502 research outputs found

    Detección y modelado de escaleras con sensor RGB-D para asistencia personal

    Get PDF
    La habilidad de avanzar y moverse de manera efectiva por el entorno resulta natural para la mayoría de la gente, pero no resulta fácil de realizar bajo algunas circunstancias, como es el caso de las personas con problemas visuales o cuando nos movemos en entornos especialmente complejos o desconocidos. Lo que pretendemos conseguir a largo plazo es crear un sistema portable de asistencia aumentada para ayudar a quienes se enfrentan a esas circunstancias. Para ello nos podemos ayudar de cámaras, que se integran en el asistente. En este trabajo nos hemos centrado en el módulo de detección, dejando para otros trabajos el resto de módulos, como podría ser la interfaz entre la detección y el usuario. Un sistema de guiado de personas debe mantener al sujeto que lo utiliza apartado de peligros, pero también debería ser capaz de reconocer ciertas características del entorno para interactuar con ellas. En este trabajo resolvemos la detección de uno de los recursos más comunes que una persona puede tener que utilizar a lo largo de su vida diaria: las escaleras. Encontrar escaleras es doblemente beneficioso, puesto que no sólo permite evitar posibles caídas sino que ayuda a indicar al usuario la posibilidad de alcanzar otro piso en el edificio. Para conseguir esto hemos hecho uso de un sensor RGB-D, que irá situado en el pecho del sujeto, y que permite captar de manera simultánea y sincronizada información de color y profundidad de la escena. El algoritmo usa de manera ventajosa la captación de profundidad para encontrar el suelo y así orientar la escena de la manera que aparece ante el usuario. Posteriormente hay un proceso de segmentación y clasificación de la escena de la que obtenemos aquellos segmentos que se corresponden con "suelo", "paredes", "planos horizontales" y una clase residual, de la que todos los miembros son considerados "obstáculos". A continuación, el algoritmo de detección de escaleras determina si los planos horizontales son escalones que forman una escalera y los ordena jerárquicamente. En el caso de que se haya encontrado una escalera, el algoritmo de modelado nos proporciona toda la información de utilidad para el usuario: cómo esta posicionada con respecto a él, cuántos escalones se ven y cuáles son sus medidas aproximadas. En definitiva, lo que se presenta en este trabajo es un nuevo algoritmo de ayuda a la navegación humana en entornos de interior cuya mayor contribución es un algoritmo de detección y modelado de escaleras que determina toda la información de mayor relevancia para el sujeto. Se han realizado experimentos con grabaciones de vídeo en distintos entornos, consiguiendo buenos resultados tanto en precisión como en tiempo de respuesta. Además se ha realizado una comparación de nuestros resultados con los extraídos de otras publicaciones, demostrando que no sólo se consigue una eciencia que iguala al estado de la materia sino que también se aportan una serie de mejoras. Especialmente, nuestro algoritmo es el primero capaz de obtener las dimensiones de las escaleras incluso con obstáculos obstruyendo parcialmente la vista, como puede ser gente subiendo o bajando. Como resultado de este trabajo se ha elaborado una publicación aceptada en el Second Workshop on Assitive Computer Vision and Robotics del ECCV, cuya presentación tiene lugar el 12 de Septiembre de 2014 en Zúrich, Suiza

    Stairs detection with odometry-aided traversal from a wearable RGB-D camera

    Get PDF
    Stairs are one of the most common structures present in human-made scenarios, but also one of the most dangerous for those with vision problems. In this work we propose a complete method to detect, locate and parametrise stairs with a wearable RGB-D camera. Our algorithm uses the depth data to determine if the horizontal planes in the scene are valid steps of a staircase judging their dimensions and relative positions. As a result we obtain a scaled model of the staircase with the spatial location and orientation with respect to the subject. The visual odometry is also estimated to continuously recover the current position and orientation of the user while moving. This enhances the system giving the ability to come back to previously detected features and providing location awareness of the user during the climb. Simultaneously, the detection of the staircase during the traversal is used to correct the drift of the visual odometry. A comparison of results of the stair detection with other state-of-the-art algorithms was performed using public dataset. Additional experiments have also been carried out, recording our own natural scenes with a chest-mounted RGB-D camera in indoor scenarios. The algorithm is robust enough to work in real-time and even under partial occlusions of the stair

    Detection and modelling of staircases using a wearable depth sensor

    Get PDF
    In this paper we deal with the perception task of a wearable navigation assistant. Specifically, we have focused on the detection of staircases because of the important role they play in indoor navigation due to the multi-floor reaching possibilities they bring and the lack of security they cause, specially for those who suffer from visual deficiencies. We use the depth sensing capacities of the modern RGB-D cameras to segment and classify the different elements that integrate the scene and then carry out the stair detection and modelling algorithm to retrieve all the information that might interest the user, i.e. the location and orientation of the staircase, the number of steps and the step dimensions. Experiments prove that the system is able to perform in real-time and works even under partial occlusions of the stairway

    A framework for evaluating stereo-based pedestrian detection techniques

    Get PDF
    Automated pedestrian detection, counting, and tracking have received significant attention in the computer vision community of late. As such, a variety of techniques have been investigated using both traditional 2-D computer vision techniques and, more recently, 3-D stereo information. However, to date, a quantitative assessment of the performance of stereo-based pedestrian detection has been problematic, mainly due to the lack of standard stereo-based test data and an agreed methodology for carrying out the evaluation. This has forced researchers into making subjective comparisons between competing approaches. In this paper, we propose a framework for the quantitative evaluation of a short-baseline stereo-based pedestrian detection system. We provide freely available synthetic and real-world test data and recommend a set of evaluation metrics. This allows researchers to benchmark systems, not only with respect to other stereo-based approaches, but also with more traditional 2-D approaches. In order to illustrate its usefulness, we demonstrate the application of this framework to evaluate our own recently proposed technique for pedestrian detection and tracking

    Competing in the RoboCup Rescue Robot League

    Get PDF
    RoboCup Rescue is an international competition in which robots compete to find disaster victims in a simulated earthquake environment. It features both a Rescue Simulation League (RSL) which is entirely computer simulated, and a Rescue Robot League (RRL) with real robots and a test arena. This paper will describe the experience gained sending an undergraduate team to compete in the Rescue Robot League at the RoboCup German Open in 2008 and 2009. The design of the test arena and the rules of the competition will be outlined; as will the approaches taken by different teams; and the competition results

    Indoor assistance for visually impaired people using a RGB-D camera

    Get PDF
    In this paper a navigational aid for visually impaired people is presented. The system uses a RGB-D camera to perceive the environment and implements self-localization, obstacle detection and obstacle classification. The novelty of this work is threefold. First, self-localization is performed by means of a novel camera tracking approach that uses both depth and color information. Second, to provide the user with semantic information, obstacles are classified as walls, doors, steps and a residual class that covers isolated objects and bumpy parts on the floor. Third, in order to guarantee real time performance, the system is accelerated by offloading parallel operations to the GPU. Experiments demonstrate that the whole system is running at 9 Hz

    Robot-assisted smart firefighting and interdisciplinary perspectives

    Get PDF
    Urbanization and changes in modern infrastructure have introduced new challenges to current firefighting practices. The current manual operations and training including fire investigation, hazardous chemicals detection, fire and rescue are insufficient to protect the firefighter's safety and life. The firefighting and rescue functions of the existing equipment and apparatus and their dexterity are limited, particularly in the harsh firefighting environments. It is well-established that data and informatics are key factors for efficient and smart firefighting operation. This paper provides a review on the robot-assisted firefighting systems with interdisciplinary perspectives to identify the needs, requirements, challenges as well as future trends to facilitate smart and efficient operations. The needs and challenges of robot-assisted firefighting systems are firstly investigated and identified. Subsequently, prevailing firefighting robotic platforms in literature as well as in practices are elaborately scrutinized and discussed, followed by investigation of localization and navigation support methods. Finally, conclusions and future trends outlook are provided

    Unifying terrain awareness for the visually impaired through real-time semantic segmentation.

    Get PDF
    Navigational assistance aims to help visually-impaired people to ambulate the environment safely and independently. This topic becomes challenging as it requires detecting a wide variety of scenes to provide higher level assistive awareness. Vision-based technologies with monocular detectors or depth sensors have sprung up within several years of research. These separate approaches have achieved remarkable results with relatively low processing time and have improved the mobility of impaired people to a large extent. However, running all detectors jointly increases the latency and burdens the computational resources. In this paper, we put forward seizing pixel-wise semantic segmentation to cover navigation-related perception needs in a unified way. This is critical not only for the terrain awareness regarding traversable areas, sidewalks, stairs and water hazards, but also for the avoidance of short-range obstacles, fast-approaching pedestrians and vehicles. The core of our unification proposal is a deep architecture, aimed at attaining efficient semantic understanding. We have integrated the approach in a wearable navigation system by incorporating robust depth segmentation. A comprehensive set of experiments prove the qualified accuracy over state-of-the-art methods while maintaining real-time speed. We also present a closed-loop field test involving real visually-impaired users, demonstrating the effectivity and versatility of the assistive framework

    StairNetV3: Depth-aware Stair Modeling using Deep Learning

    Full text link
    Vision-based stair perception can help autonomous mobile robots deal with the challenge of climbing stairs, especially in unfamiliar environments. To address the problem that current monocular vision methods are difficult to model stairs accurately without depth information, this paper proposes a depth-aware stair modeling method for monocular vision. Specifically, we take the extraction of stair geometric features and the prediction of depth images as joint tasks in a convolutional neural network (CNN), with the designed information propagation architecture, we can achieve effective supervision for stair geometric feature learning by depth information. In addition, to complete the stair modeling, we take the convex lines, concave lines, tread surfaces and riser surfaces as stair geometric features and apply Gaussian kernels to enable the network to predict contextual information within the stair lines. Combined with the depth information obtained by depth sensors, we propose a stair point cloud reconstruction method that can quickly get point clouds belonging to the stair step surfaces. Experiments on our dataset show that our method has a significant improvement over the previous best monocular vision method, with an intersection over union (IOU) increase of 3.4 %, and the lightweight version has a fast detection speed and can meet the requirements of most real-time applications. Our dataset is available at https://data.mendeley.com/datasets/6kffmjt7g2/1

    Fast Staircase Detection and Estimation using 3D Point Clouds with Multi-detection Merging for Heterogeneous Robots

    Full text link
    Robotic systems need advanced mobility capabilities to operate in complex, three-dimensional environments designed for human use, e.g., multi-level buildings. Incorporating some level of autonomy enables robots to operate robustly, reliably, and efficiently in such complex environments, e.g., automatically ``returning home'' if communication between an operator and robot is lost during deployment. This work presents a novel method that enables mobile robots to robustly operate in multi-level environments by making it possible to autonomously locate and climb a range of different staircases. We present results wherein a wheeled robot works together with a quadrupedal system to quickly detect different staircases and reliably climb them. The performance of this novel staircase detection algorithm that is able to run on the heterogeneous platforms is compared to the current state-of-the-art detection algorithm. We show that our approach significantly increases the accuracy and speed at which detections occur.Comment: 7 pages, 8 Figures, 2 Table
    corecore