929 research outputs found

    Non spontaneous saccadic movements identification in clinical electrooculography using machine learning

    Get PDF
    In this paper we evaluate the use of the machine learning algorithms Support Vector Machines, K-Nearest Neighbors, CART decision trees and Naive Bayes to identify non spontaneous saccades in clinical electrooculography tests. Our approach tries to solve problems like the use of manually established thresholds present in classical methods like identification by velocity threshold (I-VT) or identification by dispersion threshold (I-DT). We propose a modification to an adaptive threshold estimation algorithm for detecting signal impulses without the need of any user input. Also, a set of features were selected to take advantage of intrinsic characteristics of clinical electrooculography tests. The models were evaluated with signals recorded to subjects affected by Spinocerebellar Ataxia type 2 (SCA2). Results obtained by the algorithm shows accuracies over 97%, recalls over 97% and precisions over 91% for the four models evaluated.Universidad de MĂĄlaga, Campus de excelencia de AndalucĂ­a Tec

    Graphene textiles towards soft wearable interfaces for electroocular remote control of objects

    Get PDF
    Study of eye movements (EMs) and measurement of the resulting biopotentials, referred to as electrooculography (EOG), may find increasing use in applications within the domain of activity recognition, context awareness, mobile human-computer interaction (HCI) applications, and personalized medicine provided that the limitations of conventional “wet” electrodes are addressed. To overcome the limitations of conventional electrodes, this work, reports for the first time the use and characterization of graphene-based electroconductive textile electrodes for EOG acquisition using a custom-designed embedded eye tracker. This self-contained wearable device consists of a headband with integrated textile electrodes and a small, pocket-worn, battery-powered hardware with real-time signal processing which can stream data to a remote device over Bluetooth. The feasibility of the developed gel-free, flexible, dry textile electrodes was experimentally authenticated through side-by-side comparison with pre-gelled, wet, silver/silver chloride (Ag/AgCl) electrodes, where the simultaneously and asynchronous recorded signals displayed correlation of up to ~87% and ~91% respectively over durations reaching hundred seconds and repeated on several participants. Additionally, an automatic EM detection algorithm is developed and the performance of the graphene-embedded “all-textile” EM sensor and its application as a control element toward HCI is experimentally demonstrated. The excellent success rate ranging from 85% up to 100% for eleven different EM patterns demonstrates the applicability of the proposed algorithm in wearable EOG-based sensing and HCI applications with graphene textiles. The system-level integration and the holistic design approach presented herein which starts from fundamental materials level up to the architecture and algorithm stage is highlighted and will be instrumental to advance the state-of-the-art in wearable electronic devices based on sensing and processing of electrooculograms

    Sensory System for Implementing a Human—Computer Interface Based on Electrooculography

    Get PDF
    This paper describes a sensory system for implementing a human–computer interface based on electrooculography. An acquisition system captures electrooculograms and transmits them via the ZigBee protocol. The data acquired are analysed in real time using a microcontroller-based platform running the Linux operating system. The continuous wavelet transform and neural network are used to process and analyse the signals to obtain highly reliable results in real time. To enhance system usability, the graphical interface is projected onto special eyewear, which is also used to position the signal-capturing electrodes

    Comparing eye tracking with electrooculography for measuring individual sentence comprehension duration

    Get PDF
    The aim of this study was to validate a procedure for performing the audio-visual paradigm introduced by Wendt et al. (2015) with reduced practical challenges. The original paradigm records eye fixations using an eye tracker and calculates the duration of sentence comprehension based on a bootstrap procedure. In order to reduce practical challenges, we first reduced the measurement time by evaluating a smaller measurement set with fewer trials. The results of 16 listeners showed effects comparable to those obtained when testing the original full measurement set on a different collective of listeners. Secondly, we introduced electrooculography as an alternative technique for recording eye movements. The correlation between the results of the two recording techniques (eye tracker and electrooculography) was r = 0.97, indicating that both methods are suitable for estimating the processing duration of individual participants. Similar changes in processing duration arising from sentence complexity were found using the eye tracker and the electrooculography procedure. Thirdly, the time course of eye fixations was estimated with an alternative procedure, growth curve analysis, which is more commonly used in recent studies analyzing eye tracking data. The results of the growth curve analysis were compared with the results of the bootstrap procedure. Both analysis methods show similar processing durations

    A user-friendly wearable single-channel EOG-based human-computer interface for cursor control

    Get PDF
    This paper presents a novel wearable single-channel electrooculography (EOG) based human-computer interface (HCI) with a simple system design and robust performance. In the proposed system, EOG signals for control are generated from double eye blinks, collected by a commercial wearable device (the NeuroSky MindWave headset), and then converted into a sequence of commands that can control cursor navigations and actions. The EOG-based cursor control system was tested on 8 subjects in indoor or outdoor environment, and the average accuracy is 84.42% for indoor uses and 71.50% for outdoor uses. Compared with other existing EOG-based HCI systems, this system is highly user-friendly and does not require any training. Therefore, this system has the potential to provide an easy-to-use and cheap assistive technique for locked-in patients who have lost their main body muscular abilities but with proper eye-condition. © 2015 IEEE.published_or_final_versio
    • 

    corecore