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Abstract

This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It
is motivated by the increasing availability of remotely sensed data, which facilitates the development of models
predicting the variables of interest in forest surveys. We present, review and compare three different estimation
frameworks where models play a core role: model-assisted, model-based, and hybrid estimation. The first two are
well known, whereas the third has only recently been introduced in forest surveys. Hybrid inference mixes design-
based and model-based inference, since it relies on a probability sample of auxiliary data and a model predicting the
target variable from the auxiliary data..We review studies on large-area forest surveys based on model-assisted, model-
based, and hybrid estimation, and discuss advantages and disadvantages of the approaches. We conclude that no
general recommendations can be made about whether model-assisted, model-based, or hybrid estimation should be
preferred. The choice depends on the objective of the survey and the possibilities to acquire appropriate field and
remotely sensed data. We also conclude that modelling approaches can only be successfully applied for estimating
target variables such as growing stock volume or biomass, which are adequately related to commonly available
remotely sensed data, and thus purely field based surveys remain important for several important forest parameters.

Keywords: Design-based inference, Model-assisted estimation, Model-based inference, Hybrid inference, National
forest inventory, Remote sensing, Sampling

Introduction
Use of models in large-area surveys of forests is attracting
increased interest. The reason is the improved availability
of auxiliary data from various remote sensing platforms.
Aerial photographs (e.g., Næsset 2002a, Bohlin et al. 2012)
and optical satellite data (e.g., Reese et al. 2002) have been
available and used operationally for many decades, while
data from profiling (e.g., Nelson et al. 1984, Nelson et al.
1988) and scanning lasers (e.g., Næsset 1997) and radars
(Solberg et al. 2010) have become available for practical
applications more recently. Some of the new types of
remotely sensed data, such as data from laser scanners,
have already become widely applied in forest inventor-
ies (e.g., Næsset 2002b). A common application involves

the development of models that are applied wall-to-wall
over an area of interest (e.g., Næsset 2004), often for pro-
viding data for forest management. However, this type of
data is increasingly applied also in connection with large-
area forest surveys, such as national-level forest inventor-
ies (Tomppo et al. 2010, Asner et al. 2012).
Applications of models in large-area forest surveys often

use the model-assisted estimation framework (Särndal et al.
1992) where a model is used to support the estimation
following probability sampling within the context of
design-based inference (Gregoire 1998). Importantly, an
inadequately specified model will not make the estimators
biased in this case, but only affect the variance of the esti-
mators. Examples of large-area forest inventory applica-
tions include Andersen et al. (2011) who applied the
technique in Alaska, Gregoire et al. (2011) and Gobakken
et al. (2012), who applied it in Hedmark County, Norway,
and Saarela et al. (2015a) who used it in Kuortane, Finland.
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Some applications of models in large-area forest sur-
veys involve model-based inference (Gregoire 1998),
which to a larger extent than model-assisted estimation
relies on model assumptions. In this case an inad-
equately specified model might make the estimators
both biased and imprecise. On the other hand, with
accurate models this mode of inference can be very effi-
cient (e.g., Magnussen 2015). Examples of applications
in forest inventory include McRoberts (2006, 2010), who
used model-based inference for estimating forest area
based on Landsat data in northern Minnesota, U.S.A.,
Ståhl et al. (2011) who used it for estimating biomass in
Hedmark, Norway, using laser data, and Healey et al.
(2012) who applied the technique in California, U.S.A.,
using data from the space-borne Geoscience Laser
Altimeter System (GLAS).
Non-parametric modelling, applying methods such as

the k-Nearest Neighbours (kNN) technique (Tomppo
and Katila 1991, Tomppo et al. 2008), has a long trad-
ition in forest inventories. These techniques typically
have been applied for providing small-area estimates
through combining field sample plots and various
sources of remotely sensed data. However, the kNN
technique has also been used in connection with model-
assisted estimation (e.g., Baffetta et al. 2009, 2011, Mag-
nussen and Tomppo 2015) and model-based inference
(e.g., McRoberts et al. 2007).
The objective of this paper was to present, review and

discuss how models are applied in the case of model-
assisted and model-based estimation in large-area forest
surveys, and to discuss advantages and disadvantages of
the two estimation frameworks in this context. We also
present, review and discuss a newly introduced estima-
tion framework where probability sampling is applied for
the selection of auxiliary data, upon which model-based
inference is applied in a second phase. This framework
in denoted hybrid inference, after Corona et al. (2014).
We restrict the study to large-area estimation. This is

the case of national forest inventories and greenhouse gas
inventories under the United Nations Framework Con-
vention on Climate Change (e.g., Tomppo et al. 2010).
Importantly, in this case there is no need to make assump-
tions about residual error terms linked to individual popu-
lation elements, which is a core issue in model-based
small-area estimation (e.g., Breidenbach and Astrup 2012,
Breidenbach et al. 2015). The reason is that the residual
error terms will have almost no influence on the results,
as will be demonstrated below. However, we do not spe-
cify how large a “large area” must be, but use the term as a
general concept.
Below, we present the basics of model-assisted, model-

based, and hybrid inference (chapter 2). Subsequently we
present a brief review of the application of these
methods in forest surveys (chapter 3), and, finally, we

discuss advantages and disadvantages of the different ap-
proaches and make conclusions (chapters 4 and 5).

Basics of model-assisted, model-based and hybrid
estimation
In this chapter we summarize some basic concepts related
to the use of models in large-area forest surveys. We
restrict the scope to cases where models are applied for
improving estimators (or predictors) once sample or wall-
to-wall data have been collected. However, models may
also be used in the design phase for improving the sample
selection (e.g., Fattorini et al. 2009, Grafström et al. 2014),
but such cases are not covered in this article.

Design-based inference
This paper requires a basic understanding of the concepts
design-based and model-based inference (e.g., Cassel et al.
1977, Särndal 1978, Gregoire 1998, McRoberts 2010).
Design-based inference typically assumes a finite

population of elements to which one or more fixed
target quantities are linked. The objective normally is to
estimate some fixed population parameter, such as the
total or the mean of these quantities (e.g., Gregoire and
Valentine 2008). In order to estimate the fixed but un-
known parameters a probability sample is selected from
the population according to some appropriate sampling
design, which assigns positive inclusion probabilities to
each element. Mathematical formulas (estimators) are
used for estimating the parameters based on the sample
data. The estimates are random variables due to the ran-
dom selection of samples, i.e., the estimators produce
different values depending on which population ele-
ments are included in the sample.
The Horvitz-Thompson estimator can be applied to

any probability sampling design with inclusion probabil-
ities known at least for the sampled units (e.g., Särndal
et al. 1992). Using this estimator, a population total, τ, is
estimated as

τ̂ ¼
X

i∈s

yi
πi

ð1Þ

Here, yi is the variable of interest for the i:th sampled
element, πi is the inclusion probability, and s is the sample.
The precision of an estimator is usually expressed

through its variance, which is a fixed quantity given the
population, the design, and the estimator. The variance
usually can be estimated through a variance estimator,
and confidence intervals can be computed as a means to
provide decision makers with the range of values
wherein the true population parameter is located with a
defined probability.
In case of the Horvitz-Thompson estimator, a general

formula for the variance is
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var τ̂ð Þ ¼
X

i∈U

X
j∈U

πij−πiπj
� � yi

πi

yj
πj

ð2Þ

In addition to the previously introduced notation, πij is
the joint probability of inclusion for unit i and j. The
step from the variance to a variance estimator and
a confidence interval normally is straightforward
(e.g., Gregoire and Valentine 2008).
Some key features of design-based inference are:

� The values that are linked to the population
elements are fixed

� The population parameters about which we wish to
infer information are also fixed

� Our estimators of the parameters are random
because a probability sample is selected according to
some sampling design, such as simple random
sampling

� The probability of obtaining different samples can be
deduced from the design and used for inference

The foundations of design-based inference were laid
out by Neyman (1934) and it is the standard mode of in-
ference in most statistical surveys, including sample-
based national forest inventories (Tomppo et al. 2010)
that are carried out in a large number of countries.

Design-based inference through model-assisted
estimation
Models can be used to improve estimators under the
design-based framework. An important category of such
estimators are known as model-assisted estimators
(Särndal et al. 1992). The general form of such estima-
tors, for estimating a population total, is

τ̂ma ¼
X

i∈U
ŷi þ

X
i∈s

yi−ŷið Þ
πi

ð3Þ

where the first part of the estimator is a sum of model
estimates of each element in the population; the second
term is a Horvitz-Thompson estimator of the total of
the deviations between observed values and values esti-
mated by the model; the subscript ‘ma’ is used to point
out that the estimator is model-assisted. Thus, the
model-assisted estimator can be seen as composed of a
first crude estimator which is refined through a correc-
tion term that makes it asymptotically unbiased when
the model is external (in which case Eq. 3 is often re-
ferred to as a difference estimator), and approximately
unbiased when the model is internal (in which case
Eq. 3 is often referred to as a generalised regression
estimator). In case the model is external the variance is

var τ̂mað Þ ¼
X

i∈U

X
j∈U

πij−πiπj
� � ei

πi

ej
πj

ð4Þ

This is almost the same expression as the variance in
Eq. (2), but the yi- terms have been replaced by ei = yi −
ŷi. If an accurate model is used the latter terms should
be much smaller than the former, and thus the variance
of the model-assisted estimator should be much smaller
than the variance of the ordinary Horvitz-Thompson es-
timator, although this is not immediately clear when
comparing Eq. 2 and Eq. 4.

Model-based inference
In contrast to design-based inference (including model-
assisted estimators), a basic assumption underlying
model-based inference is that the values that are linked
to the elements in the population are realizations of ran-
dom variables. As a consequence, target survey quan-
tities such as population totals and means are also
random variables. Thus, due to the different points of view
underlying design-based and model-based inference some
caution must be exercised when comparing results from
the two inferential frameworks. For example, with model-
based inference the random population total (or mean)
may be predicted or (as in this study) the expected value of
the population total may be estimated. For large population
the difference between these two quantities, in relative
terms, typically is minor although for small populations the
relative difference may be substantial. However, just like
design-based inference, model-based inference in many
cases is a useful and straightforward approach for quantify-
ing target features of a population (e.g., Chambers and
Clark 2012). In forest inventories, examples of such cases
are surveys of remote areas with poor road infrastructure
and small-area estimation for forest management. In both
cases the field sample sizes typically are small or acquired
through non-probability sampling whereas remotely sensed
data are available wall-to-wall.
A basic assumption of model-based inference is that

the random values of the population elements follow
some specific model, e.g., a model based on auxiliary
data derived from remote sensing. Thus, in the standard
case, auxiliary data are available for all population
elements. A simple and fairly general example is the lin-
ear model, i.e., (in matrix form)

Y ¼ Xβþ � ð5Þ

where Y is an N × 1 matrix of the target variable, X
an N × p matrix of auxiliary data, β is a p × 1 matrix of
model parameters, and an N × 1 matrix of random
variables that follow some joint probability distribution;
N is the population size; in a forest survey it might be
the number of grid cells which tessellate the study area.
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Our objective typically is to predict a random popula-
tion quantity, e.g., the mean or the total, following the
selection of a sample for estimating the model parame-
ters. Regardless of how the sample is selected, the obser-
vations are realizations of random variables due to the
model assumptions. Once the model parameters are esti-

mated, we can use the estimated model, Ŷ ¼ Xβ̂ , for
predicting the population quantities of interest based on
the auxiliary data; in standard cases these are assumed
available for all population elements. Introducing 1 as an
N × 1 vector of “1”-entries, the random population total
τ* = 1′Y = 1′Xβ + 1′ε may be predicted as

τ̂� ¼ 1′Ŷ ð6Þ

Note the distinction in nomenclature between estimating
a fixed but unknown value (a population parameter) and
predicting a random variable (e.g., Särndal 1978, Gregoire
1998). Note also that some authors (Chambers and Clark
2012) present the model-based predictor as a sum of two
terms: the sum of the values of the sampled elements and
the sum of the predictions for the non-sampled elements.
The difference between such a predictor and Eq. (6) would,
however, be very small in case a small sample is selected
from a large population.
Turning to the mean square error of the predictor

in Eq. (6) we need to acknowledge that uncertainty is
introduced both by the estimation of the model pa-
rameters and by the random residual terms linked to
each population element. Since the residuals may
often be spatially auto-correlated estimating the mean
square error of the Eq. (6) predictor may be very
complicated.
However, an important feature of large-area surveys

is that the relative difference between τ* and E (τ*)
typically is very small (e.g., Chambers and Clark 2012,
p. 16). The relative difference is 1′ε/(1′Xβ + 1′ε),
which intuitively can be seen to tend to zero as N
tends to infinity, since in the cases we focus on the
Xiβ -terms are almost always positive and typically
much larger (in absolute value) than the residual
terms, which may be either negative or positive. Thus,
instead of predicting τ*, in large-area estimation we
can estimate E (τ*), which simplifies the model-based
inference. The estimator will be identical to Eq. (6),

i.e., ^E τ�ð Þ ¼ 1′Ŷ , but it is now an estimator rather
than a predictor. The variance (due to the model) of
this estimator is simpler to derive, since it does not
involve any residual terms; thus uncertainty in this
case is introduced only through the model parameter
estimation.
The variance of the estimator of E (τ*) is

var ^E τ�½ �
� �

¼ 1′Xcov β̂
� �

X′1 ð7Þ

The matrix cov β̂
� �

is the variance-covariance matrix

of the model parameter estimates. A variance estimator
is obtained by inserting the estimated covariance matrix
in Eq. (7).
Thus, some key features of model-based inference are:

� The values linked to population elements are
random variables

� Since the individual values are random variables so
is the population total or mean that we wish to
predict

� A model for the relationship between the target
variable and one or more auxiliary variable(s) can
adequately conform to the trend in Y.

� Auxiliary data are commonly available for all
population elements

� After having selected a sample – that need not be
random – for estimating the model parameters, we
apply the fitted model for predicting the target
population quantity or estimating the expected value
of this quantity.

Hybrid inference: a special case of model-based inference
Auxiliary data may not be available prior to a forest
survey and they may be very expensive to collect for all
units in a population, as required for standard applica-
tion of model-based inference. In such cases a probabil-
ity sample of auxiliary data can be acquired, based on
which the population total or mean of the auxiliary
variable is estimated following design-based inference. A
model can still be specified and applied regarding the re-
lationship between the study variable and the auxiliary
variables, and thus model-based inference can be applied
once the auxiliary variable totals (or means) have been
estimated through design-based inference.
Thus, design-based principles are applied in a first

phase and model-based principles in a second phase.
This approach was termed hybrid inference by Corona
et al. (2014) and in the present paper we follow that ter-
minology. In a previous study by Mandallaz (2013) it
was called pseudo-synthetic estimation. In a study by
Ståhl et al. (2011) it was simply called model-based in-
ference, although later denoted model-dependent estima-
tion by Gobakken et al. (2012). However, the term
model-dependent estimation appears to have been first
proposed by Hansen et al. (1978, 1983) to include all
sampling strategies that depend on the correctness of a
model; according to Hansen et al. (1978) “a model-
dependent design consists of a sampling plan and esti-
mators for which either the plan or the estimators, or
both, are chosen because they have desirable properties
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under an assumed model, and for which the validity of
inferences about the population depends on the degree
to which the population conforms to the assumed
model.” Thus, standard model-based inference as well as
hybrid inference, and other approaches, belong to Hansen’s
model-dependent category.
In the case of hybrid inference, expected values and

variances are derived by considering both the design
through which auxiliary data were collected and the
model used for predicting values of population elements
based on the auxiliary data. Thus, assuming we use a
linear model, a general estimator of E (τ*) is given as

^E τ�ð Þ ¼
X

i∈s

Xi β̂

πi
¼ π′Xβ̂ ð8Þ

where s is the sample of auxiliary data, πi is the prob-
ability of including population element i into the auxiliary
data sample, π is an n-length column vector of (1/πi) –
values, and X is an n × p matrix of sampled auxiliary data.
The model parameters are estimated from a sample
that is assumed to be independent from the sample
of auxiliary data.
In deriving the variance of the estimator in Eq. (8),

note that the part π′X of the estimator is a 1 × p matrix
of design-unbiased estimators of population totals of
auxiliary data, which we denote τ̂x . This matrix is multi-
plied by the matrix of estimated model parameters, i.e.,
the result is a sum of estimated population totals of aux-
iliary variables times the corresponding model parameter

estimate, such as τ̂Xj⋅ β̂j . In each term the two compo-

nents are independent, but the estimators of the auxil-
iary variable totals as well as the estimators of the
parameters are typically correlated. Thus, the variance
(due to the sample and the model) is

var ^E τ�½ �
� �

¼ var τ̂xβ̂
� �

¼ β′ cov τ̂ xð Þβ
þ τxcov β̂

� �
τ′x þ Tr cov τ̂xð Þcov β̂

� �� �
ð9Þ

where cov τ̂xð Þ is the covariance matrix of the estima-

tors of the auxiliary variable totals and cov β̂
� �

is the co-

variance matrix of the model parameter estimators. The
Tr-operator is the trace, i.e., the sum of the diagonal en-
tries in the matrix. The diagonal entries in cov τ̂xð Þ are of
the kind presented in Eq. (2). The off-diagonal entries
are computed in a similar fashion (Särndal et al. 1992).
The covariance matrix of the model parameter estima-
tors normally, under ordinary least squares regression
assumptions, is derived as σ2(X′X)− 1 where σ2 is the re-
sidual variance, given the regression model. In case of
heteroskedastic residual variance, alternative estimators
can be applied (e.g., Saarela et al. 2015b). We do not
offer a proof of Eq. (9), but readers familiar with the

variance of a product of two independent random vari-
ables (i.e., var(WZ) = E(W)2var(Z) + E(Z)2var(W) +
var(W)var(Z)) can identify the similarity with Eq. (9).
Although it seems likely that hybrid type estimators

have been applied outside forest inventories, we have
not yet found any description of them in non-forest
publications.
In Fig. 1 an overview of the “positions” of standard

design-based estimation (without using models), model-
assisted estimation, hybrid estimation, and model-based
estimation is shown with regard to how much these esti-
mation techniques rely on (i) the correctness of the
model and (ii) the use of probability sampling.

A brief review of the use of models in large-area
forest surveys
From the methods section it is clear that models can be
used in several ways for improving the estimation of tar-
get quantities in large-area forests surveys. Our review is
separated into the following cases:

� Use of models in the context of design-based inference
through model-assisted estimation

� Use of models in the context of model-based inference
through model-based estimation

� Use of models in the context of hybrid inference

Model-assisted estimation in large-area forest surveys
Formal model-assisted estimators appear to be fairly re-
cently introduced to large-area forest surveys, although
standard regression estimators (i.e., a simple kind of
model-assisted estimators) have been applied in forest
surveys for a long time. An important example of the
latter kind is the Swiss national forest inventory (Köhl
and Brassel 2001) where air photo interpretation has
been combined with field surveys for a long time and
the Italian national forest inventory, where a three-phase
sampling approach is applied (Fattorini et al. 2006).
An early model-assisted study was conducted by

Breidt et al. (2005), who used spline models in estimat-
ing population totals in a simulation study linked to sur-
veys of forest health. Model-assisted estimation was
found to perform well in the context of a two-phase sur-
vey with multiple auxiliary variables.
Opsomer et al. (2007) used model-assisted estimation in

a two-phase systematic sampling design, applying general-
ized additive models linking ground measurements with
auxiliary information from remote sensing. The study was
an extension of the study by Breidt and Opsomer (2000),
where univariate models and a single-phase sampling
strategy were applied.
In Boudreau et al. (2008), model-assisted estimation

was used for estimating biomass in Quebec, Canada,
based on data from a laser profiler, GLAS satellite data,
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and land cover maps based on data from Landsat-7
ETM+. The study demonstrated that GLAS data could
improve large-scale monitoring of aboveground biomass
at large spatial scales; however, the presented estimators
were not denoted “model-assisted”. Nelson et al. (2009)
built upon the study by Boudreau et al. (2008) and intro-
duced some new, partly model-based, estimation tech-
niques. Andersen et al. (2009) presented a study based
on model-assisted estimation where the biomass of west-
ern Kenai, Alaska, was estimated based on samples of
field and laser scanner data.
In Gregoire et al. (2011) model-assisted estimation was

used for estimating aboveground biomass in Hedmark
County, Norway, using sample data from laser profilers
and scanners. The study triggered the start of a series of
studies where the model-assisted theory, developed by
Särndal et al. (1992), was applied for large-scale forest
surveys based on samples of laser scanner data. Næsset
et al. (2011) applied and compared two sources of auxil-
iary information, laser scanner data and interferometric
synthetic aperture radar data for model-assisted estima-
tion of biomass over a large boreal forest area in the
Aurskog-Høland municipality in Norway and quantified
to what extent the two types of auxiliary data improved
the estimated precision. Gobakken et al. (2012) com-
pared the performance of model-assisted estimation with
model-based prediction of aboveground biomass in

Hedmark County, Norway using data from airborne
laser scanning as auxiliary data. The two approaches
were found to yield similar results. Nelson et al. (2012)
conducted a similar study over the same area using data
from a profiling rather than scanning airborne laser,
while Næsset et al. (2013b) evaluated the precision of
the two-stage model-assisted estimation conducted by
Gobakken et al. (2012). The authors noted the sensitivity
of variance estimators to unequal sample strip length
and systematically selected strips. The latter issue was
further pursued by Ene et al. (2012), who showed that
the variance was often severely overestimated when
estimators assuming simple random sampling were ap-
plied in this context. Similar results were reported by
Magnussen et al. (2014).
Strunk et al. (2012a, 2012b) investigated different as-

pects of model-assisted estimation. For example, the au-
thors found that the laser pulse density had almost no
effect on the precision of model-assisted estimators of
core parameters, such as basal area, volume, and
biomass.
Saarela et al. (2015a) proposed to use probability-

proportional-to-size sampling of laser scanning strips in
a two-phase model-assisted sampling study where the
total growing stock volume was estimated in a boreal
forest area in Kuortane, Finland. It was also found that
full cover of Landsat auxiliary information improved the

Fig. 1 An overview of to what degree different estimation approaches rely on the correctness of a model and probability sampling
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precision of estimators compared to using only sampled
LiDAR strip data.
Massey et al. (2014) evaluated the performance of the

model-assisted estimation technique in connection with
the Swiss national forest inventory. The authors also ad-
dressed several methodological issues and, among other
things, evaluated the performance of non-parametric
methods in connection with model-assisted estimation
and the close connection between difference estimators
and regression estimators.
As some of the first laser scanning campaigns carried

out for inventory purposes at the turn of the millennium
have been repeated in recent years, change estimation
assisted by laser data have become an important re-
search area. Bollandsås et al. (2013), Næsset et al.
(2013a, 2015), Skowronski et al. (2014), McRoberts et al.
(2015), and Magnussen et al. (2015) analysed different
approaches to modelling of change in biomass, such as
separate modelling of biomass at each point in time and
then estimate the difference, direct modelling of change
with different predictor variables, such as the variables
at each time point or their differences, and longitudinal
models. These modelling techniques have been com-
bined with different design-based and model-based esti-
mators to produce change estimates and confidence
intervals. Sannier et al. (2014) investigated change esti-
mation based on a series of maps, which provided the
auxiliary data for model-assisted difference estimation. A
comprehensive review and discussion of change estima-
tion can be found in McRoberts et al. (2014, 2015).
Melville et al. (2015) evaluated three model-based and
three design-based methods for assessing the number of
stems using airborne laser scanning data. The authors
reported that among the design-based estimators, the most
precise estimates were achieved through stratification.
Stephens et al. (2012) applied double sampling regres-

sion estimators in the design-based framework for esti-
mating carbon stocks in New Zealand forests using laser
data as auxiliary information.
Chirici et al. (2016) compared the performance of two

types of airborne LiDAR-based metrics in estimating
total aboveground biomass through model-assisted esti-
mators. The study area was located in Molise Region in
central Italy. Corona et al. (2015) dealt with the use of
map data as auxiliary information in a similar context.

Model-based and hybrid inference in large-area forest
surveys
McRoberts (2006, 2010) applied model-based inference
for estimating forest area using Landsat data as auxiliary
information and field plots data. The studies were per-
formed in northern Minnesota, U.S.A. In the studies the
expected value of the total forest area was estimated, as

a means to reduce the complexity of the variance
estimators.
A large number of studies have applied model-

based prediction for mapping forest attributes across
large areas using remotely sensed auxiliary information.
Baccini et al. (2008) used moderate resolution imaging
spectro-radiometer (MODIS) and GLAS for mapping
aboveground biomass across tropical Africa. Armston et
al. (2009) used Landsat-5 TM and Landsat-7 ETM+
sensors for prediction foliage projective cover across a
large area in Queensland, Australia. Asner et al. (2010)
applied model-based prediction for mapping the above-
ground carbon stocks using satellite imaging, airborne
LiDAR and field plots over 4.3 million ha of Peruvian
Amazon. Helmer et al. (2010) used time series from 24
Landsat TM/ETM+ and Advance Land Imager (ALI)
scenes for mapping forest attributes on the island of
Eleuthera. These are only examples of a very large number
of studies where wall-to-wall remotely sensed data have
been applied for mapping and monitoring forest re-
sources. However, a majority of these studies do not apply
a formal model-based inferential framework. For example,
in case the uncertainty of estimators is addressed, usually
the strict model-based inference approach [Eq. (7)] is not
applied but instead some other, often ad-hoc, method that
does not correctly reflect the uncertainty of the estimator
or predictor involved.
Saarela et al. (2015b) evaluated the effects of model

form and sample size on the precision of model-based
estimators in the study area Kuortane, Finland, and iden-
tified minor to moderate differences in results when dif-
ferent model forms were applied. In a simulation study,
Magnussen (2015) demonstrated the usefulness of
model-based inference for forest surveys and argued that
this approach has several advantages over traditional
design-based sampling. McRoberts et al. (2014a,b)
assessed the effects of uncertainty in model predictions
of individual tree volume model predictions on large-
area volume estimates in the survey framework of hybrid
inference.
As previously mentioned, Corona et al. (2014) pro-

posed to use the term hybrid inference for the case
where a probability sample of auxiliary data may be se-
lected, on which model-based inference is applied; the
study by Corona et al. mainly dealt with small-area esti-
mation issues. Ståhl et al. (2011), Gobakken et al. (2012),
Nelson et al. (2012) and Magnussen et al. (2014) used
hybrid inference for estimating the forest resources in
Hedmark county, Norway, based on combinations of
laser scanner data, laser profiler data, and field data. In
the study by Magnussen et al. two populations were sim-
ulated using the data. Healey et al. (2012) applied the
technique in California, using GLAS data. In a study of
boreal forests in Canada, Margolis et al. (2015) likewise
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used GLAS data, in combination with airborne laser
data, to estimate aboveground biomass.
Geographical mismatches between remotely sensed

data and field measurements may considerably affect the
precision of estimators in large-area surveys. The effects
of such errors in model-based and model-assisted esti-
mation were evaluated by Saarela et al. (2016).
The findings from the brief literature review are sum-

marized in Fig. 2.

Discussion
The review revealed that use of models in large-scale
forest inventories is widespread, although statistically
strict applications of model-assisted estimators, model-
based inference, or hybrid inference are rather limited.
While the model-assisted estimation framework is
attracting large interest, model-based inference and hy-
brid inference are not applied as much. A large number
of studies apply approaches that could be classified as
model-based inference, although they do not pursue any
strict uncertainty analyses. In this context there is room
for substantial improvement regarding how mean square
errors or variances are estimated.

An advantage of model-assisted estimation, as com-
pared to model-based and hybrid inference, is that the
unbiasedness of estimators of totals and means do not
rely on the correctness of the model; the model is only
applied for enhancing a design-based estimator (Särndal
et al. 1992). Whereas there is a theoretical chance that a
model-assisted estimator is worse (in terms of variance)
than a strictly design-based estimator if the model is ex-
tremely poor, a well specified model might substantially
increase the precision of the model-assisted estimator
compared to the strictly design-based estimator. This
was shown by, e.g., Ene et al. (2012) and Saarela et al.
(2015a).
If well specified models are available model-based in-

ference is definitely a competitive alternative to design-
based inference through model-assisted estimation
(McRoberts et al. 2014a, b, Magnussen 2015). It has ad-
vantages since it does not rely on a probability sample
from the target area. Such samples may sometimes not
be feasible due to poor infrastructure conditions, re-
stricted access to private land, or the presence of areas
that are for some reason dangerous to visit in the field.
Further, in case a probability sample has been selected,
based upon which models are developed and applied,

Auxiliary information available
for the entire population

Auxiliary information available
as probability sample

Model-assisted
estimation (with 

stratification)

Model-based
estimation

Hybrid inference Model-assisted
estimation 

Examples:  
Köhl  (2011) 
Fattorini et al. (2006) 
Breidt et al. (2005) 
Opsomer et al. (2007) 
Andersen et al. (2009) 
Gregoire et al. (2011) 
Næsset et al. (2011) 

Gobakken et al. (2012) 
Nelson et al. (2012) 
Ene et al. (2012) 
Stephens et al. (2012) 
Næsset et al. (2013a,b, 2015) 
Bollandsås et al. (2013) 
Magnussen et al. (2014, 2015) 
Massey et al. (2014) 
McRoberts et al. (2014, 2015) 
Sannier et al. (2014) 
Skowronski et al. (2014) 

Melville et al. (2015) 
Saarela et al. (2015a) 
Chirici et al. (2016) 

Examples:  
Breidt & Opsomer  (2000) 
Boudreau et al. (2008) 

Corona et al. (2015)

Examples:  
Ståhl et al. (2011) 
Gobakken et al. (2012) 
Nelson et al. (2012) 
Healey et al. (2012) 

Magnussen et al. (2014) 
Corona et al. (2014) 
Margolis et al. (2015) 
Saarela et al. (2015b) 

Examples:  
McRoberts (2006, 2010) 
Baccini et al. (2008) 
Armston et al. (2009) 
Asner et al. (2010) 
Helmer et al. (2010) 
Magnussen (2015) 
Saarela et al. (2016) 

Fig. 2 Overview of studies on model-assisted, model-based and hybrid estimation
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model-based inference and model-assisted estimation
usually lead to similar total estimates. In case the condi-

tion
Xn

i∈s

yi−ŷið Þ
πi

¼ 0 holds the estimated values will be

identical. However, Saarela et al. (2016) showed that the
model-based variance estimators are less prone to prob-
lems with geolocation mismatches between field plots
and remotely sensed auxiliary data.
Hybrid inference is a straightforward approach in cases

where auxiliary data are not available wall-to-wall and
such data are expensive to acquire. In such cases a sample
of auxiliary data can be selected, upon which the auxiliary
variable totals and means can be estimated and used to-
gether with model predictions that link the auxiliary vari-
ables with the target variable. The approach so far appears
to have been applied only in a limited number of forest in-
ventories, although implicitly it has been used for a long
time in forest inventories where models (such as volume,
biomass and growth models) have been applied based on
data from forest plots (Ståhl et al. 2014).
Overall, the use of models relies on auxiliary data that

are correlated with or otherwise related with the target
variable. Considering the variables normally included in
national forest inventories (Tomppo et al. 2010) it is likely
that a large number of variables would be very difficult to
model in terms of remotely sensed data. This might be the
case for forest floor vegetation, soil properties, and several
types of forest damage. Modelling approaches linked to
such variables would probably not improve the precision
of estimators. Thus, a large number of variables, such as
site index, forest floor vegetation, soil type, etc., are likely
to require probability field samples.

Conclusions
We conclude by noting that all three approaches stud-
ied: model-assisted estimation, model-based inference,
and hybrid inference, have advantages and disadvantages
when applied in large-area forest surveys. A main advan-
tage of model-assisted estimation is that unbiasedness of
estimators does not rely on the suitability of the model,
but the model only helps to improve the precision of an
estimator known to be (approximately) unbiased.
Model-based and hybrid inference rely on the suitability
of the model, but may have several advantages under
conditions where access to field plots is difficult or ex-
pensive. All three approaches rely on the possibility to
develop accurate models, which is possible for several
important forest variables (such as biomass), but not for
all variables that are included in a normal national forest
inventory.
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