/N0 ∈
[0, 27.0] dB using TD RF-DNA is shown in Figure 41, and the performance using

CB-DNA fingerprints is shown in Figure 42.

For TD RF-DNA fingerprints, individual classification of the four configurations

fail to achieve %C=90%. Individual classification showed slight improvement as

Eb/N0 increased, however the performance of individual classifications did not con-

verge. The average classification performance using TD RF-DNA fingerprints did not

exceed %C=90% and achieved %C≈55% at Eb/N0= 27dB.

Individual classification using CB-DNA fingerprints for all four configurations fail

to achieve %C=90%. Individual classification improved as Eb/N0 increased and

individual classifications were clustered very close together. The average classifica-

tion performance using CB-DNA fingerprints did not exceed %C=90%, but achieved

%C≈70% at Eb/N0= 27dB.
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Figure 41. MDA/ML Classification Performance Using TD RF-DNA Fingerprints for
Nd = 4 Mainboards, Each Mainboard Tested Across Seven Daughterboards
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Figure 42. MDA/ML Classification Performance Using CB-DNA Fingerprints for Nd

= 4 Mainboards, Each Mainboard Tested Across Seven Daughterboards

71



Table 9. Confusion Matrix for MDA/ML Classification Performance using
RF-DNA/CB-DNA Fingerprints for Nd=4 Mainboards Tested Across Seven Daugh-
terboards at Eb/N0 = 27 dB

RF-DNA/CB-DNA X310F5788F X310F57899 X310F5B4B0 X310F4F038 

X310F5788F 54.0% / 64.6% 11.1% / 11.0% 29.5% / 15.2% 5.5% / 9.2%

X310F57899 14.0% / 22.8% 68.7% / 63.0% 13.9% / 12.8% 3.4% / 1.4%

X310F5B4B0 27.8% / 15.8% 15.5% / 3.4% 51.7% / 77.8% 5.1% / 3.0%

X310F4F038 22.0% / 22.0% 18.6% / 5.4% 20.6% / 15.2% 39.0% / 57.4%

Called Class

Input 
Class
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Figure 43. Comparison of Qualitative MDA/ML Classification Performance for Av-
erage %C of Nd=8 Blade-RF Like-Models Using CB-DNA Fingerprints. Qualitative
Metrics Include: Covariance, Kurtosis (κ), Skewness (γ), Variance (σ2), Magnitude,
Phase Angle, and All Available Features.
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Figure 44. Average MDA/ML Classification Performance for Nd=8 Blade-RF Like-
Models Using CB-DNA Fingerprints. Statistical Features Computed Using Nsymbols ∈
[10, 15, ..., 50].

The detailed performance of TD RF-DNA and CB-DNA fingerprints at Eb/N0=

27dB is shown in Table 9. The algorithm correctly classified baseband components

with %C≥39% using TD RF-DNA and %C≥57% using CB-DNA. The mean clas-

sification rate for the baseband components is %C≈ 53% using TD RF-DNA. The

mean classification rate for the baseband components is %C≈ 66% using CB-DNA.

Dimensional Reduction Analysis.

Full dimensional CB-DNA fingerprints have Nfeats = 512 features (64 conditional

Quadrature Phase Shift Keying (QPSK) projections × [2 variance + 2 skewness

+ 2 kurtosis + 2 covariance entries]) as described in this document. Dimensional

Reduction Analysis (DRA) techniques were used to identify a proper subset of features

that provide an acceptable performance, thus reducing the computational cost of the

process. DRA was applied to the Nd = 8 Blade-RF like-model devices test case
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illustrated in Figure 36. Seven new test cases were created by limiting the CB-DNA

fingerprints to the following features respectively: Nfeats = 192 phase angle, Nfeats =

192 magnitude, Nfeats = 128 covariance, Nfeats = 128 variance (σ2), Nfeats = 128

skewness (γ), Nfeats = 128 kurtosis (κ), and full dimensional. The detailed CB-DNA

classification performance for fingerprints created with the specified proper subset of

available features, as well as the full dimensional fingerprint is illustrated in Figure

43.

DRA test shows that the performance of covariance only, and kurtosis only features

were nearly identical, with the lowest correct classification rate (%C). Additionally,

the performance of CB-DNA fingerprints created using variance only and skewness

only features were nearly identical, outperforming the previous case. Finally the

performance of the classification algorithm using CB-DNA fingerprints with phase

angle only and magnitude only features were nearly identical, outperforming all of the

previously mentioned cases. The full dimensional fingerprints (512 features) provides

a significant performance improvement over the qualitative DRA tests conducted in

this research as shown in Figure 43.

All of the fingerprints generated in this research used Nsymbols = 50 symbols

to compute the statistics. The number of symbols used to compute the statistics

(features) can affect the performance of the classification algorithm. The Nd = 8

Blade-RF like-model devices test was computed for 9 cases Nsymbols ∈ [10, 15, ...50]

to illustrate how the number of symbols used to compute statistics affect the perfor-

mance of the classification algorithm as shown in Figure 44. The performance of the

classification algorithm improves as the number of symbols increases. However, the

performance improvements for this test case asymptotically reach a limit for statistics

computed using more than Nsymbols = 40 symbols.
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3.5 Conclusions

Traditional security techniques for preventing Primary User Emulation Attacks

(PUEAs) are based on identifying the location of the source of transmission and

comparing it to known Primary User (PU)’s locations. Detection of PUEAs using

geolocation techniques requires a sensor network to share Radio Frequency (RF)

measurements. This research presents an algorithm that identifies the true source of

an emission without the aid of a sensor network by analyzing signals at the Physical

Layer (PHY) layer. The proposed algorithm identifies the source of a PU emission by

computing Radio Frequency Distinct Native Attribute (RF-DNA) and Constellation-

Based Distinct Native Attribute (CB-DNA) fingerprints.

The effectiveness of RF-DNA and CB-DNA fingerprints to thwart a PUEA was

analyzed experimentally. The performance of the algorithm was tested in four worst-

case scenarios for PUEAs: like-model devices, like-model passband components, like-

model baseband components, and large number of like-model devices. The tests ex-

ceeded a mean of %C=90% correct classification rate for all test cases using CB-DNA

fingerprints when Eb/N0 ≥24 dB. Additionally, CB-DNA fingerprints outperformed

RF-DNA fingerprints in all test cases.

These experiments consider the most-challenging case because all Software-Defined

Radio (SDR) devices, baseband components, and passband components are brand

new with the same manufacturer and model number. Classification results are ex-

pected to improve for SDR devices that are of a different brand or model number.
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3.6 Appendix

Additional Results.
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Figure 45. MDA/ML Classification Performance of CB-DNA Fingerprints Using
Nfeats = 192 Phase Angle Features Only: Variance (σ2) of Phase Angle, Skewness (γ) of
Phase Angle and Kurtosis (κ) of Phase Angle
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Figure 46. MDA/ML Classification Performance of CB-DNA Fingerprints Using
Nfeats = 192 Magnitude Features Only: Variance (σ2) of Magnitude, Skewness (γ) of
Magnitude and Kurtosis (κ) of Magnitude
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Figure 47. MDA/ML Classification Performance of CB-DNA Fingerprints Using
Nfeats = 128 Variance Features Only: Variance (σ2) of Phase Angle, and Amplitude
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Figure 48. MDA/ML Classification Performance of CB-DNA Fingerprints Using
Nfeats = 128 Skewness Features Only: Skewness (γ) of Phase Angle, and Magnitude

0 5 10 15 20 25
E

b
/N

0
 (dB)

0

20

40

60

80

100

A
ve

 %
 C

or
re

ct
 (

%
C

)

CB-DNA Features Classification Performance

500 Testing FPrnts x 4 Nz Real per Dev/Cls

BLADE-1C5F
BLADE-2592
BLADE-55E0
BLADE-31C4
BLADE-E078
BLADE-94A4
BLADE-92EA
BLADE-CDF8
Average

Figure 49. MDA/ML Classification Performance of CB-DNA Fingerprints Using
Nfeats = 128 Kurtosis Features Only: Kurtosis (κ) of Phase Angle, and Magnitude
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Figure 50. MDA/ML Classification Performance of CB-DNA Fingerprints Using
Nfeats = 128 Covariance Features Only: Main Diagonal of Covariance Matrix of
Real(Symbol) and Imaginary(Symbol)
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IV. Robust Emitter Authentication Scheme Using
Orthogonal Polyphase Based Watermarks

4.1 Introduction

The deployment of wireless networks has been growing exponentially in the last

couple of decades because they provide high speed data rates and maximum mobility.

The demand for wireless network access is currently saturating portions of the spec-

trum. Cognitive Radio (CR) is an idea proposed by researchers to alleviate spectrum

scarcity by defining two types of users: Primary User (PU) and Secondary User (SU).

PUs have priority above all other users, because they are licensed users of the spec-

trum. SUs are unlicensed users that have equal access to the spectrum whenever

the PUs are not transmitting in its allocated space. Since SUs are unlicensed, they

cannot interfere with the PU when utilizing their portion of the spectrum. The goal

of CR is to implement intelligent and reliable radio communication systems that are

aware of their environment, while adjusting their transmitter and receiver parameters

to maximize spectrum efficiency.

A potential problem with the CR paradigm is a Primary User Emulation Attack

(PUEA), which is when a malicious user emulates the characteristics of the PU to

prevent SUs from using a portion of the spectrum. The unconstrained access to high

speed data links facilitates networks exploitation by malicious users. The malicious

user has two possible motives for a PUEA: gain exclusive access to a portion of the

spectrum and Denial of Service (DOS).

The exploitation risks of wireless networks can be mitigated by authenticating the

users participating in the network. Most authentication schemes rely on information

obtained in Open Systems Interconnection (OSI) layers 2-7. This research imple-

ments an authentication scheme at the Physical Layer (PHY) to authenticate users
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by embedding a watermark. Watermarking is a form of communication that embeds

a concealed signal into another signal. There are multiple applications for concealed

signaling, which include: copyright enforcement, steganography, and authentication.

Watermarks can also be described as a method of establishing an imperceptible side-

channel to exchange information [53].

The watermark signal was used to exchange information that authenticated the

PU. There are multiple cryptographic solutions that may be supported in the new

communication channel for message authentication. The Hash Based Message Au-

thentication Code (HMAC) as described in [54] provides integrity of the message and

authentication of transmitter with only one hash value. Another transmitter authen-

tication method is the cryptographic link signatured implemented using a hash chain

as described in [55]. The authentication codes embedded in the watermark are added

in such way that does not affect receivers that are unable to extract the watermark.

4.2 Background

The objectives of this section are to provide the necessary background information

to precisely define the problem and review the current state-of-the-art technologies

contributing to the proposed solution. This section presents the background infor-

mation using a top to bottom approach, beginning with Phase Shift Keying (PSK),

orthogonal signaling, burst detection, frequency estimation, and finally narrowing

down to the specific focus of this research and how to create a concealed channel by

embedding information using orthogonal signaling into a PSK signal.

Phase Shift Keying Modulation.

PSK is a digital modulation scheme that encodes the information by changing

the phase of a reference signal. PSK modulation is widely popular in high data-
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rate Modulator/Demodulator (MODEM) implementations because this modulation

scheme generates a constant power signal. Constant power signals can be imple-

mented with non-linear power amplifiers, simplifying the receiver/transmitter design

while reducing power consumption [56]. PSK signals can be represented as follows:

s(t) = A exp (j (2πfct+ θn)) (50)

where A represents the magnitude of the signal, fc represents carrier frequency,

t represents time, and θn represents the phase shift associated with a given commu-

nication symbol. Quadrature Phase Shift Keying (QPSK) is a special case of PSK

modulation that can be modeled as follows [57]:

sn(t) = A exp (j (2πfct+ θn)) θn ∈
[
π

4
,
3π

4
,
5π

4
,
7π

4

]
(51)

Orthogonal M-ary Signaling.

A set of N signals {φ1(t), φ2(t), ..., φN(t)} defined over a time interval 0 ≤ t ≤ T

are orthonormal if:

∫ T

0

φi(t) · φ∗
k(t)dt =

⎧⎪⎪⎨
⎪⎪⎩
1, i = k

0, i �= k

(52)

Orthonormal signals can be used to transmit information by assigning a value to

each φn(t). The optimum receiver for an orthogonal signaling system transmitted

over an Additive White Gaussian Noise (AWGN) can be implemented as follows:

82



argmax
n=1,2,...,N

∫ T

0

Rx(t) · φ∗
n(t)dt, (53)

where Rx(t) represents the received signal over an AWGN, φn(t) represents the set

of orthonormal symbols, and t represents time [58].

Signal Watermarking.

One technique to counter a Primary User Emulation Attack (PUEA) is to identify

the authenticity of a user at the physical layer. Researchers at Syracuse University

have developed an authentication scheme that superimposes a watermark onto the

transmitted signal [59]. The watermarks are hidden in the signal by shifting the phase

angle of the constellation projections, where each bit in the watermark sequence de-

termines the direction of the phase offset. However, each phase offset is small enough

to appear as noise, thereby mitigating signal degradation and hiding the watermark

from malicious users. The researchers tested the implementation of this watermark-

ing technique on two modulation schemes: QPSK and 16-ary Quadrature Amplitude

Modulation (QAM). The results of the watermark Bit Error Rate (BER) for 16-ary

QAM showed that the error rate decreased as the watermark length increased, and

had a BER < 10−5 when WMlength = 40 bits. Consequently, the watermark for typi-

cal authentication purposes could virtually be error free, because a WMlength > 100

bits would most likely be used.

4.3 Methodology

This section outlines the methodology used to determine the applicability of signal

watermarking to authenticate the source of a Radio Frequency (RF) emission. Addi-

tionally, this section outlines the goals and hypotheses of this research, elaborates on
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the problem, and describes the measures of merit on which the algorithm results will

be judged. An outline of the experiments to be performed as well as the hardware

and software configuration is given. The expected results are given and the expected

performance factors are stated.

Research Objectives.

Physical Layer (PHY) access to wireless communication systems is hard to con-

strain because the transmission medium is accessible from remote locations. The

unconstrained access allows malicious users to launch attacks from hidden locations.

One way to mitigate these attacks is to authenticate users accessing the wireless net-

work. This research describes a mechanism that can be used to establish the identity

of RF emission. The proposed solution creates a side-channel that can be used to

exchange information to authenticate the Primary User (PU).

The objective of this research is to establish a concealed communication channel

to exchange information that authenticates a source of transmission in the form of

watermarks. The transmitted signal degradation due to the inclusion of a watermark

must be negligible.

Research Hypotheses.

There are two hypotheses that will be considered throughout this research:

• Watermarked signals should be undistinguishable from unmarked signals for

users without prior knowledge.

• The addition of watermarks should have minimum impact on the communica-

tion system performance.

84



Measures of Merits.

The measures of merits of this algorithm are the Bit Error Rate (BER) perfor-

mance of the main communication channel and the effective BER performance of

the concealed signal as compared to theoretical values. Results are presented as the

probability of BER in an Additive White Gaussian Noise (AWGN) channel vs Energy

per Bit to Noise Power Spectral Density Ratio (Eb/N0).

Figure 51. Block Diagram for QPSK Transmitter Implementation with Watermark
Codes

QPSK Transmitter.

A QPSK modulated signal was developed to serve as a proof of concept since

there are currently no standardized Cognitive Radio (CR) systems. The signal is

constructed from a data packet that consists of three fields: Plength = 64 bits training

sequence, Pidlength = 16 bits packet index, and Ploadlength = 6400 bits payload. A

watermark is constructed using Ncodes = 6 code sequences that are associated with

Nbits = 24 bits that were used to authenticate the transmitter. The watermark codes
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were superimposed to the Ploadlength = 6400 bits payload.

The training sequence serves as a preamble, and is used to aid the receiver during

the synchronization process. The Plength = 64 bits sequence has very good periodic

autocorrelation properties [45], which enable the receiver to detect burst presence,

estimate symbol boundaries, and estimate phase angle offset between the transmitter

and receiver. The Pidlen = 16 bits packet index field is used to identify the specific

packet transmitted to conduct BER computations. Finally, the Ploadlen = 6400 bits

payload is used to represent the data to be transmitted and is populated with a

sequence obtained from a Pseudo Random Number Generator (PRNG).
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Figure 52. Constellation Projection of the Uncoded QPSK and Coded QPSK signal

The watermark sequences are added onto the modulated QPSK data symbols

only. The preamble symbols and packet index symbols are left unaffected, so that the

performance of the synchronization and packet reordering process is not degraded.

The block diagram of this transmitter design is shown in Figure 51.
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Superimposition of Watermark Codes.

An alphabet of Ncodes = 16 was created to superimpose a hidden watermark onto a

QPSK signal. Each of these watermark codes (φn(t)) is a Codelength = 521 polyphase

sequence on the unit circle. The φn(t) sequences were scaled down by a factor of

Powerratio = 18 to make the average power of the watermark signal comparable to

the average power of the QPSK signal. The polyphase sequences were generated by a

genetic algorithm with an objective function that provides very good autocorrelation

properties and low cross correlation, so that they would be orthogonal to each other.

The theoretical In-Phase/Quadrature-Phase (I/Q) projections of the coded QPSK

signal and uncoded QPSK signals are illustrated in Figure 52. The coded signal can

be modeled as follows:

codedSignal(t) =A exp(j2πfct+ θn(1)) +
φm(1)(t)

18
+

A exp(j2πfct+ θn(2)) +
φm(1)(t)

18
+

...

A exp(j2πfct+ θn(521)) +
φm(1)(t)

18
+

A exp(j2πfct+ θn(522)) +
φm(2)(t)

18
+

...

(54)

Receiver.

A burst-mode QPSK receiver was implemented to project the received symbols in

constellation space. The constellation points obtained from this receiver were used to

extract the watermark codes embedded in the QPSK signal. Figure 53 illustrates the

burst-mode QPSK receiver implemented in this project. The choice of implementa-
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Figure 53. Block Diagram of the QPSK Receiver Implementation and Watermark
Extractor

tion for the burst detector, carrier frequency recovery, and phase recovery components

can significantly affect the resulting constellation projection. The respective imple-

mentations for these components are detailed in this document.

Burst Detector.

Burst detection is normally implemented using an energy detection algorithm.

Using this scheme, the beginning of a burst is detected by computing when the input

signal power exceeds a specified threshold. However, this research cross-correlates the

received signal with the known preamble sequence to detect the presence of a burst.

Using this technique, it is possible to estimate symbol boundaries, since the peak

of the cross-correlation aligns with the beginning of the preamble. This technique

only works when the preamble has very good correlation properties, and the center

frequency offset between the transmitter and receiver is relatively small.
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Intermediate Carrier Recovery.

The carrier frequency of a M-Phase Shift Keying (PSK) signal can be estimated by

raising the sampled M-PSK signal to the M power in order to remove the modulation.

Raising the signal to the M power creates a significant tone at M times the carrier

frequency, revealing the suppressed carrier [49]. In the specific case of QPSK the tone

at four times the carrier frequency is evident in the following expression:

R4(n) =S4a4(n) exp(j8πfct)+

4S3a3(n) exp(j6πfct)ω(n)+

6S2a2(n) exp(j4πfct)ω
2(n)+

4Sa(n) exp(j2πfct)ω
3(n) + ω4(n).

(55)

This research estimated the intermediate carrier frequency in a burst-by-burst

basis by computing F̂Carr = (argmaxn(|F {R4(n)}|) /4. This technique produces

reliable intermediate frequency estimates when the Signal to Noise Ratio (SNR) is

Eb/N0 > 4 dB. It is not possible to synchronize the receiver when the SNR is Eb/N0 ≤
4 dB because the intermediate frequency estimates obtained are unreliable. These

limitations of intermediate frequency estimates is consistent with the Cramer-Rao

Lower Bound (CRLB) for QPSK signals [50, 51].

Phase Recovery.

Typical implementations of QPSK receivers use a Phase-Locked Loop (PLL) to

reconstruct the suppressed carrier. PLL algorithms use feedback to detect and com-

pensate for phase errors [52]. For simplicity, this research implements a phase detec-

tion algorithm that rotates the received constellation points from 0 radians to π/2

radians in N = 100 increments, and finds the phase angle that projects symbols closer
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to ideal locations. The pseudo-code for this algorithm is presented in Algorithm 2.

Algorithm 2 Phase Angle Estimator

Require: Received Constellation Projections(rxConstProj)
rotationVariances ← ∞
for N = 1 to 100 do
θ ← Nπ

2×100

rotatedCProj ← rxConstProj ·ejθ
temp ← |real(rotatedCProj)|+ j |imaginary(rotatedCProj)|
rotationVariances(N)← variance(temp)

end for
N ← argminN(rotationVariances)

return rxConstProj ·e jNπ
2×100

There are four different phase angle ambiguities after derotating the constellation.

This research resolves these ambiguities by comparing the four possible phase angles

with the known preamble. Finally, the constellation projection is normalized by

scaling each constellation point as follows:

constPoint =
constPoint

mean (|rxConstProj|) . (56)

Watermark Extraction.

One of the advantages of this watermark implementation is that the synchroniza-

tion of the received QPSK signal does not have to be performed separately on the

watermark and QPSK symbols, since the watermark’s phase angle, frequency and

symbol boundaries are synchronized with the QPSK signal. A single phase angle (θ̂)

estimate and carrier frequency offset (F̂carr) estimate are computed in a burst-by-burst

basis. These estimates are used for QPSK demodulation and watermark extraction,

as seen in Figure 53.

The watermark extractor shown in Figure 54 has two main components: signal

normalizer and code estimator. First, normalization is required because the sequences
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Figure 54. Block Diagram of the Watermark Extractor Implementation

were centered at the origin when they were created, then a QPSK signal was applied

as a carrier. To normalize the watermark, four vectors were created and then the

constellation points were sorted into these vectors based on the quadrant in which

they were located. After the constellation points were sorted into their respective

vector, each vector had the mean of its real components and the mean of its imagi-

nary components subtracted from the constellation points in the vector to bring the

sequences back to the origin.

The second component of the watermark extractor is the code estimator. Codes

were estimated by computing the integral with respect to time of the received signal

(Rx(t)) dotted with the complex conjugate of the reference signals (φ∗
n(t)). Once the

received signal was integrated with all possible Ncodes = 16, the received watermark

code was determined from the code that provides the maximum integration value.

There were four bits of data stored in each watermark code, since there were a total
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of Ncodes = 16 watermark codes.

4.4 Experimental Results

This section presents and analyzes the results of the coded Quadrature Phase Shift

Keying (QPSK) signal and contrasts the performance with uncoded QPSK signal and

theoretical results. The objectives of these tests are as follows:

• Measure performance of information transmitted via the concealed communi-

cation channel (watermark).

• Quantify signal degradation of QPSK modulation due to embedded watermark.

Generation of Orthonormal Watermark Codes.

An evolutionary algorithm was utilized to compute a set of polyphase orthogo-

nal signals. The objective of evolutionary algorithms is to minimize a given fitness

function [60]. The pseudo-code for the fitness function that the genetic algorithm

optimized is shown in Algorithm 3.

Algorithm 3 Genetic Algorithm Fitness Function

maxCorrelationValue ← 0
for IDX1 = 1 to 15 do
for IDX2 = IDX1 to 16 do
if IDX1 �= IDX2 then
maxCorrelationValue= maxCorrelationValue+

∑ |φ(IDX1) · φ(IDX2)|
end if

end for
end for
return maxCorrelationValue

The resultant signals were used as the reference codes (φn) that formed the or-

thonormal signaling system. The cross-correlation of all polyphase codes is shown in

Figure 55.
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Figure 55. Cross-Correlation of Nsymbols=16 Orthogonal Polyphase Communication
Symbols of Length Symbollength = 521

The codes generated using the genetic algorithm had very good autocorrelation

properties, even though the fitness function did not intentionally optimize these prop-

erties. These sequences had very good autocorrelation properties because they were

obtained using random numbers and were very long. The autocorrelation of all se-

quences is shown in Figure 56.
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Figure 56. Autocorrelation of Nsymbols=16 Orthogonal Polyphase Communication Sym-
bols of Length Symbollength = 521
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Figure 57. Performance of QPSK Receiver for Coded Signals and Uncoded Signals
Showing the 99% Confidence Intervals

Coded QPSK Performance.

The implementation of the QPSK receiver did not need to be modified to account

for the embedded watermark. This behavior was tested by simulating the system with

a signal in which the embedded watermark codes φm = 0 as described in (54). The Bit

Error Rate (BER) performance of the communication system was only marginally af-

fected by the embedded signal. The performance of the QPSK receiver was consistent

with theory for Eb/N0 ≥ 5. The receiver did not achieve synchronization for Eb/N0 ≤
4 dB because the intermediate frequency estimates (F̂carr) obtained were unreliable

as illustrated in Figure 57. These limitations in the computation of intermediate

frequency estimates (F̂carr) is consistent with the Cramer-Rao Lower Bound (CRLB)

for QPSK signals [50, 51].

There is no statistical difference in the performance of the QPSK receiver between

coded and uncoded for Eb/N0 ≤ 9 dB. The performance of the uncoded signal at

Eb/N0 = 10 dB was 3.99× 10−6, while the performance of the system at Eb/N0 = 10
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dB for coded signal was 5.55× 10−6.

Performance of Watermark Codes Extraction.
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Figure 58. BER for Watermark with Symbols of Length Symbollength = 521 Indicating
the 99% Confidence Interval

The performance of the watermark extraction was tested by simulating the system

with a signal in which the amplitude A = 0 of the signal as modeled in (54). The

system was tested with two sets of codes: orthonormal codes, and random sequences.

The performance of the system was compared with theoretical performance of M-

ary orthogonal signaling system over an Additive White Gaussian Noise (AWGN)

channel.

The performance of the watermark extraction system was consistent with theo-

retical values. It was also observed that there was no statistical difference between

codes with orthonormal sequences and codes with random sequences for Eb/N0 < 7

as illustrated in Figure 58. Even for Eb/N0 ≥ 7 the difference in performance was

negligible.
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Performance of QPSK Receiver and Watermark Extraction.
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Figure 59. BER for Coded QPSK signal and Watermark Extraction Showing the 95%
Confidence Interval

The performance of the QPSK receiver and watermark extraction is shown in

figure 59. The BER for watermark codes outperforms the QPSK BER for Eb/N0 > 7

dB. This behavior is desirable because the bits used for authentication had very low

probability of error. This difference in performance was due to the different data

rates between the two signals. The data rate ratio between the watermark signal and

the QPSK signal is 1:260 bits.

4.5 Conclusions

Software-Defined Radios (SDRs) are essentially arbitrary waveform generators,

capable of emulating the Radio Frequency (RF) emissions for any given transmitter.

This research explains a method that establishes a concealed communication channel,
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which can be used to exchange credentials to authenticate the Primary User (PU).

The concealed communication channel was added to the signal as a watermark, min-

imizing the impact to the primary signal. Watermark extraction was very easy to

implement, minimizing the processing power required to authenticate the user. Ad-

ditionally, Secondary Users (SUs) not equipped to process the watermark are able to

retrieve the information contained in the primary signal. The Bit Error Rate (BER)

of the main signal at a Signal to Noise Ratio (SNR)=8 Eb/N0 dB was 2.46 × 10−4

while the theoretical value was 1.9 × 10−4. The BER performance of the extracted

watermark at an SNR=8 Eb/N0 dB was 1.47× 10−4.
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4.6 Appendix

Additional Results.
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Figure 60. Constellation Projection of Uncoded QPSK Signal at Eb/N0=15 dB. Signal
transmitted over-the-air using a Blade-RF SDR transmitter and received with a NI
X310 SDR.
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Figure 61. Constellation Projection of Coded QPSK Signal at Eb/N0=15 dB. Signal
transmitted over-the-air using a Blade-RF SDR transmitter and received with a NI
X310 SDR.
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Figure 62. Constellation Projection of Uncoded QPSK Signal at Eb/N0=25 dB. Signal
transmitted over-the-air using a Blade-RF SDR transmitter and received with a NI
X310 SDR.
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Figure 63. Constellation Projection of Coded QPSK Signal at Eb/N0=25 dB. Signal
transmitted over-the-air using a Blade-RF SDR transmitter and received with a NI
X310 SDR.
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V. Conclusions

The use of communication systems based on wireless links has been growing expo-

nentially for the last couple of decades. Some portions of the spectrum are currently

saturated in an attempt to accommodate the recent surge of spectrum users. The

spectrum scarcity problem is exacerbated by the fixed spectrum allocations mandated

by current laws. Cognitive Radio (CR) is an idea proposed by researchers that mit-

igates spectrum scarcity by defining two types of users: Primary Users (PUs) and

Secondary Users (SUs). PUs are licensed users that have priority for the part of the

spectrum that they own. SUs are unlicensed users of the spectrum with equal access

rights whenever the PU is not transmitting. Therefore, any SU transmission needs

to be generated in a way that minimizes interference with PU.

There is potential to abuse the spectrum sharing scheme as defined by the CR

concept. Malicious users can create a Primary User Emulation Attack (PUEA) by

generating signals that mimic PU’s Radio Frequency (RF) radiations. There are two

main reasons to launch a PUEA: illegally obtain exclusive spectrum access and Denial

of Service (DOS). Previous research methods to mitigate PUEAs fall into three main

ideas: Naive detection, localization-based and Physical Layer (PHY) coding. Naive

detection methods estimate the mean and variance of the PU’s transmissions, and

use future measurements for authentication. Localization based methods authenticate

PU transmissions by estimating the location of the RF emanations and comparing

them to known PU’s locations. PHY coding methods estimate the location of the

source of emissions by letting a reference signal interfere with the PU’s emissions, and

analyze the results from the point of view at multiple receivers.

With the exception of naive detection, these methods rely on a network of nodes

sharing RF measurements to authenticate the source of transmission. Additionally,

the computation of location estimates requires a lot of processing power. This dis-

100



sertation describes three methods to authenticate the source of a RF emission by in-

specting signals at PHY: device discrimination using Radio Frequency Distinct Native

Attribute (RF-DNA) fingerprinting, device discrimination using Constellation-Based

Distinct Native Attribute (CB-DNA) fingerprinting, and signal watermarking.

RF-DNA fingerprints were generated by computing statistics of a portion of the

received signal that remains constant in all transmissions. Burst-mode wireless Mod-

ulator/Demodulators (MODEMs) normally add known sequences in fixed portions

of the signal (i.e., preambles, postambles, midambles, pilot tones, etc.) to aid the

receiver during the synchronization process. This dissertation generated RF-DNA

fingerprints for Nd = 15 devices with mixed configurations: 8 like-model Blade-RF

Software-Defined Radios (SDRs) devices and 7 National Instruments (NI) X310 SDRs.

The mean correct classification rate using RF-DNA fingerprints was %C=78%.

CB-DNA fingerprints were generated by projecting the received signal into a con-

stellation space. The resulting constellation projections are grouped based on the

previous, current, and next estimated symbol. The CB-DNA identifying features

are obtained by computing the statistics (variance, skewness, kurtosis, etc.) on each

conditional projection. The effectiveness of CB-DNA fingerprints to thwart a PUEA

was analyzed experimentally. This dissertation generated CB-DNA fingerprints for

Nd = 15 devices with mixed configurations: 8 like-model Blade-RF SDRs devices and

7 NI X310 SDRs. The algorithm correctly classified BladeRF devices with %C≥95%

and the X310 devices with %C≥83% using CB-DNA. The mean classification rate

for BladeRF devices was %C≈ 99%, X310 devices was %C≈ 90%, and for all devices

was %C≈ 95% using CB-DNA.

The watermark method establishes a side-channel that enables the exchange of

Hash Based Message Authentication Code (HMAC) that authenticates the PU. The

proposed signal watermarking implementation derives synchronization parameters
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from the main communication channel, minimizing the required processing power.

The established communication link provides reliable Bit Error Rate (BER) perfor-

mance even at a low Signal to Noise Ratio (SNR). For example, the BER in an

Additive White Gaussian Noise (AWGN) channel was 1.47 × 10−4 at an SNR=8

Eb/N0 dB.

Although results contained in this research are very promising, there is much work

that can be done to further refine the methods specified in this document. Specifically,

future work should include:

• This research evaluated the performance of CB-DNA Multiple Discriminant

Analysis / Maximum Likelihood (MDA/ML) for Quadrature Phase Shift Key-

ing (QPSK) signals. The methods described in this document are applicable

for any In-Phase/Quadrature-Phase (I/Q) modulation scheme such as M-ary

Quadrature Amplitude Modulation (M-QAM). An interesting research topic

will be to implement the CB-DNA methods described in this document to a

higher order modulation scheme (i.e. 16-QAM, 32-QAM, 8-PSK, etc.).

• Implement the CB-DNA MDA/ML classification algorithm to discriminate a

well defined waveform such as: ZigBee, Z-Wave, etc.

• Near real time computation of CB-DNA fingerprints and MDA/ML classifica-

tion using GNU-Radio and/or Field Programmable Gate Array (FPGA) imple-

mentation

• Signal watermarking implementation for higher order modulation schemes (i.e.

16-QAM, 32-QAM, 8-PSK, etc.).

The performance of the CB-DNA classification algorithm was tested in four worst-

case scenarios for PUEAs: like-model devices, like-model passband components, like-

model baseband components, and large number of like-model devices. The tests ex-
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ceeded a mean of %C=90% correct classification rate for all test cases using CB-DNA

fingerprints when Eb/N0 ≥24 dB. Additionally, CB-DNA fingerprints outperformed

RF-DNA fingerprints in all test cases.

These experiments consider the most-challenging case because all SDR devices,

baseband components, and passband components are brand new with the same man-

ufacturer and model number. Classification results are expected to improve for SDR

devices that are of a different brand or model number.
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Current Cognitive Radio (CR) spectrum sensing research efforts tend to focus on the development of new mechanisms to
detect Primary User (PU) or improve existing ones. However, previous researchers have identified that a Primary User
Emulation Attack (PUEA) can disrupt the operation of a CR system by significantly reducing the spectrum available to
unlicensed users. This dissertation presents three methods to counteract PUEAs: Radio Frequency Distinct Native
Attribute (RF-DNA), Constellation-Based Distinct Native Attribute (CB-DNA), and signal watermarking. RF-DNA
fingerprinting extract identifying features from Radio Frequency (RF) signals using a Region of Interest (ROI) that
remains constant for all transmissions such as preambles, midambles, pilot tones, etc. CB-DNA fingerprinting uniquely
identifies emissions from a radio by computing statistical features of the received signal projected into a constellation
space. Finally, the signal watermarking method establishes a side-channel that enables the exchange of a Hash Based
Message Authentication Code (HMAC) that authenticates the source of a signal.
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