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Abstract

Stairs are one of the most common structures present in human-made scenarios, but also one of the most dangerous for those
with vision problems. In this work we propose a complete method to detect, locate and parametrise stairs with a wearable RGB-D
camera. Our algorithm uses the depth data to determine if the horizontal planes in the scene are valid steps of a staircase judging
their dimensions and relative positions. As a result we obtain a scaled model of the staircase with the spatial location and orientation
with respect to the subject. The visual odometry is also estimated to continuously recover the current position and orientation of the
user while moving. This enhances the system giving the ability to come back to previously detected features and providing location
awareness of the user during the climb. Simultaneously, the detection of the staircase during the traversal is used to correct the drift
of the visual odometry. A comparison of results of the stair detection with other state-of-the-art algorithms was performed using
public dataset. Additional experiments have also been carried out, recording our own natural scenes with a chest-mounted RGB-D
camera in indoor scenarios. The algorithm is robust enough to work in real-time and even under partial occlusions of the stair.
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1. Introduction

The inability to see properly affects many aspects of the life
of the people who suffer from vision loss such as the ability
to read text or interpret signs, the recognition of objects and
people, or problems related to mobility. Giving assistance to
the visually impaired has been a relevant topic for many years in
the computer vision community, and many advances have been
accomplished in some specific tasks. However, it still remains
hard to integrate them naturally.

In this work, we deal with the mobility problems derived
from visual impairment. Safely moving from one point to an-
other poses some difficulties, e.g. presence of (moving) obsta-
cles, traffic, orientation issues or the detection of curbs or doors.
Some of these problems can be overcome by previous knowl-
edge of the environment or with the help of mobility aids such
as the white cane or guide dogs. Nevertheless, even when mov-
ing in familiar environments or using a mobility aid, visually
impaired people are still prone to be involved in accidents. Ac-
cording to the survey performed in [1], 7% of the respondents
experienced falls while walking at least once a month. It also
mentions that the frequency of accidents has nothing to do with
the type of mobility aid or the number of times going out along
unfamiliar routes.

Although the reliability, feedback, simplicity and price of
the white cane seems unbeatable, we believe with modern sen-
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sors and techniques the navigating experience can be enhanced
comfortably. Some researchers studied how to make the cane
smarter [2, 3]. In contrast, in our proposal we intend to attach
the sensors to the user, using a wearable camera. The idea is to
complement rather than replace, increasing and improving the
amount of information they can already receive by other means.

One of the biggest challenges of using cameras as the main
sensor in navigation is the geometric reconstruction of the en-
vironment, which is often solved using SLAM algorithms or
camera systems that are able to retrieve depth information from
the scene, e.g. stereo vision or Time-Of-Flight (TOF) cameras.
These systems are either complex to use and calibrate (stereo)
or heavy and expensive (TOF). However, since 2010, low cost
domestic cameras providing both colour and depth information
have been launched to the market, causing a great impact on
the field. This type of sensors, called RGB-D, provides a fast
and reliable geometric reconstruction in one single shot, which
makes them interesting for navigation tasks. They are based
on structured IR light, technology that currently prevents them
from working properly in daylight. As a consequence we lim-
ited our experimental work to indoor scenarios.

Regarding the location of the camera, our experimental set-
up currently places the camera in a chest harness, pointing ap-
proximately 45◦ downwards (Fig. 1). We prefer this configura-
tion to the head-mounted one as in this way the camera is more
stable and is always pointing at the region in front of the user,
causing safer travelling in terms of avoiding obstacles and, con-
sequently, reducing falls or collisions. Also, as stated in [4], a
chest-mounted configuration is likely the most social accept-
able one as it interferes the least in social interaction. The sys-
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Fig. 1. Photos of the current wearable camera system while detection (left)
and traversal (right). The camera is placed on the chest, pointing downwards.
The computations are performed in a laptop carried in a backpack.

tem is designed to work well with natural movements of a per-
son, even though an inclination of the sensor of ≈ 45◦ is needed
for initialization and suggested for security and functional rea-
sons during the run. The processing has to be performed in
a laptop at the moment, though new advances in both RGB-D
cameras and processing units promise the possibility of devel-
oping more comfortable configurations in the near future.

In this work, we present a method which takes advantage of
RGB-D cameras in the tasks of stair detection, modelling and
traversal. Stairs are omnipresent structures in human made en-
vironments that allow humans to displace vertically between
different floors, but also a source of potential accidents. RGB-
D cameras can assist enormously, as stairs usually have a sim-
ilar shape which can be perceived by these instruments. This
stair detection method is thought to be part of a more gen-
eral personal assistant based on computer vision which includes
other applications such as obstacle detection and audio interface
[5, 6]. In our current framework, we have included the estima-
tion of the visual odometry from [7] during the navigation in
order to maintain location awareness and to know the relative
position to relevant features in the scene even when they are not
in the current view.

A diagram summarizing how the system works is shown in
Fig. 2. The sensor provides RGB and Depth images which are
used to compute a 3D Point Cloud [8] and to feed the visual
odometry estimation. With the 3D Point Clouds we perform a
planar segmentation of the scene, compute the relative transfor-
mations of the user to the environment and obtain a classifica-
tion of the planes according to their orientation. Unidentified
vertical planes and clusters of points are classified as obstacles
to be avoided in our system. The horizontal planes classified
as step candidates are run through the stair detection and mod-
elling algorithm. When the system detects that the user has
reached the proximity of the staircase the system proceeds with
the stair traversal algorithm, able to recover the position of the
user along the stairway using the user pose estimated with the
visual odometry module. Simultaneously, the live information
from the camera is used to correct the visual odometry drift.

To summarize, our contributions are the following:

Fig. 2. Block diagram of one iteration of the main loop of the proposed
method.

• Development a stair detection algorithm from point clouds
integrated in a more general obstacle detection navigation
framework. The algorithm models the stair dimensions
and orientation with respect to the user which better fits
the cloud for navigation and validation purposes.

• Development of a stair traversal algorithm which takes ad-
vantage of the visual odometry to complete the model of
the full staircase, and to retrieve at any time the step in
which the user stands.

• Reciprocally, the current view during the traversal is used
to correct the drift of the visual odometry module.

This work extends what was presented in [9], where we ad-
dressed the stair detection and modelling part in a RGB-D nav-
igation framework. In this paper we have added the visual
odometry module and addressed the traversal, as well as en-
hanced the earlier approach with some inclusions. For instance,
as we deal only with indoor scenes, we retrieve the Manhattan
directions [10] to make a faster and simpler stair modelling,
considering staircases most likely follow that convention in
such type of environments. Experiments to test our system’s
detection ratio, quality of the model, temporal performance and
drift correction during traversal have been made and included
at the end of this work.

2. Related Work

The usage of cameras to detect obstacles for human navi-
gation has been widely approached in the field of visually im-
paired aids. For instance, a combination of obstacle detection
with a stereo-based SLAM for developing a visually impaired
aid was performed in [11]. With the SLAM estimate of the
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visual odometry and the 3D map, they perform a traversabil-
ity analysis of the environment. A tactile interface situated on
a vest steers the subjects away from obstacles along the path.
A more recent version of the system presented in [12] using a
RGB-D camera instead of a stereo system improved the results
in robustness. Other approaches with different interfaces for
blind navigation are [13, 14]. Aladren et al. [5] improved the
way-finding by fusing data from the depth and RGB camera;
the latter being used to extend the information recovered by the
depth planar segmentation. In this case, the presence of obsta-
cles or walls is communicated to the user with audio signals.

However, these works do not deal specifically with the de-
tection of stairs. Different approaches with different types of
sensors have been used for detecting stairs. For instance, con-
ventional cameras were used by Se and Brady [15]. They use
grayscale images to detect and estimate the orientation and
slope of staircases in order to help partially sighted people. In
the same vein, Hernandez et al. [16] propose to find the diag-
onal lines corresponding to the handrails to select stair candi-
dates. Hesch et al. [17] focus on detecting descending staircases
for small ground robots in both far and near distance. Stairs are
usually characterized by a distinctive shape formed by a flight
of steps, which makes the sensors capable of measure depth the
most appropriate for the task, as they provide richer informa-
tion. In [18], Ishiwata et al. develop a visually impaired assis-
tant using a small laser range sensor. Lu et al. [19] combine
the use of the geometry information provided by a stereo sys-
tem with the RGB data to make the system less prone to error.
Pradeep et al. [20] use stereo vision to estimate normals and
planes of the scene. Gutmann et al. proposed a stair detection
algorithm for humanoid robots in [21] where the stereo vision
system segments the scene into planar surfaces.

The laser-based sensors are often expensive and heavy,
whereas the stereo cameras have troubles in scenes with poor
textures. The recent appearance in the consumer market of
modern RGB-D cameras such as Microsoft Kinect or Asus
Xtion Pro Live have become a new and powerful election to
work on this topic. Using structured IR light technology, the
RGB-D cameras provide a dense depth map in every frame
right away. Some authors make use of these sensors apply-
ing machine learning algorithms to perform staircase detection.
In the case of [22], Filipe et al. use neural networks to detect
the presence of obstacles and classify scenes captured by the
depth camera among ascending staircase, descending staircase
or none. Wang and Tian used a similar approach in [23], where
the groups of parallel concurrent lines in the RGB image de-
tected by the Hough transform are classified between stairs and
pedestrian crosswalks using the depth information.

Other authors preferred the usage of geometrical reasoning
instead of machine learning to detect staircases with RGB-D
[24, 25, 26]. This is the approach we also consider to solve
this problem. The absence of the retrieval of the fully measured
model of the staircase in [24, 25] leads to misdetections, as our
comparison of results prove. They use a RANSAC approach
for finding planes in the scene that outputs at each step a set
of points at certain height not using any other shape constraint
but the sum of sufficient points. Delmerico et al. in [26] pro-

posed an ascending stairway localization and modelling with
the goal of checking for traversability and enable autonomous
multi-floor exploration. The stair edge detection, which is the
starting point of their algorithm, is based on abrupt changes in
depth that only appear in ascending staircases when the sensor
is lower than the steps, requiring e.g. a small robot.

The traversal of staircases has not been treated thoroughly
regarding visually impaired aids, but there have been some ap-
proaches in humanoid robotics. Oßwald et al. in [27] studied
two planar segmentation approaches to model staircases using
the laser range data acquired by tilting the head of a humanoid
robot. In [28] they show how the model obtained is used as
input for the traversal of a spiral staircase combined with the
laser data, the joint encoders, and an IMU to localise and re-
trieve the pose of the robot during the climb. The information
is fused with the edge detection of the images from a camera
pointing downwards to help the robot refine his pose for stair
climbing. Our work present some similarities, although only
the RGB-D sensor is used to compute the model, the pose, and
the close-range refinement.

3. Scene segmentation and classification

In a visual assistant, in order to perform any complex task it
is necessary to recognise the features in the surroundings. The
starting point in this work is the partition of the environment
in clusters of points by a segmentation process (Section 3.1).
To give context to these segments it is necessary to calculate
how the scene is oriented with respect to the user (Section 3.2).
Once we have calculated the main transformations of the scene
it is possible to classify the planar segments according to their
orientation and localise the step candidates (Section 3.3).

3.1. Segmentation

In most human-made scenarios, the basic structure of the
scene is a combination of planes at different orientations. Range
sensors have proven to be extremely helpful for planar segmen-
tation, and many algorithms have been developed through the
years [29, 30, 31, 32]. We use the algorithm from [30], inte-
grated in the Point Cloud Library (PCL) [8]. This algorithm
outputs delimited regions of points with similar normal orien-
tations and spatially lying on a unique 3D plane. Prior to this
phase the point cloud is filtered to reduce the amount of data
and then a normal extraction algorithm is applied with the fol-
lowing stages:

Downsampling. Each point cloud has a large quantity of points
(640 × 480) which provides redundant information and makes
further computations highly time-consuming (Fig. 3 (a)). Thus,
the first operation is downsampling. We apply the 3D voxel grid
filter from [8] to the point cloud, i.e. a 3D division of the space
in a grid of 3D boxes (voxels) inside of which there is only one
point (the centroid) instead of the initial set of points contained.
The size of the edges of the voxels is determined by balancing
time consumption and accuracy. Big voxels improve the perfor-
mance rate but reduces the accuracy of the models. Typically,
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Example of the segmentation process used in this work: (a) Initial
coloured point cloud as retrieved by the camera. (b) Cloud after applying a
voxel grid filter. (c) Normal extraction. (d) After the region-growing
algorithm, where the planar regions are coloured in random colours. (e)
Non-planar clusters from the Euclidian Cluster Extraction algorithm coloured
randomly. (f) Classification of planes (yellow = vertical, blue = horizontal,
green = floor, red = others). Best viewed in colour.

a size of voxels of about 3 − 4cm worked well for us. This
is a common algorithm widely used for downsampling point
clouds, which also helps removing noise and smoothing the
surfaces. As a result of the downsampling we define the point
cloud PC =

{
pC

1 , p
C
2 , ...,p

C
i , ...p

C
n−1, p

C
n

}
, where pC

i =
(
xC

i , y
C
i , z

C
i

)
represents each of the n points in the scene in the camera refer-
ence C (Fig. 3 (b)).

Normal estimation. The surface normal estimation is based on
the Principal Component Analysis (PCA) [8], consisting in the
analysis of the eigenvectors and eigenvalues of a covariance
matrix created from the nearest neighbours of every point pi.
The eigenvector associated with the smallest eigenvalue corre-
sponds to the normal direction ni (Fig. 3 (c)). We considered
the neighbours in a small radius (5cm around the points) to re-
duce the computation time and be able to detect sharper edges.
In this process the curvature of the surfaces ci is also computed
to feed the following stage.

Region-growing. This algorithm [30] starts from a seed, which
is the point with minimum curvature, and then expands the re-
gion towards the neighbouring points that have small normal
deviation and similar curvature value. The neighbouring points
which satisfy the normal and curvature threshold become the

xC0

zC0

yC0

xCk

zCk yCk

CoTCk

zF

yF = yM

xFzM

xM

FTM

CTF

vF

Fig. 4. Main transformations of the algorithm. C0 TCk : from the initial camera
reference frame (Ct=0 = C0) to the camera in t = k (Ck). CTF : from the
camera reference frame (C) to the floor (F). FTM : Transformation from the
floor reference frame (F) to match the Manhattan directions (M). Best viewed
in colour.

new seeds and the process is repeated until the region cannot
expand any more. Then, a new initial seed is chosen among the
remaining points, and the process starts over until the regions
found are smaller than a certain pre-established threshold. The
thresholds we set in normal deviation and curvature values are
respectively 6◦ and 0.5. The minimum size of a region is set at
50 points.

We get as output a set of regions RC = {RC
k } where RC

k ⊆ PC

(Fig. 3 (d)). Usually all pk
i =
(
xk

i , y
k
i , z

k
i

)
∈ RC

k lie on a plane
Ak xk

i +Bkyk
i +Ckzk

i +Dk = 0 where (Ak, Bk,Ck,Dk) are the plane
coefficients of RC

k , but they can also form a curved surface with
smooth transitions. As the ground, walls, doors or steps are
all planes, it is important to check this condition. A RANSAC
algorithm seeks for the biggest plane in each region. If most of
the points are inliers (we set more than 80%), it is considered
a planar surface with the plane equation obtained and therefore
normal vector nC

k = (Ak, Bk,Ck) and distance to the origin Dk.

Euclidean cluster extraction. The points still not belonging to
any region go through a cluster extraction algorithm which es-
tablishes connections and forms separate entities just by look-
ing at their Euclidean position in the scene and ignoring normal
orientations. In this operation we group in the same instance
all the points that form isolated objects in the scene in a set of
clusters CC = {CC

k } where CC
k � RC (Fig. 3 (e)).

3.2. Scene orientation

As the points of the cloud are referenced to the camera, a
change of the reference system is necessary to determine the
position with respect to the user in order to provide a more nat-
ural way to understand the environment and the movements of
the person. Besides, the fact that most human-made indoor sce-
narios are composed by planes situated in three dominant ori-
entations can be used in our benefit.
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3.2.1. Camera to floor
The information from the camera is not very useful on its

own when reasoning about the scene if the relative position of
the camera to the world is unknown. We move the reference
frame from the camera to the floor by computing the transfor-
mation CTF as shown in Fig. 4. That way all the planes will
be properly oriented and the height of the points with respect
to the floor allows to draw conclusions about the nature of the
objects in the scene.

The computation of this transformation requires to find the
floor plane (in Fig. 4 the green plane with normal vF). As
no other sensor has been used for this task, the only previ-
ous knowledge is the approximate location of the camera on
the chest. A RANSAC procedure is used to find the biggest
planes one by one, and the relative distance and orientation of
each plane with respect to the camera are analysed to determine
whether it is floor or not. The rules to verify this are:

• The orientation of the normal must be coherent with the
orientation of the camera in the chest. For example, in
Fig. 4 it would be an approximate rotation of ≈ 180◦ in zC

and of ≈ 45◦ in xC so the yF matches the floor normal vF .

• The distance of the plane to the camera should be within
a provided valid range which depends on the height of the
user.

• It is very likely that the floor appears close to the subject,
as the camera points down. So we can consider for floor
detection points closer than a certain threshold in zC .

This computation requires relaxed thresholds to not discard
valid portions, as conditions can vary due to the movement and
the height of the subject; but they should quickly discard planes
belonging to instances such as walls or tables. In our implemen-
tation the inclination of the camera is not restricted to 45◦, but
within a valid range of 20◦ − 70◦ and the height of the camera
from the floor within 1 − 1.6m. The distance to consider points
as inliers in the RANSAC is the voxel edge size. The last con-
dition could be useful to discard the planes which are extremely
close to the floor, such as steps, which could deceive the algo-
rithm. The algorithm typically start searching within zC = 1m
and progressively increasing the threshold until a valid plane is
found.

3.2.2. Floor to Manhattan
We assume that most indoor scenes satisfy the Manhattan

World assumption [10], i.e. most planes have normals in three
mutual orthogonal directions. This reduces a lot of reasoning
about the environment. In our case of study we are going to use
it to retrieve the directions of the stairs, as most certainly lie in
that convention. The stair must be properly oriented to get the
model that fits the points better.

To acquire the Manhattan directions (iM , jM , kM) in the scene
we can take advantage of the previous transformation floor CTF ,
as it already matches the vertical direction (jM = yF). The prob-
lem is then reduced to find iM and kM . After the segmentation
we have a set of planes with their normal directions and their

Minimum 
step 
height

S1

S2

S3

S4

Hmin H1

Hmax
H2

H3

H4

H1

Fig. 5. Classification of planes regarding orientation and height. Horizontal
planes are classified among Floor (green), Obstacles (red) or Step candidates
(blue) depending their distance to the floor. Vertical planes (yellow) are used
to compute FTM . Best viewed in colour.

number of points. The two orthogonal directions which satisfy
the greater number of points are the iM and kM . To solve the am-
biguity of these directions we choose as kM the one that have
less angle with the vector pointing out to the front of the user
(zF). In Fig. 4 the xM share directions with the blue and purple
planes and zM with the orange one. Throughout iterations the
FTM is recalculated but maintaining the orientation convention
assumed.

3.3. Classification of regions

Once we have the planar regions with their normals and the
transformations to the Manhattan directions, we can transform
the regions RC to the new reference frame RM . The regions
are then classified regarding their orientation and relative posi-
tion. To consider a plane parallel or perpendicular to another a
threshold of 10◦ is considered in every case.

The planes which are perpendicular to the floor are classified
as vertical (e.g. walls, doors, risers, furniture). These are the
planes used to obtain the Manhattan directions of the environ-
ment. As we have these directions, extended reasoning about
the orientation of the walls can be done and new subcategories
of vertical planes can be added (left, right, frontal).

The planes which are parallel to the floor are horizontal. The
distance of the planes to the floor (Hk) is considered for further
analysis, considering the dimensions regulated by the Techni-
cal Edification Code1 (Fig. 5). According to the Code the verti-
cal distance between two consecutive steps ranges from a min-
imum Hmin = 13cm to a maximum Hmax = 18.5cm. Hori-
zontal regions are considered as step candidates if they are sit-
uated above (in ascending stairways) or below (in descending
ones) Hmin from the floor. The floor must have height zero
given the transformation FTM and other planes whose height
does not fit above descriptions are considered obstacle. To
evaluate this condition it is necessary to add a threshold as

1Código Técnico de la Edificación (2006). CTE, DB-SUA, section 1.4.2.,
http://www.codigotecnico.org/
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the measurements can be noisy. Other size and shape restric-
tions are kept to a minimum at this point because they could
discard valid portions of steps which might be useful for a
better modelling of staircases. From this operation we get a
set of step candidates S =

{
S 1, S 2, ..., S i, ...S ns−1, S ns

}
where

S i = {Rk | ‖nk × yF‖ ≈ 0, |Hk | ≥ Hmin} and ns is the number
of step candidates. The existence of a set of at least one step
candidate activates the stair detection algorithm.

The planes which are not perpendicular nor parallel to the
ground are kept also as obstacles and removed from further
analysis. In Fig. 3 (f) there is an example of the classification.

4. Stair detection and modelling

The step candidates obtained in Section 3.3 are the input of
the stair detection and modelling algorithm, whose output con-
sists in the detection and retrieval of a scaled model of the stair-
case. At this moment, the algorithm is functional with both
ascending and descending staircases. Isolated single steps can
also be detected. The algorithm is able to overcome partial oc-
clusions of a stairway splitting steps in more than one region
in the detection. Spiral staircases can be detected but the mod-
elling part has not been addressed yet.

4.1. Stair detection

The detection consists in determining whether the ns step
candidates form a staircase or not. The algorithm establishes
connections among the candidates to discard the ones that do
not belong to the staircase and to group the regions that do be-
long in levels according to the distance in steps to the floor.
The connectivity between step candidate regions S A and S B

has been computed considering there is at least a minimum pre-
established number of points from S A inside a valid range of
distances from S B. In this case, we set a radius of 0.5m for the
neighbour search and a minimum amount of 10 points to set a
valid connection. The candidates are analysed one by one start-
ing from the closest to the floor, and verifying the connections
to the previously established levels every time (Fig. 6 (a)).

We define a set of levels L = {Lj}, where j = 0..nL and nL

is the highest level detected. The level zero is occupied by the
floor, so initially nL = 0. The candidates whose centroid is
between Hmin and Hmax to the ground constitute the first step
candidates (Fig. 6 (b)). The first step must be connected to
the floor if it is present in the image (Fig. 6 (c)). If no first
step candidate satisfies neighbouring conditions, the algorithm
determines there is no staircase. Otherwise, L1 = S 1 (where
Hmin ≤ H1 ≤ Hmax) is established, and nL = 1.

The algorithm takes the remaining step candidates by height
and starts testing connectivity and height conditions to deter-
mine whether they belong to a new (Fig. 6 (d)) or to the current
level (Fig. 6 (e)). In case they belong to the current level (a step
candidate is considered the same height if it is within ±3cm),
the step candidate regions fuse in one single point cloud form-
ing the level. If they have no connection to previous levels (e.g.
a horizontal plane correspondent to a table) they are classified
as obstacles (Fig. 6 (f)). As a result, a set of connected regions

1

34

2

5

Hmax

Hmin

(a) (b)

Level 1

Level 2

(c) (d)

Level 2 x

(e) (f)

Fig. 6. Explicative sketches for the stair detection algorithm. (a) Select the
candidates in order. (b) First step must be in the valid range of heights. (c)
First step must be connected to the floor if it is visible. (d) and (e) The
connectivity to previous levels is checked doing a neighbour search. (f) If the
candidate is not connected to the previous level, it is not part of the staircase.

Algorithm 1 Stair detection algorithm
Step candidates list S =

{
S 1, S 2, ..., S i, ...S ns−1, S ns

}
Levels list L =

{
Ø
}

L0 = Rf loor;
nL = 0;
S = sortByHeight(S );
if (S 1.height > Hmax) then

stair = false;
else

stair = true;
for i = 1 : ns do

S i.is connected = false;
for j = 0 : nL do

if (areConnected(S i, Lj)) then
S i.is connected = true;

end if
end for
if S i.is connected then

if (S i.height ≈ LnL .height) then
LnL .points ∪ S i.points;

else
nL = nL + 1;
LnL = S i;

end if
end if

end for
end if
return stair
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Fig. 7. Example of stair detection with both ascending and descending stairs
(left) and with more than one region per level (right). The connectivity is
traced with white arrows.

corresponding to different levels is obtained (Fig. 7). The algo-
rithm is summarized in Algorithm 1. When all the candidates
have been checked and the number of levels is greater than one,
the system proceeds with the modelling of the staircase.

A special case occurs when there is only one step candidate.
It might either actually be the first step of a staircase, or be
just a single curb on the way. Curbs are a singular case, some-
times omitted by stair detection algorithms, but dangerous as
well. Here, more strict area and shape analysis can be applied
in order to determine in which case we are, as we know the
measurements of the steps according to the regulations. For ex-
ample, if the candidate is within the valid range of heights but
does not satisfy size conditions because is too small then it is
an obstacle. If it is too big then it is floor at another level and it
is a single curb.

4.2. Stair modelling

A staircase is basically a flight of steps between two floors.
The shape of the staircases can have some differences regarding
the presence of absence of the riser or the inclination it might
have. We are going to consider a unified model for all the pos-
sible cases, where the steps are defined by a horizontal rectan-
gular plane of lwidth × llength and a vertical rectangular plane of
lwidth × lheight which links the horizontal plane to the previous
level. The line where two planes intersect is called the edge
of the step. Every staircase is also oriented according to three
orthogonal directions whose pose with respect to the user is rel-
evant to guide the subject towards it. In the modelling phase
we are going to retrieve the lwidth, llength, lheight and CTS as de-
picted in Fig. 8. The model can be then drawn for the number
of levels detected in the previous stage (nL). If the traversal of
the staircase is then performed, the final number of levels can
be obtained, with the procedure explained in Section 5.

The extraction of the measurements is correlated with the ex-
traction of the CTS , for which first we need to define the three
main directions of the stair, (xS , yS , zS ). We have developed
two ways to do this:

• Considering stairs are oriented according to the Manhattan
assumption (i.e. (xS , yS , zS ) = (xM , yM , zM)).

• Method based on the Principal Component Analysis of the
step candidates.

xC

zC yC

ys

zs
xs

llength

lwidth

lheight

CTS

Fig. 8. Parameters to compute for the modelling: lwidth, llength, lheight and CTS .

The better option of the two depends on the type of scene:
scenes populated with big structural planes (coming from a side
wall or the risers, for instance) work better with the first one,
whereas scenes with mainly horizontal planes (e.g. isolated
stairs, no risers) work better with the second. The Manhat-
tan World option is used when there are enough planes with
normals in horizontal directions that allow us to call the scene
“Manhattan World scene”. We determine this circumstance
by a threshold empirically set at a percentage of “Manhattan
points” of the total number of points. The PCA option is more
time consuming, so only is used when there is not enough ev-
idence of the Manhattan directions of the scene. This method
can always be applied, as it is based on the step candidates al-
ready detected (i.e. if there is no step candidates the modelling
does not even start). However, when the observation of the steps
is partial due to occlusions it could lead to erroneous solutions
(hence, it is the second choice). From here on the PCA method
is detailed as follows:

From the last stage we have a level-organised set of points
corresponding to each visible step. We can perform a Principal
Component Analysis (PCA) in every set of points to retrieve
their main directions and initial estimate of their measurements
by defining the bounding rectangle which encloses all the points
in these directions. From this procedure we get a collection of
principal components and measurements which presents high
variance (Fig. 9 (a)). To solve this we choose one step as best
initial guess: the one with greater extent. We define extent as
the ratio of the area of the concave hull and the area of the
rectangle as defined in Fig. 9 (b). The principal components of
this step are rotated to match the normal of the floor (if visible)
and then the other axes are rotated until the sum of areas of
the bounding rectangles using these directions in all steps is
minimised. With this last operation you make sure that the axis
of the model fits the points of the stair in the best way (Fig. 9
(c)).

Once the directions have been computed, the bounding rect-
angles of each step present different dimensions, so the final
stage consists in defining the global dimensions of the staircase.
The lwidth can be chosen as the largest value of all, whereas the
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Concave hull area

Bounding rectangle

Bounding rectangle area

(a) (b)

(c)

Fig. 9. (a) Principal components for each step coloured in order
(blue-green-red) and bounding rectangle in white. (b) Illustrative sketch of the
different components involved in the standalone algorithm. (c) Example of the
rotation of the selected axis to minimise the area of the bounding box with the
points of one single step. It needs to be done with all the steps at the same time
in order to obtain the final direction that fits best the staircase.

lheight is considered the average of vertical distances between
the centroids of consecutive steps. The llength is the average
horizontal distance between the edge of every two consecutive
steps. The definitive length of the steps is computed this way
because the vertical projection of the bounding rectangles of
two consecutive steps usually overlaps in ascending staircases
due to inclining or non-existent risers, or leaves a gap in de-
scending staircases due to self occlusions (Fig. 10). It causes
that the length you see in ascending staircases is more than
what we use for our model, whereas in descending staircases
some valid portion of the step is hidden.

Once we have all the parameters, we can use them to validate
the staircase detection or discard false positives, as we know the
appropriate dimensions steps must have by regulations. The
S TC can be obtained using as rotation matrix the three stair di-
rections as described, and as translation vector the coordinate
in the camera reference frame of the centre of the edge of the
first step of the staircase. Alternatively, the translation part can
direct the subject to one of the ends of the edge of the first step,
where the handrails are expected to be.

5. Odometry-aided stair traversal

Odometry is the process of using the data from sensors to re-
trieve the change of position and orientation over time. When
the sensors being used are cameras it is called visual odometry.
In this work we estimate the visual odometry using the infor-
mation from both RGB and depth cameras. This information
does not need to be used all the time, but it can be of great help
as it adds some kind of memory to the system.

Calling the initial reference frame of the camera C0, and the
reference frame in the instant k as Ck, we define the transfor-
mation provided by the visual odometry as C0 TCk (Fig. 4). In

Fig. 10. The length of the steps for our model does not usually match the
length of the bounding rectangles of the steps as detected. For instance,
non-existent risers in ascending staircases (top-left) or any descending
staircase (top-right). The step length is shortened (bottom-left) or extended
(bottom-right) until the edge of the step above.

theory, this transformation could be used to displace any fea-
ture captured at any given time to a common geometrical refer-
ence. In practice, the sensor localization has some drift, which
increases through iterations. As our goal is far away from map-
ping, we use the odometry as a rough estimate of the position
of the stairs when they are no longer visible.

However, when there are known structures in the image, we
can use that information to correct the drift. We do that during
staircase traversal, where we can use the currently seen posi-
tions of the steps to correct that drift.

5.1. Visual odometry module
For the visual odometry from RGB-D there are many ap-

proaches [33, 34]. We use the method presented by Gutierrez-
Gomez et al. [7], where visual odometry is obtained in real time
from the dense RGB and inverse depth maps by establishing
pixel-wise constraints through the flow equations.

Let us denote two camera frames as A and B, at instants t
and t + ∆t respectively. Given the intensity images IA and IB,
and inverse depth maps WA and WB defined over the image
domain Ω ⊂ P2, for an image point p = (u, v, 1)T ∈ Ω in frame
A, the following photometric and geometric constraints hold:

IB(p + ∆p) = IA(p) (1)

WB(p + ∆p) =
1

eT
z XB
, (2)

where XB is the 3D point lifted from pixel p + ∆p in frame B,
∆p = (∆u, ∆v, 0)T is the displacement of one point from frame
A to B, and eT

z = (0, 0, 1). The photometric constraint assumes
constant illumination of one scene point over time. The geo-
metric constraint is the measurement model of the depth sensor
at frame B in inverse depth parametrisation.

Assuming small pixel displacements between frames we
compute the flow equations from (1) and (2):
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∇IA(p)∆p + IB(p) = IA(p) (3)

∇WA(p)∆p +WB(p) =
1

eT
z XB

, (4)

where the gradient operators ∇I =
(
∂I
∂u ,

∂I
∂v , 0

)
and ∇W =(

∂W
∂u ,

∂W
∂v , 0

)
.

Using the camera projection and inverse projection models,
p = π (X) = K X

eT
z X and X = π−1(p) = 1

W(p) K
−1

p, and with the
same assumption of small pixel displacement we get:

1
eT

z XB
=

1
eT

z XA
−

1
(eT

z XA)2
eT

z ∆Xp + O

(∣∣∣∣∣∣eT
z ∆Xp

∣∣∣∣∣∣2)
≈ WA(p) −W2

A(p)eT
z ∆Xp. (5)

∆p = K
XB

eT
z XB

−K
XA

eT
z XA

= KXB

(
WA(p) −W2

A(p)eT
z ∆Xp

)
−KXAWA(p)

=WA(p)
(
K − peT

z

)
∆Xp. (6)

where ∆Xp is the 3D flow associated to each pixel in frame A.
Substituting in (3) and (4), we get the linear constraints on this
pixel-wise 3D flow.

WA(p)∇IA(p)
(
K − peT

z

)
∆Xp + IB(p) − IA(p) = 0 (7)

WA(p)
(
∇WA(p)

(
K − peT

z

)
+WA(p)eT

z

)
∆Xp+

+WB(p) −WA(p) = 0. (8)

Assuming that the scene is rigid, the 3D flow map ∆Xp is
produced only by a small interframe camera motion, described
by the rotation translation pair ( RB

A, rA
B) ∈ SE(3):

∆Xp = RB
AXA + rA

B − XA

=
(
I + [θA

B]×
)

XA + rA
B − XA + O

(∣∣∣∣∣∣[θA
B]2
×XA

∣∣∣∣∣∣)
≈ rA

B − [π−1(p)]×θA
B = M(p)ξA

B. (9)

Eq. (9) leads to a well-posed problem with 6 unknowns cor-
responding to the camera motion parameters for nearly WimHim

constraints (where Wim and Him are the width and height of the
image respectively), excluding pixels without depth measure-
ments, with the following residuals:

rI(p, ξ) =WA(p)∇IA(p)(K−peT
z )M(p)ξ+

+ IB(p) − IA(p) (10)

rW(p, ξ) =WA(p)
(
∇WA(p)(K−peT

z )+WA(p)eT
z

)
M(p)ξ+

+WB(p) −WA(p), (11)

which can be straightforwardly minimised by standard Gauss-
Newton least squares.

In practice we do not apply conventional least squares. In-
stead we use a robust cost function by applying iteratively
reweighted least squares algorithm [35]. We also follow a
coarse-to-fine approach using a 3 level image pyramid, per-
forming a number of 10 iterations on a pyramid level before
stepping down to the next finer level. The incremental motion
estimate at each iteration γ is computed as:

ξA(γ)
B = argmin

ξ

∑
p∈Ω

ω

(
r̆I(p)
σrI

) r2
I

(p, ξ)
σ2

rI

+ ω

(
r̆W(p)
σrW

) r2
W

(p, ξ)
σ2

rW

,

(12)

where r̆I(p) and r̆W(p) denote the initial residuals computed
after warping intensity and inverse depth maps in frame B to-
wards frame A with the estimated camera motion up to current
iteration Tk (γ+1)

k+1 . ω(x) = 6
5+x2 , since we use an estimator based

on the Student’s t-distribution with ν = 5 as in [36], which
shows in general better performance than other candidates. The
scaling parameters are fixed to σrI = 5 and σrW = 0.0025m−1

based on tests on static sequences and the disparity measure-
ment model of RGB-D sensors [37].

After each iteration the motion estimate between frames k
and k + 1 is updated by the current incremental estimate:

Tk (γ+1)
k+1 =

(
exp([θA(γ)

B ]×) rA
B

0 1

)−1
Tk (γ)

k+1. (13)

Camera motion at first iteration Tk (0)
k+1 is initialised assuming

a constant velocity, i.e., Tk (0)
k+1 = Tk−1

k.

5.2. Stair traversal

In the stair detection and modelling stage, most of the com-
putations are done on one single image at a time. However,
in some circumstances, the way of proceeding must change
to perform contextually appropriate operations. For instance,
while the user is traversing the staircase instead of searching
for stairs, the application should provide information about the
current state of the traversal, e.g. in which step the user stands,
which and where is the next step or how many steps are left
to reach the other end. It is impossible to recover this kind of
information in one single image analysis because all the steps
usually look the same.

When the user stands so close to the staircase that the edge
from the first step is no longer visible, the transformation CTS

cannot be computed as described, and is then estimated using
the visual odometry transformation. Calling k the last iteration
when the Ck TS could be properly computed, it is possible to
retrieve the Ck+n TS in the iteration k + n if the transformations
Ck TS and C0 TCk have been kept:

Ck+n TS = (C0 TCk+n )
−1 C0 TCk

Ck TS (14)
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Fig. 11. The centroids of the steps and the estimated centroid of the body can
be used to retrieve the numbers of the steps and the step the user is on by
transforming the points to the stair reference frame.

(a) (b) (c)

Fig. 12. To correct the stair pose estimated by the odometry we use the live
depth information, drawn as the grey stair. (a) Correction of the orientation to
match the vertical normal. (b) Correction of the orientation to match the edges
of the steps in sight. (c) Correction in the position to match the centroids and
edges of the steps. Best viewed in colour.

The current pose of the camera with respect to the stair can
be computed at any time and it shows the translation with re-
spect to the initial point. Since lheight and llength of the current
staircase are known from previous stages, the 3D position of the
centroid of every step in sight transformed to the stair reference
frame would reveal in which step it is (Fig. 11). With this infor-
mation, every time a step of a level higher than the current nL is
detected, the number of levels of the staircase model is updated
(nL = nL + 1). Similarly, transforming the estimated centroid
of the body to the stair reference frame can be used to know
the step in which the user is. In practice, it does not work as
well as expected, because the visual odometry has a noticeable
drift, specially in situations like this where a few centimetres
can cause mismatches. The transformation Ck+n TS reveals an
estimation of how the user has moved, or looking at it the other
way, an estimation of how the stair is posed with respect to the
user. The pose correction problem lies in computing the rota-
tion and translation needed to match where the stair really is,
i.e. as it is seen by the camera. We can use the live information
of the depth camera to correct the drift.

It requires some slight changes of some previously com-
mented algorithms. To compute the vertical direction, instead
of looking for the floor all step planes are used to compute the
resulting normal as we can certainly say they are horizontal
planes (Fig. 12 (a)). The rotation in ys can be computed as de-
scribed, either trusting Manhattan estimation or the directions

from the PCA (Fig. 12(b)). The rotation needed to move the
estimated stair axes to the new ones is the correction in orien-
tation. The translation part can be calculated by looking at the
height of the centroids of the steps in ys and the edge-points of
the steps can reveal the translation in zs (Fig. 12 (c)). In the xs

direction the translation cannot be retrieved and the odometry
needs to be trusted.

Calling S TS ′ the drift correction transformation, the final
transformation from the current camera reference frame to the
stair reference frame is:

Ck+n TS ′ =
Ck+n TS

S TS ′ (15)

Using the correction, the computation of the position of the
subject is more reliable. When the step position estimation us-
ing the height is higher than the one provided by the length, it
means that the user is currently climbing the step. The dimen-
sions of the last step found are computed in order to determine
when they are significantly larger than the step length, because
that would mean that it is the last step. Once these last step
is detected, the model of the staircase is updated with the final
number of steps of the stair. When the user finally stands on the
floor at another level, the stair traversal algorithm stops and the
algorithm proceeds as usual by performing the detection and
modelling.

6. Experiments

The experiments were carried out in a 3.4Ghz computer with
a GPU Nvidia GeForce GT730 running Ubuntu 12.04, ROS Hy-
dro and the library PCL version 1.8. In this work we include
the experimental evaluation of the perception part of the sys-
tem. No experiments with visually impaired people have been
performed as we have not updated our human-computer inter-
face [5] including stair navigation interaction yet. Although we
already had our own recordings from previous research, new
scenarios including stair traversal were also recorded to con-
duct specific experiments.

Tang et al. compiled a dataset in [24] which includes 148
captures made with a Microsoft Kinect sensor. 90 of them
include RGB and depth snapshots of a set of staircases from
different poses and the other 58 are normal indoor scenes to
test for false positives. A sample of the results are shown in
(Fig. 13). We tested for false positives and false negatives using
this dataset and compared our results with the ones from [24]
and [25] (Table 1). We achieve better results with the 0% of
false negatives as in [25] but also reaching a 0% of false posi-
tives. The main reason of being completely successful was that
although sometimes a bad floor detection or structures com-
posed by parallel planes such as shelves caused the detection
of a false positive, as we retrieve the measurements we could
discard invalid staircases for being too narrow, or having too
small or too big steps. Some discarded examples are shown in
Fig. 14 (a).

We studied the step detection ratio according to the position
of the step in the staircase using Tang’s dataset (Fig. 15). The
behaviour changes when we are facing an ascending staircase or
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Fig. 13. Several examples of results obtained with Tang’s dataset. The model of the staircases retrieved is superimposed in the point cloud for visual verification.

Table 1
Comparison of false negatives and false positives between our work and the
one presented in [24, 25]

Evaluator False negative False positive
Tang [24] 5.07% 1.02%
Vlaminck QVGA [25] 0.00% 8.62%
Vlaminck VGA [25] 0.00% 3.45%
Our work 0.00% 0.00%

a descending one. Due to the orientation of the chest-mounted
sensor, standing before a descending staircase allow us to see
the whole staircase. However, the self occlusion of consecu-
tive steps and the quality of the measurements decreasing with
the distance, harm the detection of steps farther than the third
position. In ascending staircases the ratio of detection dimin-
ishes in a less prominent way, because the steps remain almost
as close to the subject as they rise, although with the penalty of
having less and less visual angle. Steps higher than the seventh
position are out of the field of view of the camera.

The modelling usually provides qualitatively good results
with rectangular staircases unless the detection have severe ob-
structions, there is a strong influence of the sun or the stairs
present atypical constructions (e.g. Fig. 14 (b)). We have quan-
titatively analysed the resemblance of the model to the real
staircase. We have excluded the width from the analysis as the
view of the stairs may be partial and it is not as relevant as
the other measurements. After computing the height and length
of a staircases, in both ascending and descending perspectives,
from different viewing angles, the results were compared to the
real measurements, as shown in the Table 2. As we can ob-
serve, the values do not have strong deviation even though the
model is computed with one single frame. Several frames cap-
turing the same staircase could be potentially used to improve
the retrieved dimensions, or even for an online update of these
dimensions during traversal. However, we decided not to in-

Table 2
Average and standard deviation (in centimetres) of the length and height
measured with and without obstacles.

No obstacles Obstacles Real
x̄ σ x̄ σ xr

Length 29.003 2.013 29.389 1.887 30
Height 15.399 1.364 15.561 0.593 17

clude these feature given the good estimations from one frame
to keep the problem simple and avoid the extra computational
cost. Half of the experiments were conducted with real people
going up and down the stairs. The presence of obstacles par-
tially occluding the view of the staircase does not adversely af-
fect the quality of the model and we get similar results in terms
of average measurements. Our experiment from Table 2 show
slighly better standard deviation in the presence of occluding
obstacles. This unexpected result is due to the variability of the
images in the set and not because of the method itself. Some
pictures of the experiments with people climbing up/down the
staircase can be seen in Fig. 17.

The computation time was also tested to analyse the perfor-
mance of the system in the current state of development in the
computer described above. The four main parts in which the
algorithm is divided are the Visual Odometry estimation (VO),
the Segmentation and Classification (SC), the Stair Detection
and Modelling (SDM) and the Stair Traversal (ST); the yellow
blocks from Fig. 2. The VO and SC part run every iteration.
When the SC raises the existence of a set of step candidates,
the SDM part is executed. The ST part runs when the user is
climbing the stairs, instead of SDM (they both never run in the
same iteration).

The VO stage has a detailed explanation about the compu-
tation time depending on the configuration used in [7]. In this
work we have removed the dense volumetric mapping, and we
manage to estimate the visual odometry in an average time of
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(a)

(b)

Fig. 14. (a) Four examples of images without staircases including deceiving
parallel planes which are detected and then discarded by our algorithm due to
impossible stair models. (b) Two examples of complex stairs where the
modelling fails because of atypical shapes (left) or non-Manhattan directions
of the edges with respect to the wall (right). Best viewed in colour.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

Descendingstaircase Ascendingstaircase

Step position

D
et

ec
tio

n 
ra

te
 (

%
)

Fig. 15. Step detection rate with the step position in the staircase.
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Fig. 16. Box plot of the time consumption of the most relevant parts of our
algorithm. For each column, the box is limited by the 25th and 75th quartile
with the median inside. The whiskers reach the most extreme points and the
outliers are marked with a cross.

15.397ms per iteration. Unlike the VO part, SC stage’s runtime
is scene dependent. It takes longer to compute when the scene
is bigger or more complex, as both the normal estimation and
region-growing algorithms need to iterate in a larger amount of
points. The stair-related part is also scene dependent, as the
SDM stage is only executed when there is stair in the image
and the ST when the user is traversing. To cover all situations
and provide results from this part, we have performed an ex-
periment where the user approaches the staircase from far away
(no visible stair) until he reaches the first step (during half of
the time) and then move upstairs it until the other end of the
stair is in sight (the other half of the time).

The following numeric results come from using a voxel grid
of size 4cm, which provides a good compromise between ac-
curacy and speed. Excluding the VO part from the computa-
tion, each iteration takes a median time of 39ms (25Hz), with
46ms during the first half and 29ms during the second half; and
a maximum of 77ms. The second half takes less time due to
the simpler scene (points are close to the camera and among
themselves so the voxel grid returns less points to deal with)
and to the execution of the ST instead of the SDM algorithm
(ST takes a median time of 1ms whereas SDM takes 7ms). In
Fig. 16 there is a box plot showing the median and quartiles
of the different stages. The segmentation part appears broken
down in the four biggest time consumers (voxel grid, normal
estimation, region-growing and cluster extraction) discarding
stages which takes less than 1ms. Voxel grid is the slowest
part but it presents lesser variability than the others, where it
is more noticeable. Cluster extraction is usually small as most
points of the scene belong to planes already segmented in the
region-growing stage. The stair-related times are only repre-
sented when a stair is visible (otherwise time is zero).

In general, this timing should be considered fast enough for
indoor navigation assuming walking speeds around 1 − 1.5m/s.
Modern laptops or even smartphones or tablets should have
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Fig. 17. Example of a person partially blocking the view of the staircase during ascent or descent. Best viewed in colour.

nowadays enough processing power to run this system. In case
it were necessary to improve the performance rates, some pre-
processing parts could be optimized by using more efficient al-
gorithms (we used some standard implementations included in
widely common open source libraries) or by running them in
GPU (at this point only the visual odometry takes advantage
of the GPU), but the optimization of the system has not been
subject of our research at this point.

For the stair traversal algorithm, we have tested several video
sequences with and without the drift correction implemented. A
qualitative visual analysis consisted in looking at the 3D map-
ping from some intermediate key frames compared to the stair
template generated in the modelling. An example is shown in
Fig. 18. In (a) we can see that, although the first step matches
the model perfectly in both cases, as the camera rises up the
stair the 3D map diverges from the template, due to the drift. It
is more prominent in the last few steps, where the drift is big
enough to cause the detection of one step more than the stair-
case actually has. With the drift correction the 3D map succeed
in matching the stair template, recovering the correct number of
steps of the staircase.

A more quantitative analysis leads to the graphs in Fig. 19,
Fig. 20 and Fig. 21. In Fig. 19 there is the ys − zs trajectory
of the user in the first seven steps and the corresponding stair
profile. The trajectories have a wave form during the traversal,
where each peak corresponds with the instant the user reaches
the height to walk on the following step. With the drift cor-
rection every peak is consistently paired with the edge of every
step. However, without the correction the peak is reached in-
creasingly farther, being more than a half step in the seventh
step. In Fig. 20 a closer look to this gap can be observed in
both cases compared to the ground truth. In the seventh step
the trajectory without odometry correction reaches the step with
16.6cm of gap, whereas with the correction there is almost no
deviation with respect to the expected trajectory. When the stair
is large enough that gap can provoke the misdetection of more
steps than the stair has. For instance, in Fig. 18 the algorithm
detects an extra 13th step non existent in the real staircase. In
Fig. 21 it is displayed the three rotation angles of the camera
reference frame during the traversal with and without the cor-
rection. As it occurs with the translation, the orientation drift

(a) (b)

Fig. 18. Visual comparison of the 3D map composed by key frames obtained
during the traversal with the stair model without (a) and with the correction
(b).

also increases through iterations, but it is corrected with our
approach.

7. Conclusion

In this paper we have presented a stair-aimed perception
module of a wearable personal assistant oriented to visually im-
paired people, although it may have applications in other fields
such as robotics, specially in the case of humanoids. For this
we have developed an algorithm covering operations such as
the detection of stairs, the retrieval of the location and measure-
ments of the stairs and the continuous self-localization during
the traversal. Our algorirthm includes a visual odometry mod-
ule which provides location awareness to the system, enabling
the possibility of going back to places not currently visible and
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Fig. 19. Trajectory of the person during the climb with and without drift
correction.
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Fig. 20. Distance in zS the moment the user reaches the first seven steps.

the traversal of staircases. Moreover, we use the information
of the camera to correct the drift that the visual odometry have.
The experiments prove that the model quality and the comput-
ing time are good enough to be used in real-time. The algorithm
overcomes some limitations existing in related works, such as
the possibility of single step detection or full modelling with
partial occlusions caused mainly by other people traversing the
staircases.

In the near future we would like to extend the possibilities
that a RGB-D sensor can bring to stair detection by combin-
ing the depth information with colour images. RGB data would
help improving the model, counting the steps to extend the stair-
case model, detecting possible staircases from farther distances
where depth measurements are not reliable or when the sun rays
affect negatively the depth sensing. In addition, besides simply
extracting planes and clusters and consider them obstacles, per-
forming more extended reasoning about the scene and the ob-
jects in it is also a line of research we want to explore in future
works. Another interesting way to continue the work would be
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Fig. 21. Rotation angles of the person with respect to the stair reference frame
in the three stair directions. Best viewed in colour.

to extend the experiments to outdoor environments, trying other
currently suitable sensors such as stereo cameras.

Acknowledgments

This work was supported by Ministerio de Economı́a y
Competitividad and European Union under FPI grant BES-
2013-065834 and projects DPI2014-61792-EXP and DPI2015-
65962-R.

References

[1] R. Manduchi, S. Kurniawan, Mobility-related accidents experienced by
people with visual impairment, Research and Practice in Visual Impair-
ment and Blindness 4 (2) (2011) 44–54.

[2] J. A. Hesch, S. I. Roumeliotis, Design and analysis of a portable indoor
localization aid for the visually impaired, The International Journal of
Robotics Research 29 (11) (2010) 1400–1415.

[3] X. Qian, C. Ye, NCC-RANSAC: A fast plane extraction method for nav-
igating a smart cane for the visually impaired, in: IEEE International
Conference on Automation Science and Engineering (CASE), 2013, pp.
261–267.

[4] W. W. Mayol-Cuevas, B. J. Tordoff, D. W. Murray, On the choice and
placement of wearable vision sensors, IEEE Transactions on Systems,

14



Man and Cybernetics, Part A: Systems and Humans 39 (2) (2009) 414–
425.

[5] A. Aladren, G. Lopez-Nicolas, L. Puig, J.J. Guerrero, Navigation assis-
tance for the visually impaired using RGB-D sensor with range expan-
sion, IEEE Systems Journal, Special Issue on Robotics & Automation for
Human Health PP (99) (2014) 1–11.

[6] J.J. Guerrero, A. Perez-Yus, D. Gutierrez-Gomez, A. Rituerto, G. Lopez-
Nicolas, Human navigation assistance with a RGB-D sensor, in: AC-
TAS V Congreso Internacional de Turismo para Todos: VI Congreso In-
ternacional de Diseño, Redes de Investigacion y Tecnologia para todos
DRT4ALL, 2015, pp. 285–312.
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