
Indoor assistance for visually impaired people using
a RGB-D camera

Michiel Vlaminck1, Hiep Quang Luong1, Hoang Van Nam2, Hai Vu2, Peter Veelaert1 and Wilfried Philips1

1Image Processing and Interpretation (IPI), Ghent University, iMinds, Belgium
2International Research Institute MICA, Hanoi University of Science and Technology (HUST), Vietnam

Email: michiel.vlaminck@telin.ugent.be

Abstract—In this paper a navigational aid for visually im-
paired people is presented. The system uses a RGB-D camera
to perceive the environment and implements self-localization,
obstacle detection and obstacle classification. The novelty of this
work is threefold. First, self-localization is performed by means
of a novel camera tracking approach that uses both depth and
color information. Second, to provide the user with semantic
information, obstacles are classified as walls, doors, steps and a
residual class that covers isolated objects and bumpy parts on
the floor. Third, in order to guarantee real time performance,
the system is accelerated by offloading parallel operations to the
GPU. Experiments demonstrate that the whole system is running
at 9 Hz.

I. INTRODUCTION

According to the World Health Organization (WHO), a
whopping 90% of the blind people live in developing countries.
As they do not have the money to buy advanced assistance
solutions, the white cane is still the most used tool although
it still has its limitations, e.g. in the case of aerial obstacles
such as tree branches or fire extinguishers hanging in small
corridors. As a result, many systems have been presented
in the computer vision literature. The proposed solutions are
using a variety of sensors including GPS, laser scanners, stereo
cameras and active 3D cameras. Regrettably, GPS can not be
used indoor and is not able to provide additional information
about the environment. Laser scanners are better suited in
this respect, but these scanners are generally too expensive
and too impractical to carry around. Nonetheless, in [14] a
special system was designed for blind people with walking
disabilities where a walker was used to mount two planar
laser scanners. Stereo vision is a cheap alternative, but the
fact that depth has to be estimated increases the processing
time and makes these solutions less robust to illumination
changes and shadows. Active 3D camera’s are hence the most
interesting sensors as they are capable of producing relatively
accurate depth maps with sufficiently high resolution at 15 Hz
or higher. These sensors either use structured light or are based
on the time of flight principle. Undoubtedly one of the most
appealing developments in the field of portable 3D cameras
is Project Tango, recently announced by Google. The most
interesting thing about the Tango tablet is that it incorporates
the NVIDIA’s Tegra K1 GPU, currently the only mobile GPU
that supports CUDA. The development of these devices is
attractive since their parallel computation power can make
it possible to perform not only the task of self-localization
or obstacle detection in real time but go even beyond that
by performing additional obstacle classification or semantic
annotation of the scene.

II. RELATED WORK

Computer vision based assistance devices for the blind
generally consist of two parts: 1) the estimation of the ego-
motion (i.e. odometry) and 2) the detection of obstacles. The
former part is related to simultaneous localization and mapping
(SLAM) where the goal is to build a map of the environment
while at the same time keep track of the position and ori-
entation of the camera. The spectrum of vision-based SLAM
approaches is very broad. A lot of systems rely on a feature
based framework, characterized by algorithms that track a few
features (e.g. SIFT or FAST) in an image sequence, typically
in combination with Bayesian filtering to obtain an accurate
estimate of the camera pose [1]. Some navigational systems
for the blind use a stereo camera that allows to compute
3D points upon which the camera pose is estimated [11],
[9], [7]. However, feature-based methods naturally result in
sparse representations of the environment and as a consequence
they have limited utility in navigational tasks such as obstacle
detection and classification. This shortcoming has motivated
the development of dense mapping approaches which have
been facilitated by the advent of inexpensive RGB-D cameras
and parallel computing devices such as the GPU. At the core
of these algorithms lies the registration of consecutive point
clouds by means of the iterative closest point (ICP) algorithm
instead of matching visual features [5]. Since this method
only rely on 3D information, it can fail in areas with poor
geometrical features and for this reason some researchers tried
to combine ICP with visual feature matching [3]. Regarding the
actual obstacle detection, a distinction can be made between
existing solutions based on whether or not the method is
relying on the detection of the ground plane. The former
methods mostly use the concept of an occupancy grid, which
is a quantization of the space in front of the user into a number
of bins. In [10], the authors define a polar grid in front of the
user which is subsequently projected on the ground plane and
the bins of the grid are filled with 3D points that are located
within the bounds of each bin. Obstacles are then defined as
cells containing more then a predefined number of points. In
[6], the approach of the authors differs fundamentally from the
previous one in the sense that the algorithm does not start from
the detection of the ground plane. Instead, a segmentation is
made of the entire scene on pixel level and together with the
associated depth values, a decision is made on which objects
could possibly act as an obstruction for the user. In this work,
we will improve the work of [13], in which a real-time obstacle
detection system was presented that uses data captured by
RGB-D cameras. We will elaborate on how we can speed up
the detection process by offloading parallel operations to the
GPU and extend the system by performing real time camera

Raw Depth Color

a) Preprocessing

d) Camera tracking

b) Obstacle detection

c) Obstacle classification

Figure 1. System overview.

tracking in order to obtain ego-motion estimation.

III.APPROACH

An overview of the system is depicted in figure 1. As
mentioned in the introduction it consists of three main parts:
self-localization (cfr. ego-motion estimation), obstacle detec-
tion and obstacle classification. Self-localization is performed
by means of a camera tracking algorithm that uses both depth
and color information in an ICP-based algorithm. The result
of this camera tracking, i.e. the 6DoF camera pose, is used to
build a global 3D map of the environment. Each time new
points are discovered, we fuse them into this global map,
which is based on the octree data structure. We are using
the Octomap framework presented in [4] but extended it to
keep semantic information on the type of possible obstacles
such as walls, doors and steps. This global 3D map of the
environment can be used to (re)locate the user in case the ego-
motion algorithm has failed. We can also use it to determine
if obstacles are moving in the scene. The obstacle detection
itself is based on the segmentation of the current scene in 3D.
Using the segmentation of the scene, we make a decision on
which objects could possibly act as an obstruction for the user.
The obstacle classification, finally, is led by the geometrical
properties of respectively a wall, a staircase or a door. In
order to keep the total operation time as low as possible, we
offload as many parallel operations as possible to the GPU.
To this end, the system was partly implemented using Quasar,
a heterogeneous programming framework [2] which facilitates
parallel programming on the GPU.

A. Preprocessing

In the preprocessing phase, we convert the incoming depth
and color data prior to analysis. The first step is to convert the
depth map to an organized point cloud P containing 3D points.
Organized denotes that the point cloud still has its projection
in 2D and thus has a fixed width and height. This task can
be done in parallel by letting each CUDA thread operate on a
separate pixel in the incoming depth map D. The second step
consists of computing surface normals for each point leading
to a single normal map N. Using the 2D projection of the point
cloud P, this can be computed extremely fast by considering
two vectors that are tangential to the local surface at point
p. These vectors can be computed using the left, right, upper
and lower neighbouring point in P. The normal can then be
obtained by taking their cross product. In the final step, we
transform the point cloud in order to align the ground plane

with the xz-plane in our reference system using data captured
by an accelerometer. This transformation helps the camera
tracking process in providing an initial guess for the orientation
of the camera. In addition, it simplifies the segmentation of
the ground plane since we can rely on the fact that the ground
plane has a normal perpendicular to the xz-plane.

B. Obstacle detection

The first step in the obstacle detection process is to segment
the environment into regions that geometrically belong to each
other. An indoor scene will typically consist of large planes
(e.g. floor, walls, ceiling, ...) and for that reason, the segmenta-
tion process will first try to identify these planes. To this end,
we exploit the organized nature of the point clouds by scanning
it in the image domain thereby comparing neighbouring pixels
in a 4-connected way. Each pixel is assigned a label according
to its properties compared to its neighbours. More precisely,
we use two different comparison functions, the first one testing
for the euclidean distance of the corresponding 3D points,
||pi − pi−1||2 < ε, the second one testing for the deviation
in normal vector ni · ni−1 < cos θ. Only when these two
conditions are met, the two neighbouring pixels are assigned
the same label. To obtain the label images we first compute
a binary image (i.e. mask), which we then feed to our own
GPU-based connected component labeling (CCL) algorithm.
Once the dominant planes in the scene are segmented, the
remaining objects are often easily distinguishable as seen on
the middle image of figure 2. It is thus easy to segment these
objects by clustering the points based on their relative distance.
To this end, we will again use CCL, but this time only using
the condition on euclidean distance. The result of this entire
process can be seen in the right image of figure 2.

Figure 2. Remaining objects after the segmentation of the dominant planes
(middle). Result of euclidian clustering by means of CCL (right).

C. Obstacle classification

Once the scene is segmented in different planes and objects,
the next step is to classify them. We consider four different
classes, including staircases, doors, walls and a residual class
that covers loose obstacles and bumpy parts on the floor. A
staircase can be modelled as a set of planes (i.e. steps) that
are all parallel to the ground plane and that are located at
the same distance from each other. This is a simple but quite
strong model as it can also recognize the challenging case of
spiral staircases. The first step in the process is to test the
previously segmented planes based on their normal vector,
which should indeed be pointing in the direction of the y-
axis. This gives a set of candidates steps S. Subsequently, we
look for the plane closest to the ground plane and test if it
lies below the maximum height of 30 cm. If such a plane is
found, we determine if its number of inliers is higher than a
certain threshold. This threshold is variable as steps further
away will contain less points than staircases that are close by.
Once such a plane is found, we conclude that we are dealing
with a step and we repeat the process, looking for another

plane within a distance of 30 cm from the previous one. The
process stops when no more planes are found. Note that we
test both, for ascending and descending steps. Doors on the
other hand can be defined as a plane perpendicular to the
ground plane having a certain width and a door handle at a
certain position. However, the plane of the door is often not
distinguishable from the plane representing the wall. Figure 3
depicts two example doors where the first one represents a so
called non-concave door whereas the second one represents a
concave one. In the first case, our previously described plane
segmentation algorithm will segment the wall and door as one
single plane.

Figure 3. Example of a non-concave door (left) and a concave door (right).

The solution for this problem is to incorporate color infor-
mation, as the color of the door often differs from the color of
the wall, cfr. figure 3. We will still adopt our CCL algorithm
but extend it with an additional comparison function based on
the registered color image associated with the point cloud. The
additional comparison function is given by ||ci − ci−1||1 < ε,
in which ci−1 and ci are the color vectors of two neighbouring
pixels. Each of the components (h, s, v in case of HSV colour
space) are subtracted and finally summed. Using this additional
condition, we can segment each earlier segmented plane in
different sub planes. The final step then consists of testing
the width of the obtained planes and looking for the door
handle. To define the width of the door, we first compute
the convex hull of the set of points belonging to the plane
using the quickhull algorithm. Only when the plane fulfils the
constraint on the width and when a door handle is present, we
will conclude that we are dealing with a door.

D. Camera tracking

The last part of our system consists of tracking the camera
pose of each consecutive frame. In the following sections we
will discuss the main steps of our ICP-based approach.

1. Point Selection The first step is to select the points which
we will use to compute the transformation. Hereby, it is im-
portant that we only select points that do not belong to moving
objects. Since we already made a segmentation of the scene in
the obstacle detection process we can exploit this knowledge
to determine if an object is moving by using the geometric
consistency property. The main idea of this approach is to
verify if all the segments have consistent relative locations in
two consecutive frames. In other words, the distance between
two objects should remain constant throughout the sequence.
To this end we first perform a bipartite assignment for each
segment, i.e. an association between the segments of one frame
with the ones of the next frame, which we obtain using the
Hungarian algorithm. Next, we test for each possible pair of
associations the distances between the centres of mass in the
current frame (dc) and previous frame (dp). If the difference
between dc and dp is close to zero, i.e. below a certain
threshold, the positions of the two centres of mass in each
frame is considered consistent. For each object, we keep track
of the number of other objects that are geometrical consistent.

Only the objects with a count sufficiently high are considered
as static objects, the other ones are considered as moving
objects. The points lying in the segments corresponding to
a moving object are removed from the selection process.
2. Point Matching The next step is to determine the corre-
spondence between points in two consecutive clouds. In [5],
this is achieved by projective data association (PDA). In PDA,
the corresponding point of a point si ∈ S is the closest point
di ∈ D to the line of projection of si into the camera used to
obtain the points of the second cloud D. Point correspondences
are thus computed by projecting one point cloud onto the other
with respect to the other’s camera. However, PDA has the
limitation that it fails in areas that are poor in geometry. In our
case however, it will frequently happen that a user is walking
through a long hallway or corridor. Since these corridors
mainly consist of a floor and two flat walls, the scene captured
by the camera lacks geometric features. A second limitation
of PDA is that it introduces a limit in terms of the maximum
rotation and translation between two consecutive frames that
still allows reasonable data association. To overcome these
limitations, we decided to use color information in order to find
point correspondences. Instead of using PDA, we perform data
association by generating a corresponding map Cmap based
on the flow field found by the Horn-Schunck algorithm. We
implemented our own GPU-based method, which is based on
the multi-scale strategy described in [8]. The main advantages
of our approach over other methods that take color information
into account is that there is no need for expensive feature point
matching and the fact that all color information is incorporated.
3. Rejection For a more accurate estimate of the camera
pose, corresponding pairs computed in the previous section
are only considered when a correct alignment is guaranteed.
Let us therefore define ε as the threshold for the maximum
distance of a corresponding pair and θ as the difference in
normal vectors. A corresponding pair (si,di) is rejected if
either one of the following conditions ||Rsi+ t−di||2 > ε or
Rn′i(ni)

> > θ is met. Herein R is the estimated rotation, t
the estimated translation and n′i the normal at the source point.
4. Transformation estimation Once the point correspon-
dences are found, we can compute the actual transformation
that aligns the two point clouds. In traditional ICP approaches,
the most commonly used error metric is the sum of the
euclidean distances between corresponding points after align-
ment. However, we adopt a point-to-plane error metric as this
has been shown to converge much faster. The object of mini-
mization in this error metric is the sum of the squared distance
between a point and the tangent plane of its correspondence
point given by E(S,D;T) =

∑N
i=1 ||(Tsi−di) ·ni||2. In this

equation ni is the surface normal at di, which we already com-
puted in parallel for each point of D. The final transformation
matrix is then given by T = argmin

T
E(S,D;T).

IV.EVALUATION
Our entire system was evaluated on a notebook with a

NVIDIA GeForce GT 750M and an Intel Core i7 4700HQ
processor inside. We can report that the preprocessing, includ-
ing the conversion from depth map to point cloud and the
normal estimation, takes approximately 10 ms. Regarding the
obstacle detection process, the segmentation of the scene for
images with a resolution of 640×480 takes approximately 20
ms. The obstacle classification part hardly needs any additional

Figure 4. Examples of detected staircases and doors. Each of these images
are selected from sequences recorded at the Technicum building of Ghent
University.

time to detect staircases as this process mainly relies on the
previous segmentation. Identifying doors takes an additional
20 ms due to the computation of the convex hulls of the
planes to determine their absolute width. Finally, the camera
tracking takes approximately 60 ms per frame. The selection
and matching of points is very fast, but the transformation
estimation is rather slow due to the linear system that is
solved on the CPU. All together, the entire system needs
approximately 110 milliseconds to process each new frame.
Regarding robustness, the most critical part of our system is
the identification of the ground plane. If the ground plane is
wrongly estimated, the entire obstacle detection process will
fail. Fortunately, when the ground plane is not visible in the
image, we can still rely on the output of the camera tracking
to locate it. If the ground plane is correctly identified, the
detection of obstacles is very reliable. In order to evaluate the
reliability of the step detection process, we used the dataset that
was collected by Tang et al. in [12]. This dataset consists of 90
positive images of staircases together with their corresponding
depth map and accelerometer data. In addition, a negative
collection of 58 entries is provided. Regarding the 90 positive
test images, we can report that no stairs remained undetected
by our method. Moreover, our method lead to only 2 false
positives both of them due to the fact that the ground plane
was hardly visible in the image. Besides the dataset presented
in [12], we also collected our own dataset containing images
and corresponding depth maps of 27 different staircases. Each
of these images are selected from sequences that we recorded
at the Technicum building of Ghent University. As can be
seen in figure 4, our method also works for spiral staircases
and in bad lighting conditions which makes it a lot more
robust compared to existing systems that are solely based on
images. Our algorithm was able to correctly detect all of the
27 different staircases. Regarding door detection, we selected
another 44 images from the same sequences. Figure 4 shows
that even tricky cases such as dual doors or emergency doors
were correctly detected. Only 6 out of 44 doors remained
undetected. The main reasons for these failures are the lack
of sufficient ambient light and the fact that the door handle
was not correctly detected due to the combination of noise
and its thin structure.

V. CONCLUSION

In this paper a novel assistance aid for the visually impaired
was presented. The system is unique in different ways. First,

we combine self localization with obstacle detection and ob-
stacle classification. Second, we exploit the parallel computing
power of the GPU to ensure that both tasks can be executed in
nearly real time. Third, we extended existing camera tracking
algorithms by combining both depth and color information.
Our method differs from existing methods in the sense that
we do not adopt computational expensive feature extraction but
instead incorporate optical flow as a data association technique.

ACKNOWLEDGEMENT

This research is co-funded by Vietnam National Foundation
for Science and Technology Development (NAFOSTED) under
grant number FWO.102.2013.08.

REFERENCES

[1] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier
Stasse. Monoslam: Real-time single camera slam. IEEE Trans. Pattern
Anal. Mach. Intell., 29(6):1052–1067, June 2007. 1

[2] B. Goossens, J. De Vylder, and W. Philips. Quasar - A new het-
erogeneous programming framework for image and video processing
algorithms on CPU and GPU. In 2014 IEEE International Conference
on Image Processing, ICIP 2014, Paris, France, October 27-30, 2014,
pages 2183–2185, 2014. 2

[3] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping:
Using kinect-style depth cameras for dense 3d modeling of indoor
environments. Int. J. Rob. Res., 31(5):647–663, April 2012. 1

[4] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Autonomous Robots, 2013. Software available at
http://octomap.github.com. 2

[5] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.
Kinectfusion: real-time 3d reconstruction and interaction using a mov-
ing depth camera. In Proc. UIST, pages 559–568, 2011. 1, 3

[6] Chia-Hsiang Lee, Yu-Chi Su, and Liang-Gee Chen. An intelligent
depth-based obstacle detection system for visually-impaired aid appli-
cations. In WIAMIS, pages 1–4. IEEE, 2012. 1

[7] Tung-Sing Leung and Gérard G. Medioni. Visual navigation aid for
the blind in dynamic environments. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR Workshops 2014, Columbus, OH,
USA, June 23-28, 2014, pages 579–586, 2014. 1

[8] E. Meinhardt-Llopis, J. Snchez Prez, and D. Kondermann. Horn-
Schunck Optical Flow with a Multi-Scale Strategy. Image Processing
On Line, 3:151–172, 2013. 3

[9] V. Pradeep, G. Medioni, and J. Weiland. Robot vision for the visually
impaired. In Computer Vision and Pattern Recognition Workshops
(CVPRW), 2010 IEEE Computer Society Conference on, pages 15–22,
June 2010. 1

[10] A. Rodrguez, J. J. Yebes, P. F. Alcantarilla, L. M. Bergasa, J. Almazn,
and A. Cela. Assisting the visually impaired: Obstacle detection and
warning system by acoustic feedback. Sensors, 12(12):17476, 2012. 1

[11] J. M. Saez, F. Escolano, and A. Penalver. First steps towards stereo-
based 6DOF SLAM for the visually impaired. 2012 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Work-
shops, 0:23, 2005. 1

[12] T.J.J. Tang, W.L.D. Lui, and W.H. Li. Plane-based detection of
staircases using inverse depth. In Australasian Conference on Robotics
and Automation, Wellington, New Zealand, 2012. 4

[13] M. Vlaminck, L. Jovanov, P. Van Hese, B. Goossens, W. Philips, and
A. Pizurica. Obstacle detection for pedestrians with a visual impairment
based on 3d imaging. In 2013 International Conference on 3D Imaging,
Proceedings, page 6. IEEE, December 2013. 1

[14] A. Wachaja, P. Agarwal, M. Reyes Adame, K. Möller, and W. Burgard.
A navigation aid for blind people with walking disabilities. In IROS
Workshop on Rehabilitation and Assistive Robotics: Bridging the Gap
Between Clinicians and Roboticists, Chicago, USA, 2014. 1

http://octomap.github.com

