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In the globalizing world, the ability to communieatover language barriers

increasingly important. Learning languages is lah, which is why there is a strot
desire to develop automatic machine translatioiegins. Ericsson has developec
speech-to-speech translation prototype called teal-Rime Interpretation Syste
(RTIS). The service runs in a mobile network arashstates travel phrases between
languages in speech format.

The state-of-the-art machine translation system#ersufrom a relatively poor

performance and therefore evaluation plays a big nm machine translatio
development. The purpose of evaluation is to endtee system preserves t
translational equivalence, and in case of a speespeech system, the speech qua
The evaluation is most reliably done by human jsddéowever, human-conducts
evaluation is costly and subjective.

In this thesis, a test environment for Ericsson |[H@&ae Interpretation Systern
prototype is designed and analyzed. The goalsoareséstigate if the RTIS verificatio
can be conducted automatically, and if the testrenment can truthfully measure ti
end-to-end performance of the system.

The results conclude that methods used in enddospeech quality verification i

n
mobile networks can not be optimally adapted focini@e translation evaluation. With
y

current knowledge, human-conducted evaluationasothly method that can truthful
measure translational equivalence and the spedehigibility. Automating machine
translation evaluation needs further research] writich human-conducted evaluati
should remain the preferred method in RTIS veriiora
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Globalisoituvassa maailmassa kyky kommunikoida ikietrien yli kay yh&

tarkedmmaksi. Kielten opiskelu on tydlasta ja sikslutaan kehittdd automaattisi
konekaannosjarjestelmia. Ericsson on kehittAnyttopygpin nimeltd Real-Time

Interpretation System (RTIS), joka toimii mobiilk®ssa ja kaantaa matkailu
littyvid fraaseja puhemuodossa kahden kielen hlil

Nykyisten konek&annosjarjestelmien suorituskyky suhteellisen huono ja siksi

testauksella on suuri merkitys jarjestelmien sutielissa. Testauksen tarkoituksena
varmistaa, etta jarjestelma sailyttad kaannoselemsain seka puhekaanndsjarjesteln
tapauksessa myds riittavan puheenlaadun. Luotettawi testaus voidaan suoritt
ihmisten antamiin arviointeihin perustuen, muttiiatsen testauksen kustannukset o
suuria ja tulokset subjektiivisia.

Tassa tydssd suunniteltin ja analysoitiin autoswdii testiymparistdé Real-Tim
Interpretation System —k&&nnosprototyypille. Taeaia oli tutkia, voidaanko testa
suorittaa automatisoidusti ja pystytaanko todeflinkéyttdjan havaitsema kaannos
laatu mittaamaan automatisoidun testauksen keinoin.

Tulokset osoittavat ettd mobiiliverkoissa puheediaatestaukseen kaytetyt menetelr
eivat ole optimaalisesti sovellettavissa konekaaterd testaukseen. Nykytuntemuks
mukaan ihmisten suorittama arviointt on ainoa Ittatem tapa mitat:
kdannosekvivalenssia ja puheen ymmarrettavyyttd.neKadnnosten testauks
automatisointi vaatii lisda tutkimusta, jota enrseiojektiivinen arviointi tulisi sailyttas
ensisijaisena testausmenetelmana RTIS-testauksessa.
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1 Introduction

1.1 Motivation

As the world is becoming global and the possilesitof instant communication around
the world are growing, the need to study foreigrgleages has also become increasingly
important. Learning languages is not easy: evesr affew years of studies people face
problems when communicating in a foreign langudgehe Hitchhiker's Guide to the
Galaxy by Douglas Adams, a little Babel Fish woulidhultaneously translate any
language in the universe to another when placexhé@s ear. Having a Babel Fish would
remove language barriers as well as the troubktunfying foreign languages, and allow
us to communicate with anyone regardless of thegpés background.

Speech is the most natural way for human beingsotomunicate. Speech can deliver
information conveniently to one or more listenersaal time and carry a lot of nonverbal
information on the side. Therefore, there’s a giramtivation to develop high-quality,
real-time speech-to-speech machine translationicgigins. Companies also have a
growing interest in commercializing speech-to-spes@chine translation applications.
The business potential of integrated network sesvicapable of translating between at
least the biggest languages, like English, Mand@himese, Spanish, Russian or Arabic,
is huge. Among other companies, Ericsson has mbtices business potential and has
developed a translation service prototype. Theopype is capable of close-to real time
speech-to-speech translations between English amaldfin Chinese.

However, current machine translation applicatiansluding Ericsson’s prototype, still
have a long way to go before they reach the Balsd'd=level of functionality. To
successfully perform machine translation requirgsedise in various fields of science:
most importantly cognitive science, cortical praess of the human brain, acoustics,
speech technology and linguistics. The lack of péweand accurate methods for
research and measurement of brain functions isntam reason why state-of-the-art
machine translation applications suffer from reklly poor performance. Even without
setting any fluency requirements, machine trar@tadipplications can not be considered
reliable as they very often fail in their fundamadrtask: conveying the source language
meaning. Mistranslations can either turn the diatdg complete nonsense, or change the
meanings so that the outcome is offensive, amusingist plain confusing. It is obvious
that this will result in mutual incomprehension awn destroy the whole discussion.

There is a lot of progress still to be made in naehranslation development. This
creates the need for efficient tools to measureptiogress and accurately estimate the
performance of a machine translation applicatioowlan we verify the improvements?
How can we verify that the translation service imet a certain performance level before
deployment? Considering the complex nature of tfwestation problem itself, answering
these questions is not trivial.



1.2 Problem description

Several scientists [Stal0, TomO03, Alb09, LopO8leagio the current status of machine
translation technology: significant progress hagnbenade during recent years, but
machine translation is still extremely unrelialoreover, cross-cultural communication
is prone to misunderstandings even when using eskilhuman translators. The

consequences of the mistranslations and misundeistgs vary in severity, but in worst

case scenario serious conflicts can arise.

This brings up the importance of verification inehme translation development. Like in

any software development process, verificatiomignéegral and important part. Speech-
to-speech machine translation systems are pantigideror-prone and the consequences
of a false acceptance can have a huge impact orsytsiem performance. Hence,

verification plays a big role in machine translatiodevelopment and needs to be
conducted thoroughly. However, as Tomas et. alnd®)] state, no accurate, consistent
and convenient machine translation evaluation neegiad exists.

We can start by examining the problem from speedlity verification standpoint. It is
another speech-to-speech process of which theadads of expert knowledge available.
Ericsson as the world’s leading mobile network nfaawrer has very sophisticated test
environment for speech quality verification. Fulytomated test setup with specialized
tools enable testers to run high volume tests eyimmjabit exact analysis. However, this
same automated test environment can not be diregiplied in speech-to-speech
translation verification, as it differs significéyfrom speech quality verification. In case
of no translation service is applied, the netwoddpability of accurately reproducing the
same signal in the receiver’s end is being measumechse of translation, the signal will
be run through a very complex cognitive processhwitultiple correct outputs. The
complex nature of the translation process bringsutimew challenges in verification:
how to define the reference patterns? How to dedineetric that can calculate if the
machine translation matches any of the refereraned,which one is the closest match?
How to define the acceptance level for a tranghatand thus, when is the service good
enough to go live?

Another key issue in machine translation verifioatis automation. Setting up human-
conducted verification is initially simple: humarain possesses a strong language model
and knowledge of the world, which are needed facessful evaluation. Despite the low
initial effort, human-conducted verification is exsive in terms of resources and time. It
is also subjective and not accurately reproducibleerefore we need to design a test
environment which can perform evaluation with dittor no human intervention.
Automated tests could be used as a complementatiyothéo manual verification to
speed up regression testing and enable system wastshigh traffic load. The key
challenge in designing automated test environmentoi ensure that the test results
correspond to human judgement, i.e. the automatddjytves a truthful representation of
machine translation quality.



1.3 Scope

The purpose of this thesis is to examine the keyciples behind successful machine
translation and machine translation verificatioras&d on the theoretical aspects, the
possibility of automating machine translation Jesgfion in telecom networks will be
investigated. An automated test method and a &spdor Ericsson’s speech-to-speech
real-time interpretation system (RTIS) service ptgpe is designed and analyzed. The
key goals of this thesis can be summarized asvisltlo

* To examine how machine translation works and ptesenmain methods applied
in machine translation evaluation

* To examine what kind of methods can be used tdyvere effects of speech
quality on machine translation quality and compnredlality

e To design an automated test environment for Eritssepeech-to-speech
machine translation service

* To evaluate the designed test environment, i.emagt if the test setup can
adequately measure the actual quality and compséhikty of the translations

The task of the test environment designed in thesis is to measure the end-to-end
performance of an integrated network RTIS servides means that not only the actual
translation algorithm is tested, but also possipl@blems arising from speech
recognition, speech synthesis, transcoding, netvdisturbances or delay need to be
verified. The design is based on Ericsson’s exgstest environment for speech quality
testing and related tools. The goal is to exanfitieel tools, methods, and test setup used
in speech quality testing can be adapted and apjlimachine translation verification.

This thesis is structured as follows. Chapter 2gmés the background theory considering
speech production and natural languages. Chappeesnts the principles of automatic
speech recognition (ASR), and speech synthesigextito-speech (TTS). These speech
processing methods are needed in all systems iimgola vocal interface between
humans and machines, hence, in speech-to-speedfinmdranslation systems they are
required as well. Chapter 4 reviews the history amaent state of machine translation
development, as well as the main design principfemachine translation systems. In
chapter 5, subjective and quantitative methodsnfachine translation evaluation are
presented. Chapter 6 gives an overview to the &vits network and presents the
objective and functionality of RTIS prototype. Chapp7 presents the automated test
environment for RTIS verification constructed instlthesis project. Chapter 8 presents
the results of the tests, and analyzes the apjliyatf the test setup and its capability of
truthfully measuring the translation quality. Chap® concludes.



2 Background

2.1 Speech

Speech is probably the oldest information sharirgthod in the world. Speech and
language are very efficient means of communicati®peech transmission over an
electrical network has been possible now for mbaa tL00 years, in one form or another.
Still, research of speech coding and transmissgrmrigoing and new methods are
actively being developed to achieve better speeelity. The new codecs introduced in
3G, such as AMR-WB or G.719, serve as an examplee& controlled human-machine
interaction is another, attractive research togiowing in popularity in recent years. In
this chapter, the basics of speech and speechgirodware presented.

2.1.1 Speech production

Speech is produced by letting pre-inhaled air ftavough the speech production system
and influencing the air stream by different posiiig of the speech organs. Originating
from lungs, the airflow passes through trachealanahx, where two small muscle folds,
called the vocal folds, are located. After the Vdoks the air passes through to the vocal
tract, a muscular passageway consisting of oralnasal cavities. The vocal tract leads
from glottis (the opening between the vocal foldé)the way to the lips and nose, from
which the speech signal radiates out. The vocalsfapen and close rapidly to create
excitation, a buzzing sound that is modified in thecal tract to produce different
phonemes. This can be understood as a simplifiectedilter model as presented figure
2.1. An excitation signal is fed into a time-vanyifiltering system corresponding to the
vocal tract, which creates resonances by emphagsiartain frequencies. [Ros02, Sha00,
Jur08]

Voiced source

Lip radiation Speech
o
filter output

Vocal tract filter

AR
1/

Unvoiced
source

Figure 2.1.The source-filter model of speech.



The vocal tract is the most remarkable part of dpeech production system. Its main

function is to create acoustic resonances or cestre airflow by changing its shape, and
thus turn the excitation signals to specializednsisuof speech, also called phonemes.
There are two main classes of phonemes: vowelansbnants. These two groups can
be categorized further: consonants based on tlee plamanner of articulation, i.e. where

and how in the vocal tract the airflow is restritte produce the phoneme. Vowels are
characterized mainly by the position of tongue &ps, and the openness of the vocal
tract. [Jur08, Ros02]

Phonemes have their own characteristics but theynat fixed due to a phenomenon
called coarticulation. That is, the articulation af single phoneme may change
remarkably depending on its phonetic context. Theal/tract tends to change its shape
smoothly over a sequence of phonemes, which causegle phoneme to be affected by
the preceding and subsequent ones. [Sha00]

2.1.2 Speech signal properties

From a physical perspective, speech is variationain pressure. The pressure changes
propagate through air medium as sound waves. Spggohls can be characterized by
their frequency, amplitude, waveform and spectrapgprties.

The speech production organs have evolved to wor&latively low frequencies, in the
frequency range where also the hearing system ist mensitive. The fundamental
frequency, commonly notatdey, is perceived as the pitch of voice. The fundamental
frequency is determined by the opening and closinthe vocal folds when producing
voiced soundsF, is speaker-dependent and varies within a wideuaqy range. On
average, male speakeis; is approximately 100 Hz and female speakers’ 2@0 THhe
frequency range of human speech can go up to 10 kHz

In the time-domain (or waveform) analysis, the spesignal is presented as a graph of
air pressure variation as a function of time. ingidomain representation, vowels can be
observed to be quasi-periodic and have high angaditand intensity. Their waveform
resembles sine and cosine functions. The durafiamsmgle vowel phoneme is relatively
long, typically 50-400 ms. Vowels are voiced, se thpening and closing of the vocal
folds can be clearly seen in the waveform. Consisndrowever, are often noisy and
don’'t have a regular waveform. Some resemble whitise, some are preceded by a
period of silence and the duration of the actuainsoburst is very short, some voiced
consonant’'s waveforms can be rather similar to dfiatowels. In general, consonants
have shorter duration and lower intensity than ewe

Frequency domain representations can give us méyanation about the characteristics
of different phonemes. In frequency domain the aignspectrum, i.e. the signal's
amplitude as a function of frequency is presenfidte spectral information is useful
especially from speech coding and transmissiontgdiview.

In frequency domain we can observe that most oéttegy of a vowel lies below 1 kHz.
Vowels also have an interesting spectral propemigwan as formants. Depending on the
shape of the vocal tract, some frequencies resanate than others and thus spectral



peaks appear. These peaks are called formantgovkls have roughly three formants in
the frequency range below 3 kHz. The locationshese first three formants are the most
important features that make vowels distinguishdbléhe listener. Consonants’ most
important spectral information often lies in high&equencies, especially noisy
consonants like /f/, /s/ or /h/. Depending on tbasonant, the most spectral energy lies
above 3 kHz or even 8 kHz. Consonant’s spectraiggnie often widely distributed and
thus occupies a broader bandwidth than a voweksggn which is usually concentrated
below 3 kHz. [Sha00]

2.2 Language

By natural languages we mean languages evolvedatigtand spontaneously in human
interaction, expressed in spoken or written forntheD languages, like mathematical,
formal and computer languages differ significanfilgm natural languages by their
structure, complexity, expressiveness and develapmeer time.

It is still not completely understood how languagestructured in the human brain and
how language is acquired by infants. For humargmsating speech to meaningful units
such as words and syllables, and understandingnéa@ing comprised of these units is a
very easy task and human infants learn this abiitiger effortlessly during the first years
of their lives. Explaining the mechanisms of natul@nguages requires extensive
knowledge in cognitive processing and brain funtias well as knowledge in speech
processing and linguistic theory. [R&s07]

The theory of universal grammar [Co007], howeveiggests that there is a common
underlying structure or set of rules, which eveayunal language grammar is based on.
This implies that the universal grammar is embeddetthe brain circuitry, and humans

conform to this deep structure when acquiring thiest language.

2.2.1 Structure of natural languages

The structure of natural languages can be seevalslof related elements. According to
Jurafsky and Martin [Jur08] these levels includethe order of growing complexity,
phonetics, morphology, syntax, semantics and préigma

Phonetics studies the speech production and howlinigeistic sounds are realized
acoustically. Phonetics itself plays a rather ingigant role in language processing
because examining the pure acoustic content doesgime information about the
meanings. In speech-to-speech machine transldtmmever, knowledge of phonetics is
important, as it forms the basis for successfulueate speech recognition and synthesis.
Morphology studies morphemes, the smallest meaniteyiguage units. These sub-word
units joined together with word stems representeleenentary meanings in words, such
as singular or plural. Morphology defines the bafsis word formation in natural
languages.



Syntax describes how the words need to be orderéorin sentences, i.e. what are the
structural relationships between words. The santeofewords can have different
meanings depending on the syntactic rule appliechob make sense at all if the syntax
was not correct. Semantics includes higher-levedwkadge of language: it is the
knowledge of the meanings of sentences. Naturgulages are full of ambiguities, such
as homonyms, synonyms, words that can either b&rlaaor a noun, etc. A system with
semantic knowledge, like the human brain, can itifermeaning of ambiguous sentences
from its relationship to other words and sentenBeagmatics, on the other hand, deals
with even higher level of meaning than semanticsohtains knowledge of the speakers’
(and the hearers’, as well) attitudes, goals, bdes, the emotional content of the
message and relative concepts. Pragmatics alsesttiee use of idioms, sarcasm and
other possible situations where a sentence doesmity its literal meaning in the
designated context. The speaker might also refether conversations, experiences, or
generally known facts. Because of this understapdimnouns likéit' or‘that’ correctly
require very complex pragmatic analysis capabdifom the language system. [Sha0o0,
Jur08]

Natural languages can be viewed as highly expresgeneral-purpose knowledge

representation systems. The rich structure, comtegeéndency and redundancy of natural
languages make them significantly different fronmest automatic reasoning systems.
Unfortunately, expressiveness and computationetabality in knowledge representation

systems are in contradiction. Therefore, the coatmrtal characteristics as well as
representational and inferential mechanisms ofrahtanguages still remain relatively

unknown. [lwa00]

2.2.2 Challenges from machine translation standpoint

All natural languages apply some set of rules fordvMformation, sentence formulation,
word ordering and word grouping. However, theseesutan't be directly mapped
between the source and the target language asctmeyhave significant constitutive
differences. A demonstrative example of this isubing of articles and verbs in English
and Chinese. Chinese language doesn’t have temisgerbs, nor articles such as or
‘the’. Chinese uses the context and auxiliary wordspoess meanings that articles and
tenses carry in English. An automatic Chinese-EBhdiianslator would therefore have to
understand the meaning of the utterance in soargguiage, insert the right articles, and
choose the correct verb tense in the translatiberd are lots of different strategies for
word formation in different languages. Some langsagapply prepositions or
postpositions instead of adding more morphemes smgle word. In some languages
some pronouns can be omitted, which causes addlitcdrallenges when translating to a
language where they can’t. [Jur08]

Human translators apply grammar rules and useodities as an information source in
their work. Many times though, the target langudges not have exact counterparts for
all the words in the source language. Grammar rcdesinclude exceptions, and some
phrases and idioms might not follow the rule at Bictionaries and grammar rules are
therefore not sufficient tools for translation. @rmore, they can not be directly applied



in machine translation, because they are desigmetiuman users. Human brain has an
astounding ability to supplement information andisthextract meanings even from
flawed or inconsistent sources. Also a strong laggumodel, i.e. the knowledge of the
syntactic structure of the language and understgnai context, which enables human
translators disambiguate words and phrases easigry important in translation work.
[Nir87]

Currently a big obstacle in machine translatiothis lack of deep understanding of the
mechanisms of natural languages and the way hunaaslators process them. Deep
understanding is required to overcome problems exhusy translation divergences

described above. Ambiguity and the need for sema&mbdwledge of the language make
natural language processing essentially differesrhfother data processing. Developing
a high-quality automatic machine translator with nestrictions or human intervention

requires developing a very expressive, formal keolge representation system. [Jur08,
Iwa00]

Some problematic aspects in machine translatiomairdirectly related to the translation
algorithm itself, but the communication between hansiand machines. Implementing
high-quality speech recognition and synthesis iaesh-to-speech machine translation
applications is a major challenge (see chaptein3addition to speech recognition and
synthesis, problems such as sentence boundarytidataod parsing a spoken language
input arise when we want to translate from speedpeech instead of text to text.

Sentences are logical language entities: one sentepresents one meaningful message.
Therefore it is obvious that the input needs t@éesed on a sentence-by-sentence basis,
instead of word-by-word. Detecting sentence bouedais not a trivial problem even
when processing text input due to the variety oftesgce-ending characters and their
ambiguous occurring. In speech-to-speech machamslation, the input is a raw speech
signal with absolutely no sentence boundary infdiona Silence periods can be used as
one indicator, but more sophisticated speech aisalygethods are required when
processing continuous speech. Furthermore, parmiaginput sentence by sentence
causes significant additional delay. The transtaigstem would have to wait for user A
to finish a sentence to even start the processimugling encoding, transmission and
decoding in addition to the translation processlfifswhich also causes some delay
before the translated speech signal reaches udaraBtelephone conversation, delays of
approximately 500ms will be perceived as annoyind eeduce the efficiency of the
conversation, as they make the dialog broken asdanth [Kit91]. This is a significant
issue to be solved when developing truly real timet close-to-real time machine
translation applications.

Spontaneous spoken language has often poor symtasoanetimes even poor semantics.
Hence the system needs to be able to handle disfe®e hesitations, incomplete words
and sentences etc. when parsing the spoken langyage[Jur08]



3 Speech Recognition and Synthesis

The importance of speech as a communication mdtlhsdcreated the need to capture,
store and produce speech by machines. In this ehapasics of automatic speech

recognition (ASR) and speech synthesis (or texdgeech, TTS) are presented. ASR and
TTS enable two-way vocal communication between msand machines, which makes

them mandatory operations in all speech-to-speexathme translation systems.

3.1 Speech recognition

ASR is basically a pattern recognition task: eagbui utterance needs to be identified
and mapped to corresponding text. In theory, pattecognition for ASR could be

realized with a large dictionary of waveform erdrilabeled with the corresponding text
representation. Using a certain metric, the systauld find the closest match for an
input signal in the dictionary and convert it txtt@ccording to the labels. This very
straight-forward approach is computationally heamg extremely memory-consuming,
and it can only be considered in applications tisa# a very limited vocabulary. Even in
such a situation, the waveform of a single word eany significantly depending on the
speaker and the context. Thus, more efficient pattecognition algorithms are needed.
[Sha00]

The hidden Markov model, or HMM, approach is ddsexli here as it is the dominant
pattern recognition approach used in large-vocaputantinuous ASR applications.
HMM is a machine learning based probabilistic segeeclassifier model. To define
HMM, we first need to introduce Markov chains, axtend the model to HMM. An

alternative approach, maximum entropy model or MEMIso briefly described.

3.1.1 Markov chains

Markov chains are statistical models, which perfaxm analysis on a sequence and
compute probabilities for the next unit in the semge to have certain properties or
belong to a certain group. In speech recognitibe, KMarkov chain could for example
compute the probability for the next phoneme toabeonsonant or a vowel. Markov
chain is a sequence classifier: it computes théaiitity distribution over possible
labels, and chooses the best label sequence. géaldgrmulation of a Markov chain is a
weighted automaton, defined as follows:

Q=0, @, ... a set of N states,

A =[ao1@02...an1.-- 8 a transition probability matrid, where elemeng;
represents the probability of moving from state statg,

Jo,OF a start state and alfstate.



A simple Markov chain presented in figure 3.1 shdwesv to define probabilities of
sequences consisting of symbdisand B. The probability of moving from the state
correspondent to symb#é|, to the state correspondent to symBa$ p, and to the same
state 1- p. The probabilities of transitions from the staterespondent to symbol B are
p2 and 1-p, respectively. [Jur08]

P1
P2

Figure 3.1.A simple Markov chain.

3.1.2 Hidden Markov models

Markov chains can be used to calculate probalslitte events that can be observed in
the real world, such as acoustic features of amtirgignal. In speech recognition

however, the most interesting events are not dyretiservable. For example, in part-of-

speech tagging, each word is assigned a tag (narh, preposition, adverb etc.) to

decrease ambiguity, and increase the knowledgessilple upcoming words. That is, we
need to infer the correct tags from the acoustiz® The tags are indirect, higher-level
classifications, which is why they are called hidd&herefore, the probabilistic model is

called hidden Markov model (HMM). HMM is formulated follows:

Q=0 & .- O a set of N states, like in Markov chain,

A =[ao1@02...an1... 8| a transition probability matrig,

Jo,OF a start state and alfstate,

0=0,0,...G a sequence of T observations drawn from
vocabulary defined in the model,

B = hi(oy) a sequence of observationlihkeds, where each

element is the probability of an observat®ibeing generated from state
A simple HMM presented in figure 3.2 shows how thieservation likelihoods are

connected to the states. For example, symbat an observed symbol sequence was
produced by the underlying process 1 with the podibyaof 0.6.
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1-p,

P(1/A)=0.6 P(1/B)=0.7
P(2|A)=0.4 P(2/B)=0.3

Figure 3.2.A simple HMM.

The observations in a hidden variable model like MiMre inferences, so we can’t
directly see what was the sequence of variabled, yielded a particular sequence of
observations. Finding this sequence of variablesaled decoding. The most obvious
approach for decoding is to calculate the prob@dslifor all possible state sequences
given the observation sequence, and find the mimmtUhe large number of possible
state sequences makes this approach computatidredlyy, and thus not feasible. The
most commonly used efficient decoding method for MINs the Viterbi algorithm.
Viterbi algorithm uses a trellis structure and msoee computing to find the most
probable state sequence. The o