413 research outputs found

    Signal Processing and Machine Learning Techniques Towards Various Real-World Applications

    Get PDF
    abstract: Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have opened up new opportunities of research across various departments and this dissertation is a manifestation of it. Here, some unique studies have been presented, from which valuable inference have been drawn for a real-world complex system. Each study has its own unique sets of motivation and relevance to the real world. An ensemble of signal processing (SP) and ML techniques have been explored in each study. This dissertation provides the detailed systematic approach and discusses the results achieved in each study. Valuable inferences drawn from each study play a vital role in areas of science and technology, and it is worth further investigation. This dissertation also provides a set of useful SP and ML tools for researchers in various fields of interest.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 197, September 1979

    Get PDF
    This bibliography lists 193 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1979

    Multidimensional embedded MEMS motion detectors for wearable mechanocardiography and 4D medical imaging

    Get PDF
    Background: Cardiovascular diseases are the number one cause of death. Of these deaths, almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidimensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical movement of the heart muscle offering an entirely new and innovative solution to evaluate cardiac rhythm and function. Recent advances in miniaturized motion sensors present an exciting opportunity to study novel device-driven and functional motion detection systems in the areas of both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT) and positron emission tomography (PET). Methods: This Ph.D. work describes a new cardiac motion detection paradigm and measurement technology based on multimodal measuring tools — by tracking the heart’s kinetic activity using micro-sized MEMS sensors — and novel computational approaches — by deploying signal processing and machine learning techniques—for detecting cardiac pathological disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG) and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG) concept representing the mechanical characteristics of the cardiac precordial surface vibrations. Results: Experimental analyses showed that integrating multisource sensory data resulted in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approximately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional (4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising results for measuring the cardiac timing intervals and myocardial deformation changes. Conclusion: The findings of this study demonstrate clinical potential of MEMS motion sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidimensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and quality of cardiac PET imaging.Moniulotteisten sulautettujen MEMS-liiketunnistimien käyttö sydänkardiografiassa sekä lääketieteellisessä 4D-kuvantamisessa Tausta: Sydän- ja verisuonitaudit ovat yleisin kuolinsyy. Näistä kuolemantapauksista lähes 80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron häiriöistä. Moniulotteiset mikroelektromekaaniset järjestelmät (MEMS) mahdollistavat sydänlihaksen mekaanisen liikkeen mittaamisen, mikä puolestaan tarjoaa täysin uudenlaisen ja innovatiivisen ratkaisun sydämen rytmin ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien pienikokoisten liiketunnistusjärjestelmien käyttämisen sydämen toiminnan tutkimuksessa sekä lääketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemissiotomografian (PET), tarkkuuden parantamisessa. Menetelmät: Tämä väitöskirjatyö esittelee uuden sydämen kineettisen toiminnan mittaustekniikan, joka pohjautuu MEMS-anturien käyttöön. Uudet laskennalliset lähestymistavat, jotka perustuvat signaalinkäsittelyyn ja koneoppimiseen, mahdollistavat sydämen patologisten häiriöiden havaitsemisen MEMS-antureista saatavista signaaleista. Tässä tutkimuksessa keskitytään erityisesti mekanokardiografiaan (MCG), joihin kuuluvat gyrokardiografia (GCG) ja seismokardiografia (SCG). Näiden tekniikoiden avulla voidaan mitata kardiorespiratorisen järjestelmän mekaanisia ominaisuuksia. Tulokset: Kokeelliset analyysit osoittivat, että integroimalla usean sensorin dataa voidaan mitata syketiheyttä 99% (terveillä n=29) tarkkuudella, havaita sydämen rytmihäiriöt (n=435) 95-97%, tarkkuudella, sekä havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisäksi MEMS-kaksoistahdistuksen avulla voidaan parantaa sydämen 4D PET-kuvan laatua, kun liikeepätarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler Imaging) GCG-analyysi (terveillä, n=9) osoitti lupaavia tuloksia sydänsykkeen ajoituksen ja intervallien sekä sydänlihasmuutosten mittaamisessa. Päätelmä: Tämän tutkimuksen tulokset osoittavat, että kardiologisilla MEMS-liikeantureilla on kliinistä potentiaalia sydämen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniuloitteinen MCG voi edistää eteisvärinän (AFib), sydäninfarktin (MI) ja CAD:n havaitsemista. Lisäksi MEMS-liiketunnistus parantaa sydämen PET-kuvantamisen luotettavuutta ja laatua

    Shear-promoted drug encapsulation into red blood cells: a CFD model and μ-PIV analysis

    Get PDF
    The present work focuses on the main parameters that influence shear-promoted encapsulation of drugs into erythrocytes. A CFD model was built to investigate the fluid dynamics of a suspension of particles flowing in a commercial micro channel. Micro Particle Image Velocimetry (μ-PIV) allowed to take into account for the real properties of the red blood cell (RBC), thus having a deeper understanding of the process. Coupling these results with an analytical diffusion model, suitable working conditions were defined for different values of haematocrit

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference

    Security and privacy services based on biosignals for implantable and wearable device

    Get PDF
    Mención Internacional en el título de doctorThe proliferation of wearable and implantable medical devices has given rise to an interest in developing security schemes suitable for these devices and the environment in which they operate. One area that has received much attention lately is the use of (human) biological signals as the basis for biometric authentication, identification and the generation of cryptographic keys. More concretely, in this dissertation we use the Electrocardiogram (ECG) to extract some fiducial points which are later used on crytographic protocols. The fiducial points are used to describe the points of interest which can be extracted from biological signals. Some examples of fiducials points of the ECG are P-wave, QRS complex,T-wave, R peaks or the RR-time-interval. In particular, we focus on the time difference between two consecutive heartbeats (R-peaks). These time intervals are referred to as Inter-Pulse Intervals (IPIs) and have been proven to contain entropy after applying some signal processing algorithms. This process is known as quantization algorithm. Theentropy that the heart signal has makes the ECG values an ideal candidate to generate tokens to be used on security protocols. Most of the proposed solutions in the literature rely on some questionable assumptions. For instance, it is commonly assumed that it possible to generate the same cryptographic token in at least two different devices that are sensing the same signal using the IPI of each cardiac signal without applying any synchronization algorithm; authors typically only measure the entropy of the LSB to determine whether the generated cryptographic values are random or not; authors usually pick the four LSBs assuming they are the best ones to create the best cryptographic tokens; the datasets used in these works are rather small and, therefore, possibly not significant enough, or; in general it is impossible to reproduce the experiments carried out by other researchers because the source code of such experiments is not usually available. In this Thesis, we overcome these weaknesses trying to systematically address most of the open research questions. That is why, in all the experiments carried out during this research we used a public database called PhysioNet which is available on Internet and stores a huge heart database named PhysioBank. This repository is constantly being up dated by medical researchers who share the sensitive information about patients and it also offers an open source software named PhysioToolkit which can be used to read and display these signals. All datasets we used contain ECG records obtained from a variety of real subjects with different heart-related pathologies as well as healthy people. The first chapter of this dissertation (Chapter 1) is entirely dedicated to present the research questions, introduce the main concepts used all along this document as well as settle down some medical and cryptographic definitions. Finally, the objectives that this dissertation tackles down are described together with the main motivations for this Thesis. In Chapter 2 we report the results of a large-scale statistical study to determine if heart signal is a good source of entropy. For this, we analyze 19 public datasets of heart signals from the Physionet repository, spanning electrocardiograms from multiple subjects sampled at different frequencies and lengths. We then apply both ENT and NIST STS standard battery of randomness tests to the extracted IPIs. The results we obtain through the analysis, clearly show that a short burst of bits derived from an ECG record may seem random, but large files derived from long ECG records should not be used for security purposes. In Chapter3, we carry out an análisis to check whether it is reasonable or not the assumption that two different sensors can generate the same cryptographic token. We systematically check if two sensors can agree on the same token without sharing any type of information. Similarly to other proposals, we include ECC algorithms like BCH to the token generation. We conclude that a fuzzy extractor (or another error correction technique) is not enough to correct the synchronization errors between the IPI values derived from two ECG signals captured via two sensors placed on different positions. We demonstrate that a pre-processing of the heart signal must be performed before the fuzzy extractor is applied. Going one step forward and, in order to generate the same token on different sensors, we propose a synchronization algorithm. To do so, we include a runtimemonitoralgorithm. Afterapplyingourproposedsolution,werun again the experiments with 19 public databases from the PhysioNet repository. The only constraint to pick those databases was that they need at least two measurements of heart signals (ECG1 and ECG2). As a conclusion, running the experiments, the same token can be dexix rived on different sensors in most of the tested databases if and only if a pre-processing of the heart signal is performed before extracting the tokens. In Chapter 4, we analyze the entropy of the tokens extracted from a heart signal according to the NISTSTS recommendation (i.e.,SP80090B Recommendation for the Entropy Sources Used for Random Bit Generation). We downloaded 19 databases from the Physionet public repository and analyze, in terms of min-entropy, more than 160,000 files. Finally, we propose other combinations for extracting tokens by taking 2, 3, 4 and 5 bits different than the usual four LSBs. Also, we demonstrate that the four LSB are not the best bits to be used in cryptographic applications. We offer other alternative combinations for two (e.g., 87), three (e.g., 638), four (e.g., 2638) and five (e.g., 23758) bits which are, in general, much better than taking the four LSBs from the entropy point of view. Finally, the last Chapter of this dissertation (Chapter 5) summarizes the main conclusions arisen from this PhD Thesis and introduces some open questions.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Arturo Ribagorda Garnacho.- Secretario: Jorge Blasco Alis.- Vocal: Jesús García López de la Call
    corecore