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Abstract 

The outbreaks of new and emerging infectious diseases in recent decades have caused 

widespread social and economic disruptions in the global economy. Various guidelines 

for pandemic influenza planning are based upon traditional infection control, best 

practice and evidence. This paper describes the development of an early warning system 

for detecting disease outbreaks in the urban setting of Hong Kong, using 216 confirmed 

cases of H1N1 influenza from 1 May 2009 to 20 June 2009. The prediction model uses 

two variables – daily influenza cases and population numbers – as input to the 

spatio-temporal and stochastic SEIR model to forecast impending disease cases. The 

fairly encouraging forecast accuracy metrics for the 1- and 2- day advance prediction 

suggest that the number of impending cases could be estimated with some degree of 

certainty. Much like a weather forecast system, the procedure combines technical and 

scientific skills using empirical data but the interpretation requires experience and 

intuitive reasoning. 
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1 Introduction 

 

The outbreaks of new and emerging infectious diseases like the severe acute respiratory 

syndrome (SARS) (CDC 2012a), the H5N1 avian influenza (CDC 2013), H1N1 swine 

flu (CDC 2012b), H7N9 avian influenza (CDC 2013), and the recent Ebola outbreaks 

(Rivers et al. 2014) have brought new challenges and heighten health awareness around 

the world. The accelerated mutation of viruses and increased risks of animal-to-human 

transmission have made pandemic preparedness a top public health priority in many 

countries. Because the occurrence of a pandemic could cause widespread social and 

economic disruptions (Danziger 1994, Meltzer et al. 1999), some researchers have 

asserted that pandemic prediction and simulation by modeling past events are important 

means of informing timely intervention to prevent the spread of diseases through a 

population (Yasuda et al. 2008, Cooley et al. 2011, Wu and Cowling 2011). 

 

Conventional models on disease transmission dynamics are deficient in 

considering the heterogeneous nature of a population and place-specific concerns 

(Dushoff and Levin 1995, Sattenspiel and Dietzv 1995, Small and Tse 2005). In recent 

decades, there has been more attention on the integration of spatial and temporal 

approaches to develop better surveillance and modeling methods. Past research that 

examined the diffusion patterns of infectious diseases have used spatio-temporal and 

geostatistical methods to identify disease clusters (Lai et al. 2004, Sonesson 2007) and 

simulate disease spread based on characteristics and activities of individuals (Brouwers 

et al. 2009, Lee and Wong 2011). An increased interest in the development of 

spatio-temporal forecast systems is also evident in recent years. Boni et al. (2009) put 

forward a mathematical construct founded on the age-structured gravity and the 
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traditional Susceptible-Exposed-Infectious-Recovered (SEIR) models to assess the 

progression of H1N1 influenza in Vietnam. Hooten et al. (2010) proposed the 

Susceptible-Infectious-Recovered-Susceptible (SIRS) framework to emulate the 

dispersal of influenza virus in the United States. In a larger scale study for selected 

countries around the world, Gonzalez-Parra et al. (2011) demonstrated that the inclusion 

of spatio-temporal characteristics in the classical SEIR model could improve the ability 

to simulate multiple waves of H1N1 influenza outbreaks.    

 

Despite their threats to public health, many infectious diseases can be contained 

with effective infection control measures such as early detection and sensible 

segregation (Connolly et al. 2004, Lau et al. 2004a, Lau et al. 2004b, WHO 2003). 

The International Health Regulations in 1969, and later revised in 2005, require disease 

reporting to the World Health Organization (WHO) to help with its global surveillance 

and advisory role in issuing travel advisories that restrain spatial interaction in and out 

of infected areas to keep the disease from spreading further. Although surveillance 

provides an opportunity for early intervention at the population level, it has remained 

weak in forecasting the levels and trends of disease spread for increased epidemic 

preparedness in public health (Mayer et al. 2001). We believe that an early 

identification of high risk locations and a spatial understanding of the disease 

transmission dynamics are instrumental in devising effective control mechanisms. 

With the availability of more detailed real-time surveillance data at the national and 

local levels, we employed the geographic information systems (GIS) technology to 

explore individual-based computational models to examine interactions between 

infectious agents and their hosts, disease spread, prediction systems, and response 

strategies. 
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This paper describes the development of an early warning system for detecting 

disease outbreaks in the urban setting of Hong Kong, one of the most densely populated 

cities in the world. It also demonstrates the performance of a spatio-temporal and 

stochastic SEIR (stsSEIR) model based on the best available H1N1 influenza 

surveillance data. The stsSEIR model illustrates how an influenza outbreak might travel 

through a city by means of computer simulations and modeling using a GIS. It also 

shows how policymakers could make use of the information to decide which local areas 

should receive more resources for containing or minimizing impacts of a communicable 

disease. 

 

2 Data and Methods 

 

2.1 Data 

 

We obtained from the Hospital Authority and the Department of Health a total of 216 

confirmed cases of H1N1 influenza from 1st May 2009 to 20th June 2009. The patient 

records included the following data: residential address, onset date of symptom, date of 

diagnosis, health conditions, and demographic characteristics. In the development of an 

early warning system, our focus was on the earlier cases before a local disease outbreak 

that can collectively signal an alarm for possible local outbreaks in the next few days. In 

addition, the most recent population census data (C&SD 2006) and related geographic 

data on land uses (CUHK 2001), and building locations were obtained from relevant 

government or corporate sources to account for social mixing in an urban environment 

of Hong Kong. 
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2.2 Model Development  

 

The stsSEIR model is spatio-temporal in nature whereby the spatial constituent is the 

territory of Hong Kong and the temporal factor is the daily occurrences of H1N1. The 

spatial data of Hong Kong was first rasterized into 864 units of 1000mx1000m square 

cells which excluded non-populated areas comprising primarily of country parks and 

restricted zones (Figure 1). This resolution was set because previous research have found 

that the general activity area of an individual ranges between 800 to 1000 meters 

(Forsyth 2006). Moreover, finer resolution does not necessarily help in making 

district-level policy decision (Lee and Wong 2011). Each cell was assigned a discrete 

value using the finite-difference method which is a major method for data discretization 

in complex spatial models such as those used in weather predictions (Hong Kong 

Observatory 2012). This discretization of data was necessary to improve computational 

efficiency and facilitate manipulation of spatial interaction by means of the GIS overlay 

technique. 

-  Insert Figure 1  - 

 

The disease modeling algorithm is a modified version of the SEIR model 

(Anderson and May 1991). We integrated into the model diffusion heuristics and spatial 

databases on a GIS platform. These modifications allowed for more weights to be 

assigned to potential locations of social mixing (such as transport interchanges, amenity 

centers, health care centers, and populated areas). A related study based on similar data 

(Lai et al. 2014) found that population density is useful and the only significant variable 

in improving the forecast accuracy. However, it should be noted that the model has 

provision to accommodate additional variables by consolidating relevant factors into a 
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Exported, cross-cell 

transmission 

Imported, cross-cell 

transmission 

combined weighted score at each cell location. Additionally, individual-based and 

stochastic processes by incorporating population movement scenarios were implemented 

to simulate the spread of disease across space and time (Meng et al. 2005).  

 

Climate and weather factors were not considered in the diffusion model because 

the former is more about long-term change in environmental conditions affecting disease 

ecology whereas the latter is likely to exert little effect within the period of disease 

outbreak. More explicitly, our disease models involve in-situ measurements of infected 

cases at the geographic scale of a city where climatic variation would be of limited 

capacity. The minute difference in weather variables (with daily ranges of temperature 

and humidity at 2.4
o
C and 21% respectively) at the early stage of a disease outbreak 

would hardly play a noticeable role in disease diffusion. The following is a list of 

equations and parameters used in the study. 

 

EEE
N

SI

dt

dE
io    Equation 1 

 

 

N

SI

dt

dS
  

IE
dt

dI
   

I
dt

dR
  

NRIES   

 

where the variables S, E, I, and R represent the number of suspected, exposed, infected, 

and removed individuals respectively within the total population N; ν, σ, β, and R 

represent respectively infectious period, latent period, effective contact rate, and 
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reproduction number. These values were derived from the basic reproduction number R0, 

which was estimated by health officials at the time of the outbreak. Equation 1 is the key 

equation which contains two additional terms of Eo and Ei representing the exported and 

imported cross-cell transmission respectively.  

 

2.2.1 The basic variables 

 

The basic reproduction number (R0) of an infectious disease is the number of cases that a 

single case would generate on average over the duration of an infectious period 

(Cowling et al. 2010). Because a larger R0 value signals the harder it is to control an 

infection, this metric is useful in informing whether or not and how rapid an infectious 

disease can spread through a population. The proposed disease modeling was built on 

official R0 values of the 2009 pandemic H1N1 notifications as computed by Cowling et 

al. (2010). This is the only non-constant parameter that fluctuates in accordance with the 

daily trends of a disease outbreak. Our model is flexible and can accommodate, on a 

daily basis, variable R0 values ranging between 0.75 on day 1 and the peak value of 1.55 

on day 10. In addition to R0, the other required parameters of infectious period (ν) and 

latent period (σ) are often determined at the onset of an outbreak by medical experts 

familiar with characteristics of the infectious disease. Finally, the effective contact rate 

(β) can be deduced from the aforementioned parameters (Kwong 2010).  

 

At the beginning of a disease outbreak when t = 0, the numbers of S (susceptible), E 

(exposed), I (infected), R (removed) individuals for each lattice cell were determined by 

the stsSEIR model based on the above epidemiological parameters. Spatial heterogeneity 

is embedded in the grid structure wherein each grid cell carries a different set of S, E, I, 
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and R individuals based on their residential addresses. For each grid cell, the exposed (E) 

population at time (t) was computed using the set of equations from the stsSEIR 

approach described above, i.e., as a function of the susceptible (S) and infected (I) 

population within the total population (N) and considering the effective contact rate (β) 

but excluding population that became infectious. The differential equations for other 

compartments of susceptible (S), infected (I), and removed (R) population were derived 

accordingly and the sum of the S, E, I, and R components is held constant as the total 

population (N) within each grid cell. 

 

2.2.2 Within-cell and cross-cell transmissions 

 

Daily influenza cases were key inputs to the stsSEIR model over and above data about 

the population and other environmental attributes. The SEIR model was used to 

redistribute daily cases to relevant cells to minic disease transmission across the 

geographic space. As population is the denominator in disease modeling and burden 

estimation (Tatem et al. 2011), it was included in each cell to simulate the transmission 

of influenza within and across cells. The number of infected individuals for each grid 

cell on subsequent days was estimated by considering two factors: (i) spatial 

heterogeneity for within-cell transmission and (ii) spatial proximity for cross-cell 

transmission (Figure 2). Spatial heterogeneity considers the impact of localised SEIR 

component values on the disease contact rate. Here, larger susceptible (S), infected (I), 

and exposed (E) population expect to increase not only the chance of within-cell disease 

transmission but also disease transmission to neighbouring cells albeit at varying 

degrees. Spatial proximity is governed by three kinds of cell in the modelling of 

cross-cell transmission: (a) pivot – a moving cell that visits every cell in the grid, (b) 
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neighbouring – grid cells surrounding the pivot cell, and (c) other – grid cells selected by 

random processes (Figure 3). Besides within-cell transmission, the population in the 

pivot cell has a higher probability of being infected by diseased individuals living in 

neighbouring cells of close proximity and vice versa. Infectivity beyond the living 

environment (e.g., between co-workers, school mates, or people on the streets) is also 

likely, and this is modelled through a weighted random process.    

--- Insert Figures 2 and 3 --- 

 

Cross-cell transmission for each pivot cell has two constituents: exported and 

imported transmission (Equation 1). For exported transmission, the stsSEIR model 

assumes individuals in the pivot cell to engage in two levels of interaction: a higher level 

with residents in its neighbouring cells and a lower level with those from other cells 

(Figure 3). Based on Tobler’s (1970) first law of Geography stating that "everything is 

related to everything else, but near things are more related than distant things", a higher 

probability shall be assigned to neighbouring cells closer to a pivot or an infected cell 

than the more distant random cells. The same reason is made for imported transmission 

in which a higher probability of interaction with a pivot cell comes from neighbouring as 

opposed to other random cells. 

 

2.2.3 Control parameters 

 

A stochastic mechanism is introduced in the stsSEIR model in estimating both exported 

and imported cross-cell transmission with neighbouring and other cells. The model 

allows a certain proportion of the exposed (E) population within a pivot cell to contract 

disease from its neighbouring and other cells randomly chosen by the system in 
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consideration of the social mixing potential. The probability of within-cell transmission, 

cross-cell transmission to neighbouring cells, and cross-cell transmission to other 

random cells can be adjusted according to advice by medical experts given their 

knowledge about a disease. As the total number of infected cases is controlled by the 

reproduction number Rt, the proportion of one type of transmission will affect the other 

two.  

 

In short and knowing that each center cell can have up to 8 first-order nearest 

neighbors, the neighborhood analysis was employed to simulate disease 

transmission between cells in two ways: (i) weighted nearest neighborhood 

transmission; and (ii) weighted random cross-cell transmission. These cells were 

determined by a weight table derived by overlaying population and place specific 

features. The proportions of neighborhood versus random transmissions were set as 

30% and 50% respectively of the total amount of transmission. The remaining 20% 

was automatically allocated to within cell transmission. The full set of percentages 

was chosen by a team of infectious disease experts based on their clinical 

experience. When the model is applied in a real situation, the model operator should 

seek expert opinion about the percentages because diseases have varying latent and 

infectious periods to exhibit different characteristics of spread. 

 

Although the stsSEIR model is not perfect, it is capable of accommodating both 

temporal and spatial variability not possible with deterministic models. Instead of 

returning a single value for the whole of Hong Kong for each model run, our stsSEIR 

model yields different values for each populated cell which can be further aggregated by 
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definable neighborhoods or administrative units for decision making at the district or 

community levels.  

 

2.3 Model Validation  

 

The 1-7 day time-series forecasts of infected cases for the whole of Hong Kong were 

estimated using the stsSEIR model described above. The model was developed using 

actual H1N1 data in the months of May and June 2009 in which data reported in May 

were used to predict outcomes in June. The 1-7 day forecast results were computed 

successively for the validation period (i.e., 1-7, 2-8, 3-9, … until 14-20 June) to allow for 

comparison against the actual incident data over the same period. Input to the forecast 

model for each set of 1-7 day forecast was continuously updated using actual incident 

data before the days of extended forecast to simulate real-time updates as more incident 

cases were notified. A time-series comparison of 1-2 day and 6-7 day forecast accuracy 

based on daily counts was plotted to illustrate the magnitude difference between 

immediate versus extended forecasts (see also Gonzalez-Parra et al. 2011).  

 

Three additional metrics were computed for 1- to 7-day advance forecasts to assess 

the overall prediction accuracy of the stsSEIR model for early warning purposes: R
2
, 

average absolute error (AAE), and maximum absolute error (MAE). Generally speaking, 

better prediction accuracy is indicated by a larger R
2 

and smaller values for both AAE 

and MAE. The performance of the stsSEIR model against two common models by 

simple linear regression (LR) and autoregressive integrated moving average (ARIMA) 

methods was also conducted. The spatial version of LR and ARIMA models were not 

considered in this study because of technical limitation due to low disease counts in the 
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early stages of an outbreak. An exceeding large number of grid cells with a zero value 

violates the model assumption and renders the spatial version of LR and ARIMA models 

and their statistical inference invalid. As both LR and ARIMA spatial models cannot 

handle the zero-inflated situation, the model performance was assessed using only 

forecast errors (i.e., total of all cell count errors) for the whole of Hong Kong. 

 

The disease diffusion pattern was examined using error mapping (Berry 2007). 

Time-series maps of 1-day ahead forecast were aligned with the corresponding maps of 

actual disease counts on the same day. A similarity map was compiled to display 

variation between actual and forecast maps by highlighting the whereabouts of very 

similar or dissimilar locations. The map uses beige and pale green to indicate cell 

locations of fairly similar counts (i.e., a difference of zero to one count) and purple or red 

to indicate dissimilar areas (with a larger difference of 3 or more counts). 

 

3 Results  

 

3.1 Predicting Disease Outbreaks 

 

Two sets of line graphs were used to illustrate the prediction difference between 

immediate (1-2 days) and extended (6-7 days) forecasts against the actual or observed 

daily counts of disease incidents (Figures 4a and 4b respectively). It is clear from the 

linear plots of actual counts in Figure 4 that a small surge in disease counts or the first 

peak occurred on 11 June (day 11) and a sharp increase in infection or the second peak 

took place on 17-18 June (days 17 and 18). These increases could be attributed to the 

presence of small-scale local outbreaks. Comparing the linear plots of forecast values in 
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Figures 4a and 4b, we noted that the immediate (1-2 day) forecasts were more sensitive 

in detecting changes in disease counts whereas the extended (6-7 day) forecasts 

exhibited a smoothing effect that concealed minor fluctuations in values along the 

temporal scale. Besides, only the 1-day forecast was able to signal the considerable 

increase in infection or the second peak on days 17 and 18 based on recent cases.  

-  Insert Figure 4  - 

 

R
2
 values as well as AAE and MAE were computed for each prediction to offer 

more objective assessment of the forecast results. Very high R
2
 values of 0.78 and 0.8 

were obtained respectively for the 1- and 2- day advance forecasts (Table 1) indicating a 

high correlation between forecast and actual disease counts. R
2
 values for the remaining 

3- to 7- day forecasts were comparatively lower but remained acceptable within the 

range of 0.30 to 0.49. Incidentally, both the AAE and MAE registered the smallest 

values for 1-day forecast with those of 2-day forecast lagging slightly behind. Table 1 

also shows that our stsSEIR model tended to over predict disease occurrences, yielding 

AAE and MAE ranging from 6 to 9 cases and from 19 to 33 cases respectively. Besides, 

the results also showed that New Territories had the lowest average R
2
, whereas Hong 

Kong Island had the highest average R
2
. When predictions were subdivided by East and 

West New Territories, the average R
2
 values went below the prediction levels for the 

whole of New Territories, signaling increased prediction uncertainty at each level of 

spatial disaggregation. 

-  Insert Table 1   - 

 

Table 2 shows performance comparison of the stsSEIR model against those of the 

LR and ARIMA models. The stsSEIR yields better R
2
 and MAE values when compared 
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with both the LR and ARIMA models for the 1- and 2- day advance forecasts. However 

and except for the metrics of MAE, the stsSEIR does not show consistent performance 

for extended forecasts beyond two days. Based on the R
2
 measure, it appears that the 

stsSEIR has better accuracy for immediate forecasts but the ARIMA excels in extended 

forecast albeit with larger MAEs.  

-  Insert Table 2  - 

 

Besides model validation based on aggregated results described above, the 

stsSEIR model appears capable of forecasting spatio-temporal patterns of disease 

distribution. Table 3 shows a frequency table of error counts for 1-day advance forecasts 

from 1 June to 17 June, which is a more precise quantitative description of the temporal 

error. It is clear that the forecasts were very good because over 94% of the 864 grid cells 

were error free. The forecast on 17 June was the worst among the 17 days with 52 (6%) 

grid cells in disagreement and an MAE of 3 cases. The similarity maps (rightmost column 

of Figures 5a-5c) display the spatio-temporal variation between actual counts and forecast 

results (first two columns of Figures 5a-5c respectively). The overall predictability of the 

stsSEIR model on 17 June was 94% as shown by a large proportion of similar cells. 

Indeed, forecast maps from 1-17 June show comparable patterns with dispersed locations 

containing disease cases. Moreover, the error maps were very silent before 11 June after 

which both the number and magnitude of error cells continued to increase, indicating 

increased spatial uncertainty over time.  

-  Insert Table 3 and Figure 5  - 
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4 Discussion 

 

The modeling approach adopted for this study is raster GIS processing based on grid 

cells of 1000mx1000m in size. This process of discretization is important for two 

reasons. Firstly, it facilitates the modeling of a large and continuous geographic region 

by splitting it into smaller units of uniform resolution at a suitable scale for 

computational efficiency. Secondly, it enables the reconstitution of geographic areas 

(based on neighborhoods or districts or other appropriate administrative units, see Figure 

1) through aggregation of cells to yield health events and health characteristics of 

populations for decision making. Although the approach does not evade entirely the 

modifiable area unit problem (Rushton 1998), it does offer the flexibility of exploring 

changing effects of administrative units on public health decision making. This study 

also found that the spatial resolution at 1000mx1000m not only affords both 

computational efficiency but also provides the best forecast accuracy. More refined 

grid cell resolution of 500mx500m or 200mx200m might improve the visual 

presentation but a higher resolution would mask health effects because of more data 

scattering and insufficient explanatory powers with too few cases to report in the earlier 

phases of a disease outbreak. Although not examined in this paper, it should be noted 

that inappropriate spatial aggregation may impair decision making or cause delays in the 

deployment of very specific disease control measures whereas proper data aggregation 

may reduce false alarms resulted from unsuitably detailed spatial scales (Lee and Wong 

2011).  

 

A model with fairly high predictive power for an impending disease outbreak 

would provide public health authorities advance notice for mobilizing actions to prevent 
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further spread of the disease agent. Even if a disease outbreak could not be prevented, 

the available resources could be better allocated among needy regions based on the 

model forecasts. The two sets of line graphs as shown in Figures 4a and 4b complement 

each other in the decision process – the former seems more sensitive to recent disease 

occurrences but the latter compromises sensitivity to reveal a more general trend. For 

example, the small surge in disease counts on day 11 might not warrant issuing an alert 

that might trigger unnecessary public panic. By considering the highly fluctuated (1-2 

day immediate) versus the smoothed (6-7 day extended) forecast results along with 

values of the accuracy metrics (R
2
, AAE and MAE), public health authorities can 

determine with some degrees of certainty whether the predicted increase in infection is 

above a reasonable threshold and whether it is the appropriate time to issue health 

warnings. 

 

The series of maps showing the spatial distribution of both actual and forecast 

disease locations are effective in revealing potential problem areas needing attention 

(Figures 5). Spatially close neighbors may not display significant interaction. The error 

maps (rightmost column of Figure 5) that show similarity and differences between 

forecast and actual disease counts are useful in summarizing locations of agreement and 

disagreement. Their combined use enables visual and quantitative assessments of the 

spatio-temporal disease interaction. Although the predicted disease clusters were 

generally more compact (middle column of Figure 5) whereas the actual disease clusters 

(leftmost column of Figure 5) were more widespread, the difference would not affect 

policy makers in targeting intervention measures as long as the locations of the clusters 

could be reasonably predicted. For example, the error maps indicated increasing 

prediction uncertainty both in magnitude and spatial location after 11 June. This increase 
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in error could be related to the small disease outbreak on 11 June which had a greater 

impact on densely populated areas, such as the middle of Kowloon which was correctly 

predicted by the stsSEIR model even though not at the exact cell locations. We would 

attribute the uncertainty to random effects (perhaps not properly captured by the model) 

but also to intervention or control measures issued after the outbreak (not considered in 

the model).  

 

The integration of spatial and time-series analysis techniques seemed to avoid 

either missing spatial or temporal changes were the techniques applied in isolation from 

one another, such as relying solely on spatial linear regression or typical time series 

analyses. This observation was supported by results of our model validation revealing 

that the stsSEIR outperformed two common models in the 1- and 2- day advance 

forecasts (see Table 2). Moreover, the MAE provides critical information about the 

minimum resource required to cope with the worst-case scenario for a 

surveillance/monitoring system related to life-threatening infectious diseases. The 

consistent performance of the stsSEIR on MAE for forecasts beyond two days is very 

encouraging and implies that the worst-case forecast can be improved. However, the 

underlying condition for successful application of the stsSEIR model is rapid and 

systematic disease surveillance to track accurately the ongoing development of disease 

occurrence and disease potential. A future development direction is to compare the 

stsSEIR with other successful spatio-temporal models, such as the Bayesian maximum 

entropy model (Kolovos et al. 2013), in search of optimal models for select diseases.  

 

One limitation of the stsSEIR model is its inability to predict sudden upsurge of 

disease cases such as that in the 2003 SARS outbreak (Nelson 2007). The 
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neighborhood concept for within and cross-cell infection was formulated on the principle 

of distance decay in which near things are more related than distant things
 
(Tobler 1970) 

in conjunction with the city’s population profile. But, highly infectious cases 

originated from visitors of other cities or countries are not fully accounted for in the 

stsSEIR model except through the stochastic events. Further modification of the 

model is required to cater for such external and random occurrences that yield contact 

patterns different from those of ordinary work/school travels.  

 

It appears that the stsSEIR would be applicable to diseases similar to H1N1, such 

as H7N9 but not HIV/AIDS because the means of disease transmission is different 

between the two diseases. Moreover, as population density is an important element for 

developing the stsSEIR, it is expected that the model would be applicable in urban 

settings similar to Hong Kong but not necessarily to rural areas with a low population 

density and a different mobility pattern unless with modification. This reasoning was 

based on decreasing R
2
 values from densely populated (Kowloon) to less populated 

(New Territories) regions because few disease cases rendered the stsSEIR model less 

effective, as observed from this study. 

 

5 Conclusions 

 

Overall, our stsSEIR model successfully predicted the H1N1 disease outbreaks in the 

early stages of disease transmission. The high R
2
 values and reasonably low MAEs for 

the 1- and 2- day advance forecasts suggest that the number of infected cases could be 

predicted with some degree of accuracy that would not be too far from the actual value. 

This finding is important because public health officials would be more confident in 
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estimating resources to cope with the worst situation by knowing the largest possible 

number of infected patients (forecast value plus maximum error). The model developed 

by this research is valuable because the existing three-level response system to cope 

with disease outbreaks in Hong Kong is deficient (CHP 2012). Each level of response 

warrants a given set of public health actions corresponding to risk-graded 

epidemiological scenarios. Although the actions are designed to comply with the 

WHO’s guidelines for pandemic influenza planning, they would be made only after 

the epidemiological scenarios had occurred. The stsSEIR model developed in this 

research outperforms the existing response system in the temporal dimension because 

it can predict disease outbreaks in advance to forewarn government officials before 

they occur. Although the precision of spatial forecast still needs further investigation, 

the ability to predict and visualize potential disease clusters can be an effective means 

for policy makers to operationalize abstract numeric predictions into location specific 

intervention policies. By identifying potential locations for disease outbreak, policy 

makers can plan ahead to mobilize community centers or markets in specific 

neighborhoods to provide free hygiene packages containing hand sanitizers and masks, 

as well as bins to allow for proper disposal of waste tissues. In locations with potential 

for a large outbreak, contingency plans for educational continuity or centralized care 

provision can be made for possible closing of schools or elderly homes in specific 

neighborhoods based on their demographic characteristics. 

 

A multi-staged early warning approach similar to the routinely used typhoon 

warning system (http://www.hko.gov.hk/wxinfo/currwx/tc.htm) could be established for 

infectious disease epidemics such that response plans can be gradually ramped up as 

forecast certainty increases. This approach would give public health officials as much 
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advance notice as possible about the likelihood of a disease outbreak in a particular 

location to weigh the costs of response actions against the risks posed to the public. 

Ultimately, an early warning system can facilitate decision making by relevant national 

and local-level agencies and to enable at-risk individuals and communal groups to take 

precautionary actions against an impending disease outbreak. However, the model’s 

predictability depends on the ability to provide accurate counts and whereabouts of the 

infection. This requirement suggests the need to operationalize field epidemiological 

data collection and reporting systems to offer rapid and near real-time disease 

surveillance and seroprevalence data. Careful coordination and cooperation among 

relevant parties, along with the advent of mobile computing and anonymous location 

tracking, can better enable on-target control strategies and intervention measures. 
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Table captions 

1 Accuracy metrics of 1-7 day forecasts 

2 Comparisons of 1-7 day forecasts using different forecast methods 

3 Error distribution of 1-day ahead forecasts, 1-17 June 2009 

 

Figure captions 

1 Populated land areas of Hong Kong in 2009. 

 Each square cell measures 1000mx1000m in size. Populated areas were identified 

from the 1:5000 ortho-photographs of Hong Kong by removing country parks and 

restricted (uninhabited) zones. The populated cells can be further aggregated into 4 

geographic zones (Hong Kong Island, Kowloon, West New Territories, and East 

New Territories) and shaded according to population density classes based on 2006 

census data. 

2 Components of exposed population. 

3 The mechanisms of cross-cell disease transmission. 

4 Comparing actual and forecast H1N1 occurrences. 

 (a)  1- and 2- day actual and forecast H1N1 occurrences, 1-18 June 2009. 

 (b)  6- and 7- day actual and forecast H1N1 occurrences, 6-20 June 2009. 

5 Similarity maps between actual and forecast H1N1 occurrences, 1-17 June 2009. 

 (a)  Actual, forecast, and absolute error maps on 1 June, 3 June, and 5 June 2009. 

 Figures 5a, 5b and 5c each shows three columns of time series maps on every 

other day. The leftmost column displays actual disease distribution; the one in 

the middle shows forecast disease distribution; and the rightmost column 

presents the absolute errors or difference in disease counts between actual and 

forecast values (beige = 0 or no difference; green = 1; blue = 2; purple = 3; 
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= 4). A maximum difference of 2 counts was observed in the early days of disease 

occurrence. The forecast time series maps will change when actual counts have 

been updated to reflect the current position of disease incidence. 

 (b)  Actual, forecast, and absolute error maps on 7 June, 9 June, and 11 June 2009. 

 A maximum difference of 2 counts was observed in the early phase when there 

was no significant increase in disease incidence, indicating the relative stability 

of the model in spatial forecast. 

 (c)  Actual, forecast, and absolute error maps on 13 June, 15 June, and 17 June 2009. 

 A maximum difference of 3 counts was observed (the respective cells were 

shaded purple) over the 17-day period. The sudden increase in disease incidence 

resulted in a larger absolute difference in the spatial forecast and alerted new 

locations of disease outbreak. These changes in the diseased locations signaled 

deviation from the model as a result of abnormal propagation of the disease. The 

new locations suggested potential areas needing additional medical attention to 

enhance preparedness and response capabilities.  
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Table 1 Accuracy metrics of 1-7 day forecasts 

Area 
Number of days 
ahead forecast R

2

 

Average 
Absolute 

Error (AAE)* 

Average  
Error (AE)* 

Maximum 
Absolute Error 

(MAE)* 

Whole 
Territory 

1 day 0.78 6 4 19 

2 days 0.80 7 2 24 

3 days 0.41 9 2 28 

4 days 0.30 9 2 30 

5 days 0.39 8 1 31 

6 days 0.49 8 0 30 

7 days 0.41 8 -1 33 

  
The cell with the best value for each accuracy 

metrics.  

Hong 
Kong 
Island 

1 day 0.57 2 1 7 

2 days 0.71 2 1 6 

3 days 0.23 4 1 14 

4 days 0.16 4 0 13 

5 days 0.20 4 -1 11 

6 days 0.37 3 -1 10 

7 days 0.08 4 -2 12 

Kowloon 

1 day 0.41 3 1 14 

2 days 0.69 3 0 14 

3 days 0.36 3 0 16 

4 days 0.41 3 0 15 

5 days 0.23 3 -1 18 

6 days 0.24 3 -1 17 

7 days 0.17 4 -1 18 

New 
Territories 

1 day 0.18 3 2 7 

2 days 0.06 4 1 9 

3 days 0.02 4 2 9 

4 days 0.04 4 2 10 

5 days 0.03 4 2 9 

6 days 0.16 4 2 8 

7 days 0.09 5 2 7 

East New 

Territories
†
 

1 day 0.06 2 1 6 

2 days 0.16 2 1 6 

3 days 0.15 2 1 6 

4 days 0.13 2 1 6 

5 days 0.08 2 1 6 

6 days 0.20 2 1 4 

7 days 0.09 2 1 6 

West New 

Territories
†
 

1 day 0.10 1 1 2 

2 days 0.10 2 1 7 

3 days 0.00 2 1 6 

4 days 0.09 2 1 7 

5 days 0.05 2 1 6 

6 days 0.03 2 1 6 

7 days 0.03 2 1 5 

* Based on the total number of cases within the forecast period of 1-20 June 2009. 
† New Territories can be subdivided into East and West New Territories (see Figure 1) 
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Table 2  Comparisons of 1-7 day forecasts using different forecast methods   

Number 
of days 
ahead 
forecast 

R
2

 
Average Absolute 

Error (AAE)* 
Maximum Absolute 

Error (MAE)* 

stsSEIR LR ARIMA stsSEIR LR ARIMA stsSEIR LR ARIMA 

1 day 0.78 0.52 0.44 6 4 5 19 35 37 

2 days 0.80 0.57 0.38 7 6 7 24 36 41 

3 days 0.41 0.46 0.16 9 6 8 28 36 43 

4 days 0.30 0.54 0.18 9 7 9 30 34 43 

5 days 0.39 0.62 0.22 8 8 10 31 35 44 

6 days 0.49 0.50 0.67 8 9 11 30 37 43 

7 days 0.41 0.25 0.43 8 10 12 33 43 45 

* Based on the total number of cases within the forecast period of 1-20 June 2009. 

stsSEIR = spatio-temporal and stochastic SEIR model;  LR = simple linear regression model;  
ARIMA = autoregressive integrated moving average model 
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Table 3  Error distribution of 1-day ahead forecasts, 1-17 June 2009 

 

Date 

Error 

count* Frequency percentage Date 

Error 

count* Frequency percentage 

June
1 

0 858 99.3 

June 
10 

0 854 98.8 

1 6 0.7 1 10 1.2 

2 0 0.0 2 0 0.0 

3 0 0.0 3 0 0.0 

June 
2 

0 857 99.2 

June 
11 

0 843 97.6 

1 7 0.8 1 21 2.4 

2 0 0.0 2 0 0.0 

3 0 0.0 3 0 0.0 

June 
3 

0 855 99.0 

June 
12 

0 848 98.1 

1 8 0.9 1 16 1.9 

2 1 0.1 2 0 0.0 

3 0 0.0 3 0 0.0 

June 
4 

0 856 99.1 

June 
13 

0 847 98 

1 7 0.8 1 16 1.9 

2 1 0.1 2 1 0.1 

3 0 0.0 3 0 0.0 

June 
5 

0 855 99.0 

June 
14 

0 848 98.1 

1 8 0.9 1 14 1.6 

2 1 0.1 2 2 0.2 

3 0 0.0 3 0 0.0 

June 
6 

0 853 98.7 

June 
15 

0 843 97.6 

1 10 1.2 1 19 2.2 

2 1 0.1 2 2 0.2 

3 0 0.0 3 0 0.0 

June 
7 

0 853 98.7 

June 
16 

0 832 96.3 

1 10 1.2 1 31 3.6 

2 1 0.1 2 1 0.1 

3 0 0.0 3 0 0.0 

June 
8 

0 855 99.0 

June 
17 

0 812 94.0 

1 8 0.9 1 43 5.0 

2 1 0.1 2 7 0.8 

3 0 0.0 3 2 0.2 

June 
9 

0 855 99.0         

1 9 1.0         

2 0 0.0         

* The results are not exactly the same as those in Table 1 because of rounding process at each grid cell. 
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Figure 1 Populated land areas of Hong Kong in 2009.  
 

Each square cell measures 1000mx1000m in size. Populated areas were identified from the 1:5000 ortho-

photographs of Hong Kong by removing country parks and restricted (uninhabited) zones. The populated 
cells can be further aggregated into 4 geographic zones (Hong Kong Island, Kowloon, West New Territories, 
and East New Territories) and shaded according to population density classes based on 2006 census data.  
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Figure 2. Components of exposed population.  
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Figure 3. The mechanisms of cross-cell disease transmission.  
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Figure 4. Comparing actual and forecast H1N1 occurrences.  
 

(a)  1- and 2- day actual and forecast H1N1 occurrences, 1-18 June 2009  

(b)  6- and 7- day actual and forecast H1N1 occurrences, 6-20 June 2009  
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Figure 4. Comparing actual and forecast H1N1 occurrences.  
 

(a)  1- and 2- day actual and forecast H1N1 occurrences, 1-18 June 2009  

(b)  6- and 7- day actual and forecast H1N1 occurrences, 6-20 June 2009  
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Figure 5 Similarity maps between actual and forecast H1N1 occurrences, 1-17 June 2009.  
 

(a)  Actual, forecast, and absolute error maps on 1 June, 3 June, and 5 June 2009.  
Figures 5a, 5b and 5c each shows three columns of time series maps on every other day. The leftmost 

column displays actual disease distribution; the one in the middle shows forecast disease distribution; and 
the rightmost column presents the absolute errors or difference in disease counts between actual and 
forecast values (beige = 0 or no difference; green = 1; blue = 2; purple = 3; red = 4). A maximum 

difference of 2 counts was observed in the early days of disease occurrence. The forecast time series maps 

will change when actual counts have been updated to reflect the current position of disease incidence.  
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Figure 5 Similarity maps between actual and forecast H1N1 occurrences, 1-17 June 2009.  
 

(b)  Actual, forecast, and absolute error maps on 7 June, 9 June, and 11 June 2009.  
A maximum difference of 2 counts was observed in the early phase when there was no significant increase 

in disease incidence, indicating the relative stability of the model in spatial forecast.  
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Figure 5 Similarity maps between actual and forecast H1N1 occurrences, 1-17 June 2009.  
 

(c)  Actual, forecast, and absolute error maps on 13 June, 15 June, and 17 June 2009.  
A maximum difference of 3 counts was observed (the respective cells were shaded purple) over the 17-day 

period. The sudden increase in disease incidence resulted in a larger absolute difference in the spatial 
forecast and alerted new locations of disease outbreak. These changes in the diseased locations signaled 
deviation from the model as a result of abnormal propagation of the disease. The new locations suggested 
potential areas needing additional medical attention to enhance preparedness and response capabilities.  
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