308 research outputs found

    Mapping and monitoring of vegetation using airborne laser scanning

    Get PDF
    In this thesis, the utility of airborne laser scanning (ALS) for monitoring vegetation of relevance for the environmental sector was investigated. The vegetation characteristics studied include measurements of biomass, biomass change and vegetation classification in the forest-tundra ecotone; afforestation of grasslands; and detection of windthrown trees. Prediction of tree biomass for mountain birch (Betula pubescens ssp. czerepanovii) using sparse (1.4 points/m²) and dense (6.1 points/m²) ALS data was compared for a site at the forest-tundra ecotone near Abisko in northern Sweden (Lat. 68° N, Long. 19° E). The predictions using the sparse ALS data provided almost as good results (RMSE 21.2%) as the results from the dense ALS data (18.7%) despite the large difference in point densities. A new algorithm was developed to compensate for uneven distribution of the laser points without decimating the data; use of this algorithm reduced the RMSE for biomass prediction from 19.9% to 18.7% for the dense ALS data. Additional information about vegetation height and density from ALS data improved a satellite data classification of alpine vegetation, in particular for the willow and mountain birch classes. Histogram matching was shown to be effective for relative calibration of metrics from two ALS acquisitions collected over the same area using different scanners and flight parameters. Thus the difference between histogram-matched ALS metrics from different data acquisitions can be used to locate areas with unusual development of the vegetation. The height of small trees (0.3–2.6 m tall) in former pasture land near the Remnings¬torp test site in southern Sweden (Lat. 58° N, Long. 13° E) could be measured with high precision (standard deviation 0.3 m) using high point density ALS data (54 points/m2). When classifying trees taller than 1 m into the two classes of changed and unchanged, the overall classification accuracy was 88%. A new method to automatically detect windthrown trees in forested areas was developed and evaluated at the Remningstorp test site. The overall detection rate was 38% on tree-level, but when aggregating to 40 m square grid cells, at least one windthrown tree was detected in 77% of the cells that according to field data contained windthrown trees. In summary, this thesis has shown the high potential for ALS to be a future tool to map and monitor vegetation for several applications of interest for the environmental sector

    Comparison of Precision of Biomass Estimates in Regional Field Sample Surveys and Airborne LiDAR-Assisted Surveys in Hedmark County, Norway

    Get PDF
    Airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool to provide auxiliary data for sample surveys aiming at estimation of above-ground tree biomass (AGB), with potential applications in REDD forest monitoring. For larger geographical regions such as counties, states or nations, it is not feasible to collect airborne LiDAR data continuously ("wall-to-wall") over the entire area of interest. Two-stage cluster survey designs have therefore been demonstrated by which LiDAR data are collected along selected individual flight-lines treated as clusters and with ground plots sampled along these LiDAR swaths. Recently, analytical AGB estimators and associated variance estimators that quantify the sampling variability have been proposed. Empirical studies employing these estimators have shown a seemingly equal or even larger uncertainty of the AGB estimates obtained with extensive use of LiDAR data to support the estimation as compared to pure field-based estimates employing estimators appropriate under simple random sampling (SRS). However, comparison of uncertainty estimates under SRS and sophisticated two-stage designs is complicated by large differences in the designs and assumptions. In this study, probability-based principles to estimation and inference were followed. We assumed designs of a field sample and a LiDAR-assisted survey of Hedmark County (HC) (27,390 km2), Norway, considered to be more comparable than those assumed in previous studies. The field sample consisted of 659 systematically distributed National Forest Inventory (NFI) plots and the airborne scanning LiDAR data were collected along 53 parallel flight-lines flown over the NFI plots. We compared AGB estimates based on the field survey only assuming SRS against corresponding estimates assuming two-phase (double) sampling with LiDAR and employing model-assisted estimators. We also compared AGB estimates based on the field survey only assuming two-stage sampling (the NFI plots being grouped in clusters) against corresponding estimates assuming two-stage sampling with the LiDAR and employing model-assisted estimators. For each of the two comparisons, the standard errors of the AGB estimates were consistently lower for the LiDAR-assisted designs. The overall reduction of the standard errors in the LiDAR-assisted estimation was around 40-60% compared to the pure field survey. We conclude that the previously proposed two-stage model-assisted estimators are inappropriate for surveys with unequal lengths of the LiDAR flight-lines and new estimators are needed. Some options for design of LiDAR-assisted sample surveys under REDD are also discussed, which capitalize on the flexibility offered when the field survey is designed as an integrated part of the overall survey design as opposed to previous LiDAR-assisted sample surveys in the boreal and temperate zones which have been restricted by the current design of an existing NFI

    Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation

    Get PDF
    This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where models play a core role: model-assisted, model-based, and hybrid estimation. The first two are well known, whereas the third has only recently been introduced in forest surveys. Hybrid inference mixes designbased and model-based inference, since it relies on a probability sample of auxiliary data and a model predicting the target variable from the auxiliary data..We review studies on large-area forest surveys based on model-assisted, modelbased, and hybrid estimation, and discuss advantages and disadvantages of the approaches. We conclude that no general recommendations can be made about whether model-assisted, model-based, or hybrid estimation should be preferred. The choice depends on the objective of the survey and the possibilities to acquire appropriate field and remotely sensed data. We also conclude that modelling approaches can only be successfully applied for estimating target variables such as growing stock volume or biomass, which are adequately related to commonly available remotely sensed data, and thus purely field based surveys remain important for several important forest parameters. Keywords: Design-based inference, Model-assisted estimation, Model-based inference, Hybrid inference, National forest inventory, Remote sensing, Samplin

    Lidar sampling for large-area forest characterization: A review

    Get PDF
    The ability to use digital remotely sensed data for forest inventory is often limited by the nature of the measures, which, with the exception of multi-angular or stereo observations, are largely insensitive to vertically distributed attributes. As a result, empirical estimates are typically made to characterize attributes such as height, volume, or biomass, with known asymptotic relationships as signal saturation occurs. Lidar (light detection and ranging) has emerged as a robust means to collect and subsequently characterize vertically distributed attributes. Lidar has been established as an appropriate data source for forest inventory purposes; however, large area monitoring and mapping activities with lidar remain challenging due to the logistics, costs, and data volumes involved.The use of lidar as a sampling tool for large-area estimation may mitigate some or all of these problems. A number of factors drive, and are common to, the use of airborne profiling, airborne scanning, and spaceborne lidar systems as sampling tools for measuring and monitoring forest resources across areas that range in size from tens of thousands to millions of square kilometers. In this communication, we present the case for lidar sampling as a means to enable timely and robust large-area characterizations. We briefly outline the nature of different lidar systems and data, followed by the theoretical and statistical underpinnings for lidar sampling. Current applications are presented and the future potential of using lidar in an integrated sampling framework for large area ecosystem characterization and monitoring is presented. We also include recommendations regarding statistics, lidar sampling schemes, applications (including data integration and stratification), and subsequent information generation. © 2012

    Characteriation of Mediterranean Aleppo pine forest using low-density ALS data

    Get PDF
    Los espacios forestales son una fuente de servicios, tanto ambientales como económicos, de gran importancia para la sociedad. La caracterización de estos ambientes ha requerido tradicionalmente de un laborioso trabajo de campo. La aplicación de técnicas de teledetección ha proporcionado una visión más amplia a escala espacial y temporal, a la par que ha generado una reducción de los costes. La utilización de sensores óptico-pasivo multiespectrales y de sensores radar posibilita la estimación de parámetros forestales, si bien el desarrollo de sensores LiDAR, como el caso de los escáneres láser aeroportados (ALS), ha mejorado la caracterización tridimensional de la estructura de los bosques. La disponibilidad pública de dos coberturas LiDAR, generadas en el marco del Plan Nacional de Ortofotografía Aérea (PNOA), ha abierto nuevas líneas de investigación que permiten proporcionar información útil para la gestión forestal. La presente tesis utiliza datos LiDAR aeroportados de baja densidad para estimar diversas variables forestales, con ayuda de trabajo de campo, en masas forestales de Pino carrasco (Pinus halepensis Miller) en Aragón. La investigación aborda dos cuestiones relevantes como son la exploración de las metodologías más adecuadas para estimar variables forestales considerando escalas locales y regionales, teniendo en cuenta las posibles fuentes de error en el modelado; y, además, analiza la potencialidad de los datos LiDAR del PNOA para el desarrollo de aplicaciones forestales que valoricen las áreas forestales como recursos socio-económicos. La tesis se ha desarrollado según la modalidad de compendio de publicaciones, incluyendo cuatro trabajos que dan respuesta a los objetivos planteados. En primer lugar, se realiza un análisis comparativo de distintos modelos de regresión, paramétricos y no paramétricos, para estimar la pérdida de biomasa y las emisiones de CO2 en un incendio, mediante la utilización de datos LiDAR-PNOA y datos ópticos del satélite Landsat 8. En segundo lugar, se explora la idoneidad de distintos métodos de selección de variables para estimar biomasa total en masas de Pino carrasco utilizando datos LiDAR de baja densidad. En tercer lugar, se cuantificó y cartografió la biomasa residual forestal en el conjunto de masas de Pino carrasco de Aragón y se evaluó el efecto de diversas características de la tecnología LiDAR y de las variables ambientales en la precisión de los modelos. Finalmente, se analiza la transferibilidad temporal de modelos para estimar a escala regional siete variables forestales, utilizando datos LiDAR-PNOA multi-temporales. A este respecto, se compararon dos enfoques que permiten analizar la transferibilidad temporal: en primer lugar, el método directo ajusta un modelo para un determinado punto en el tiempo y estima las variables forestales para otra fecha; por otra parte, el método indirecto ajusta dos modelos diferentes para cada momento en el tiempo, estimando las variables forestales en dos fechas distintas. Los resultados obtenidos y las conclusiones derivadas de la investigación indican que la técnica basada en coeficientes de correlación de Spearman y el método de selección por todos los subconjuntos constituyen los métodos de selección de métricas LiDAR más apropiados para la modelización. El análisis de métodos de regresión para la estimación de variables forestales indicó que su idoneidad variaba de acuerdo con el tamaño y complejidad de la muestra. El método de regresión linear multivariante arrojó mejores resultados que los métodos no-paramétricos en el caso de muestras pequeñas. Por el contrario, el método Support Vector Machine produjo los mejores resultados con muestras grandes. El incremento de la densidad de puntos y de los valores de penetración de los pulsos LiDAR en el dosel, así como la presencia de ángulos de escaneo pequeños, incrementó la exactitud de los modelos. De forma similar, el incremento de la pendiente y la presencia de arbustos en el sotobosque implican una reducción en la exactitud de los modelos. En la estimación de variables forestales utilizando datos LiDAR multi-temporales, aunque la utilización del enfoque indirecto arrojó generalmente una mayor precisión en los modelos, se obtuvieron resultados similares con el enfoque directo, el cual constituye una alternativa óptima para reducir el tiempo de modelado y los costes de realización de trabajo de campo. La fusión de datos LiDAR y datos óptico-pasivos ha evidenciado la conveniencia de los métodos aplicados para cuantificar las emisiones de CO2 a la atmósfera generadas por un incendio. Esta metodología constituye una alternativa adecuada cuando no existen datos multi-temporales LiDAR. La estimación de variables de inventario forestal, así como de diversas fracciones de biomasa, como la biomasa total y la biomasa residual forestal, proporciona información valiosa para caracterizar las masas forestales mediterráneas de Pino carrasco y mejorar la gestión forestalForest ecosystems provide environmental and economic services of great importance to the society. The characterization of these environments has been traditionally accomplished with intense field work. In comparison, the application of remote sensing tools provides a greater overview over large spatial and temporal scales while minimizing costs. Although optical data and Synthetic Aperture Radar (SAR) allow estimating forest stand variables, the development of LiDAR sensors such as Airborne Laser Scanner (ALS) have improved three-dimensional characterization of forest structure. The availability of two ALS public data coverages for the Spanish territory, provided by the National Plan for Aerial Ortophotography (PNOA), opens new research opportunities to generate useful information for forest management. This PhD Thesis used low-density ALS-PNOA data to estimate different forest variables, with support in fieldwork, in the Aleppo pine (Pinus halepensis Miller) forests of Aragón region. The addressed research is relevant mainly for two reasons: first, the examination of suitable methodologies and error sources in forest stand variables prediction at local (small area) and regional scales (large area), and second, the application of ALS data to the characterization of forest areas as a socio-economic reservoir. This PhD Thesis is a compendium of four scientific papers, which sequentially answer the objectives established. Firstly, a comparative analysis of different parametric and non-parametric models was performed to estimate biomass losses and CO2 emissions using low-density ALS and Landsat 8 data in a burnt Aleppo pine forest. Secondly, we assess the suitability of variable selection methods when estimating total biomass in Aleppo pine forest stands using low-density ALS data. In the third manuscript, the quantification and mapping of forest residual biomass in Aleppo pine forest of Aragón region and the assessment of the effect of ALS and environmental variables in model accuracy were accomplished. Finally, the temporal transferability of seven forest stands attributes modelling using multi-temporal ALS-PNOA data in Aleppo pine forest at regional scale was explored. In this case, the temporal transferability was assessed comparing two methodologies; the direct and indirect approach. The first one fits a model for one point in time and estimates the forest variable for another point in time. The indirect approach adjusts two models in different points in time to estimate the forest variables in two different dates. The results derived from this research indicated that Spearman’s rank and All Subset Selection are the most appropriate methods in the ALS metrics selection step commonly applied in modelling. The suitability of the regression methods depends on the sample size and complexity. Thus, multivariate linear regression outperformed non-parametric methods with small samples while support vector machine was the most accurate method with larger samples. Model accuracy increased with higher point density and canopy pulse penetration, while decreasing with wider scan angles. Furthermore, the presence of steep slopes and shrub reduced model performance. In the case of forest stand variables prediction using multi-temporal ALS data, although the indirect approach produced generally a higher precision, the direct approach provided similar results, constituting a suitable alternative to reduce modelling time and fieldwork costs. The fusion of ALS and passive optical data have evidenced the suitability of this information for quantifying wildfire CO2 emissions to atmosphere, constituting a good alternative when multi-temporal ALS data is not available. The estimation of forest inventory variables as well as different biomass fractions, such as total biomass and forest residual biomass, provided valuable information to characterize Mediterranean Aleppo pine forests and improve forest management.<br /

    Estimating biomass and soil carbon change at the level of forest stands using repeated forest surveys assisted by airborne laser scanner data

    Get PDF
    BackgroundUnder the growing pressure to implement mitigation actions, the focus of forest management is shifting from a traditional resource centric view to incorporate more forest ecosystem services objectives such as carbon sequestration. Estimating the above-ground biomass in forests using airborne laser scanning (ALS) is now an operational practice in Northern Europe and is being adopted in many parts of the world. In the boreal forests, however, most of the carbon (85%) is stored in the soil organic (SO) matter. While this very important carbon pool is "invisible" to ALS, it is closely connected and feeds from the growing forest stocks. We propose an integrated methodology to estimate the changes in forest carbon pools at the level of forest stands by combining field measurements and ALS data.ResultsALS-based models of dominant height, mean diameter, and biomass were fitted using the field observations and were used to predict mean tree biophysical properties across the entire study area (50 km(2)) which was in turn used to estimate the biomass carbon stocks and the litter production that feeds into the soil. For the soil carbon pool estimation, we used the Yasso15 model. The methodology was based on (1) approximating the initial soil carbon stocks using simulations; (2) predicting the annual litter input based on the predicted growing stocks in each cell; (3) predicting the soil carbon dynamics of the annual litter using the Yasso15 soil carbon model. The estimated total carbon change (standard errors in parenthesis) for the entire area was 0.741 (0.14) Mg ha(-1) yr(-1). The biomass carbon change was 0.405 (0.13) Mg ha(-1) yr(-1), the litter carbon change (e.g., deadwood and leaves) was 0.346 (0.027) Mg ha(-1) yr(-1), and the change in SO carbon was - 0.01 (0.003) Mg ha(-1) yr(-1).ConclusionsOur results show that ALS data can be used indirectly through a chain of models to estimate soil carbon changes in addition to changes in biomass at the primary level of forest management, namely the forest stands. Having control of the errors contributed by each model, the stand-level uncertainty can be estimated under a model-based inferential approach

    Laserbasert oppmåling av bygningsobjekter og bygninger

    Get PDF
    Building information models (BIMs) for facility management is gaining interest. Different technologies for collecting the raw material to extract such model are in rapid development. The most common technologies are based on images, structure light, laser or a combination of these. The new technologies have the potential to provide efficient data collection, but not necessarily at the same accuracy compared to the traditional methods. This thesis has explored how to rapidly establish a BIM for an existing building. This was done by investigating two different aspects related to this task. The first aspect was related to product specification and provide a framework for ordering and controlling a laser-based survey of a building. The second aspect explores how a laser-based system could be used to rapidly survey an existing building. Through the thesis and the first aspect, it is shown that the Norwegian survey community is lacking an unambiguous product specification for building surveys performed for BIM extraction and that the survey seldomly is adequately controlled. Based on these findings a product specification has been developed in cooperation with building owners. This cooperation made it possible to test the product specification in real projects. The product specification was developed through three different versions. The zero version was presented at the World Building Congress in 2016 and was tested in a renovation project at the Norwegian University of Life Sciences. The evaluation of the project led to the first version that was used in a framework competition arranged by Ullensaker municipality in the south-east of Norway. The result led to the second and final version of the product specification. The proposed product specification follows a simplified transaction pattern between the customer and the producer. The focus has been on the customer's request for a building survey suitable for BIM extraction and the customer's acceptance actions when the building survey is delivered. The acceptance actions are based on well–known standards created by the Norwegian Mapping Authority. The customer request is based on the acceptance actions. This ensures that every requirements can be verified in the accepting stage. The main purposes of the product specification were to ensure reliable results and to minimize the difference between the customer request and the producer’s delivery. Additionally, an unambiguous product specification can ensure a fair competition situation between the producers and give the producers the possibility to select the best-suited technology. The second aspect is related to how a building can be efficiently surveyed and explores how this could be done with a laser-based system. A human carried survey system was developed through three stages. The first and second stages focused on circle shaped objects and were realized in cooperation with the Faculty of Environmental Sciences and Natural Resource Management at the Norwegian University of Life Sciences. The system surveyed tree diameter at breast height within sample plots in size 250-500 m2. The system was able to detect 87.5% of the trees with a mean difference of 0.1 cm, and a root mean square of 2.2 cm. The novel aspect is related to how the trees are segmented and how the diameters are estimated without losing precision due to degraded pose solution. The result can be used in forestry inventory projects together with airborne laser surveys. The third stage was made for indoor measurements. The main focus was on how to aid the navigation solution in the absence of Global Navigation Satellite System signals. The method divides the laser point measurements into small time frames. For each time frame, the laser points were automatically classified into column, walls, floor, and ceiling. This information was used to support a scan matching method called semantic-assisted normal distributions transform. The result from the scan matching was used to create a trajectory of the walking path followed during data capture. This result was fed back into the inertial navigation processing to aid the solution when the system was located inside the building. This gives the inertial navigation process the ability to reject scan matching failures. The novel method was able to improve the survey accuracy from a maximum deviation of 12.6 m to 1.1 m. The third stage had two different Inertial Measurement Units (IMU) installed. The most accurate system was a tactical graded IMU, and the lowest accurate system was an automotive graded IMU. With the proposed method, the automotive graded system was able to perform at a higher level than a standalone tactical graded solution.Interessen for å bruke BygningsInformasjonsModeller (BIMer) i forvaltning, drift og vedlikehold av bygninger er økende. Ulike teknologier for innsamling av data for å etablere slike modeller er i rask utvikling. De vanligste teknologiene er basert på bilder, strukturert lys, laser eller en kombinasjon av disse. Ny teknologi utfører målingene veldig effektivt, men ikke med samme nøyaktighet som tradisjoneller metoder. Denne studien har undersøkt hvordan en raskt kan etablere en BIM i et eksisterende bygg. Dette ble gjort ved å utforske to ulike aspekter av problemstillingen. Det første aspektet ser på produktspesifikasjon og foreslår et rammeverk til bruk ved bestilling og kontroll av laser-basert innmåling av eksisterende bygning. Det andre aspektet utforsker hvordan et laser-basert system raskt kan måle opp eksisterende bygg.The Norwegian Building Authority, Cautus Geo AS and Geomatikk survey have kindly founded parts of the studies

    The impact of model and variable selection on estimates of precision

    Get PDF
    Die letzten zwanzig Jahre haben gezeigt, dass die Integration luftgestützter Lasertechnologien (Light Detection and Ranging; LiDAR) in die Erfassung von Waldressourcen dazu beitragen kann, die Genauigkeit von Schätzungen zu erhöhen. Um diese zu ermöglichen, müssen Feldaten mit LiDAR-Daten kombiniert werden. Diverse Techniken der Modellierung bieten die Möglichkeit, diese Verbindung statistisch zu beschreiben. Während die Wahl der Methode in der Regel nur geringen Einfluss auf Punktschätzer hat, liefert sie unterschiedliche Schätzungen der Genauigkeit. In der vorliegenden Studie wurde der Einfluss verschiedener Modellierungstechniken und Variablenauswahl auf die Genauigkeit von Schätzungen untersucht. Der Schwerpunkt der Arbeit liegt hierbei auf LiDAR Anwendungen im Rahmen von Waldinventuren. Die Methoden der Variablenauswahl, welche in dieser Studie berücksichtigt wurden, waren das Akaike Informationskriterium (AIC), das korrigierte Akaike Informationskriterium (AICc), und das bayesianische (oder Schwarz) Informationskriterium. Zudem wurden Variablen anhand der Konditionsnummer und des Varianzinflationsfaktors ausgewählt. Weitere Methoden, die in dieser Studie Berücksichtigung fanden, umfassen Ridge Regression, der least absolute shrinkage and selection operator (Lasso), und der Random Forest Algorithmus. Die Methoden der schrittweisen Variablenauswahl wurden sowohl im Rahmen der Modell-assistierten als auch der Modell-basierten Inferenz untersucht. Die übrigen Methoden wurden nur im Rahmen der Modell-assistierten Inferenz untersucht. In einer umfangreichen Simulationsstudie wurden die Einflüsse der Art der Modellierungsmethode und Art der Variablenauswahl auf die Genauigkeit der Schätzung von Populationsparametern (oberirdische Biomasse in Megagramm pro Hektar) ermittelt. Hierzu wurden fünf unterschiedliche Populationen genutzt. Drei künstliche Populationen wurden simuliert, zwei weitere basierten auf in Kanada und Norwegen erhobenen Waldinveturdaten. Canonical vine copulas wurden genutzt um synthetische Populationen aus diesen Waldinventurdaten zu generieren. Aus den Populationen wurden wiederholt einfache Zufallsstichproben gezogen und für jede Stichprobe wurden der Mittelwert und die Genauigkeit der Mittelwertschätzung geschäzt. Während für das Modell-basierte Verfahren nur ein Varianzschätzer untersucht wurde, wurden für den Modell-assistierten Ansatz drei unterschiedliche Schätzer untersucht. Die Ergebnisse der Simulationsstudie zeigten, dass das einfache Anwenden von schrittweisen Methoden zur Variablenauswahl generell zur Überschätzung der Genauigkeiten in LiDAR unterstützten Waldinventuren führt. Die verzerrte Schätzung der Genauigkeiten war vor allem für kleine Stichproben (n = 40 und n = 50) von Bedeutung. Für Stichproben von größerem Umfang (n = 400), war die Überschätzung der Genauigkeit vernachlässigbar. Gute Ergebnisse, im Hinblick auf Deckungsraten und empirischem Standardfehler, zeigten Ridge Regression, Lasso und der Random Forest Algorithmus. Aus den Ergebnissen dieser Studie kann abgeleitet werden, dass die zuletzt genannten Methoden in zukünftige LiDAR unterstützten Waldinventuren Berücksichtigung finden sollten.The past two decades have demonstrated a great potential for airborne Light Detection and Ranging (LiDAR) data to improve the efficiency of forest resource inventories (FRIs). In order to make efficient use of LiDAR data in FRIs, the data need to be related to observations taken in the field. Various modeling techniques are available that enable a data analyst to establish a link between the two data sources. While the choice for a modeling technique may have negligible effects on point estimates, different model techniques may deliver different estimates of precision. This study investigated the impact of various model and variable selection procedures on estimates of precision. The focus was on LiDAR applications in FRIs. The procedures considered included stepwise variable selection procedures such as the Akaike Information Criterion (AIC), the corrected Akaike Information Criterion (AICc), and the Bayesian (or Schwarz) Information Criterion. Variables have also been selected based on the condition number of the matrix of covariates (i.e., LiDAR metrics) and the variance inflation factor. Other modeling techniques considered in this study were ridge regression, the least absolute shrinkage and selection operator (Lasso), partial least squares regression, and the random forest algorithm. Stepwise variable selection procedures have been considered in both, the (design-based) model-assisted, as well as in the model-based (or model-dependent) inference framework. All other techniques were investigated only for the model-assisted approach. In a comprehensive simulation study, the effects of the different modeling techniques on the precision of population parameter estimates (mean aboveground biomass per hectare) were investigated. Five different datasets were used. Three artificial datasets were simulated; two further datasets were based on FRI data from Canada and Norway. Canonical vine copulas were employed to create synthetic populations from the FRI data. From all populations simple random samples of different size were repeatedly drawn and the mean and variance of the mean were estimated for each sample. While for the model-based approach only a single variance estimator was investigated, for the model-assisted approach three alternative estimators were examined. The results of the simulation studies suggest that blind application of stepwise variable selection procedures lead to overly optimistic estimates of precision in LiDAR-assisted FRIs. The effects were severe for small sample sizes (n = 40 and n = 50). For large samples (n = 400) overestimation of precision was negligible. Good performance in terms of empirical standard errors and coverage rates were obtained for ridge regression, Lasso, and the random forest algorithm. This study concludes that the use of the latter three modeling techniques may prove useful in future LiDAR-assisted FRIs

    Taking Stock of Circumboreal Forest Carbon With Ground Measurements, Airborne and Spaceborne LiDAR

    Get PDF
    The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 +/- 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55degN in eastern Canada and from 55 to 60degN in eastern Eurasia. Both of these regions are expected to warm >3 C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content
    corecore