1,760 research outputs found

    Shrinking the Malaria Map: A Prospectus on Malaria Elimination

    Get PDF
    \ud Thirty-nine countries across the world are making progress toward malaria elimination. Some are committed to nationwide elimination, while others are pursuing spatially progressive elimination within their borders. Influential donor and multilateral organizations are supporting their goals of achieving malaria-free status. With elimination back on the global agenda, countries face a myriad of questions. Should they change their programs to eliminate rather than control malaria? What tools are available? What policies need to be put into place? How will they benefit from elimination? Unfortunately, answers to these questions, and resources for agencies and country program managers considering or pursuing elimination, are scarce. The 39 eliminating countries are all positioned along the endemic margins of the disease, yet they naturally experience a variety of country characteristics and epidemiologies that make their malaria situations different from one another. The Malaria Elimination Group (MEG) and this Prospectus recognize\ud that there is no single solution, strategy, or time line that will be appropriate for every country, and each is encouraged to initiate a comprehensive evaluation of its readiness and strategy for elimination. The Prospectus is designed to guide countries in conducting these assessments. The Prospectus provides detailed and informed discussion on the practical means of achieving and sustaining zero transmission. It is designed as a road map, providing direction and options from which to choose an appropriate path. As on all maps, the destination is clearly marked, but the possible routes to reach it are numerous. The Prospectus is divided into two sections: Section 1 Eliminating Malaria comprises four chapters covering the strategic components important to the periods before, during, and after an elimination program. Section 2 Tools for the Job, comprises six chapters that outline basic information about how interventions in an elimination program will be different from those in a control setting. Chapter 1, Making the Decision, evaluates the issues that a country should consider when deciding whether or not to eliminate malaria. The chapter begins with a discussion about the quantitative and qualitative benefits that a country could expect from eliminating malaria and then recommends a thorough feasibility assessment. The feasibility assessment is based on three major components: operational, technical, and financial feasibility. Cross-border and regional collaboration is a key subject in this chapter. Chapter 2, Getting to Zero, describes changes that programs must consider when moving from sustained control to an elimination goal. The key strategic issues that must be addressed are considered, including supply chains, surveillance systems, intersectoral collaboration, political will, and legislative framework. Cross-border collaboration is again a key component in Getting to Zero. Chapter 3, Holding the Line, provides recommendations on how to conduct an assessment of two key factors that will affect preventing the reemergence of malaria once transmission is interrupted: outbreak risk and importation risk. The chapter emphasizes the need for a strong surveillance system in order to prevent and, if necessary, respond to imported cases. Chapter 4, Financing Elimination, reviews the cost-effectiveness of elimination as compared with sustained control and then presents the costs of selected elimination programs as examples. It evaluates four innovative financing mechanisms that must support elimination, emphasizing the need for predictable and stable financing. Case studies from Swaziland and two provinces in China are provided. Chapter 5, Understanding Malaria, considers malaria from the point of view of elimination and provides a concise overview of the current burden of the disease, malaria transmission, and the available interventions that can be used in an elimination program. Chapter 6, Learning from History, extracts important lessons from the Global Malaria Eradication Program and analyzes some elimination efforts that were successful and some that were unsuccessful. The chapter also reviews how the malaria map has been shrinking since 1900. xiv A Prosp ectus on Mala ria Elimi natio n\ud Chapter 7, Measuring Malaria for Elimination, provides a precise language for discussing malaria and gives the elimination discussion a quantitative structure. The chapter also describes the role of epidemiological theory and mathematical modeling in defining and updating an elimination agenda for malaria. Chapter 8, Killing the Parasite, outlines the importance of case detection and management in an elimination setting. Options for diagnosis, the hidden challenge of Plasmodium vivax in an elimination setting, and the impact of immunity are all discussed. Chapter 9, Suppressing the Vector, explores vector control, a necessary element of any malaria program. It considers optimal methods available to interrupt transmission and discusses potential changes, such as insecticide resistance, that may affect elimination efforts. Chapter 10, Identifying the Gaps — What We Need to Know, reviews the gaps in our understanding of what is required for elimination. The chapter outlines a short-term research agenda with a focus on the operational needs that countries are facing today. The Prospectus reviews the operational, technical, and financial feasibility for those working on the front lines and considers whether, when, and how to eliminate malaria. A companion document, A Guide on Malaria Elimination for Policy Makers, is provided for those countries or agencies whose responsibility is primarily to make the policy decisions on whether to pursue or support a malaria elimination strategy. The Guide is available at www.malaria eliminationgroup.org

    Spatial super-spreaders and super-susceptibles in human movement networks

    Full text link
    As lockdowns and stay-at-home orders start to be lifted across the globe, governments are struggling to establish effective and practical guidelines to reopen their economies. In dense urban environments with people returning to work and public transportation resuming full capacity, enforcing strict social distancing measures will be extremely challenging, if not practically impossible. Governments are thus paying close attention to particular locations that may become the next cluster of disease spreading. Indeed, certain places, like some people, can be "super-spreaders." Is a bustling train station in a central business district more or less susceptible and vulnerable as compared to teeming bus interchanges in the suburbs? Here, we propose a quantitative and systematic framework to identify spatial super-spreaders and the novel concept of super-susceptibles, i.e. respectively, places most likely to contribute to disease spread or to people contracting it. Our proposed data-analytic framework is based on the daily-aggregated ridership data of public transport in Singapore. By constructing the directed and weighted human movement networks and integrating human flow intensity with two neighborhood diversity metrics, we are able to pinpoint super-spreader and super-susceptible locations. Our results reveal that most super-spreaders are also super-susceptibles and that counterintuitively, busy peripheral bus interchanges are riskier places than crowded central train stations. Our analysis is based on data from Singapore, but can be readily adapted and extended for any other major urban center. It therefore serves as a useful framework for devising targeted and cost-effective preventive measures for urban planning and epidemiological preparedness.Comment: 19 pages, 10 figure

    An Early Warning System for Detecting H1N1 Disease Outbreak - A Spatio-temporal Approach

    Get PDF
    The outbreaks of new and emerging infectious diseases in recent decades have caused widespread social and economic disruptions in the global economy. Various guidelines for pandemic influenza planning are based upon traditional infection control, best practice and evidence. This article describes the development of an early warning system for detecting disease outbreaks in the urban setting of Hong Kong, using 216 confirmed cases of H1N1 influenza from 1 May 2009 to 20 June 2009. The prediction model uses two variables – daily influenza cases and population numbers – as input to the spatio-temporal and stochastic SEIR model to forecast impending disease cases. The fairly encouraging forecast accuracy metrics for the 1- and 2-day advance prediction suggest that the number of impending cases could be estimated with some degree of certainty. Much like a weather forecast system, the procedure combines technical and scientific skills using empirical data but the interpretation requires experience and intuitive reasoning.postprin

    Shrinking the Malaria Map: A Prospectus on Malaria Elimination

    Get PDF
    The Prospectus provides detailed and informed practical means of achieving and sustaining zero transmission. It is designed as a road map, providing direction and options from which to choose an appropriate path. The Prospectus reviews the operational, technical, and financial feasibility for those working on the front lines and outlines the tools that can be considered for an elimination program. The 10 chapters of the Prospectus were written by 33 contributing authors. The Prospectus is divided into two sections: Section 1 - Eliminating Malaria, comprises four chapters covering the strategic components important to the periods before, during, and after an elimination program. Section 2 - Tools for the Job, comprises six chapters that outline basic information about how interventions in an elimination program will be different from those in a control setting. A companion document, A Guide on Malaria Elimination for Policy Makers, is provided for those countries or agencies whose responsibility is primarily to make the policy decisions on whether to pursue or support a malaria elimination strategy

    Identifying Highly Connected Counties Compensates for Resource Limitations when Evaluating National Spread of an Invasive Pathogen

    Get PDF
    Surveying invasive species can be highly resource intensive, yet near-real-time evaluations of invasion progress are important resources for management planning. In the case of the soybean rust invasion of the United States, a linked monitoring, prediction, and communication network saved U.S. soybean growers approximately $200 M/yr. Modeling of future movement of the pathogen (Phakopsora pachyrhizi) was based on data about current disease locations from an extensive network of sentinel plots. We developed a dynamic network model for U.S. soybean rust epidemics, with counties as nodes and link weights a function of host hectarage and wind speed and direction. We used the network model to compare four strategies for selecting an optimal subset of sentinel plots, listed here in order of increasing performance: random selection, zonal selection (based on more heavily weighting regions nearer the south, where the pathogen overwinters), frequency-based selection (based on how frequently the county had been infected in the past), and frequency-based selection weighted by the node strength of the sentinel plot in the network model. When dynamic network properties such as node strength are characterized for invasive species, this information can be used to reduce the resources necessary to survey and predict invasion progress

    Evaluation of strategies using simulation model to control a potential outbreak of highly pathogenic avian influenza among poultry farms in Central Luzon, Philippines.

    Get PDF
    The Philippines confirmed its first epidemic of Highly Pathogenic Avian Influenza (HPAI) on August 11, 2017. It ended in November of 2017. Despite the successful management of the epidemic, reemergence is a continuous threat. The aim of this study was to conduct a mathematical model to assess the spatial transmission of HPAI among poultry farms in Central Luzon. Different control strategies and the current government protocol of 1 km radius pre-emptive culling (PEC) from infected farms were evaluated. The alternative strategies include 0.5km PEC, 1.5km PEC, 2 km PEC, 2.5 km PEC, and 3 km PEC, no pre-emptive culling (NPEC). The NPEC scenario was further modeled with a time of government notification set at 24hours, 48 hours, and 72 hours after the detection. Disease spread scenarios under each strategy were generated using an SEIR (susceptible-exposed-infectious-removed) stochastic model. A spatial transmission kernel was calculated and used to represent all potential routes of infection between farms. We assumed that the latent period occurs between 1-2 days, disease detection at 5-7 days post-infection, notification of authorities at 5-7 days post-detection and start of culling at 1-3 days post notification. The epidemic scenarios were compared based on the number of infected farms, the total number of culled farms, and the duration of the epidemic. Our results revealed that the current protocol is the most appropriate option compared with the other alternative interventions considered among farms with reproductive ratio (Ri) > 1. Shortening the culling radius to 0.5 km increased the duration of the epidemic. Further increase in the PEC zone decreased the duration of the epidemic but may not justify the increased number of farms to be culled. Nonetheless, the no-pre-emptive culling (NPEC) strategy can be an effective alternative to the current protocol if farm managers inform the government immediately within 24 hours of observation of the presence of HPAI in their farms. Moreover, if notification is made on days 1-3 after the detection, the scale and length of the outbreak have been significantly reduced. In conclusion, this study provided a comparison of various control measures for confronting the spread of HPAI infection using the simulation model. Policy makers can use this information to enhance the effectiveness of the current control strategy

    Anti-fragile ICT Systems

    Get PDF
    This book introduces a novel approach to the design and operation of large ICT systems. It views the technical solutions and their stakeholders as complex adaptive systems and argues that traditional risk analyses cannot predict all future incidents with major impacts. To avoid unacceptable events, it is necessary to establish and operate anti-fragile ICT systems that limit the impact of all incidents, and which learn from small-impact incidents how to function increasingly well in changing environments. The book applies four design principles and one operational principle to achieve anti-fragility for different classes of incidents. It discusses how systems can achieve high availability, prevent malware epidemics, and detect anomalies. Analyses of Netflix’s media streaming solution, Norwegian telecom infrastructures, e-government platforms, and Numenta’s anomaly detection software show that cloud computing is essential to achieving anti-fragility for classes of events with negative impacts

    Evaluation morphométrique des chevaux pur-sang Arabe en Algérie: mensurations corporelles et proposition d’équations barymétriques

    Full text link
    Cette étude vise à la caractérisation morphobiométrique des chevaux de course pur-sang arabe et à l’estimation d’équations barymétriques adaptées à cette race. La caractérisation a concerné 98 chevaux, dont 44 femelles et 54 mâles, tous âgés de trois ans et plus, auprès de 77 propriétaires-éleveurs dans 3 hippodromes d’Algérie (Zemmouri, Tiaret et Caroubier). Dix-neuf mensurations étaient relevées ainsi que le poids vif (PV). Le poids moyen est de 456,2 +/- 43,0 kg, variant de 335 kg à 545 kg. La sélection des variables à inclure dans les équations barymétriques a été réalisée à l’aide de la procédure stepwise du SAS. Quatre mensurations parmi les 19 réalisées ont été retenues pour la proposition d’équations d’estimation du poids vif des chevaux : le périmètre thoracique (PT), la hauteur à la croupe (HC), la longueur de l’encolure (LE) et le tour de l’encolure (TE). Ainsi, les équations proposées pour les mâles et pour les femelles sont respectivement de : PV= 7,024*PT - 787,119 (R²=0,99); PV=6,207*PT + 0,633*HC + 0,668*TE - 0,878*LE - 746,370 (R²=0,96). Les résultats de cette étude devraient permettre aux propriétaires-éleveurs et entraineurs de suivre aisément le poids de leurs chevaux. Ce suivi est nécessaire pour adapter l’activité et l’alimentation des chevaux et favoriser leur performance en course

    The epidemiology of malaria and challenges to elimination in a low transmission setting in southern Zambia

    Get PDF
    Background: Recently, malaria has become a major global health priority. As a result there has been renewed interest in malaria control, elimination, and eradication. Zambia is one of the Elimination 8 countries and one of the President’s Malaria Initiative focus countries. Southern Province, Zambia has maintained a parasite prevalence of <10% since 2012, and the National Malaria Control Center made a goal of creating 5 malaria free zones in the province. As areas approach elimination, better understanding of the changing epidemiology of malaria transmission should be used to inform and determine how and where to target specific interventions. Additionally, challenges to elimination need to be evaluated to understand the risk for importation and resurgence of transmission. Methods: The study was conducted in the rural catchment area of Macha Hospital, Choma District, Southern Province, Zambia. First, spatial and temporal trends in passively and actively detected malaria infections were determined. Second, the genetic diversity and complexity of the parasite populations infecting individuals identified through passive and active surveillance was evaluated and compared. Third, a reactive screen-and-treat strategy was evaluated and coverage cascades were developed to inform and improve the intervention. Fourth, the impact of population movement was evaluated using GPS data loggers, in which movement patterns were characterized and quantified, and the amount of time spent in high and low malaria risk was determined. Results: A fractured spatial pattern was detected for both passively and actively detected infected individuals, and temporally stable, space-time clusters were detected, suggesting the presence of ecologically receptive areas. Phylogenetic analysis showed evidence of two distinct parasite populations from infected individuals identified through passive and active surveillance, with genetic diversity decreasing in actively detected infected individuals but not in passively detected cases. In the initial stages of a reactive screen-and-treat strategy, challenges such as poor follow-up and coverage, difficulties in maintaining sufficient RDTs, and poor sensitivity of the RDTs impeded the success of the program and a reactive focal drug administration may be more efficient. Most time was spent in the participant’s household compound, with time spent in high malaria risk areas was dependent on whether or not the house was located in a high malaria risk area. Seasonal movement patterns were observed, with greater long-distance movements during the dry season. Conclusions: Temporally stable ecologically receptive areas remain in malaria elimination settings but the chronically infected population may not be contributing to local transmission. Reactive focal drug administration within index case households may be a more efficient at identifying and treating infected individuals than a reactive test and treat strategy. Population movement patterns have the potential to increase the risk of importation at the end of the rainy season when clinical malaria cases peak; however, the risk of malaria importation is likely to be low throughout the remainder of the dry season
    • …
    corecore