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In the globalizing world, the ability to communicate over language barriers is 
increasingly important. Learning languages is laborious, which is why there is a strong 
desire to develop automatic machine translation applications. Ericsson has developed a 
speech-to-speech translation prototype called the Real-Time Interpretation System 
(RTIS). The service runs in a mobile network and translates travel phrases between two 
languages in speech format. 

The state-of-the-art machine translation systems suffer from a relatively poor 
performance and therefore evaluation plays a big role in machine translation 
development. The purpose of evaluation is to ensure the system preserves the 
translational equivalence, and in case of a speech-to-speech system, the speech quality. 
The evaluation is most reliably done by human judges. However, human-conducted 
evaluation is costly and subjective.  

In this thesis, a test environment for Ericsson Real-Time Interpretation System 
prototype is designed and analyzed. The goals are to investigate if the RTIS verification 
can be conducted automatically, and if the test environment can truthfully measure the 
end-to-end performance of the system. 

The results conclude that methods used in end-to-end speech quality verification in 
mobile networks can not be optimally adapted for machine translation evaluation. With 
current knowledge, human-conducted evaluation is the only method that can truthfully 
measure translational equivalence and the speech intelligibility. Automating machine 
translation evaluation needs further research, until which human-conducted evaluation 
should remain the preferred method in RTIS verification. 
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quality 
 



 ii  

AALTO-YLIOPISTO 
SÄHKÖTEKNIIKAN KORKEAKOULU       Diplomityön tiivistelmä 
Tekijä:  Silja Tirronen 
 
Työn nimi: Puhemuotoisten 
konekäännösten automatisoitu testaus 
tietoliikenneverkoissa 
 
Päivämäärä: 21.2.2011 
 

Sivumäärä: 64 

Laitos: Signaalinkäsittelyn ja akustiikan laitos 
 
Professuuri: S-89 Akustiikka ja äänenkäsittelytekniikka 
 
Valvoja: Professori Paavo Alku 
 
Ohjaaja: FT Peter Jungner 
 
Globalisoituvassa maailmassa kyky kommunikoida kielimuurien yli käy yhä 
tärkeämmäksi. Kielten opiskelu on työlästä ja siksi halutaan kehittää automaattisia 
konekäännösjärjestelmiä. Ericsson on kehittänyt prototyypin nimeltä Real-Time 
Interpretation System (RTIS), joka toimii mobiiliverkossa ja kääntää matkailuun 
liittyviä fraaseja puhemuodossa kahden kielen välillä. 

Nykyisten konekäännösjärjestelmien suorituskyky on suhteellisen huono ja siksi 
testauksella on suuri merkitys järjestelmien suunnittelussa. Testauksen tarkoituksena on 
varmistaa, että järjestelmä säilyttää käännösekvivalenssin sekä puhekäännösjärjestelmän 
tapauksessa myös riittävän puheenlaadun. Luotettavimmin testaus voidaan suorittaa 
ihmisten antamiin arviointeihin perustuen, mutta tällaisen testauksen kustannukset ovat 
suuria ja tulokset subjektiivisia.  

Tässä työssä suunniteltiin ja analysoitiin automatisoitu testiympäristö Real-Time 
Interpretation System –käännösprototyypille. Tavoitteina oli tutkia, voidaanko testaus 
suorittaa automatisoidusti ja pystytäänkö todellinen, käyttäjän havaitsema käännösten 
laatu mittaamaan automatisoidun testauksen keinoin. 

Tulokset osoittavat että mobiiliverkoissa puheenlaadun testaukseen käytetyt menetelmät 
eivät ole optimaalisesti sovellettavissa konekäännösten testaukseen. Nykytuntemuksen 
mukaan ihmisten suorittama arviointi on ainoa luotettava tapa mitata 
käännösekvivalenssia ja puheen ymmärrettävyyttä. Konekäännösten testauksen 
automatisointi vaatii lisää tutkimusta, jota ennen subjektiivinen arviointi tulisi säilyttää 
ensisijaisena testausmenetelmänä RTIS-testauksessa. 
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1 Introduction 
 

1.1 Motivation 
 
As the world is becoming global and the possibilities of instant communication around 
the world are growing, the need to study foreign languages has also become increasingly 
important. Learning languages is not easy: even after a few years of studies people face 
problems when communicating in a foreign language. In the Hitchhiker’s Guide to the 
Galaxy by Douglas Adams, a little Babel Fish would simultaneously translate any 
language in the universe to another when placed in one’s ear. Having a Babel Fish would 
remove language barriers as well as the trouble of studying foreign languages, and allow 
us to communicate with anyone regardless of the person’s background.  

Speech is the most natural way for human beings to communicate. Speech can deliver 
information conveniently to one or more listeners in real time and carry a lot of nonverbal 
information on the side. Therefore, there’s a strong motivation to develop high-quality, 
real-time speech-to-speech machine translation applications. Companies also have a 
growing interest in commercializing speech-to-speech machine translation applications. 
The business potential of integrated network services capable of translating between at 
least the biggest languages, like English, Mandarin Chinese, Spanish, Russian or Arabic, 
is huge. Among other companies, Ericsson has noticed this business potential and has 
developed a translation service prototype. The prototype is capable of close-to real time 
speech-to-speech translations between English and Mandarin Chinese.  

However, current machine translation applications, including Ericsson’s prototype, still 
have a long way to go before they reach the Babel Fish’s level of functionality. To 
successfully perform machine translation requires expertise in various fields of science: 
most importantly cognitive science, cortical processes of the human brain, acoustics, 
speech technology and linguistics. The lack of powerful and accurate methods for 
research and measurement of brain functions is the main reason why state-of-the-art 
machine translation applications suffer from relatively poor performance. Even without 
setting any fluency requirements, machine translation applications can not be considered 
reliable as they very often fail in their fundamental task: conveying the source language 
meaning. Mistranslations can either turn the dialog into complete nonsense, or change the 
meanings so that the outcome is offensive, amusing, or just plain confusing. It is obvious 
that this will result in mutual incomprehension and even destroy the whole discussion. 

There is a lot of progress still to be made in machine translation development. This 
creates the need for efficient tools to measure the progress and accurately estimate the 
performance of a machine translation application. How can we verify the improvements? 
How can we verify that the translation service has met a certain performance level before 
deployment? Considering the complex nature of the translation problem itself, answering 
these questions is not trivial.  
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1.2 Problem description 
 
Several scientists [Sta10, Tom03, Alb09, Lop08] agree to the current status of machine 
translation technology: significant progress has been made during recent years, but 
machine translation is still extremely unreliable. Moreover, cross-cultural communication 
is prone to misunderstandings even when using skilled human translators. The 
consequences of the mistranslations and misunderstandings vary in severity, but in worst 
case scenario serious conflicts can arise.  

This brings up the importance of verification in machine translation development. Like in 
any software development process, verification is an integral and important part. Speech-
to-speech machine translation systems are particularly error-prone and the consequences 
of a false acceptance can have a huge impact on the system performance. Hence, 
verification plays a big role in machine translation development and needs to be 
conducted thoroughly. However, as Tomás et. al. [Tom03] state, no accurate, consistent 
and convenient machine translation evaluation method yet exists. 

We can start by examining the problem from speech quality verification standpoint. It is 
another speech-to-speech process of which there is a lot of expert knowledge available. 
Ericsson as the world’s leading mobile network manufacturer has very sophisticated test 
environment for speech quality verification. Fully automated test setup with specialized 
tools enable testers to run high volume tests employing bit exact analysis. However, this 
same automated test environment can not be directly applied in speech-to-speech 
translation verification, as it differs significantly from speech quality verification. In case 
of no translation service is applied, the network’s capability of accurately reproducing the 
same signal in the receiver’s end is being measured. In case of translation, the signal will 
be run through a very complex cognitive process with multiple correct outputs. The 
complex nature of the translation process brings about new challenges in verification: 
how to define the reference patterns? How to define a metric that can calculate if the 
machine translation matches any of the references, and which one is the closest match? 
How to define the acceptance level for a translation, and thus, when is the service good 
enough to go live? 

Another key issue in machine translation verification is automation. Setting up human-
conducted verification is initially simple: human brain possesses a strong language model 
and knowledge of the world, which are needed for successful evaluation. Despite the low 
initial effort, human-conducted verification is expensive in terms of resources and time. It 
is also subjective and not accurately reproducible. Therefore we need to design a test 
environment which can perform evaluation with little or no human intervention. 
Automated tests could be used as a complementary method to manual verification to 
speed up regression testing and enable system tests with high traffic load. The key 
challenge in designing automated test environment is to ensure that the test results 
correspond to human judgement, i.e. the automated test gives a truthful representation of 
machine translation quality.  
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1.3 Scope 
 
The purpose of this thesis is to examine the key principles behind successful machine 
translation and machine translation verification. Based on the theoretical aspects, the 
possibility of automating machine translation verification in telecom networks will be 
investigated. An automated test method and a test setup for Ericsson’s speech-to-speech 
real-time interpretation system (RTIS) service prototype is designed and analyzed. The 
key goals of this thesis can be summarized as follows: 

• To examine how machine translation works and present the main methods applied 
in machine translation evaluation 

• To examine what kind of methods  can be used to verify the effects of speech 
quality on machine translation quality and comprehensibility 

• To design an automated test environment for Ericsson’s speech-to-speech 
machine translation service 

• To evaluate the designed test environment, i.e. estimate if the test setup can 
adequately measure the actual quality and comprehensibility of the translations 

The task of the test environment designed in this thesis is to measure the end-to-end 
performance of an integrated network RTIS service. This means that not only the actual 
translation algorithm is tested, but also possible problems arising from speech 
recognition, speech synthesis, transcoding, network disturbances or delay need to be 
verified. The design is based on Ericsson’s existing test environment for speech quality 
testing and related tools. The goal is to examine if the tools, methods, and test setup used 
in speech quality testing can be adapted and applied in machine translation verification.  

This thesis is structured as follows. Chapter 2 presents the background theory considering 
speech production and natural languages. Chapter 3 presents the principles of automatic 
speech recognition (ASR), and speech synthesis, or text-to-speech (TTS). These speech 
processing methods are needed in all systems involving a vocal interface between 
humans and machines, hence, in speech-to-speech machine translation systems they are 
required as well. Chapter 4 reviews the history and current state of machine translation 
development, as well as the main design principles of machine translation systems. In 
chapter 5, subjective and quantitative methods for machine translation evaluation are 
presented. Chapter 6 gives an overview to the Ericsson’s network and presents the 
objective and functionality of RTIS prototype. Chapter 7 presents the automated test 
environment for RTIS verification constructed in this thesis project. Chapter 8 presents 
the results of the tests, and analyzes the applicability of the test setup and its capability of 
truthfully measuring the translation quality. Chapter 9 concludes. 
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2 Background 
 

2.1 Speech 
 
Speech is probably the oldest information sharing method in the world. Speech and 
language are very efficient means of communication. Speech transmission over an 
electrical network has been possible now for more than 100 years, in one form or another. 
Still, research of speech coding and transmission is ongoing and new methods are 
actively being developed to achieve better speech quality. The new codecs introduced in 
3G, such as AMR-WB or G.719, serve as an example. Speech controlled human-machine 
interaction is another, attractive research topic, growing in popularity in recent years. In 
this chapter, the basics of speech and speech production are presented. 

 

2.1.1 Speech production 
 
Speech is produced by letting pre-inhaled air flow through the speech production system 
and influencing the air stream by different positioning of the speech organs. Originating 
from lungs, the airflow passes through trachea and larynx, where two small muscle folds, 
called the vocal folds, are located. After the vocal folds the air passes through to the vocal 
tract, a muscular passageway consisting of oral and nasal cavities. The vocal tract leads 
from glottis (the opening between the vocal folds) all the way to the lips and nose, from 
which the speech signal radiates out. The vocal folds open and close rapidly to create 
excitation, a buzzing sound that is modified in the vocal tract to produce different 
phonemes. This can be understood as a simplified source-filter model as presented figure 
2.1. An excitation signal is fed into a time-varying filtering system corresponding to the 
vocal tract, which creates resonances by emphasizing certain frequencies. [Ros02, Sha00, 
Jur08] 

 

 
 

Figure 2.1. The source-filter model of speech. 
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The vocal tract is the most remarkable part of the speech production system. Its main 
function is to create acoustic resonances or restrict the airflow by changing its shape, and 
thus turn the excitation signals to specialized sounds of speech, also called phonemes. 
There are two main classes of phonemes: vowels and consonants. These two groups can 
be categorized further: consonants based on the place or manner of articulation, i.e. where 
and how in the vocal tract the airflow is restricted to produce the phoneme. Vowels are 
characterized mainly by the position of tongue and lips, and the openness of the vocal 
tract. [Jur08, Ros02]  

Phonemes have their own characteristics but they are not fixed due to a phenomenon 
called coarticulation. That is, the articulation of a single phoneme may change 
remarkably depending on its phonetic context. The vocal tract tends to change its shape 
smoothly over a sequence of phonemes, which causes a single phoneme to be affected by 
the preceding and subsequent ones. [Sha00]  

 

2.1.2 Speech signal properties 
 
From a physical perspective, speech is variations in air pressure. The pressure changes 
propagate through air medium as sound waves. Speech signals can be characterized by 
their frequency, amplitude, waveform and spectral properties. 

The speech production organs have evolved to work at relatively low frequencies, in the 
frequency range where also the hearing system is most sensitive. The fundamental 
frequency, commonly notated F0, is perceived as the pitch of voice. The fundamental 
frequency is determined by the opening and closing of the vocal folds when producing 
voiced sounds. F0 is speaker-dependent and varies within a wide frequency range. On 
average, male speakers’ F0 is approximately 100 Hz and female speakers’ 200 Hz. The 
frequency range of human speech can go up to 10 kHz. 

In the time-domain (or waveform) analysis, the speech signal is presented as a graph of 
air pressure variation as a function of time. In time domain representation, vowels can be 
observed to be quasi-periodic and have high amplitude and intensity. Their waveform 
resembles sine and cosine functions. The duration of a single vowel phoneme is relatively 
long, typically 50-400 ms. Vowels are voiced, so the opening and closing of the vocal 
folds can be clearly seen in the waveform. Consonants, however, are often noisy and 
don’t have a regular waveform. Some resemble white noise, some are preceded by a 
period of silence and the duration of the actual sound burst is very short, some voiced 
consonant’s waveforms can be rather similar to that of vowels.  In general, consonants 
have shorter duration and lower intensity than vowels.  

Frequency domain representations can give us more information about the characteristics 
of different phonemes. In frequency domain the signal’s spectrum, i.e. the signal’s 
amplitude as a function of frequency is presented. The spectral information is useful 
especially from speech coding and transmission point of view.  

In frequency domain we can observe that most of the energy of a vowel lies below 1 kHz. 
Vowels also have an interesting spectral property known as formants. Depending on the 
shape of the vocal tract, some frequencies resonate more than others and thus spectral 
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peaks appear. These peaks are called formants. All vowels have roughly three formants in 
the frequency range below 3 kHz. The locations of these first three formants are the most 
important features that make vowels distinguishable to the listener. Consonants’ most 
important spectral information often lies in higher frequencies, especially noisy 
consonants like /f/, /s/ or /h/. Depending on the consonant, the most spectral energy lies 
above 3 kHz or even 8 kHz. Consonant’s spectral energy is often widely distributed and 
thus occupies a broader bandwidth than a vowel’s energy, which is usually concentrated 
below 3 kHz. [Sha00] 

 

2.2 Language 
 
By natural languages we mean languages evolved naturally and spontaneously in human 
interaction, expressed in spoken or written form. Other languages, like mathematical, 
formal and computer languages differ significantly from natural languages by their 
structure, complexity, expressiveness and development over time.  

It is still not completely understood how language is structured in the human brain and 
how language is acquired by infants. For humans, segmenting speech to meaningful units 
such as words and syllables, and understanding the meaning comprised of these units is a 
very easy task and human infants learn this ability rather effortlessly during the first years 
of their lives. Explaining the mechanisms of natural languages requires extensive 
knowledge in cognitive processing and brain functions as well as knowledge in speech 
processing and linguistic theory. [Räs07]  

The theory of universal grammar [Coo07], however, suggests that there is a common 
underlying structure or set of rules, which every natural language grammar is based on. 
This implies that the universal grammar is embedded in the brain circuitry, and humans 
conform to this deep structure when acquiring their first language. 

 

2.2.1 Structure of natural languages 
 
The structure of natural languages can be seen as levels of related elements. According to 
Jurafsky and Martin [Jur08] these levels include, in the order of growing complexity, 
phonetics, morphology, syntax, semantics and pragmatics.  

Phonetics studies the speech production and how the linguistic sounds are realized 
acoustically. Phonetics itself plays a rather insignificant role in language processing 
because examining the pure acoustic content does not give information about the 
meanings. In speech-to-speech machine translation, however, knowledge of phonetics is 
important, as it forms the basis for successful, accurate speech recognition and synthesis. 
Morphology studies morphemes, the smallest meaningful language units. These sub-word 
units joined together with word stems represent the elementary meanings in words, such 
as singular or plural. Morphology defines the basis for word formation in natural 
languages. 
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Syntax describes how the words need to be ordered to form sentences, i.e. what are the 
structural relationships between words. The same set of words can have different 
meanings depending on the syntactic rule applied, or not make sense at all if the syntax 
was not correct. Semantics includes higher-level knowledge of language: it is the 
knowledge of the meanings of sentences. Natural languages are full of ambiguities, such 
as homonyms, synonyms, words that can either be a verb or a noun, etc. A system with 
semantic knowledge, like the human brain, can infer the meaning of ambiguous sentences 
from its relationship to other words and sentences. Pragmatics, on the other hand, deals 
with even higher level of meaning than semantics. It contains knowledge of the speakers’ 
(and the hearers’, as well) attitudes, goals, intentions, the emotional content of the 
message and relative concepts. Pragmatics also studies the use of idioms, sarcasm and 
other possible situations where a sentence doesn’t carry its literal meaning in the 
designated context. The speaker might also refer to other conversations, experiences, or 
generally known facts. Because of this understanding pronouns like ‘it’  or ‘that’  correctly 
require very complex pragmatic analysis capabilities from the language system. [Sha00, 
Jur08] 

Natural languages can be viewed as highly expressive general-purpose knowledge 
representation systems. The rich structure, context-dependency and redundancy of natural 
languages make them significantly different from other automatic reasoning systems. 
Unfortunately, expressiveness and computational tractability in knowledge representation 
systems are in contradiction. Therefore, the computational characteristics as well as 
representational and inferential mechanisms of natural languages still remain relatively 
unknown. [Iwa00] 

 

2.2.2 Challenges from machine translation standpoint 
 
All natural languages apply some set of rules for word formation, sentence formulation, 
word ordering and word grouping. However, these rules can’t be directly mapped 
between the source and the target language as they can have significant constitutive 
differences. A demonstrative example of this is the using of articles and verbs in English 
and Chinese. Chinese language doesn’t have tenses for verbs, nor articles such as ‘a’ or 
‘ the’. Chinese uses the context and auxiliary words to express meanings that articles and 
tenses carry in English. An automatic Chinese-English translator would therefore have to 
understand the meaning of the utterance in source language, insert the right articles, and 
choose the correct verb tense in the translation. There are lots of different strategies for 
word formation in different languages. Some languages apply prepositions or 
postpositions instead of adding more morphemes to a single word. In some languages 
some pronouns can be omitted, which causes additional challenges when translating to a 
language where they can’t. [Jur08] 

Human translators apply grammar rules and use dictionaries as an information source in 
their work. Many times though, the target language does not have exact counterparts for 
all the words in the source language. Grammar rules can include exceptions, and some 
phrases and idioms might not follow the rule at all. Dictionaries and grammar rules are 
therefore not sufficient tools for translation. Furthermore, they can not be directly applied 
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in machine translation, because they are designed for human users. Human brain has an 
astounding ability to supplement information and thus extract meanings even from 
flawed or inconsistent sources. Also a strong language model, i.e. the knowledge of the 
syntactic structure of the language and understanding of context, which enables human 
translators disambiguate words and phrases easily, is very important in translation work. 
[Nir87] 

Currently a big obstacle in machine translation is the lack of deep understanding of the 
mechanisms of natural languages and the way human translators process them. Deep 
understanding is required to overcome problems caused by translation divergences 
described above. Ambiguity and the need for semantic knowledge of the language make 
natural language processing essentially different from other data processing. Developing 
a high-quality automatic machine translator with no restrictions or human intervention 
requires developing a very expressive, formal knowledge representation system. [Jur08, 
Iwa00] 

Some problematic aspects in machine translation are not directly related to the translation 
algorithm itself, but the communication between humans and machines. Implementing 
high-quality speech recognition and synthesis in speech-to-speech machine translation 
applications is a major challenge (see chapter 3). In addition to speech recognition and 
synthesis, problems such as sentence boundary detection and parsing a spoken language 
input arise when we want to translate from speech to speech instead of text to text. 

Sentences are logical language entities: one sentence represents one meaningful message. 
Therefore it is obvious that the input needs to be parsed on a sentence-by-sentence basis, 
instead of word-by-word. Detecting sentence boundaries is not a trivial problem even 
when processing text input due to the variety of sentence-ending characters and their 
ambiguous occurring. In speech-to-speech machine translation, the input is a raw speech 
signal with absolutely no sentence boundary information. Silence periods can be used as 
one indicator, but more sophisticated speech analysis methods are required when 
processing continuous speech. Furthermore, parsing the input sentence by sentence 
causes significant additional delay. The translation system would have to wait for user A 
to finish a sentence to even start the processing (including encoding, transmission and 
decoding in addition to the translation process itself) which also causes some delay 
before the translated speech signal reaches user B. In a telephone conversation, delays of 
approximately 500ms will be perceived as annoying and reduce the efficiency of the 
conversation, as they make the dialog broken and unsmooth [Kit91]. This is a significant 
issue to be solved when developing truly real time, not close-to-real time machine 
translation applications. 

Spontaneous spoken language has often poor syntax and sometimes even poor semantics. 
Hence the system needs to be able to handle disfluencies, hesitations, incomplete words 
and sentences etc. when parsing the spoken language input. [Jur08] 
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3 Speech Recognition and Synthesis 
 
The importance of speech as a communication method has created the need to capture, 
store and produce speech by machines. In this chapter, basics of automatic speech 
recognition (ASR) and speech synthesis (or text-to-speech, TTS) are presented. ASR and 
TTS enable two-way vocal communication between humans and machines, which makes 
them mandatory operations in all speech-to-speech machine translation systems. 

 

3.1 Speech recognition 
 
ASR is basically a pattern recognition task: each input utterance needs to be identified 
and mapped to corresponding text. In theory, pattern recognition for ASR could be 
realized with a large dictionary of waveform entries labeled with the corresponding text 
representation. Using a certain metric, the system would find the closest match for an 
input signal in the dictionary and convert it to text according to the labels. This very 
straight-forward approach is computationally heavy and extremely memory-consuming, 
and it can only be considered in applications that use a very limited vocabulary. Even in 
such a situation, the waveform of a single word can vary significantly depending on the 
speaker and the context. Thus, more efficient pattern recognition algorithms are needed. 
[Sha00] 

The hidden Markov model, or HMM, approach is described here as it is the dominant 
pattern recognition approach used in large-vocabulary continuous ASR applications. 
HMM is a machine learning based probabilistic sequence classifier model. To define 
HMM, we first need to introduce Markov chains, and extend the model to HMM. An 
alternative approach, maximum entropy model or MEM, is also briefly described. 

 

3.1.1 Markov chains 
 
Markov chains are statistical models, which perform an analysis on a sequence and 
compute probabilities for the next unit in the sequence to have certain properties or 
belong to a certain group. In speech recognition, the Markov chain could for example 
compute the probability for the next phoneme to be a consonant or a vowel. Markov 
chain is a sequence classifier: it computes the probability distribution over possible 
labels, and chooses the best label sequence. A logical formulation of a Markov chain is a 
weighted automaton, defined as follows: 
 
 Q = q1, q2, ... qN   a set of N states, 
 A = [a01 a02 … an1… ann]   a transition probability matrix A, where element aij  

 represents the probability of moving from state i to state j, 
 q0, qF                            a start state and a final state. 
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A simple Markov chain presented in figure 3.1 shows how to define probabilities of 
sequences consisting of symbols A and B. The probability of moving from the state 
correspondent to symbol A, to the state correspondent to symbol B is p1, and to the same 
state 1- p1. The probabilities of transitions from the state correspondent to symbol B are 
p2 and 1-p2, respectively. [Jur08] 
 

 
Figure 3.1. A simple Markov chain. 
 

3.1.2 Hidden Markov models 
 
Markov chains can be used to calculate probabilities for events that can be observed in 
the real world, such as acoustic features of an input signal. In speech recognition 
however, the most interesting events are not directly observable. For example, in part-of-
speech tagging, each word is assigned a tag (noun, verb, preposition, adverb etc.) to 
decrease ambiguity, and increase the knowledge of possible upcoming words. That is, we 
need to infer the correct tags from the acoustic source. The tags are indirect, higher-level 
classifications, which is why they are called hidden. Therefore, the probabilistic model is 
called hidden Markov model (HMM). HMM is formulated as follows: 
 
 Q = q1, q2, ... qN   a set of N states, like in Markov chain, 
 A = [a01 a02 … an1… ann]    a transition probability matrix A, 
 q0, qF                            a start state and a final state, 
 O = o1, o2, … oT        a sequence of T observations drawn from 

 vocabulary defined in the model, 
B = bi(ot)                      a sequence of observation likelihoods, where each 
 element is the probability of an observation ot being generated from state i. 

 
A simple HMM presented in figure 3.2 shows how the observation likelihoods are 
connected to the states. For example, symbol A in an observed symbol sequence was 
produced by the underlying process 1 with the probability of 0.6. 
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Figure 3.2. A simple HMM. 
 
The observations in a hidden variable model like HMM are inferences, so we can’t 
directly see what was the sequence of variables, that yielded a particular sequence of 
observations. Finding this sequence of variables is called decoding. The most obvious 
approach for decoding is to calculate the probabilities for all possible state sequences 
given the observation sequence, and find the minimum. The large number of possible 
state sequences makes this approach computationally heavy, and thus not feasible. The 
most commonly used efficient decoding method for HMM is the Viterbi algorithm. 
Viterbi algorithm uses a trellis structure and recursive computing to find the most 
probable state sequence. The observations are processed one by one, ruling out the less 
probable state paths. See [Jur08] for details.  

 

3.1.3 Hidden Markov models applied to speech recognition 
 
In speech recognition, the word itself can not be directly observed in the real world. We 
can only observe the acoustical properties of a speech signal related to a specific word. 
Thus, in HMM-based speech recognition applications, acoustic feature vectors represent 
the observation sequence, and a sequence of words or sub-word elements represent the 
hidden states of the model. The task is to solve the most probable sequence of words 
causing the observation of these particular acoustic features. [Jur08] 

Overview of a HMM-based speech recognition system is presented in figure 3.3. As the 
figure shows, the acoustic features of the input speech signal are extracted and the feature 
vector is fed into the decoder to obtain the textual representation. The decoder’s 
functionality is based on and trained by two sets of parameters: HMM parameters 
extracted from a speech database, and language model parameters extracted from a 
corpus. [Jur08] 

 
 



 12 

 
 
Figure 3.3. Overview of a HMM-based ASR system. 
 
 

3.1.4 Maximum entropy models 
 
Maximum entropy model (MEM) is another important sequence classifier model. Like 
HMM, it is a probabilistic sequence classifier and it can be used in speech recognition 
applications. MEM belongs to the group of log-linear classifiers. [Jur08] It applies the 
principle of maximum entropy [Jay57], according to which the best describing 
probability distribution for a phenomenon is the one that maximizes the entropy.  

Each speech utterance observation can be seen as a vector of features. MEM processes 
the input by extracting these features and weighing them by some coefficient factor. 
MEM is formulated by function P(c|x), which determines the probability for an 
observation x to belong in class c: 
 

∑=
i

ii fw
Z

xcP )exp(
1

)|(     (3.1) 

In (3.1) fi denotes the features and wi the corresponding weights. Normalization 
parameter Z scales the probabilities to sum up to 1. In MEM classification, choosing the 
features to be analyzed and determining their weights plays a key role. In speech 
recognition, the features can be for example, morphemes or information of the preceding 
word. [Jur08] 
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3.2 Speech synthesis 
 
The task of speech synthesis is to produce acoustic waveforms from text. The challenge 
is to achieve high quality, natural-like speech output from an arbitrary text input, while 
keeping memory requirements and computational complexity low. The naturalness of 
speech consists of various voice characteristics such as speaker individuality, emotional 
content, or prosodic variation. Producing these features synthetically has proven to be 
very difficult. Problems can arise from memory restrictions, poor vocoder techniques and 
inaccurate parameterization. [Rai11, Tok02] 

In this chapter, two approaches for speech synthesis are presented. Unit selection 
approach, based on concatenating pre-recorded speech segments, has been the 
dominating speech synthesis technique over the past decade [Tok09]. A parametric 
synthesis method based on HMM models was proposed to improve the accuracy of 
modeling of speech characteristics, and the flexibility and adaptability of TTS 
applications. [Rai11, Tok02] 

 

3.2.1 Unit selection 
 
The conventional scheme for TTS implementation is unit selection. In this approach, pre-
recorded speech units are selected from a database and concatenated to form words and 
phrases. The challenge in unit selection is to preserve the natural coarticulation between 
phonemes while avoiding misalignments of segments during concatenation. The 
segments to be combined have to meet certain requirements for F0, energy and duration 
to minimize disturbances. Furthermore, prosodic variations and intonation contours have 
to be preserved to achieve natural high-quality speech. [Tor08]  

The size and construction of single units, as well as the size of the database varies 
between different implementations.  The size of the database is directly proportional to 
the phonetic and prosodic context coverage of the system. Larger speech unit databases 
have better coverage, which allows more control over vocal variations in the speech 
output. Finding the ideal database size for a TTS system is an optimization problem: with 
a larger database better speech quality can be achieved, however recording and storing a 
large database with appropriate variations is difficult and costly. Also, the selection 
algorithms in large-database applications grow in computational complexity. [Tok09] 
There’s even more variability in the structure and size of a single unit. Possible 
realizations are for example diphone, triphone or half-phone units, larger polyphone 
units, non-uniform or even variable-sized units. Usually, systems using longer units need 
a larger database to achieve adequate coverage. Smaller units offer more join points and 
can thus be combined in more versatile ways. However, large number of join points can 
affect the continuity of speech and cause disturbances. [Tor08, Tok09] Experiments by 
Torres and Gurlekian [Tor08] show, that speech quality is perceived more natural when a 
TTS system uses dynamic units with high occurrences of three and four phoneme 
sequences, compared to the widely used diphone unit realization.  
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The selection can be performed by minimizing the target cost, which defines how well a 
particular unit from the database matches the desired unit, and the concatenation costs, 
which define how well adjacent units combine. The target and concatenation costs are 
defined according to the equations (3.2) and (3.3), respectively [Tok09]: 
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In (3.2) and (3.3), index variables j and k go through all features in the units under 
analysis, and each feature is assigned a weight w. The features usually considered are F0, 
power, duration and formant content of the unit. The weight w determines the relative 
importance of each feature. [Tok09, Tor08] 

Relatively good speech quality can be achieved by unit selection, but such TTS systems 
are rigid in regards to modeling speech characteristic variations caused by different 
speakers, emotions, or context of the message. Large databases are required to store the 
speech data for unit selection, which becomes a substantial memory and computational 
resource issue, especially in applications with support for multiple languages. The poor 
adaptability, however, is the main deficiency of unit selection based TTS systems. After 
the initial setup, adapting the system or training it to acquire new behavior is very 
difficult or even impossible. [Rai11, Tok09] 

 

3.2.2 HMM-based synthesis 
 
Statistical parametric speech synthesis approach is an alternative TTS scheme growing in 
popularity in recent years. In contrast to unit selection, statistical parametric speech 
synthesis aims at generating the average of a set of similar speech segments. A 
parametric representation is first extracted from a speech database, after which the 
parameters are modeled, and finally used to generate the synthesized speech. A widely 
used framework for modeling is HMM. [Tok09] The parameters of HMM can be trained 
and modified easily. The speech reconstructed from these parameters can thus be adapted 
to model virtually any vocal characteristics. In regards to adaptability, HMM-based 
speech synthesis methods clearly outperform the unit selection methods.  
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Figure 3.4. Overview of an HMM-based TTS system. [Rai11] 

 

A system such as shown in figure 3.4 consists of both training and synthesis parts. In the 
training part, each speech utterance from a database is parameterized, and the obtained 
parameters are trained in a HMM framework. In the synthesis part, the HMM’s 
representing sub-word units are used to generate the needed parameters for synthesis. In 
most HMM-based TTS systems, the synthesis is based on the source-filter model of 
speech (see chapter 2.1.1). In a HMM based TTS system proposed by Raitio et. al 
[Rai11], also the parameterization utilizes an inverse of the source-filter model. The 
glottal inverse filtering function G(z) decomposes the speech signal into the glottal source 
signal (correspondent to the excitation signal in figure 2.1) and the vocal tract transfer 
function: 
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In (3.4), S(z), V(z) and L(z) are the z-transforms of the speech signal, vocal tract function 
and lip radiation function, respectively. This natural glottal source signal and the adaptive 
parameters from the HMM model are then used in synthesizing the speech waveform. 
The fine properties of the source signal play a big role in creating the variations of speech 
that are perceived as naturalness. Thus, using a source signal obtained by glottal inverse 
filtering yields better speech quality than a simple unit impulse train signal, which is 
often used as an excitation in source-filter based synthesis. [Rai11]  
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4 Machine Translation 
 
There are currently a large variety of machine translation (MT) systems, from translation 
aids with variable degree of human intervention to fully automated translation machines. 
A fully automated, high-quality translation system with no human intervention, however, 
still remains a desirable goal.  

The methods of machine translation can be roughly categorized in three groups: transfer 
MT, knowledge-based MT, and statistical MT. In the transfer MT strategy, the source 
text is parsed and encoded into some abstract meaning representation. This representation 
will then be “transferred” to the target language by using a lexical-structural transfer 
dictionary designed for the language pair under analysis. In knowledge-based MT, the 
use of a transfer dictionary can be omitted by expressing the meaning of the source text 
using a language-independent meaning representation system also known as interlingua. 
Statistical MT strategy, however, is an essentially different, machine-learning based 
approach. [Nir87] In chapters 4.2 and 4.3, the knowledge-based MT and statistical MT 
strategies will be described in more detail.  

 

4.1 Introduction to machine translation development 
 
The first machine translation technologies were developed in late 1940’s [Nir87, Lop08]. 
Since then attempts have been made by several universities and research institutes. In the 
early times knowledge-based translation methods were considered superior to statistical 
approaches, mainly because of the weaker computational capacity of then-current 
processors. Statistical machine translation started growing in popularity in the 1990’s, 
first dominated by IBM and recently also by Google. The progress of machine translation 
technologies in recent years has been remarkable, but still no application can be used for 
critical tasks without help of a human translator. However, some current technologies are 
actually good enough to be used in certain situations, where the quality of the target 
language style is not the key requirement and translation errors are not crucial. [Gee05, 
Lop08]  

There are a variety of machine translation realizations [Gee05]. The actual product can 
either be a software package application for a PC, a web service, or a speech-to-speech 
translation service in a mobile network. Some widely used web-based translation services 
at the moment are Yahoo! Babel Fish, WordLingo, Bing Translator by Microsoft and 
Google Translate. At the moment, no widely used, high-quality speech-to-speech 
translation service is available on the market. Google, having an automatic text 
translation service covering more than 50 languages, has announced plans to publish a 
speech-to-speech translation service in 2011 [Eri10a]. Ericsson has developed a working 
speech-to-speech machine translation service prototype with limited, travel domain 
scope. This prototype employs an external 3rd party translation engine integrated into the 
Ericsson network. The service can be run in a normal UTMS network and utilize 
Ericsson’s existing network components. [Eri10a]  
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4.2 Knowledge-based machine translation 
 
A knowledge-based approach is the traditional way to view the problem of machine 
translation. The underlying idea in knowledge-based machine translation (KBMT) is that 
the grammar of a language can be seen as a theory of structure. The goal is to define a 
grammar rule that can generate an infinite set of grammatical sentences, based on a finite 
number of observed sentence utterances, i.e. a corpus. [Cho56]  

A common realization is to define a knowledge base, consisting of entity-oriented 
grammar formalism describing the semantic content of the language, and functional 
grammar formalism describing the syntax. These together with a lexicon, the set of words 
and phrases, form a knowledge base. The basic structure of knowledge-based translation 
system is presented in figure 4.1. 
 

 
 
Figure 4.1. A knowledge-based machine translation system. [Nir87] 
 
The process comprises parsing the source text, using the semantic knowledge base to 
extract the meaning of sentences, encoding it to a semantic meaning representation, or 
interlingua, and finally generate target language text(s) from the interlingua 
representation using some formal grammar. The details of these phases are described in 
the following subchapters. [Nir87] 

 

4.2.1 Interlingua 
 
Interlingua is a language-free, conceptual representation which expresses the meaning of 
the text to be translated. It is a higher-level notation that can express meanings of natural 
language without using any syntactic phrase-level or word-level structures of natural 
languages. 

The main attraction of knowledge-based systems utilizing interlingua is the reduced 
complexity, compared to the transfer MT strategy mentioned earlier in this chapter. N 
being the number of languages known by a translator, a transfer MT system would 
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require N2 different grammars, one for each language pair. A system using interlingua, 
however, needs only N parsers and N generators to perform a translation between any two 
languages. Furthermore, the source language text needs to be parsed only once, and the 
same interlingua representation can be used to generate translation in any language 
known by the system. A major drawback of interlingua is that it can only convey the 
semantic content of a message – in some situations the actual syntactic structure of the 
text might play a significant role as well. [Nir87] 

 

4.2.2 Formal grammars 
 
A formal grammar is a mathematical system for modeling the structure of natural 
languages. It describes the syntactic knowledge of a system, i.e. the syntax and the 
lexicon. In knowledge-based machine translation, formal grammar is used for parsing the 
source text, and generating the text in target language after translating the meaning. 
Formal grammars are obviously language-specific; the rules defining sentence structures 
are unique for each language. However, they are domain-independent. In theory, a 
knowledge-based translation system defined by a formal grammar could translate any 
source text, regardless of its genre or domain. [Nir87] 

The most commonly used formal grammar is context-free grammar (CFG). It is a logical 
extension of finite-state languages (FSL), defined in the classical hierarchy of grammars 
by Chomsky [Cho56]. Finite-state languages can be used for pattern matching by using 
concatenation, disjunction, union and repetition of symbols of a finite alphabet. CFG has 
greater expressive power than regular expressions produced by FSL. The formal 
definition of a CFG is as follows: 
 
 N  a set of non-terminal symbols, 
 Σ  a set of terminal symbols, 
 R  a set of rules, of the form A → β, where A is a non-terminal and β  
  is a string from the set (Σ ∪  N)*, 
   S  a start symbol.  
 
Hence, CFG produces a language consisting of a (finite or infinite) set of strings, i.e. 
sequences of symbols. In this definition, terminal symbols correspond to words in a 
language: they are elementary symbols defined by the lexicon. Non-terminal symbols are 
syntactic variables, or rules that express clusters or generalizations of terminal symbols. 
In other words, in each rule A → β in R, A is a symbol that can be rewritten with the 
string of symbols β. Because β can include both terminal and non-terminal symbols, CFG 
can define a hierarchically embedded rule set. That is, the lowest level defines the lexicon 
(i.e. the vocabulary), higher levels express combinations of the symbols in the lexicon 
and their combinations, producing more and more complex phrase formation rules. 
[Jur08, Cho56] 

Another popular formalism is finite-state transducer, or FST, which is also a 
generalization of FSL. [Jur08, Lop08] FST is a finite-state automaton, like the automata 
producing FSL. However, FST defines two sets of symbols instead of one and thus 
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produces two sequences, one from each symbol set. This allows us to look at a FST in 
several ways. It can be seen as a mapping between two symbol sets, or a machine that 
defines relations between the two sets. It can also be seen as a machine that reads a 
sequence from set Σ as an input and produces another sequence from set ∆, and thus acts 
as a symbol translator. FST is formally defined as follows:  

 
 Q  a set of states, 
 Σ, ∆  sets of symbols, 
 q0, F  a start state and a set of final states, 
 δ(q,w)  transition function (or -matrix) defining the set of possible new  
  states, given the current state q and an input sequence w, 
 σ(q,w)   output function defining the set of possible output sequences, given 
  the current state q and an input sequence w. 
 
FST is widely used in problems like ASR and character recognition, and it is a useful 
formalism for morphological parsing and defining morphological rules, i.e. rules for word 
formation. FST can read a text input, i.e. a letter sequence, and produce a corresponding 
sequence of morphemes, i.e. meaningful letter combinations. [Jur08, Lop08] 
 
 

4.2.3 Sublanguages 
 
In MT systems, sublanguages can be used to inhibit the complexity of a language. 
Natural languages often have specialized, limited-scope “subworlds” closely related to 
the domain of discourse. For example, the language used in a particular branch of 
science, or in a specific kind of media interaction, is a sublanguage. Sublanguages can 
have specialized vocabulary and even syntax rules.  

From MT point of view sublanguages are useful, because the rules for sentence 
formulation in a sublanguage are more precise. The sublanguage grammars are always 
smaller than those of general languages. Furthermore, the knowledge of the domain 
simplifies the problem of disambiguation greatly. Many interpretations, that could be 
made in general language, are not valid in the sublanguage’s scope. For example, 
consider the generally ambiguous word ‘shower’ in general language vs. a weather 
forecast. In the latter case, we can infer the correct interpretation without even seeing the 
context, but by only knowing the domain of the message. 

In a knowledge-based MT system, it is often feasible to analyze the source language 
input based on both general grammar and a sublanguage grammar. This way the 
sublanguage grammar can be used as a performance “booster”, to rule out misinterpreted 
ambiguities or fill in implicit details. [Nir87] 
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4.3 Statistical machine translation 
 
The growth of the internet together with the increasing number of users in different 
countries has contributed greatly to the dissemination of multilingual information. The 
internet has become a huge database of translation references: a countless number of 
human-translated news texts, government texts etc. are available in electrical form for 
anyone to access. Together with the fast, cheap computing hardware available today, this 
has opened up completely new possibilities in machine learning based machine 
translation development. Statistical machine translation (SMT) has gained interest in 
recent years and become a considerable alternative for knowledge based systems. Indeed, 
most modern machine translation applications are based on SMT technology.  

The functional principle of SMT is to treat machine translation as a machine learning and 
probability optimization problem. SMT algorithm is applied on a large database of 
manually translated texts, often referred to as a bilingual parallel corpus. The algorithm 
extracts parameters from the corpus, which define a probability distribution. The optimal 
translation is found by maximizing the probability function and assigning real values to 
the parameters. Figure 4.2 illustrates the main phases of SMT process, which are 
translational equivalence modeling, parameterization, parameter estimation and decoding. 
The phases are described in chapters 4.3.1-4.3.4 in more detail. 

 

Figure 4.2. The execution phases of a statistical machine translation process. 

The SMT approach has a number of advantages compared to the conventional 
knowledge-based approach. It fits particularly well in multi-language translation systems: 
no language-specific translation rules, like those in knowledge based systems are needed, 
and thus the programming work can be omitted as well. This makes it possible to add 
more languages to system with very little time and human effort. [Lop08, Gee05] As 
languages are constantly evolving and changing, the MT system has to be agile and able 
to adapt to the changes. SMT does this automatically when references are replaced or 
added to the database. The user community can also contribute to MT system 
performance by crowdsourcing. 
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4.3.1 Machine learning 
 
Machine learning is the study of computer algorithms, which allow systems to 
automatically acquire certain functionality through experience, gathered by continuous 
data processing. A system gets a set of training data as input, and adjusts its weights, or 
function coefficients, according to the observed features of the training data.  

Machine learning can be realized in a supervised or unsupervised manner. In supervised 
learning, the system is given the target output with the training data. Thus, the system can 
calculate the difference between the actual output and the desired output, and update its 
parameters accordingly. In unsupervised learning, the desired output is not provided, but 
the system tries to find the relevant features of the input data and organize them in 
appropriate classes. Statistical machine translation can be seen as a supervised learning 
process, because a parallel corpus contains samples of desired input-output pairs and thus 
serves as the target output. 

In a typical machine learning problem, we introduce the following elements:  

• An input data set Y, target set X 
• Random variables y, x; ranging over sets Y and X respectively  
• Samples y ∈Y, x ∈X 

 
An input data element y ∈Y needs to be assigned the best possible output x ∈X. Sets Y 
and X can be single or multidimensional. We are interested in the probability function 
P(x|y), which determines the probability of the output x, when the input y has been 
observed. 

In machine learning problems the task is often to find the best classification for the 
elements in an infinite input set Y, the set X being a small finite set of labels or classes.  In 
statistical machine translation, however, both sets Y and X are complex, and in case of 
many languages, infinite. Therefore the machine learning model needs to be extended by 
a translational equivalence model (figure 4.2), which is basically a set of transition rules. 
These rules are often derived from theoretical models such as those described in chapter 
4.2.2. Because of the complexity of the data sets, the function needs to be parameterized 
(see chapter 4.3.2) to increase the efficiency and learning capability of the model. 
[Lop08, Mit97] 

 

4.3.2 Parameterization 
 
Even with a strong translational equivalence model, the ambiguities in the translation 
process can not be totally eliminated. For each source language (SL) sentence there are 
still multiple possible target language (TL) translations. The task of parameterization is to 
create a function that assigns scores to SL-TL sequence pairs. This way we can rank the 
different SL-TL sequence combinations the model can consider matching. In other 
words, we want to determine probability P(e|f): 
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In (4.1), e denotes the output in TL, f the input in SL, and d is a rule set based on formal 
grammars. The rule set d yields a set of possible outputs, and the probability P is the sum 
of their probabilities. 
Parameterization can be done by using generative or discriminative models. In generative 
models, the Bayes’ rule of conditional probabilities is applied for decomposing P(e,d|f), 
and thus it can be rewritten as follows: 
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However, applying the Bayes’ rule forces us to make strong independence assumptions. 
This can be avoided by using discriminative models, which are based on log-linear 
modeling. In this approach, K feature parameters are defined to create a mapping between 
the input and the output. Like in MEM, see equation (3.1), the probability can be defined 
as an exponential function, where the exponent is a linear combination of features h and 
weights λ: 
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Again, feature selection and weight determination is crucial for the accuracy of the 
model. [Lop08] 
 

4.3.3 Parameter estimation 
 
In parameter estimation, actual values are assigned to parameters in the function P(e,d|f) 
defined in previous phase. Parameter estimation is based on the theoretical assumption, 
that there is a set of true but unknown parameter values, which together with the language 
model produces the parallel corpus.  The task is to extract the values from the parallel 
corpus so that they correspond to the assumed true values as closely as possible.  

Parameter estimation in generative models comes down to a maximum likelihood 
estimation problem. The goal is to find a parameter set that maximizes the objective 
function, i.e. the maximum likelihood estimate. In discriminative models, the main focus 
of parameter estimation is in determining the feature weights λ. However, if the features 
were defined using some generative models, the parameters for those models have to be 
estimated first in the fashion described above. [Lop08] 
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4.3.4 Decoding 
 
Decoding is the final phase of a SMT process, where the actual translations are produced 
by using the language model and the parameters estimated in previous phase. The 
decoder algorithm searches the space of possible outputs and finds the best translation. 
Due to the large number of possible translations, the main challenge is to find a decoding 
algorithm capable of searching the space efficiently enough. [Lop08] 

A popular framework for decoding in SMT is the stack decoding algorithm presented by 
Wang and Waibel [Wan97]. The algorithm constructs a hypothesis H, including the 
length of the sentence to be translated and the prefix words of that sentence. The 
algorithm defines a probability score for the prefix and extends the hypothesis recursively 
until it completes the sentence. The execution of the algorithm includes the following 
phases: 

1) Initialize the stack with a null hypothesis 

2) Pop the hypothesis H with the highest score off the stack. 

3) If H is a complete sentence, output it and terminate the execution of the algorithm. 

4) Extend H by adding one word from the lexicon, calculate the new score and insert 
it to the stack. Repeat the same procedure with each word in the lexicon. 

5) Return to step 2.  

Many SMT decoding algorithms are based on the stack decoding framework and differ 
from each other for example by the implementation of scoring and stack search. Some 
algorithms use aborting search, which kills hypotheses under some threshold score, and 
some apply multiple stacks. 

Another approach is synchronous CFG (or SCFG) decoding, based on the CFG language 
model presented in chapter 4.2.2. The goal is to combine word sequences by using CFG 
grammar rules, to cover long sentences and finally blocks of text. In SCFG decoding, a 
sequence of words can be interpreted as a non-terminal symbol. A state in SCFG 
decoding algorithm consists of a word sequence, the corresponding non-terminal symbol 
representation and a language model needed to combine different sequences. SCFG finds 
the best-scoring tree structure that produces the source sentence using the source 
language grammar; this tree can then be read in reverse order to produce the target 
sentence in target language grammar. [Lop08] 

 

4.3.5 N-grams 
 
N-grams are word prediction models that can enhance SMT performance especially in 
noisy environments, or when the source language input is flawed.  

According to [Lop08] a word in a source text is “conditionally independent of all but the 
n-1 preceding words”. This means that some word sequences, the length of n, have much 
higher probability of occurring in a text than others. Consider the two following 
sentences with the same set of words (example originally presented by [Jur08]): 
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 “All of a sudden I notice three guys standing on the sidewalk” 
 “on guys all I of notice sidewalk three a sudden standing the” 
 
The latter sentence has practically zero probability of appearing in a text, while the 
probability of the former sentence is clearly non-zero. This way we can compute the 
probability of the next word in a sentence, and thus predict the word based on the 
observations of the previous n-1 words. The variable n defines the length of a sequence 
under analysis. Thus, n-gram is a sequence of n words. [Jur08] 
N-gram models compute the last word of an n-gram from the n-1 preceding ones. One 
approach is relative frequency count based on corpora. In this method we examine a 
sequence X1 of n-1 words, with another sequence X2 which contains sequence X1 
followed by one additional word w. The equation (4.4) will therefore tell us the 
probability of word w occurring after a certain sequence of words: 
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This approach is only theoretically applicable when the vocabulary of a translation 
system grows and the corpora used for frequency counts get larger. Furthermore, natural 
languages are not fixed and new sentences are created constantly. 
A more sophisticated way of predicting word w after a certain sequence is to combine the 
joint probability of the words in sequence X2, and the conditional probability of word w 
given the sequence X1. The joint probability describes the probability of words occurring 
together in a sequence, whereas conditional probability describes the probability of word 
w occurring after observing X1. This can be formulated by using the chain rule of 
probabilities: 
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In (4.5), w1

n is a sequence of n words. 
 
N-grams typically apply a small value of n, commonly n=2 (hence called a bigram) or 
n=3 (a trigram). The small value of n allows us to approximate the probability of the 
word w by the last few words instead of its entire history. Thus, we can rewrite the 
bigram probability as in equation (4.6): 
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and further generalize the approximation for the general case of n-grams: 
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This is practical considering MT systems: natural languages are constantly evolving, and 
one particular sentence to be translated might never have occurred in a corpus. Especially 
in long and complex sentences, the bigrams or trigrams of a word, however, have 
occurred in the corpus under analysis with a much higher probability. [Jur08, Lop08] 
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5 Evaluation 
 
Despite the recent progress in MT technology, the quality of the translations is often far 
from perfect. The quality is crucial especially when the target users do not know the 
source language and thus have little, if any, means to recover from possible translation 
mistakes. The mistakes vary in severity: some of them are slight style errors, some can 
alter the whole meaning of the message or turn it into complete nonsense. Depending on 
the severity and type of errors, the discussion may result in amusement, confusion, 
offense or total mutual incomprehension.  Evaluation of the MT systems is therefore 
indispensable. It serves both researchers and the end users of MT systems. [Tom03, 
Alb09, Sta10] 

Currently there is no efficient, consistent and easy MT verification method. One of the 
biggest reasons for this is that quality of a translation is a subjective measure. 
Furthermore, the whole process and its actual goal, correctness of the translation, is 
difficult to formulate. Even so, considering the importance of verification of MT systems, 
it is necessary to formulate some kind of metrics for MT quality. [Jur08, Tom03] 

The goal is to be able to measure the translational equivalence between the source and the 
target language. Translational equivalence includes conveying the source language 
meaning and maintaining the fluency of expression in the target language. Traditionally 
this evaluation has been carried out by human translators, but there is a strong desire to 
be able to formulate quantitative metrics capable of measuring translational equivalence. 
[Lop08] The methods for evaluating the performance of a MT algorithm can be divided 
into subjective and quantitative methods, which are presented in chapters 5.1 and 5.2, 
respectively.  

The evaluation of the end-to-end performance of a speech-to-speech MT application also 
involves speech quality analysis. We are interested in verifying the effects that possible 
variations in the quality of transmitted speech has on MT quality and comprehensibility 
of the message. The goal is to find a method to measure speech quality so that the result 
can be compared with the perceived translational equivalence of the transmitted signal. 
This way, the tests can show the relation between speech quality and MT quality. Some 
possible approaches for realizing the speech quality analysis for MT systems are 
presented in chapter 5.3. 

 

5.1 Subjective evaluation 
 
At present, the most reliable way to test a speech-to-speech MT system is subjective 
evaluation performed by human translators. Because of the linguistic knowledge humans 
possess, subjective evaluation reflects the actual, true quality of the translation. However, 
such method is very dependent on the individual performing the evaluation, and the 
ratings of different judges might vary greatly. It is also difficult to define how to rate long 
sentences consisting of both correct and incorrect parts, and how to measure the impact 
of a single sentence’s rating on the whole message. Furthermore, subjective evaluation is 
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not feasible from a system test point of view due to high evaluation costs, i.e. time and 
effort. [Tom03] Despite the costs and subjective results, human-performed or human-
aided evaluation is still an important strategy due to the lack of extensive automatic 
evaluation metrics. 

Speech-to-speech machine translation is a multi-stage process where each step is non-
trivial. To spot the origin of the problem, MT evaluation needs to be broken down to 
correspond to different parts of the process. A common way to do this is to examine the 
ASR result in the source language, the translated sentence in target language (later 
referred to as forward-translation), or the same sentence translated back to source 
language (later back-translation). 

The current ASR systems’ performance is not yet at a reliable level and the systems are 
very easily confused by different speaker characteristics. Performing a speech synthesis 
on the word sequence resulting from ASR is a way to prove that the MT system is 
actually trying to translate the sentence the user intended. However, knowing that the 
ASR output was correct is only the first step in MT evaluation, and it doesn’t tell us 
anything about the correctness of the actual translation. In the following subchapters, 
some strategies for subjective rating of the translations are presented. 

 

5.1.1 Subjective scoring 
 
In forward-translation evaluation strategy, a bilingual expert will assign scores to 
translated sentences using some suitable scale. The well-known Likert scale from 1 to 5 
is a commonly used alternative for this purpose. The Likert levels can be interpreted for 
example as follows by Stallard et. al [Sta10]: 

 5  –  Essentially a perfect translation 

 4 – An adequate though somewhat disfluent translation which conveys the   
  meaning of the utterance 

 3  – A partial translation which is missing one or more concepts, or is severely  
  disfluent 

 2  – A translation which is missing most of the concepts 

 1  – A translation with no apparent relation to the input. 

The forward-translation evaluation strategy is reliable, but time-consuming and requires a 
highly skilled bi- or multilingual expert to perform the tests. The subjective nature of the 
task might skew the results, unless the test is performed by many individuals, with the 
results normalized and averaged afterwards. 

In back-translation evaluation strategy, the confirmation utterance is created by running 
the sentence under analysis through the MT systems two ways: from SL to TL, and back 
to SL again. In case of an ideal MT system, the back-translation and the SL sentence 
would be identical. With current MT systems this is of course not always true. However, 
if the back-translation is correct, the probability of the forward-translation being correct 
is high. This enables us to utilize back-translation in MT evaluation, and perform the 
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testing even without knowing the target language. A useful approach is also to examine 
the correlation of Likert scores of the forward- and back-translated utterances. [Sta10] 

 

5.1.2 Information error rate 
 
Information error rate (IER) attempts to find a solution to the problem of rating long 
sentences consisting of both correct and incorrect parts. In IER approach, the sentences 
are segmented into groups of one or more words, each representing an entity that conveys 
a piece of information. These segments are called information items, and each item in a 
translated sentence is ranked by marking it with a label corresponding to its quality: 
“OK”, “error”, “syntax”, “meaning”, “others” are examples of possible labels. The IER 
score can then be calculated as the percentage of poorly translated items, i.e. those not 
marked with the label “OK”. This way, incorrect information has the same impact on the 
evaluation score regardless of the length of the sentence where it occured. [Tom03] 

 

5.1.3 Task-oriented evaluation 
 
Another possible approach for subjective MT evaluation is task-oriented: given machine-
translated instructions, a person’s performance in a designated task would be measured. 
[Lop08] Levin et. al [Lev00] proposed an evaluation method based on the idea, that 
literal translation of the source message words is rarely needed, if the interpretation is 
correct. The task-oriented evaluation method introduces domain actions (DA), which 
consist of speech acts and domain-specific actions. Speech acts are general actions, with 
which words in a message can be associated, e.g. “acknowledge”, “give-information”, 
“accept”. Domain-specific concepts represent the vocabulary of the discourse. For 
example, in the travel domain the tags could be “price”, “room”, “flight”, or 
“availability”. The translated message will then be tagged by a human translator, and the 
translational coverage can be calculated as the percentage of sentences that can’t be 
associated with any DA. 

 

5.1.4 Relative weighting 
 
When evaluating machine translated messages, a false acceptance, i.e. falsely rating a 
translation correct, should be considered worse than a false rejection because of the 
nature of the consequences: confusion, aggression etc. [Sta10]. The accuracy of 
evaluation can be increased by assigning weights to the subjective ratings. Relative 
weighting can be used together with another subjective measure, e.g. Likert scoring or 
IER, to increase the importance of the crucial parts of the message and diminish the risk 
of a false acceptance. For example, the presence of certain concepts can be weighted 
higher in a translated sentence, and style errors can be considered less crucial than serious 
syntax errors. 
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5.2 Quantitative methods 
 
The main advantage of quantitative translation evaluation methods is the low cost. After 
the initial effort, which includes formulating a suitable automatic translational 
equivalence metric and setting up the test system, the evaluation cost is practically null. 
The quantitative evaluation approach is, from system test point of view, the only feasible 
option due to the high volume of tests and the need for frequent, cyclic regression testing. 
[Lop08, Tom03, Pap02] 

To obtain truthful evaluation results, the quantitative metrics need to correlate to human 
judgement as closely as possible. Implementing this correlation by using an efficient, 
accurate algortihm is the main challenge in developing a quantitative MT evaluation 
metric. Some metrics that can be used for automatic evaluation are word error rate 
(WER), sentence error rate (SER) and BLEU score develop by IBM. These metrics use 
human translated material as references with which the machine translation output is 
compared. [Tom03] A metric referred to as METEOR has been developed based on 
BLEU to improve the evaluation performance [Lav07]. 
 

5.2.1 Word and sentence error rate 
 
WER describes how many words in the translation need to be inserted, deleted or 
replaced to transform it into the corresponding reference sentence. WER is 
computationally efficient, reproducible and fully automatic. It has been successfully used 
for evaluating ASR performance, but from MT evaluation point of view it has a number 
of problems. It can consider only one correct reference translation per one output 
sentence, and it classifies all word re-orderings and synonymic word choices as errors.  

SER is a similar metric to WER, but it calculates the percentage of sentences in a block 
of text that do not match exactly with the reference. Like WER, SER is not optimal for 
evaluating MT systems with wide scope and large vocabulary. The results of both WER 
and SER depend highly on the style and vocabulary of the used reference. This does not 
necessarily tell us anything about the comprehensibility of the translation.  

WER and SER metrics can be extended to use multiple references, which allow the 
system more variation in the word choices and orderings. In this approach multiple 
reference sentences are compared with the MT output, the distance between each 
candidate-reference pair is calculated and the smallest one is chosen. Applying multiple 
references on WER or SER requires greater initial effort than the basic, single reference 
approach. However, by applying multiple references, the most significant shortcomings 
of WER and SER can be eliminated and the test coverage can be improved remarkably. 
[Tom03, Lop08] 
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5.2.2 BLEU score 
 
Bilingual evaluation understudy (BLEU) is a more sophisticated method and the most 
widely used automatic metric for MT evaluation [Pap02]. BLEU compares not only 
single words (like in WER) or full sentences (like in SER) with the translation. Instead, it 
uses several references and combinations of different word sequences when estimating 
the quality of a translation. BLEU also assigns lower rates to translations which are 
significantly longer or shorter than the reference.  

BLEU employs modified n-gram precision models (see chapter 4.3.5 for introduction of 
n-grams). The standard n-gram precision model counts the number of position-
independent n-gram matches between the reference and the translation. This is what 
BLEU does too, but in a modified precision manner. In a modified precision model, the 
maximum number of times a word occurs in a reference is first counted. Each time the 
word is found in the translation, the word is considered exhausted and thus can’t be 
matched again. Some MT systems tend to overgenerate common words (such as ‘the’) 
which produce high precision, but low comprehensibility. The maximum reference count 
makes sure that BLEU does not give high precision ranking for these kind of sentences. 
The example presented by [Pap02] illustrates the superiority of the modified precision. 
Consider the following word sequences: 
 
 Reference: The cat is on the mat. 
 Translation: the the the the the the the. 
 
In a standard unigram (1-gram) precision model, the translation would be inappropriately 
ranked a precision of 7/7. Every word in the translation can be found in the reference, but 
the sequence itself is nonsense. The modified unigram precision in this case would be 
more truthfully 2/7, because the word ‘the’ occurs in the reference two times. 
The basic evaluation unit of BLEU metric is one sentence. BLEU modified precision 
score pn can be calculated for block of text including several sentences as follows: 
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To obtain pn, the number of n-gram matches is first computed for every sentence 
separately. The clipped n-gram counts are summed and divided by the number of n-grams 
in the test corpus. BLEU score can combine different n-gram precision scores, usually 
uni-, bi-, tri-, and quadrigrams, by calculating the geometric mean of different scores. 
High unigram precision score seems to correlate with the adequacy of the translation, 
whereas longer n-gram precision scores indicate fluency. 
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The length penalty included in BLEU score is calculated over the whole test corpus. The 
effective reference length is obtained by finding the best match for each sentence and 
summing their lengths. 

BLEU score correlates better to human judgement than the metrics presented in chapter 
5.2.1. Two different, but equally good translation candidates with different word choices 
and word ordering are ranked at approximately the same level. Random word sequences, 
that don’t form any understandable natural language sentence, are not ranked high even 
though the set of words is the same as in a correct translation. [Tom03, Pap02, Lop08, 
Jur08] 

 

5.2.3 METEOR 
 
Metric for evaluation of translation with explicit ordering (METEOR) is a metric 
developed based on BLEU score. It was designed with the goal of improving the 
performance, especially the correlation with human judgement of MT output quality on 
sentence level, compared to that of BLEU metric. According to measurements [Lav07] 
METEOR clearly outperforms the BLEU metric in the sense of measuring the adequacy 
and fluency in currently supported languages (English, German, French and Spanish). 

METEOR metric creates a word alignment between the MT output and the reference 
translation. This alignment is produced by three different word mapping modules called 
the exact module, stem module, and the synonymy module. In METEOR one word in the 
translated sentence can only map to one word in the reference sentence. The exact 
module maps the words that are exactly the same. The stem module maps the words that 
are the same after using a special stemmer (for example, in English Porter Stemmer 
[Por06] is used). The synonymy module maps words that are considered synonyms; 
synonymity is defined in WordNet resource [Mil10]. 

The word mapping modules define all the possible word matches between the MT output 
and the reference, of which the maximal cardinality alignment is chosen. After this, 
METEOR calculates the score for the sentence pair. The score includes unigram 
precision P, unigram recall R, and parameterized harmonic mean Fmean: 
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In (5.3) and (5.4), m is the number of mapped unigrams found between the sentence pair, 
t is the total number of unigrams in the translation and r the total number of unigrams in 
the reference. In (5.5), the parameter α controls the relative weight of precision and 
recall.  



 32 

Because values of P, R and Fmean refer only to single word matches, METEOR calculates 
a penalty score Pen for word order fragmentation, using the fragmentation fraction frag 
as follows: 

m
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In (5.6), ch is the number of the fewest possible matching unigram sequences between the 
sentence pair, (“chunks”), where the unigrams between each “chunk” are adjacent. 
Variable m is the total number of unigram matches. In (5.7), the parameter β governs the 
penalty shape as a function of fragmentation, and the parameter γ describes the relative 
weight assigned to the fragmentation penalty.  

The values of the three parameters α, β and γ used by METEOR metric are determined 
experimentally [Lav07]. The parameters are tuned based on several data sets, with the 
goal of optimizing them so that the correlation with human judgement of MT quality is 
maximized.  

The implementation of a METEOR-based evaluation system requires both language-
specific word matching modules and language-specifically tuned parameters, leading to 
elevated initial costs. Therefore, to reduce the effort of expanding METEOR to support 
new languages, some versions of METEOR are restricted to utilize only two word 
mapping modules. [Lav07] 

 

5.3 Speech quality effects on translation 
 
Transmission in telecom networks can degrade a speech signal in various ways. 
Disturbances caused by packet drops, filtering, delays, background noise or low bit rate 
coding can be perceived as buzzing, clicks or breaks in the received speech signal. Poor 
quality makes the conversation annoying and sometimes even unintelligible. Therefore, 
verifying the speech quality in telecom networks is important. This can be done in several 
ways. 

A frequently used rating method for speech quality is a subjective, numerical quality 
indicator called mean opinion square (MOS). MOS is expressed as a single number from 
1 to 5, where 5 = excellent, 4 = good, 3 = fair, 2 = poor and 1 = bad. The MOS value is 
obtained by averaging the ratings given by a number of listeners in standardized [ITU96] 
listening tests. The drawbacks of MOS evaluation are similar to subjective MT evaluation 
methods: it is time-consuming and the results depend on the test subjects.  

Perceptual evaluation of speech quality (PESQ) is a widely used algorithm, which 
estimates the perceived quality that would be given to a transmitted signal in subjective 
listening tests. In other words, PESQ tries to model the test subject by defining perceptual 
and cognitive models that correspond to human judgement on speech quality. The PESQ 
score is obtained by calculating the difference between an original signal X(t) and a 
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degraded signal Y(t), which is the original signal passed through a telecom network. 
PESQ was developed to be applicable in end-to-end speech quality tests in 
telecommunication networks and to eliminate the shortcomings of subjective listening 
tests. PESQ has proven to correlate strongly with MOS values in most network 
conditions, excluding some hard distortions such as extreme temporal clipping, side 
tones, or severe changes in loudness levels. [ITU01] 

Bit-exact analysis is an alternative evaluation approach, and its use has increased in 
automated speech quality testing in recent years. In bit-exact analysis, the desired speech 
stream and the network output are compared bit by bit. Mismatches such as bit errors in 
the speech payload, protocol errors, and packet time deviation are reported to the user. 
Bit-exact analysis method is absolute and accurate, easy to configure for various test 
setups, and does not require a license like PESQ. It is suitable for monitoring stability 
tests with high traffic load, multi-party call tests, and most speech codecs and call types. 
Bit-exact analysis does not take human perception into account, but all mismatches have 
the same value in the test result. Because of this, bit-exact verification should be done in 
conjunction with subjective tests. Bit-exact analysis can help to reduce the human effort 
and increase the accuracy of results in speech quality verification greatly. [Sjö11] 

The methods described above have been designed to be used for testing speech quality in 
communication where translation is not involved. Due to the lack of extensive knowledge 
of end-to-end verification speech-to-speech MT applications, we don’t know if these 
methods are suitable for MT verification and whether or not the results reliable. The 
translation algorithm is a remarkable difference between speech quality testing and 
speech-to-speech MT quality testing. A MOS value tells us the intelligibility of speech, 
but does the same value correspond to the comprehensibility of the translation? Can the 
same methods even be used, when the input signal and actual network output are 
essentially different signals? The test RTIS test environment designed in this thesis tries 
to answer these questions. 
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6 Ericsson Real-Time Interpretation System 
 
This chapter presents Ericsson’s implementation of a machine translation system, the 
Real-time interpretation system (RTIS) service. It shows how the external speech-to-
speech machine translation engine is integrated in Ericsson’s UMTS network and how 
the service is set up. The structure and functionality of the RTIS prototype and its 
components are described. 
 

6.1 Network overview 
 
This chapter describes briefly the UMTS network. UMTS (universal mobile 
telecommunications system) network is the environment where the Ericsson real-time 
interpretation system (RTIS) functions. Ericsson’s mobile media gateway (M-MGw) is 
presented in more detail in chapter 6.1.2, as it is one of the key building blocks in running 
and testing the translation service. The translational functionality resides in an external, 
3rd party translation engine, whose algorithms are invoked during a normal call in order 
to translate the message. The translation engine is presented in chapter 6.1.3. 
 

6.1.1 UMTS network 
 
The basic structure of an UMTS network consists of an access network (AN), a core 
network (CN), and a user domain. The user is connected to the network by user 
equipment (UE) and identified by a subscriber identity module (SIM).  

The purpose of the access network is to directly contact the UE and to connect the user to 
the CN domain. The access network for GSM users is called GSM edge radio access 
network (GERAN), and for UMTS users it is called the universal terrestrial radio access 
network (UTRAN). The configuration of an access network consists of access network 
entities, which manage the resources of the AN.  In GERAN the entities are base station 
controllers (BSC) and base transceiver stations (BTS), and in UTRAN base stations (BS) 
and radio network controllers (RNC). The access network entities are logically 
correspondent between GERAN and UTRAN. 

The core network provides support for network features and telecommunication services, 
such as management of user location information, control of network features and 
services, the transfer mechanisms for signaling, and for user generated information. 
[3GP09] 

The UMTS network is logically split into three horizontal layers, each providing different 
services to achieve more efficient use of resources. The layers are the application layer, 
the network control layer, and the common connectivity layer. The application layer 
contains the end-user applications as well as service databases, which operators use to 
provide services. The application layer is connected to the network control layer via 
application program interfaces. The network control layer deals with the functionality and 
signaling needed to provide services between the different types of networks. The 



 35 

network elements in the control layer are called control servers, mobile switching center 
(MSC) and transit switching center (TSC) in the circuit switched domain. MSC and TSC 
servers use a specific gateway control protocol to control the common connectivity layer 
and handle the signaling. No user plane data is handled in the control layer. The common 
connectivity layer is the backbone of the network, and it handles the user plane data 
transportation, routing, and switching within CN. It also serves as a gateway between CN 
and AN, and this task is usually handled by a device called media gateway (MGW). 
Ericsson’s mobile media gateway is presented in the following chapter in more detail. 
[Wit00] 

 

6.1.2 Ericsson mobile media gateway 
 
Media gateways (MGW) are devices located at the edges of UMTS CN, serving as 
interfaces to different types of access networks. Ericsson’s implementation of MGW is 
the Ericsson Mobile Media Gateway, M-MGw. M-MGw application is built on a 
telecommunication technology platform called connectivity packet platform (CPP). CPP 
forms a distributed multi-processor system including both the hardware and software. 
CPP provides a real-time control system and support for TDM, ATM and IP protocols. 
[Eri10b] 

Logically M-MGw is divided into several virtual media gateways (VMGW) and resource 
components, thus allowing connections from several different MSC servers. Figure 6.1 
illustrates the functional structure of the M-MGw. VMGW holds the logic for controlling 
the resource components, which manipulate the media streams. When M-MGw receives 
an H.248 gateway control message from the network control servers, it delivers it to the 
correct VMGW and connection handler. The connection handler sets up the new state for 
connection and allocates needed resources. [Fyr00] 

The hardware structure of M-MGw is distributed across different processor boards which 
specialize in different tasks. The three main processor board types are  

• General purpose board (GPB), a general purpose processor containing the main 
logic for M-MGw and applications running on it, 

• Exchange terminal board (ET), a termination board providing interfaces for traffic 
over different types of transmission lines, and 

• Media stream board (MSB), a board specialized in media stream processing tasks 
using a number of digital signal processors (DSP) controlled by a board processor 
(BP). [Eri10b] 

The actual payload streams flowing through M-MGw are handled and manipulated by the 
user plane hardware, i.e. ET and MSB boards, and the related software. The user plane 
includes services and functions for device handling and media stream processing, such as 
different voice codecs, echo cancelling, DTMF sender/receiver, tone sender/receiver, 
multi-party call functionality or circuit-switched data service. [Fyr00] 
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Figure 6.1. The functional structure of a mobile media gateway. [Fyr00] 

 

6.1.3 Translation engine 
 
The 3rd party translation engine used in the current version of RTIS contains the 
functionality for speech recognition, speech synthesis, and text-based translations. M-
MGw sends the recorded speech to the translation engine and invokes its ASR, 
translation and TTS algorithms. The translation engine sends the translated speech back 
towards M-MGw, accompanied by the text format representations of the translation and 
back-translation. Like most modern machine translation applications, the translation 
algorithms in the 3rd party translation engine are based on SMT (see chapter 4.3) 
technology. The supported speech codecs at the moment are PCM and AMR. 

The translation engine is connected to Ericsson M-MGw over an IP interface. In the 
future, the translation engine could be integrated in the M-MGw. See chapter 6.2.2 for the 
current network architecture description. [Eri09] 

The information exchange between the translation engine and M-MGw is handled by 
XML requests and responses. The request and response templates contain fields for 
attributes such as language ID, user ID, action type (create user request, translate request, 
status query, translation reply etc.), and content data. Content data holds the actual 
message to be translated, and the structure of the message is defined in the attributes of 
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XML requests/responses. A content data document contains text in one language only. A 
document is represented in XML by the following hierarchy of elements: 
 

• Document, a top level element  
• Paragraph, an arbitrary grouping of sentences, containing at least one sentence 
• Sentence, a logical leaf element of a document, which may have different 

representations captured in children, i.e. text elements 
• Text, a true leaf of a document structure, present only inside a sentence element 
 

Each sentence element can have none, one, or multiple text children. One text child 
represents the sentence content from a single source, i.e. either a machine translated 
sentence or a source language input. 

 

6.2 Real-time interpretation system prototype 
 

6.2.1 Objective 
 
The RTIS prototype was developed to integrate Ericsson M-MGw and the external, 3rd 
party translation engine. The prototype is designed to work with any mobile phone: 2G, 
3G, low end or high end. The goal is to have a real, running, speech-to-speech translation 
system, which can show how the mobile phone and mobile environment affect the quality 
of the speech and translations. Some problems may be caused by background noise, 
network disturbances, transcoding, echo cancellation algorithms, noise reduction 
algorithms or network delay. Another key question is how does invoking a translation 
algorithm during a call affect the normal network operations, such as framing or 
signaling. With the prototype, the service could be appropriately tested to verify the 
quality of speech and translations. [Eri10c] 

At present, the prototype works only in the travel domain, i.e. translation of common 
travel words and phrases is supported. The current version of the prototype is set up to 
perform speech-to-speech translations from English to Chinese and Chinese to English, 
but other languages such as Spanish and Arabic are also supported and can be included in 
future versions. The development of the RTIS prototype is divided into two stages. The 
currently working stage 1 supports one simultaneous PCM-coded call, consisting of 
individual phrases followed by more than 0,5 s of silence. The stage 1 prototype uses one 
mobile phone in one call. The traffic is routed via the translation engine back to the same 
phone, which plays out the translated speech signal. In the future, stage 2 will include 
support for several simultaneous two-way calls, larger language selection, improved 
accessibility, and more control logic in the user interface. The user will be able to select 
languages dynamically, and choose if he/she wants to accept the ASR result or cancel and 
rerecord. The user could also request a back-translation to his/her mobile device in text 
format. [Eri10c] 
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6.2.2  Network architecture overview 
 
Figure 6.2 presents the overview of the RTIS service network architecture. The external 
translation engine is located in the core network and it is connected to M-MGw over an 
IP interface. To reduce delay, M-MGw and translation engine should reside in the same 
site. 
 

 
 
Figure 6.2. Network architecture overview of the RTIS service. [Eri09] 
 
 
M-MGw supports a number of interfaces, and thus enables connecting and using RTIS 
service from different types of access networks. Figure 6.3 presents the interfaces in 
detail. M-MGw connects to the control layer servers (MSC, TSC) via gateway control 
protocol (H.248). The interface between two M-MGw’s is Nb, an open interface 
standardized by 3GPP. M-MGw supports a TDM interface towards GERAN and PSTN, 
and ATM, IP and Iu interfaces towards UTRAN. [Eri09] 
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Figure 6.3. M-MGw interfaces in RTIS. [Eri09] 
 
 

6.2.3 User plane 
 
This chapter describes the RTIS call setup in the user plane. Figure 6.4 shows an example 
call case, where the call originates from a mobile device operated by an English-speaking 
user. The Chinese-speaking subscriber B is a landline user. Terminations T1 and T2 in 
context Ctx1, and termination T3 in context Ctx2 reside in the English domain, whereas 
termination T4 in context Ctx2 resides in the Chinese domain. 
 

 
 
Figure 6.4. RTIS call setup in the user plane. [Eri09] 
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Figure 6.5. Signal flow in a RTIS call setup. [Eri09] 
 
Figure 6.5 presents the setup procedure. The call setup is initiated by a request sent by the 
mobile subscriber forwarded to MSC (1). In RTIS calls, the control layer needs 
information of the subscriber’s language.  A language indicator parameter can be 
included in the request message, or MSC can choose a preferred language based on the 
subscriber data. MSC analyses the request message and forwards the language indicator 
to TSC (2), which handles connections towards PSTN. TSC selects M-MGw 2 to be used 
and forwards subscriber A’s language indicator to that M-MGw (3). M-MGw 2 then 
creates Ctx2, and returns the M-MGw ID with bearer address and binding reference to 
TSC (4) and MSC (5). MSC selects M-MGw 1 to be used, which creates Ctx1 (6). M-
MGw 1 returns the corresponding bearer address and binding reference information to 
MSC (7). RNC uses the bearer address to request bearer connection between RNC and 
M-MGw 1. RNC initializes the Iu UP framing protocol, and M-MGw 1 acknowledges the 
initialization (8, 9). Now radio access bearer assignment is completed. 

M-MGw 1 initializes the Nb UP framing protocol (10), and M-MGw 2 acknowledges the 
initialization (11). M-MGw 2 informs TSC that the bearer establishment between M-
MGw 1 and M-MGw 2 is now complete. However, the language indicator for this 
termination is not yet known. When B-party alerts, TSC sends a modification request to 
Ctx2 in order to set the language indicator in termination T4 (12). When B-party answers, 
a modification reply is sent to TSC and language indicator in T4 is set to Chinese (13). 
M-MGw 2 then detects, that the language indicators terminations T3 and T4 don’t match, 
and the translation algorithms in the translation server related to M-MGw 2 are invoked. 
Thus, instead of routing the traffic directly from T3 to T4 within Ctx2, M-MGw 2 routes 
the traffic via the translation server. Now the user plane connection is up and the transfer 
of the actual payload can start. [Eri09] 
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7 Real-Time Interpretation System Verification 
 
As the RTIS prototype is up and running, there is a need to measure its performance and 
verify future improvements. In this thesis, a test environment for RTIS verification was 
designed and implemented. Because of the problems related to the subjective evaluation 
discussed in chapter 5.1, with high evaluation costs being the most important factor, we 
wanted to study the possibility of automating RTIS verification. The key question is, can 
an automated test system measure the performance of RTIS, and can it obtain results that 
correspond to the actual quality perceived by a human user? The goal is to be able to run 
automated tests as a complementary method in addition to manual testing. This is needed 
to speed up regression testing and enable system tests with high traffic load, as well as 
long time period stress tests. In this chapter, the automation strategy and implementation 
of the RTIS test environment is described. 
 

7.1 Automation strategy 
 
The main goal and purpose of RTIS verification is to show how the network elements 
and functions affect the speech recognition, translation, and quality of speech synthesis. 
In other words, we want to measure the end-to-end performance of the integrated network 
service, not just the standalone translation engine and its algorithms. However, correct 
translation is still the core and most important element in the RTIS service. This defines 
the basic requirements for the test environment to be designed: 

• The speech data stream should be compared with the desired output on bit 
stream level, 

• It should be possible to include all applicable codecs (e.g. PCM, AMR, AMR-
WB, G.729) and services (e.g. echo cancellation, noise reduction) in the test 
suite in the future, 

• A faulty translation should always make the test fail, no matter how accurately 
the network transmits the signal.  

Furthermore, the test environment should be easily combinable with the existing speech 
quality test setup and preferably use the same test tools. This will ensure the efficient use 
of resources (e.g. hardware, time, competence) and keep the evaluation costs low.  

As a result of the above mentioned, the test environment used for speech quality testing 
in Ericsson [Eri10d] was used as a basis of RTIS test environment design. Speech quality 
in telecom networks has conventionally been tested by means of manual listening tests, 
and automatic bit-exact analysis. In recent years the share of bit-exact verification has 
increased: currently system verification is conducted in a fully automated manner but 
some listening tests are still used in development work. In speech quality tests, the bit-
exact verification method has proven to be easy to configure, accurate, and feasible in 
system tests and high load stress tests. On the other hand, the accuracy makes the method 
prone to errors which can, in noisy environments, skew the results more than e.g. a 
listening test or PESQ-analysis based test. The goal of designing the RTIS test 
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environment was to investigate, if the bit-exact analysis tools and test methods can be 
adapted to support RTIS verification, and thus enable the use of automatic tests as a 
complementary RTIS verification method.  The most remarkable difference between 
speech quality verification and RTIS verification is the translation algorithm: a complex 
process which changes the content of the transmitted signal in a way that can’t be 
predicted with 100% certainty. Because of this, the speech quality test environment 
needed to be expanded to include a translational equivalence model, which specifies how 
the reference translations are defined and how they are compared with the RTIS output. 

The strategy for evaluating the translational equivalence was chosen to be multi-SER, an 
adaptation of SER (see chapter 5.2.1). Multi-SER assigns each input utterance several 
different fixed reference translation patterns. Each reference is compared with the actual 
translation received from RTIS, produced by a particular input utterance. If one of the 
references is a bit-exact match, the test case will pass. If none of the references match, the 
test case will fail, and the test setup will provide a closeness measure showing the closest 
match and the severity of disturbances related to that input-reference pair.  

In a translation system with limited scope and limited vocabulary, like RTIS, a single 
input utterance can generate only a limited number of different translations. For example, 
depending on the current state of the translation engine, a simple input utterance “hello 
hello” can either translate to “你好” (“N ǐ hǎo” ) or “喂喂” (“Wèi wèi” ), which are both 
correct. However, based on the experiments on the RTIS prototype, the input “hello 
hello”  never produces “喂你好” (“Wèi nǐ hǎo” ), which is a combination of the two 
former translations, and also correct Chinese and an acceptable translation. This suggests 
that with the current scope and translation capabilities of RTIS, multi-SER with a finite 
number of fixed reference patterns is a suitable verification approach. Based on the way 
RTIS produces translation utterances, the assumption can be made that a multi-SER –
based verification system can provide an approximately equal coverage than a more 
sophisticated, BLEU- or METEOR-based verification system, but with less initial effort.  

 

7.2 Implementation 
 
Ericsson’s speech quality test environment [Eri10d] was used as a basis for RTIS test 
environment design. However, a number of modifications to the test environment were 
required to support RTIS verification. A demonstrative test suite for RTIS was also 
written during the implementation.  In the following chapters, the implementation of the 
RTIS test environment and the test execution procedures are presented. 

 

7.2.1 Overview 
 
The overview of the RTIS test environment is presented in figure 7.1. The test user 
controls the system from a Linux workstation using the test notation language TTCN3. 
TTCN3 opens a FTP- or Telnet connection to M-MGw, and sets up a call by reserving 
and connecting the needed resources. From M-MGw the call is routed towards the 
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translation server, and the translated speech is sent back to M-MGw for analysis. One call 
is run and analyzed at a time. Once the call is set up, a predefined input speech pattern is 
sent to the network and routed via the translation engine. The received speech stream will 
then be compared with the predefined, expected speech pattern and errors are reported 
back to the user. A more detailed description of the test tools and resources is presented 
in chapter 7.2.2. 
 

 

Figure 7.1. The structure of the RTIS test environment. 
 
The changes implemented to support RTIS verification can be summarized as follows: 
 

• Reconfiguration of the test setup. RTIS IWD, translation engine and the 
interconnecting Linux machine were defined, and new functions for reserving and 
connecting to these resources were written.  

• Defining the translational equivalence model and the principle for rating RTIS 
outputs. 

• Modification of the Upload-BE test tool. A metric indicating the closeness 
between the received and expected speech streams was implemented. 

• Constructing a RTIS test suite. This included formulating a test logic, writing the 
test cases in TTCN3, creating suitable test data (input- and reference patterns), 
and running the tests. 
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7.2.2 Tools 
 
Upload-BE is a user-plane traffic generator with bit-exact analysis feature. It uses 
predefined speech files stored in DSP memory as stimuli and reference patterns. The 
stimuli and references can be redefined for each call. Upload-BE supports a number of 
interfaces, speech file formats and simultaneous calls, and it can be used in testing of 
calls involving several different network services. The operating principle of upload-BE 
is illustrated in figure 7.2. 

  

 

 

Figure 7.2. Upload-BE operating principle. [Eri06] 

 

Upload-BE consists of a control part (CTRL) and a traffic generator device (TGD) part 
(see figure 7.1). The control part executes on a GPB board and the TGD on a DSP within 
a MSB board. CTRL acts as an interface towards an external test controller (in this case, 
TTCN3), and it forwards the requests to TGD. CTRL is also responsible for loading and 
configuration of the DSPs, resource selection and statistics. TGD is responsible for 
framing and sending the speech data to the device under test (DUT), receiving and 
deframing data, performing the bit-exact analysis and sending notify messages to the 
control interface. In bit-exact analysis, the speech payload received from DUT is 
compared bit by bit with the expected payload and mismatches are reported. [Eri06] For 
the RTIS test environment, upload-BE was extended with continuous analysis and error 
counter features. Instead of only giving information of a pass or a fail, upload-BE 
performs analysis on the whole speech stream continuously and counts the total number 
of defected bytes. This number is then sent to the control interface with the actual 
analysis result (pass/fail/analysis not performed). Upload-BE also returns information on 
possible protocol errors, and a timing analysis consisting of maximum, minimum, and 
average cell deviation time. 

Upon the activation of an Upload-BE device, CTRL checks which codec and framing is 
requested. The framing, if applied, will be started according to the request, and the TGD 
will start sending a homing pattern. Homing pattern is a pre-defined, fixed pattern, whose 
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purpose is to set the transcoders in the DUT into a known state, and synchronize all the 
devices in the call chain. In user plane verification, the main challenge is to be able to 
generate data streams stable enough for bit-exact analysis. Using a homing pattern to 
initialize the call chain solves this problem and forms the basis of Upload-BE 
functionality. When all devices in the call have detected homing and synchronization is 
received, Upload-BE will start sending the actual payload and the bit-exact analysis will 
start. [Eri06] 

One Upload-BE device represents one party in a call. In RTIS test cases, one Upload-BE 
device is reserved per call, corresponding to the stage 1 of the prototype. In the future, 
stage 2 can be realized by reserving a device chain such as shown in figure 7.3. In this 
setup both Upload-BE devices send and receive traffic, and perform the analysis. 
 

 
 
Figure 7.3. Device chain in a two-phone RTIS call. 
 

Media processing device (MPD, see figure 7.1) executes on a DSP and provides speech 
stream processing functions and services. The parameter sets and resources for running a 
specific service during the call must be defined and reserved in MPD.  

RTIS interworking device (RTIS IWD, see figure 7.1) acts as an interface combining the 
translation system with M-MGw and the rest of the network. RTIS IWD detects speech 
activity and starts or stops recording accordingly. It converts the recorded speech traffic 
to suitable format, frames it into UDP packages, and sends it towards the translation 
engine. Currently, RTIS IWD supports only raw PCM data with no framing.  

The Linux machine between M-MGw and the translation engine receives data in a 
specific port defined by the test user, connects the M-MGw and the translation engine, 
and calls the translation functions. The connection process records the received (source 
language) and sent (target language) speech streams in a file, which can be used to check 
ASR and TTS results manually. The Linux machine also frames the traffic into HTTP 
and acts as a firewall. 

An IP termination on an ET board (see figure 7.1) routes the traffic towards a Linux 
server, where Lupine executes. Lupine is a tool for recording traffic for manual checks, 
i.e. it allows the tester to listen to the actual output speech signal in case of an 
inconclusive test result. Upload-BE DSP does the streaming if a request is defined in 
TTCN3. 

Test and test control notation version 3, or TTCN3 for short, is a programming language 
internationally standardized by ETSI, specialized in testing and certification. Due to its 
wide applicability, the variety of application domains and types of testing, it is typically 
applied in testing of complex industrial systems, like a 3G mobile network. Compared to 
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conventional programming or scripting languages, the upsides of TTCN3 are the ability 
to specify dynamic concurrent testing configurations, support for timers, concept of 
verdicts and a verdict resolution mechanism, and the ability to specify data and signature 
templates with powerful matching mechanisms. [ETS10] These features suggest that 
TTCN3 could also be used in RTIS verification. 

The TTCN3 core language defines a module, which consists of definition and control 
parts. The definition part of a module comprises test components, communication ports, 
data types, constants, test data templates, functions, signatures for procedure calls at 
ports, test cases, etc. The control part of a module calls the test cases and controls their 
execution. Local variables and program statements can also be used in control part to 
specify the execution of test cases. The test cases in TTCN3 define the dynamic test 
behavior by using program statements such as alternative reception of communication, 
timer events, default behavior, and test verdict assignment. Template data structures can 
be used for parameterization and specifying test data to be sent or received over the test 
ports. [ETS10] 

The development suite for TTCN3 currently in use at Ericsson is TITAN TTCN3 Test 
Executor, TITAN for short. TITAN compiles the test cases written in TTCN3 and 
generates the code skeleton. TITAN graphic user interface features include smart text 
editing, compiling, execution of the compiled test suite, test configuration, test 
monitoring, and log browsing. 

 

7.2.3 Test execution 
 
The main logic of the test execution is presented in figure 7.4. Each test case is assigned 
one stimulus file and N reference translation files. Stimulus is the input for the translation 
engine. The translated speech is sent back to M-MGw, where Upload-BE performs the 
bit-exact comparison between the received speech stream and each reference one by one. 
If the reference under analysis doesn’t match the received speech stream, Upload-BE 
stores the analysis result and the error counter value in the test case logs. After analyzing 
all N references, Upload-BE returns the number of successful analyses, which can be 
either 1 or 0, and the verdict is set for test case (pass/fail). 
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Figure 7.4. Logical flowchart of RTIS test execution. 
 
All test cases follow the same basic structure, including 10 main steps: 
 

1) Hunt needed processes, register to GPB and attach to DSP(s) 

2) Upload the stimuli and references to the DSP(s) 

3) Reserve connection end points 

4) Reserve the MPD, RTIS IWD and Upload-BE devices with appropriate service 
parameters 

5) Add terminations to Lupine and start recording traffic 

6) Connect the call chain, initialize user plane 

7) Send traffic and perform analyses 

8) Disconnect call and release devices 

9) Check the results 

10) Update the test database. 

 
In step 6, the internal connection between MPD and RTIS IWD is established first. The 
IP connection request is then sent to the Linux machine connecting M-MGw and the 
translation engine. A connection process running on the Linux machine will forward the 
data to the translation engine and invoke the translation algorithms. Finally, the internal 
connection between Upload-BE and MPD is established and Upload-BE will start 
sending traffic. After completing the analysis of one reference in step 7, a modification 
request is sent to Upload-BE from TTCN3. The modification signal sets the new 
reference ID and resets the analysis state. After analyzing the last reference defined in the 
test case, the execution will move on to step 8. 
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7.2.4 RTIS test suite  
 
In this thesis, a new group of test cases was created for RTIS verification. The test suite is 
experimental, and mainly designed for test environment development purposes and 
demonstration of the concept. However, the test suite can be easily extended to cover the 
testing of all necessary features in the future. The main functionality of the test cases is 
defined in TTCN3, including the stimuli and reference files, the number of references, 
service parameters and interface types. The stimuli and references are loaded to the M-
MGw in the beginning of each test case. This way, adding new test cases and modifying 
the existing ones only requires redefinition of parameters and recompiling of the test 
suite. 

The RTIS test suite consists of 2 test cases. The stimulus utterances were chosen so that 
they support the demonstrative nature of the test suite. The stimuli are simple English 
phrases, which are known to be inside the translational scope of RTIS, but on the other 
hand, are ambiguous in Chinese and have several possible translations. The reference 
translation sets were compiled based on two criteria: 1) what is correct Chinese and 
conveys the original meaning of the message, and 2) what are the common phrase 
structures and word choices in translations generated by RTIS based on experiments. 
When blocks of sentences are fed directly into the translation engine in text format, 
depending on the preceding content of the message, the translation algorithm changes its 
internal state. Thus it can produce translations with variable word choices and syntax 
structures. However, the experiments show that some words and structures occur more 
often than others. This information was utilized in choosing representatives from the 
large number of possible Chinese translations: two references were chosen for test case 1 
and 6 for test case 2. The references were synthesized by using the same TTS algorithm 
as used in RTIS translation engine. The chosen stimuli and reference sets are listed 
below. 

 
Test case 1: 
 
Stimulus: “Hello, hello!” 
Reference 1: “你好!” (“N ǐ hǎo!”) 
Reference 2: “喂喂!” (“Wèi wèi!”) 
 
 
Test case 2: 
 
Stimulus: “Hello, how are you today?” 
Reference 1: “你好你今天好ੇ?” (“N ǐ hǎo nǐ jīntiān hǎo ma?”) 
Reference 2: “你今天好ੇ?” (“N ǐ jīntiān hǎo ma?”) 
Reference 3: ”֐ྭ֐ӺཙᘾѸṧ?” (“Nǐ hǎo nǐ jīntiān zěnmeyàng?”) 
Reference 4: “֐ӺཙᘾѸṧ?” (“Nǐ jīntiān zěnmeyàng?”) 
Reference 5: “你身体好ੇ?” (“N ǐ shēntǐ hǎo ma?”) 

Reference 6: “你身体怎么ṧ?” (“Nǐ shēntǐ zěnmeyàng?”) 
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Some references in test case 2 don’t include counterparts for all the words in the stimulus 
message. For example, references 1 and 2 are essentially the same, except the two 
beginning characters “你好” meaning “hello”. Reference 2 can still be considered 
correct, as it conveys the general meaning of the message, i.e. greeting a person. 
References 5 and 6 don’t contain the word “today”, but are still considered acceptable 
translations. The core meaning of the stimulus phrase in test case 2 is “how are you”. The 
word “today” has little importance because, with a very high probability, the point of the 
question is not to ask how the person feels today as opposed to some other day. This 
holds true especially considering the limited scope of RTIS. 

The test cases in the RTIS test suite involve only PCM coding because of the codec 
restrictions in the current version of RTIS IWD. PCM coding provides high speech 
quality in normal telephone communication with no translation, and thus is helpful for 
discovering the possible disturbances arising specifically from the translation service. 
However, as we are interested in a UMTS network service performance, it is important 
that the test system can also be used to measure the effects the translation service has on 
different framings and highly compressed, variable-rate speech, such as AMR or AMR-
WB. Therefore, we need to investigate if the same test environment can be used in the 
future, when support for different speech coding schemes is included in RTIS 
components. 
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8 Results 
 

8.1 Results of example test cases 
 
This chapter presents the bit-exact analysis results yielded by the example test cases 
presented in chapter 7.2.4. Table 8.1 shows the end results with a rating for each 
reference utterance. As the table shows, no reference defined in the RTIS test suite was 
rated as correct, and both test cases 1 and 2 failed. 
 
Table 8.1. Bit-exact analysis results and translation ratings of RTIS test cases. 
Test 
case 

Reference Translation rating Final 
Verdict 

1 1: 你好! Analysis failed: null  
 2: 喂喂! Analysis failed: null FAIL 
2 1: 你好你今天好ੇ? Analysis failed: no sync received  
 2: 你今天好ੇ? Analysis failed: 2649 B (18%) defected   
  ӺཙᘾѸṧ? Analysis failed: no sync received֐ྭ֐ :3 
  ӺཙᘾѸṧ? Analysis failed: no sync received֐ :4 
 5: 你身体好ੇ? Analysis failed: 6099 B (42%) defected   
 6: 你身体怎么ṧ? Analysis failed: 7204 B (47%) defected  FAIL 

3 1: 你今天ੇ? Analysis OK: 0 B (0%) defected PASS 

 

The problems observed in the trial runs were caused by the speech activity detection 
algorithm in RTIS IWD. The stimulus utterance in test case 1 is very short and the 
activity detection algorithm does not react quickly enough. Thus, no speech is recorded 
and nothing is sent to the translation module. In test case 2, the duration of the stimulus 
utterance is longer and RTIS IWD starts recording data. Nevertheless, the speech activity 
detection reacts too slowly and drops the beginning of the stimulus phrase: only words 
“are you today” are recorded and sent to the translation engine. This results in an 
incorrect translation “你今天ੇ”; it corresponds literally to what was sent, but is neither 
syntactically nor semantically correct Chinese. The sequence “你今天ੇ” was included 
in the reference set for experimentation (see test case 3 in table 8.1), after which the test 
case passed with 0% defected bytes. 

Many references are rated as “no sync received”, which means Upload-BE can’t find 
synchronization between the reference and the incoming bit stream, and analysis is not 
performed. As a result, three references were completely rejected, even though all of 
them were partially correct. 

The possibility of using the bit-exact analysis method to run tests with different speech 
codecs was investigated by feeding AMR coded speech directly to the translation engine, 
and examining the output. The trial was done by first feeding in speech without homing, 
and then by adding a homing pattern in the beginning of the stimulus file. When homing 
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is not used, the RTIS output is not bit-exact, i.e. the same word sequence can yield 
several different bit streams, depending on the transcoders’ state at the time. The purpose 
of the homing pattern is to initialize the transcoders so that they are in a known state and 
thus produce an unambiguous bit stream. A homing pattern was included in the RTIS 
input to verify if this holds true also in RTIS environment. It was observed, that despite 
initializing the transcoders with a homing pattern, RTIS output is not unambiguous on a 
bit level. Thus, the bit-exact analysis can’t be performed and the tests can’t be run in the 
same way as in case of a PCM call. 

Unlike the bit-exact analysis method, PESQ does not have the requirement of bit-
exactness between the input and the output. Hence, it is theoretically possible to use 
PESQ for rating outputs even from a non-bit-exact source like RTIS. However, it is a 
speech quality measure, not a translational equivalence measure. PESQ analysis was 
performed on test case 2 to examine if the scores indicate the true perceived quality of the 
RTIS output. 

According to the definition [ITU01], PESQ reference is the original input signal, and the 
degraded signal to be compared is the result of passing the original input through the 
network. In RTIS this comparison is not possible, because the signals are essentially 
different, input English and output Chinese. Therefore, the output of RTIS has to be 
compared with the desired output, which is a synthesized speech pattern not passed 
through a network. References defined in test cases above can thus be used. This way we 
can see how the network affects the signal on its way from RTIS TTS module to the user. 
Table 8.2 shows the PESQ scores of each reference compared with the recorded RTIS 
output.  
 
Table 8.2. PESQ analysis results of test case 2. 
Reference Degraded PESQ 

Score 
1: 你好你今天好ੇ? 你今天ੇ? (recorded) 0,441 

2: 你今天好ੇ?  1,418 

 ӺཙᘾѸṧ?  0,828֐ྭ֐ :3

 ӺཙᘾѸṧ?  0,514֐ :4

5: 你身体好ੇ?  0,298 

6: 你身体怎么ṧ?  0,028 

你今天ੇ? (synthesized)  4,5 
 

Even though there can be seen a slight correlation between the PESQ score and the 
number of matching words (see the higher rate given to reference 2), the PESQ scores 
reflect neither the quality of the speech signal nor the true comprehensibility of the 
translation. As we can see from the results, a word-exact match is the only case when 
PESQ analysis result can be considered valid. References 1-6 are not word-exact matches 
with the recorded RTIS output. This represents extreme temporal clipping which is a 
situation where PESQ is not intended to be used. 
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8.2 Analysis of the test environment 
 
The purpose of designing the RTIS automated test environment was to give answers to 
the following questions: 

• Can we adapt Ericsson’s speech quality test setup to support RTIS service 
verification?  

• If not, what are the main problems and restrictions? How can we fix the problems 
and improve the test accuracy? 

This chapter discusses the findings from different aspects. 

 

8.2.1 Network effects 
 
One of the main goals of designing this test environment was to show how the network 
functions, noise, and delay affect the speech transmission when a translation service is 
involved in a call. As there are no widely used speech-to-speech machine translation 
services available, no extensive knowledge of the mobile network and mobile 
environment effects on machine translation performance exists yet. 

Network-originated disturbances can be effectively spotted with the help of bit-exact 
analysis. A bit-exact analysis verification approach in speech quality testing has given us 
a lot of good experience, which suggests that the same verification philosophy could be 
adapted to RTIS testing as well. The requirement for performing bit-exact analysis by 
Upload-BE is that the traffic sent by DUT has to be bit-exact. That is, given a specific 
input pattern, DUT produces the bit-exactly same speech stream under any circumstance. 
The result of the example test case 3 in table 8.1 shows that PCM traffic generated by the 
currently used translation engine is bit-exact and thus can be verified by Upload-BE. As 
experiments have shown, the output of the translation algorithm is ambiguous, but the 
TTS module generates the traffic in a bit-exact manner, i.e. the same word sequence 
always produces the same PCM coded speech stream. However, AMR coded speech 
behaves differently (see chapter 8.2.4), and this finding is a major deficiency in the RTIS 
test environment.  

When bit-exact analysis is applied in RTIS verification, separating network-originated 
disturbances from errors caused by a faulty translation is crucial. The closeness measure 
provided by RTIS test environment does not explicitly indicate if the detected bit-exact 
errors originate from faulty interpretation of the stimulus in the translation engine, or the 
network distorting the stimulus. The numeric error measure can help to separate 
translational mistakes from network errors, but not differentiate the exact source of the 
error. However, this can be checked with a relatively small amount of tester intervention. 
The test logs store the location and content of the defected packets; a large number of 
errors grouped together indicates a faulty translation, whereas network-originated errors 
occur more randomly. Alternatively, the streams recorded by Lupine and the Linux 
machine interconnecting M-MGw and the translation engine can be listened to manually 
to verify if the correct word sequences were sent and received at different points of RTIS 
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execution. This could be automated in the future versions of RTIS (prototype stage 2) test 
environment, by requesting the translation also in text format and performing a text-based 
comparison in addition to the speech stream analysis. 

 

8.2.2 Translational equivalence 
 
Another important goal of RTIS verification is to ensure that the service preserves the 
translational equivalence. Even if the network is able to transmit the signal ideally, a 
faulty translation should not be accepted. The translations produced by RTIS can vary in 
their word choices and ordering, so the comparing system needs to be able to respond to 
this without falsely passing or failing the test case. The multi-SER comparison method 
used in this test setup allows for some variation in word selection and ordering. The 
number of references and their structure has to be defined by a bilingual test expert to 
obtain appropriate test coverage. With the current limited translation capabilities of the 
system, the coverage obtained by using multiple, fixed references can reasonably be 
considered adequate. This assumption can be based on manual experiments and the 
results from the example test run.  

As the trial runs show, the test case result does not strongly correlate to human 
judgement: a human translator would rate all used reference translations correct, whereas 
the automated test environment rejected several references, rated one reference slightly 
defected (18%) and two significantly defected (42% and 47%). However, if we only look 
at the references that didn’t get rejected, a correlation between the percentage and the 
closeness to the actual output can be seen. The highest rated reference deviates from the 
output by only one word, whereas references 5 and 6 contain less matching words. The 
percentages also seem to be in a somewhat correct proportion to the true result and to 
each other. On the other hand, the RTIS test strategy is to find a word-exact match, and 
when one is found, the number of rejected references does not affect the test result. In a 
limited-scope translation system it is possible to define reference sets with which the 
word-exact match can be found for a very high percentage of translations. The poor 
correlation between multi-SER and human judgement only causes a risk for false 
rejection, not false acceptance. 

Thanks to the flexibility of the tools and test case definition, this test environment can be 
used when the domain and range of phrases in the translation engine expands:  more 
references can easily be added to the existing test cases, and some of the references can 
be replaced if needed. Hence, from the standpoint of measuring the translational 
equivalence, the multi-SER based evaluation method will be feasible in RTIS verification 
at some point in the future. However, the domain and scope of the translation application 
needs to remain somehow restricted for several reasons, such as memory issues, test 
execution time or test case design. In a general-domain MT verification system, there 
would be practically unlimited number of reference translations per each stimulus. A test 
expert would have to go through all the references manually when designing a test case to 
ensure appropriate coverage. A large number of references in each test case would 
increase the execution time significantly and cause memory issues in storing the 
reference database. When machine translation development improves, the RTIS setup 
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may need to be replaced or possibly accompanied with a more flexible comparison 
system based, for example, on BLEU or METEOR.  

 

8.2.3 Tool-related limitations 
 
The tools used in the RTIS test environment bring some restrictions to the verification, as 
they are not especially designed for MT evaluation. One of the main restrictions is the 
synchronization required to start Upload-BE analysis. Upload-BE doesn’t synchronize 
the reference with the incoming stream and thus can’t start the analysis if the incoming 
stream doesn’t contain a packet that matches the beginning of the reference. In practice 
this means that if the first word of the incoming stream is faulty, the synchronization 
might not be accomplished, even if the rest of the reference contains mostly correct 
words (see results in table 8.1). The synchronization is also lost if a non-matching word is 
encountered in the middle of the sentence in the incoming speech stream, and thus 
Upload-BE might consider all the subsequent words faulty as well. Considering our 
verificational goals, this can be seen as both a good and a bad feature.  

From the perspective of verifying the translational equivalence, it is not desirable that a 
whole sentence can be discarded based on the first word alone (or part of a sentence, if a 
faulty word occurs later). There is no real risk of false acceptance, but we might falsely 
reject a large number of references which, according to human judgement, would be rated 
as understandable. In automated tests with no human supervision, this might give an 
unrealistic impression of a poor system performance.  

On the other hand, we can not be certain that the translated utterance makes any sense 
even if most of the words match the reference. Only one word might carry the most 
essential information of the sentence’s meaning, which is lost if that word is missing. 
Misplaced words might break the syntax and, consequently, the meaning. A 100% 
position-dependent word match is the only occasion when an automatic MT evaluation 
system can be certain that a machine translated sentence is correct and comprehensible. 
Therefore, we should strive to find the exhaustive reference sets, with which the 
synchronization could be accomplished most times, and the number of false rejects could 
be minimized. Furthermore, we can only measure and analyze the network effects on 
translation if the words in the incoming stream match the reference exactly. From this 
perspective, finding the word-exact match is only the starting point for a successful 
verification. Therefore, the synchronization required by Upload-BE does not limit the 
functionality of RTIS test environment. 

An issue remarkably increasing the human effort is that the stimuli have to be pre-
recorded and stored in the DSP memory before running the test case. Thus, we have to 
record separate, designated stimuli to be able to test how different speakers, background 
noise environments, or accents affect the speech recognition. 
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8.2.4 Compressed speech 
 
To provide adequate end-to-end performance test coverage, the RTIS test environment 
needs to be able to handle different speech codecs. This possibility was investigated by 
feeding AMR coded speech directly to the translation engine.  

AMR transcoders in a UMTS network can be set to a known state by sending a 
predefined homing pattern before the actual speech stream to be verified. This way, the 
output of the transcoder is unambiguous and bit-exact verification is applicable. 
However, when a translation algorithm is invoked during the call, the bit-exactness of the 
output can’t be guaranteed. The translation algorithms in the 3rd party translation engine 
seem to affect the AMR coding algorithm in such a way that the effect of sending a 
homing pattern is canceled.  

This finding implies that the RTIS test environment with bit-exact analysis method can 
not be used as such for testing calls involving compressed speech. However, the testing 
of different speech codecs in RTIS can not be omitted. Thus, modifications in the test 
environment and/or designing new tools are required in the future to support AMR and 
other codecs used in UMTS network. One option is to apply PESQ algorithm on RTIS 
tests with compressed speech. However, PESQ is known to provide inaccurate 
predictions when extreme temporal clipping occurs. In RTIS verification this is the case 
when there is a word mismatch between RTIS output and the reference, as the results in 
table 8.2 show. If PESQ is applied, the RTIS output should only be compared with a 
word match reference. This can be ensured by human intervention, or a text-based pre-
analysis. 

 

8.2.5 Other findings 
 
As the results presented in chapter 8.1 show, RTIS involves several technically 
challenging algorithms, all of which can cause unpredictable problems. Due to these 
problems, analyzing the feasibility of the RTIS test environment is difficult. However, 
the experimental test case 3 (see table 8.1) proves that it is theoretically possible to apply 
the concept of automatic bit-exact verification in RTIS testing: a matching word sequence 
can be found for the translations and bit-exact verification is possible for PCM calls. 
Improvements in speech activity detection and other speech processing functions 
involved might open up new possibilities for automated verification and improve the 
range of RTIS test environment.  

The RTIS test environment designed in this thesis can be utilized in regression testing. 
After a comprehensive test suite has been defined and successfully run on one version of 
RTIS service, the same test environment and test suite can be used in cyclic regression 
tests. Regression testing ensures that the existing functionality and features are not 
broken by the updates in RTIS network environment or the translation engine itself. The 
RTIS test environment treats the translation engine, which contains the most essential 
algorithms for the translation, as a black box. This makes running the regression 
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relatively easy and fast even if the whole translation module is replaced with one by a 
different provider, or its functionality otherwise changes radically. 

Considering the functionality level of RTIS prototype and machine translation 
applications in general, it can be stated that automatic verification is not the most suitable 
MT evaluation strategy at present. Every stage of the translation process is extremely 
error-prone: speech recognition, speech activity detection, translation, speech synthesis, 
and data transmission. Problems occurring on any stage can affect the execution of later 
stages, which can sometimes multiply the effect of the error. This makes the behavior of 
the RTIS service very unpredictable, and hence difficult to verify automatically. Together 
with these findings, the subjective nature of the MT evaluation problem as such suggests 
that automated verification can’t replace manual verification completely in near future. 
Even covering an extensive part of verification automatically, like in speech quality 
verification, requires significant improvements in our knowledge of ASR, MT, and MT 
evaluation methods. 

 

8.3 Future work and open questions 
 
The limited functionality of the current version and the problems found with the speech 
activity detection make the appropriate verification of the RTIS prototype difficult. 
Therefore, the test environment designed in this thesis has to be re-evaluated with an 
improved version of RTIS in the future. However, some specific directions for the future 
work can already be proposed. 

The analysis of the RTIS test environment showed that automatic verification is not 
necessarily optimal in machine translation evaluation from the translational equivalence 
point of view. However, some quantitative analysis is needed to ensure that the 
translation algorithm does not disturb other network functions and that the integration of 
the service is completed successfully. This suggests that one possible verification strategy 
in the future could be to separate the translational equivalence evaluation and network 
analysis. It would require developing a new, partially human-controlled hybrid 
verification system. It could be partly based on the RTIS test environment designed in 
this thesis, and partly on a graphic user interface. The test user would be able to monitor 
the ASR result, forward-translation and back-translation in text format, reject any of the 
results and send a new request. Only the translation accepted by the test user would be 
played back in speech format and the network disturbances would be verified. In a hybrid 
test environment like this, the evaluation would be divided so that a human evaluator is 
responsible for the translational equivalence rating, and the network behavior is verified 
by means of e.g. bit-exact analysis. Many of the features in the user interface described 
above are planned to be implemented in RTIS prototype stage 2, so developing a 
verification system would also contribute to improving the usability of the actual service. 

Verification of compressed speech in an issue that needs to be solved when RTIS IWD is 
updated to support AMR coded speech. Because we can’t verify the network disturbances 
by bit-exact analysis in AMR calls, another method has to be found. PESQ-based 
analysis is one considerable option, because the algorithm does not require bit-exactness 
between RTIS output and the reference.  PESQ algorithm rates the utterances 
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automatically, but in the current RTIS test environment realization some manual work is 
needed to employ PESQ analysis. The test user would have to select the correct reference 
that matches the RTIS output word-exactly before PESQ comparison can be conducted 
reliably. Load and stability tests can not be run using PESQ analysis at the moment, 
because there is no tool running on M-MGw that would set up calls, calculate PESQ 
scores and monitor the quality over a longer time period and with multiple calls. In the 
future, different methods for verifying compressed speech should be analyzed and the 
necessary modifications for automating the execution of the chosen method must be 
implemented. 

A big open question in MT evaluation, that no automatic test environment explicitly 
answers, is how to define the acceptance level for MT performance. The outputs of RTIS 
are ambiguous, i.e. the same input sequence can produce variable outputs. More 
importantly, the translation quality varies between different outputs: some of the 
translations are “perfect”, some have minor style errors or slightly inappropriate word 
choices, whereas some have unacceptable syntax errors. The longer the input sentence, 
the more variability there is in the translations. Therefore, in addition to a suitable test 
method and a working test environment, we need to define a performance level measure. 
How many test cases are required to prove, for example, that 90% of the translations are 
rated at least 90% correct? How many test runs are required per test case to ensure that 
the variability in the quality of the outputs remains within that percentage? What 
percentage corresponds to human perception of adequate fluency? These questions, 
however, are not a concern until we can successfully and consistently rate the translated 
sentences. We need to be able to state with no uncertainty, that a particular sentence 
meets some quality level (90% correctness, score 4 on Likert scale, etc.) and that the level 
also corresponds to human judgement. Hence, the ultimate goal in MT evaluation for 
now is to be able to formulate an accurate evaluation metric. 

In speech-to-speech MT verification, a similar question arises regarding the acceptance 
level of automatic speech recognition. ASR performance has a significant impact on 
speech-to-speech MT performance. In RTIS test environment, the effect of different 
speakers, accents, and background noise environments on ASR performance can be 
verified by performing the test on stimulus files with different characteristics. However, 
as speech signals are speaker-dependent, and every speaker is unique, we have to find 
some appropriate generalization for ASR quality. For example, if we perform the test on 
recorded speech of N different speakers, can we assume that ASR performs adequately 
for 90% of total end users? Does 90% correctness level in ASR guarantee at least 90% 
correct translations? 
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9 Conclusion 
 
This thesis studied speech-to-speech machine translation development and machine 
translation evaluation. The main goal of the study was to investigate how machine 
translation works, how the performance of machine translation systems can be evaluated, 
and how these methods can be applied in verification of a speech-to-speech machine 
translation service running in a UMTS network. The service to be verified was the Real-
time translation system (RTIS), developed by Ericsson. 

Machine translation, especially speech-to-speech machine translation, is a very difficult 
technological challenge. Due to their complexity and ambiguity, natural languages are 
very difficult to model formally. Implementing accurate speech recognition and natural-
like speech synthesis are also complicated tasks, due to the speaker- and context-
dependent nature of speech signals. Despite all the challenges, machine translation 
development has taken leaps forwards in recent years. Statistical machine translation, a 
relatively new approach, has significantly improved the machine translation performance 
and encouraged several companies to develop their own machine translation applications. 
This has resulted in an emerging need to measure and verify the performance of a 
machine translation application. However, as quality of a translation is a very subjective 
measure, a truthful, objective evaluation method for MT performance is very hard to 
define. 

Machine translation evaluation methods can be divided into subjective and quantitative 
methods. In subjective evaluation, a human translator rates the translated sentences using 
e.g. a Likert scoring system or a task-oriented evaluation model. Subjective evaluation is 
reliable and reflects the true quality of machine translation, because human translators 
possess a strong language model and understanding of semantics and the language itself. 
The main problems with subjective evaluation methods are the differences between the 
individuals who perform the rating, and also the huge evaluation costs that come from 
manual, time-consuming work conducted by skilled multilingual experts. Therefore, there 
is a strong desire to develop quantitative machine translation evaluation methods, with 
which the evaluation could be performed automatically. The benefits and shortcomings of 
automatic MT evaluation methods are basically the opposite to those of subjective 
methods: evaluation costs are low, the quality metric is mathematically formulated and 
reproducible, but the result does not necessarily correlate to human judgement: correct 
translations can be falsely rejected and incorrect translations falsely accepted. 

The quantitative MT evaluation methods are mostly based on calculating the percentage 
of correct content. In WER and SER metrics, this is done by comparing the message with 
a reference translation, and counting the number of correct words or sentences, 
respectively. These methods are very dependent on the used reference, and different word 
choices and ordering can skew the result significantly. This can be avoided either by 
applying some more sophisticated evaluation method, such as BLEU or METEOR, which 
allow restructuring and combining parts of the reference, or applying multiple references 
in WER or SER. 

The feasibility of applying some quantitative evaluation method in RTIS verification was 
investigated in this thesis. RTIS is a speech-to-speech machine translation service 
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prototype with limited travel-related scope. The current version of the prototype can only 
be used in one-phone calls, i.e. the user connects to the translation server with a mobile 
phone, and his/her translated utterance is played back to the same device. The purpose of 
developing the prototype was to show how the speech recognition and the actual 
translation process are affected by the mobile environment and its challenges, such as 
background and network noise, transcoding, and other speech processing algorithms. 
Moreover, we want to make sure integrating the translation server into the network 
doesn’t disturb the normal network functionality. The evaluation costs set some 
requirements for the design of the RTIS test environment: the verification should be 
automated, and preferably be set up utilizing the existing test tools. The test environment 
should be able to examine the speech streams on bit stream level, and most importantly, 
measure how well the translational equivalence is preserved in the mobile environment. 

Due to these requirements, the possibility to modify Ericsson’s existing speech quality 
test environment to support RTIS verification was investigated. Both processes involve 
sending a speech signal into the network and verifying the outcome, but RTIS involves 
several complex, highly nonlinear algorithms that can change the outcome in various 
ways. 

The first step in RTIS test environment implementation was to reconfigure the setup: the 
test tools and devices in M-MGw were connected to RTIS interworking device, which 
routes the generated speech traffic out of the M-MGw, via a Linux server to the external 
3rd party translation engine. The translation engine sends the translated utterance back to 
M-MGw, where it is compared bit-exactly with a pre-defined reference pattern by a 
special tool called Upload-BE. Defining these references and the logic for rating the 
translations, i.e. a translational equivalence model, was the major modification required 
to support RTIS verification. 

Because natural languages are ambiguous, there can be multiple correct translations for 
each input utterance. This is also how RTIS works: the output depends on the translation 
engine’s current state, that is, what preceded the input. The test system needs to adapt to 
these variations and not classify all word choices and reorderings deviating from the 
reference as errors. Thus, BLEU/METEOR-based evaluation logic and WER/SER with 
multiple references were considerable options. The translational equivalence model was 
chosen to be multi-SER, because in a limited-scope MT system, it can be assumed to 
provide equal coverage compared to BLEU or METEOR with less initial effort and less 
complex algorithms. Furthermore, the functionality of Upload-BE was extended to 
include a closeness measure calculation, which returns the total number of defected bytes 
to the control interface. 

Finally, an experimental test suite was written in TTCN3 to verify the applicability of the 
RTIS test environment. The test suite consists of two test cases, which were run, and the 
results analyzed. The following conclusions can be drawn from the results. 

As was mentioned earlier, automatic machine translation is a very complex problem. 
However, speech-to-speech machine translation can be considered exponentially more 
complex because speech recognition, parsing the spoken language input sentence and 
speech synthesis are involved in the process. Each of these stages is a very difficult 
technical challenge, and a minor mistake at any stage can distract the execution of other 
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stages and make the whole translation process fail. Therefore, the difficulties related to 
verification of speech-to-speech MT applications are not only originating from the 
inherent complexity and ambiguity of natural languages and the subjective nature of the 
verification problem itself, but also from the extreme unpredictability of the sub-
processes and thus the whole system. 

At present, the RTIS service prototype suffers from too many problems and limitations to 
be verified automatically. The test environment designed in this thesis has to be re-
evaluated in the future with an improved version of RTIS prototype, until which manual 
testing remains the preferred method. Some conclusions can still be stated regarding the 
applicability of the concept.  

Multi-SER as the translational equivalence model can be considered to provide adequate 
test coverage, as long as the scope of the translation service remains somewhat limited. 
With a larger scope, the manual work required to define the reference sets and test suite 
overrides the benefits of automatic verification. Also, issues such as memory 
consumption and increased execution time become significant. Multi-SER does not 
correlate strongly with human judgement, but there is only the risk of false rejection, 
which can be avoided by striving to find an exhaustive reference set for each test case. 
Because adding test cases, modifying the structure of the test cases and changing the 
stimulus and reference patterns only requires recompilation of the test suite in RTIS test 
environment, the multi-SER approach can be considered applicable also in testing the 
future versions of RTIS. 

Upload-BE as a special tool designed to perform bit-exact analysis for the purposes of 
speech quality testing, is not optimal to be used in RTIS verification. The network 
disturbances can be spotted very effectively by means of bit-exact analysis, but several 
findings promote the design of a special RTIS tool: the false rejections caused by the 
synchronization required by Upload-BE, the fact that AMR (and most probably any other 
compressed speech) traffic generated by the 3rd party translation engine is not bit-exact, 
and that the input speech has to be pre-recorded. Research is needed to find the best 
method for RTIS verification, but the findings of this thesis suggest that text-based 
analysis and human intervention are needed to some extent.  Methods like bit-exact 
analysis or PESQ solely analyze speech streams and the results can not directly be 
interpreted as MT quality scores. 

One of the major findings of this thesis is that automatic MT evaluation can’t replace 
manual evaluation in near future. Even automating a large share of the verification and 
running high-load system tests is not likely to be feasible in the next few years. It is 
possible to build an automated test environment for RTIS and execute some tests 
successfully, but the true performance level of the application can only be perceived by a 
human evaluator. Humans’ language model, knowledge of the world, understanding of 
context and the complex discourse analysis capabilities are still astonishing compared to 
those of the most developed automatic evaluation methods. The test cases in the RTIS 
test suite show, that even the simplest phrases can be highly ambiguous when they are 
translated between languages that have significant constitutive differences. Humans can 
disambiguate and extract the meanings from complex sentences effortlessly, whereas 
automatic evaluation methods often struggle with basic expressions. The accuracy and 
truthfulness of the evaluation results vs. evaluation costs still favors manual, human-
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conducted evaluation. While this holds true, the preferable direction to improve RTIS test 
environment is to strive to machine-aided human evaluation, that is, reduce the amount of 
manual work as much as possible, yet still leave the most critical work for humans.  
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