300 research outputs found

    Comprehensive review on the state-of- the-arts and solutions to the test redundancy reduction problem with taxonomy

    Get PDF
    The process of software testing is of utmost importance and requires a major allocation of resources. It has a substantial influence on the quality and dependability of software products. Nevertheless, as the quantity of test cases escalates, the feasibility of executing all of them diminishes, and the accompanying expenses related to preparation, execution time, and upkeep grow excessively exorbitant. The objective of Test Redundancy Reduction (TRR) is to mitigate this issue by determining a minimal subset of the test suite that satisfies all the requirements of the primary test suite while lowering the number of test cases. In order to attain this objective, multiple methodologies have been suggested, encompassing heuristics, meta-heuristics, exact algorithms, hybrid approaches, and machine-learning techniques. This work provides a thorough examination of prior research on TRR, addressing deficiencies and making a valuable contribution to the current scholarly understanding. The literature study encompasses a comprehensive examination of the complete chronology of TRR, incorporating all pertinent scholarly articles and practitioner-authored research papers published in English. This study aims to provide managers with valuable insights into the strengths and shortcomings of different TRR methodologies, enabling them to make well-informed decisions regarding the most appropriate approach for their specific needs. The primary objective of this study is to offer a comprehensive analysis of Test Result Reduction (TRR) and its consequential impact on mitigating expenses related to software testing. This study makes a valuable contribution to extant literature by elucidating the present state-of-the-art and delineating potential avenues for future research

    An Approach to Pattern Recognition by Evolutionary Computation

    Get PDF
    Evolutionary Computation has been inspired by the natural phenomena of evolution. It provides a quite general heuristic, exploiting few basic concepts: reproduction of individuals, variation phenomena that affect the likelihood of survival of individuals, inheritance of parents features by offspring. EC has been widely used in the last years to effectively solve hard, non linear and very complex problems. Among the others, EC–based algorithms have also been used to tackle classification problems. Classification is a process according to which an object is attributed to one of a finite set of classes or, in other words, it is recognized as belonging to a set of equal or similar entities, identified by a label. Most likely, the main aspect of classification concerns the generation of prototypes to be used to recognize unknown patterns. The role of prototypes is that of representing patterns belonging to the different classes defined within a given problem. For most of the problems of practical interest, the generation of such prototypes is a very hard problem, since a prototype must be able to represent patterns belonging to the same class, which may be significantly dissimilar each other. They must also be able to discriminate patterns belonging to classes different from the one that they represent. Moreover, a prototype should contain the minimum amount of information required to satisfy the requirements just mentioned. The research presented in this thesis, has led to the definition of an EC–based framework to be used for prototype generation. The defined framework does not provide for the use of any particular kind of prototypes. In fact, it can generate any kind of prototype once an encoding scheme for the used prototypes has been defined. The generality of the framework can be exploited to develop many applications. The framework has been employed to implement two specific applications for prototype generation. The developed applications have been tested on several data sets and the results compared with those obtained by other approaches previously presented in the literature

    Deep Learning Software Repositories

    Get PDF
    Bridging the abstraction gap between artifacts and concepts is the essence of software engineering (SE) research problems. SE researchers regularly use machine learning to bridge this gap, but there are three fundamental issues with traditional applications of machine learning in SE research. Traditional applications are too reliant on labeled data. They are too reliant on human intuition, and they are not capable of learning expressive yet efficient internal representations. Ultimately, SE research needs approaches that can automatically learn representations of massive, heterogeneous, datasets in situ, apply the learned features to a particular task and possibly transfer knowledge from task to task. Improvements in both computational power and the amount of memory in modern computer architectures have enabled new approaches to canonical machine learning tasks. Specifically, these architectural advances have enabled machines that are capable of learning deep, compositional representations of massive data depots. The rise of deep learning has ushered in tremendous advances in several fields. Given the complexity of software repositories, we presume deep learning has the potential to usher in new analytical frameworks and methodologies for SE research and the practical applications it reaches. This dissertation examines and enables deep learning algorithms in different SE contexts. We demonstrate that deep learners significantly outperform state-of-the-practice software language models at code suggestion on a Java corpus. Further, these deep learners for code suggestion automatically learn how to represent lexical elements. We use these representations to transmute source code into structures for detecting similar code fragments at different levels of granularity—without declaring features for how the source code is to be represented. Then we use our learning-based framework for encoding fragments to intelligently select and adapt statements in a codebase for automated program repair. In our work on code suggestion, code clone detection, and automated program repair, everything for representing lexical elements and code fragments is mined from the source code repository. Indeed, our work aims to move SE research from the art of feature engineering to the science of automated discovery

    Automated Testing of Speech-to-Speech Machine Translation in Telecom Networks

    Get PDF
    Globalisoituvassa maailmassa kyky kommunikoida kielimuurien yli käy yhä tärkeämmäksi. Kielten opiskelu on työlästä ja siksi halutaan kehittää automaattisia konekäännösjärjestelmiä. Ericsson on kehittänyt prototyypin nimeltä Real-Time Interpretation System (RTIS), joka toimii mobiiliverkossa ja kääntää matkailuun liittyviä fraaseja puhemuodossa kahden kielen välillä. Nykyisten konekäännösjärjestelmien suorituskyky on suhteellisen huono ja siksi testauksella on suuri merkitys järjestelmien suunnittelussa. Testauksen tarkoituksena on varmistaa, että järjestelmä säilyttää käännösekvivalenssin sekä puhekäännösjärjestelmän tapauksessa myös riittävän puheenlaadun. Luotettavimmin testaus voidaan suorittaa ihmisten antamiin arviointeihin perustuen, mutta tällaisen testauksen kustannukset ovat suuria ja tulokset subjektiivisia. Tässä työssä suunniteltiin ja analysoitiin automatisoitu testiympäristö Real-Time Interpretation System -käännösprototyypille. Tavoitteina oli tutkia, voidaanko testaus suorittaa automatisoidusti ja pystytäänkö todellinen, käyttäjän havaitsema käännösten laatu mittaamaan automatisoidun testauksen keinoin. Tulokset osoittavat että mobiiliverkoissa puheenlaadun testaukseen käytetyt menetelmät eivät ole optimaalisesti sovellettavissa konekäännösten testaukseen. Nykytuntemuksen mukaan ihmisten suorittama arviointi on ainoa luotettava tapa mitata käännösekvivalenssia ja puheen ymmärrettävyyttä. Konekäännösten testauksen automatisointi vaatii lisää tutkimusta, jota ennen subjektiivinen arviointi tulisi säilyttää ensisijaisena testausmenetelmänä RTIS-testauksessa.In the globalizing world, the ability to communicate over language barriers is increasingly important. Learning languages is laborious, which is why there is a strong desire to develop automatic machine translation applications. Ericsson has developed a speech-to-speech translation prototype called the Real-Time Interpretation System (RTIS). The service runs in a mobile network and translates travel phrases between two languages in speech format. The state-of-the-art machine translation systems suffer from a relatively poor performance and therefore evaluation plays a big role in machine translation development. The purpose of evaluation is to ensure the system preserves the translational equivalence, and in case of a speech-to-speech system, the speech quality. The evaluation is most reliably done by human judges. However, human-conducted evaluation is costly and subjective. In this thesis, a test environment for Ericsson Real-Time Interpretation System prototype is designed and analyzed. The goals are to investigate if the RTIS verification can be conducted automatically, and if the test environment can truthfully measure the end-to-end performance of the system. The results conclude that methods used in end-to-end speech quality verification in mobile networks can not be optimally adapted for machine translation evaluation. With current knowledge, human-conducted evaluation is the only method that can truthfully measure translational equivalence and the speech intelligibility. Automating machine translation evaluation needs further research, until which human-conducted evaluation should remain the preferred method in RTIS verification

    Neural Combinatory Constituency Parsing

    Get PDF
    東京都立大学Tokyo Metropolitan University博士(情報科学)doctoral thesi

    Survey on Kernel-Based Relation Extraction

    Get PDF
    corecore