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1 Universidad de Holgúın, Grupo de Procesamiento de Datos Biomédicos (GPDB),
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Abstract. In this paper we evaluate the use of the machine learning
algorithms Support Vector Machines, K-Nearest Neighbors, CART de-
cision trees and Naive Bayes to identify non spontaneous saccades in
clinical electrooculography tests. Our approach tries to solve problems
like the use of manually established thresholds present in classical meth-
ods like identification by velocity threshold (I-VT) or identification by
dispersion threshold (I-DT). We propose a modification to an adaptive
threshold estimation algorithm for detecting signal impulses without the
need of any user input. Also, a set of features were selected to take ad-
vantage of intrinsic characteristics of clinical electrooculography tests.
The models were evaluated with signals recorded to subjects affected by
Spinocerebellar Ataxia type 2 (SCA2). Results obtained by the algorithm
shows accuracies over 97%, recalls over 97% and precisions over 91% for
the four models evaluated.

Keywords: Saccade identification, clinical electrooculography, classifi-
cation

1 Introduction

The alteration of eye movements is one of the symptoms of many neurological
diseases like Parkinsons syndrome, spinocerebellar ataxias or the Niemann-Pick
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disease [4]. Specifically in the Spinocerebellar Ataxia type 2 (SCA2) this alter-
ation is an important clinical marker present in more than 90% of patients [29].

There are several kind of eye movements such as saccades, fixations and
pursuits. Among them, saccades are critical to follow and evaluate subjects with
SCA2. For instance, SCA2 patients have significantly slower saccades and with
larger latencies than healthy subjects [29]. The analysis of this kind of movement
is used very often in the researches conducted by medical community, hence its
importance.

A technique for measuring eye movements called electrooculography consists
in capturing the electrical potential of the eyes to calculate its magnitude and
direction. This technique is widely used in electrophysiologic tests [16]. The
resulting signals of this recording process are named electrooculograms [6].

Exists several methods and algorithms for identifying saccades in electroocu-
lograms, the vast majority of them based on kinetic thresholds [11, 14, 31, 26],
using suppervised learning [28, 6], unsupervised learning [20] or other novel ap-
proachs [18, 22] like particle filters [8]. These methods were designed to work in
a not constrained scheme having advantages in a lot of scenarios. They are usu-
ally evaluated against data from healthy subjects where the differences between
saccadic and non saccadic movements are very evident. However, in electroocu-
lography clinical tests these methods try to detect as many saccades as posible,
not distinguishing which of them are spontaneous and which not.

In a previous work [2], we proposed a method that identifies saccadic move-
ments using a sample-to-sample approach. This method allows us to discrimi-
nate where a sample belong to a saccadic movement or not. Now, in this work
we have the task to identify which of these movements are stimuli related using
a feature-based approach.

Here we set out to evaluate the use of machine learning algorithms taking
into account the strengths of clinical tests of electrooculography to solve the
proposed task. Our approach have to use only horizontal movement signals and
stimulus signals, and do not require the use of thresholds or any other user input.
To do so, a new set of features were selected for training the models taking into
account characteristics of valid saccadic movements.

To identify the ocurrence of saccadic movements we use an impulse detection
method based on velocity thresholds. These thresholds are calculated adaptively
with a modified version of the method proposed by Nyström and Holmqvist [18].
Our algorithm uses a classification model for solving the presented task, so we
evaluate four of them: Support Vector Machines [7], K-Nearest Neighbors [27],
CART decision tree [5] and Naive Bayes [25]. The performance of the classifica-
tion models were measured, obtaining very good results (> 97% accuracy) in all
of them.

The rest of this paper is organized as follows: In section 2 we describe the
designed experiments and available data. Section 3 is devoted to analize and
comment the results. Finally, section 4 summarizes the main conclusions and
future work lines.



2 Material and Methods

To test the selected algorithms an experiment was designed. The first step was
identify potential impulses and annotating them for building a labeled dataset.
After, each classification method is evaluated with stratified k-fold cross valida-
tion. Finally, we compare the performance of the models using nonparametric
statistical tests to select the fittest.

Clinical tests of electrooculography are setup as follows. Subjects with their
head fixed are seated in front to a monitor at a previously known distance.
Then, they are commanded to follow a visual stimuli which appears and disap-
pears from one side to the other in the monitor. Capturing eye movements in
these conditions using electrooculography allows to researchers the identification
of which saccades respond to stimulus and which ones are spontaneous. Also al-
lows to calculate important features of these movements like latency, duration,
amplitude, deviation and maximal velocity.

The electrooculograms were recorded using the OtoScreen electronystamog-
raphy device at a sampling rate of 200 Hz with a bandwith of 0.02 to 70 Hz.
Records of 12 sick subjects with SCA2 were used for building a dataset with
features extracted from signal impulses. Each one of the records have at least
tests of 10◦, 20◦ and 30◦ of visual stimulation. Typically saccadic tests have at
least one horizontal channel and one stimulus signal (Fig. 1).
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(b) Velocity profile

Fig. 1. Typical electrooculography signal with 30◦ stimulus angle of a subject which
suffers SCA2. Red signals are the scaled stimuli signals. Blue signals are the horizontal
channel (a) and its velocity profile (b) respectively.



IPython notebooks [23] were used in conjunction with the Python language
scientific facilities: NumPy [19], SciPy [12], Pandas [17], Matplotlib [10] and
Scikit-Learn [21] for running the experiments. These notebooks provides a rich
interactive environment wich eases the development of experiments and facili-
tates the interchange of information between the authors. The intention behind
using Python powered technologies is that the resulting algorithm (including
trained models) will be used at NSEog, a processing platform developed by the
authors.

2.1 Signals preprocessing

Before the identification of potentially saccadic impulses, two common tasks
needs to be performed: denoising and differentiation. Noise removal is very im-
portant matter in order to eliminate non desired spectral components due equip-
ment malfunction, poor analog filtering or biological artifacts. Differentiation
allows to obtain the velocity profile used later by the algorithm.

Median filter (Equation 1) has proven to be very robust in eliminating high
frequency signal noise while preserving sharp edges. An study carried out by
Juhola in 1990 demonstrated that this kind of filters is appropiate for eye move-
ments signals [13]. To eliminate non desired noise present in the signals used in
the experiment, we use a median filter with a window size of 9 samples (approx-
imately 45 milliseconds) obtaining very good results. This is accomplished using
the medfilt function of SciPy.

yi = median{xj |j = i− k, . . . , j + k} (1)

Due the discrete nature of these signals, numerical differentiation is employed
to calculate the velocity profiles. According [3], Lanczos differentiators (Equation
2) with 11 points (N = 11) have good performance for signals with the same
characteristics as the ones used in this experiment.

f ′(x∗) ≈ 3

h

m∑
k=1

k
fk − f−k

m(m+ 1)(2m+ 1)
, m =

N − 1

2
(2)

We implemented the rutine of a Lanczos 11 differentiator which have the
following formula:

f ′(x∗) ≈ f1 − f−1 + 2(f2 − f−2) + 3(f3 − f−3) + 4(f4 − f−4) + 5(f5 − f−5)

110h
(3)

2.2 Impulses detection

Saccadic movements are represented as impulses in a velocity graph as shown
in Fig. 1b. Typically, this movements can be easily identified by its contrast in
magnitude and shape with other movements such as fixations and microsaccades.



However, for the same stimulus angle the range of values of true saccadic impulses
vary from subject to subject. This situation is tied greatly on the degree of
affectation present in the subject [24].

One of the critical parts of the algorithm is the identification of velocities im-
pulses which can potentially be saccades. For that matter, a threshold is needed
for knowing when the velocity has reached a certain value that can be considered
as a saccade candidate. Due the inter-subject variability explained before, this
threshold should not be fixed a priori. Also should be large enough to ignore in
most cases other movements like microsaccades and fixations, and not too large
to miss valid saccadic movements.
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Fig. 2. Threshold estimated in a 30◦ stimulus angle test of a subject with SCA2.

Estimation of a good velocity threshold is not an easy task, depending also
on the noise levels present in the signal. The method described in Algorithm
1 solved this problem by calculating the threshold in an adaptive way. This is
possible by using a safety margin (σ) based on the standard deviation of the
signal which get adapted to the noise level present in the signal.

The safety margin (σ = 6) employed by [18] ignores too many valid saccadic
movements in lower angle tests for subjects with SCA2. A value of σ = 3 seems
to be adequate for most cases at the expense of the detection of more non
valid impulses. Even when this have a penalty in runtime performance, the final
accuracy of the method should not decrease significantly. Due the amplitude of
this new impulses the classification model should avoid them.



Algorithm 1: Modified version of Nyström and Holmqvist [18] threshold
estimation algorithm

Input : velocity profile (Array of degree/seconds samples)
Input : σ (Safety margin)
Output: Threshold estimation
begin

velocities ←− Abs(velocity profile);
last threshold ←− Mean(velocities) + σ * Std(velocities);
current threshold ←− 0;
while Abs(last threshold- current threshold) > 1 do

selected samples ←− samples from velocities below last threshold;
current threshold ←− last threshold;
last threshold ←− = Mean(selected samples) + σ * Std(selected samples);

return last threshold;

Another problem with this method [18] is that requires an initial threshold.
This adds a bit of subjectivity to the overall process because this value could
vary from healthy subjects to affected ones. We introduce a little modification
to the method which states that this initial threshold is calculated the same way
as the thresholds inside the iterations in the Algorithm 1. The only difference is
that our method uses all velocity samples to calculate the mean and the standard
deviation. This approach seems to work very well for all analyzed tests. Once the
threshold is calculated, the next task is found all the impulses above it. This is
accomplished by finding samples grouped together that exceeds this threshold.

The principle behind this algorithm is looping through the signal to find ve-
locities above the given threshold. When we encounter with one of these points,
we move to the left and to the right until the velocity is zero or cross it. This
approach allows further refinement of the saccade start and ending points be-
cause the impulses usually get more samples beyond the real saccade limits. If
the length of a detected impulse is not greater than 10 samples, then is dis-
carded to avoid very small invalid movements. A typical output of this method
is represented in Fig. 3.

2.3 Model evaluation

Once identified the saccadic impulses candidates, we need to know if they are
saccades and if they are related to the stimulus. For this reason, the strategy
behind our approach uses human intuitive features to solve this task. To take
advantage of the characteristics of the clinical tests, the following set of features
was carefully selected:

Angle: Integer denoting the amplitude of the stimulus which can take 3 values:
10, 20 or 30.

Absolute Latency: Time between the start of the stimulus transition and the
maximal velocity point of the impulse in milliseconds (ms).
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Fig. 3. Identified impulses in the same signal used in Figure 2

Normalized Latency: Normalized version of absolute latency with values be-
tween 0 and 1. The value 0 means that the maximal velocity is in the start
of the stimulus transition, and the value 1 means that the maximal velocity
is at the end of the stimulus transition.

Amplitude: Difference between the maximum value and minimum value in the
impulse.

Deviation: Relation between amplitude and the angle of the stimulus.
Maximum Velocity: Maximum velocity achieved during the impulse in ◦/s.
Maximum Acceleration: Maximum acceleration achieved during the impulse

in ◦/s2.
Maximum Jerk: Maximum jerk achieved during the impulse in ◦/s3.
Direction: Take the value 1 if the impulse follows the direction of the stimulus

or -1 in other case.
End Relative Position: Values between 0 and 1. The value 0 means that the

impulse ends in the left position of the stimulus and the value 1 means that
ends at the right of the stimulus.

Using the features previously selected, a dataset of signal impulses was cre-
ated. For building this dataset, a human specialist aided by the NSEog classified
the detected impulses in valid and non valid saccades (Figure 4). As results,
1797 valid saccades and 6809 not valid impulses were obtained, resulting in 8606
instances.

Because we are using Python technologies, Scikit-Learn was selected as ma-
chine learning library, hence we are constrained to a restricted set of models im-



Fig. 4. Impulses annotation with the NSEog platform.



plemented in it. The main policy of model selection was family representation,
meaning that we try to choose methods with different working principles. So we
evaluate four different models: Support Vector Machines, K-Nearest Neighbors,
CART decision trees and the Gaussian version of Naive Bayes.

Support Vector Machines (SVMs) are a set of supervised learning meth-
ods very effective in high dimensional spaces [7]. There are also very versa-
tile supporting a set of kernel functions. Scikit-Learn implements four kernel
functions: linear 〈x, x′〉, polynomial (γ〈x, x′〉 + r)d, rbf e−γ|x−x

′|2 and sigmoid
tanh(γ〈x, x′〉 + r). Preliminary experiments shows that for the proposed task,
the rbf kernel function have the best performance compared with the others.
Further study are necessary to fine tune the parameter γ of this kernel.

K-Nearest Neighbors is a type of instance-based learning which can be used
for supervised or unsupervised learning. Instead of creating a generalizing func-
tion, it stores all the data inside the models using different data structures like
Ball Trees or KD Trees. The principle behind the algorithm is find a number of
training samples nearest to the analized point and predict the label from it [27].
To train our model we tried several numbers of neighbors starting from 2, giving
the best results when this value is equal to 3. The data structure used is de-
termined automatically by the Scikit-Learn implementation using optimization
techniques.

Decision trees are nonparametric supervised learning techniques. This algo-
rithm requires little preprocessing and its runtime performance is enough to
handle real time tasks. This method split the data trying to infere decision rules
which can be used to clasify instances. Scikit-Learn uses an optimized version of
the CART tree whichs support classification and regression [5]. The implemen-
tation used here do not require any parameter by default.

Naive Bayes classifiers are supervised methods based on Bayes theorem which
assumes independence between every pair of features [25]. We used a gaussian
version of this classifier implemented in Scikit-Learn. Like the decision trees, the
default implementation of this statistical classifier do not require any parameters.

As validation scheme we use an stratified 10-fold cross validation to evaluate
internally the models. The metrics employed to measure the performance were
accuracy (Equation 4), recall (Equation 5) and precision (Equation 6) [30]. The
accuracy give us a general quality measure of the performance of the models,
while the recall and the precision allows to know how well the model predict
or miss predict valid saccadic movements. In the following equations, TP (true
positives), TN (true negatives), FP (false positives) and FN (false negatives) are
the items from the confusion matrix used to compute involved metrics.

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)



The whole dataset was adjusted by removing the mean and scale to unit
variance. This technique is critical for obtaining good results in the training of
the RBF kernel version of Support Vector Machines. These scales was saved
along with the model for further use by the algorithm.

To compare the real performance of the models, the Friedman’s nonparamet-
ric statistical test were used as recommended by Demšar [9]. In this step we use
records not used previously for training the models. Each metric were analyzed
by separate and the statistical calculations were performed using the Keel tool
[1].

The resulting classification algorithm is very simple and flexible. It consists in
the evaluation of the features calculated from impulses detected in the signal by
the supervised model. This approach allows the parallelization of the algorithm
and even swap the model if needed. Due the use of the proposed impulse detection
algorithm, the need for parameters managed by the user is eliminated.

3 Results

The evaluated models were trained with 8606 impulses, 1797 valid saccades and
6809 invalid ones. Using 10-fold cross validation the internal performance of the
trained process was measured with the metrics accuracy, recall and precision.
Table 1 shows results above .97 of accuracy, .94 of recall and .90 of precision in
all cases.

Table 1. 10-fold cross validation results

Model Acc. Rec. Pre.

SVM 0.9833 0.9750 0.9467
KNN 0.9796 0.9666 0.9376
CART 0.9769 0.9449 0.9445
NaiveBayes 0.9747 0.9817 0.9056

To perform a more objective evaluation, the algorithm was tested against
five new subject records not used in the training phase. A total of 3797 impulses
were evaluated this time, 704 real saccadic impulses and 3093 not saccadic.

Table 2. External validation results by stimulus amplitude

SVM KNN CART NaiveBayes
Angle Acc. Rec. Pre. Acc. Rec. Pre. Acc. Rec. Pre. Acc. Rec. Pre.

10 .9765 .9703 .9051 .9659 .9449 .8745 .9636 .9237 .8790 .9575 .9661 .8261
20 .9858 .9837 .9377 .9844 .9837 .9305 .9822 .9633 .9365 .9780 .9837 .8993
30 .9720 .9686 .9038 .9646 .9686 .8745 .9674 .9462 .9017 .9543 .9686 .8372

Mean .9780 .9742 .9155 .9716 .9657 .8932 .9711 .9444 .9058 .9633 .9728 .8542
Std .0070 .0082 .0192 .0111 .0195 .0323 .0098 .0198 .0290 .0128 .0095 .0394



Results obtained analysing the performance individually by stimulus angle
seems to favor lightly the SVM model (Table 2). However, doing the same anal-
ysis using independent subject records shows a more erratic behaviour (Table
3). Because of this situation, the Friedman’s nonparametric statistical test was
employed to compare the performance of the four models. Each record was con-
sidered as an individual dataset and each of the three performance metrics was
analyzed independently using the data in Table 3. Results obtained by this
method shows that there are no significant differences in the performance of
these models for a significance level of p = 0.10.

Table 3. External validation results by subject record

SVM KNN CART NaiveBayes
Subject Acc. Rec. Pre. Acc. Rec. Pre. Acc. Rec. Pre. Acc. Rec. Pre.

1 .9881 .9877 .9699 .9881 .9877 .9699 .9796 .9693 .9576 .9881 .9755 .9815
2 .9862 .9935 .9107 .9724 .9610 .8506 .9845 .9870 .9048 .9535 .9935 .7427
3 .9871 .9754 .9444 .9794 .9590 .9141 .9704 .8852 .9231 .9717 .9836 .8571
4 .9799 .9420 .9559 .9784 .9348 .9556 .9741 .9130 .9545 .9756 .9420 .9353
5 .9410 .9685 .8039 .9392 .9843 .7911 .9358 .9528 .7961 .9375 .9685 .7935

Mean .9765 .9734 .9170 .9715 .9654 .8962 .9689 .9415 .9072 .9653 .9726 .8620
Std .0201 .0201 .0669 .0189 .0215 .0748 .0193 .0417 .0659 .0199 .0195 .0982

Literature about the task proposed in this work are scarce and no methods
to solve it specifically were founded. However, similar works reported a recall
of .89 for 10◦ recordings on healthy subjects [22] and .80 of recall on subjects
with Obstructive Sleep Apnea Syndrome (OSAS) [15]. Other related research
conducted by Tigges et al. shows an accuracy of .92 [28]. Taking into account
that we are dealing with signals recorded to subjects which suffers a very severe
neurological disorder, results shown in Table 2 and Table 3 are better than the
others presented in the literature.

4 Conclusions

We have described a procedure to identify non spontaneous saccades which uses
an impulses detection algorithm and supervised classification models. This proce-
dure do not requires thresholds or any other user input and uses a feature-based
classification approach. The application of this algorithm in signals recorded
from patients with SCA2 shows high performance values.

The four evaluated learning models are suitable to be used in the algorithm
without significant performance differences. This performance is at least equal
or greater than similar works founded in the literature. Further study is required
to establish accurately the onset and offset points of valid saccadic impulses.
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