31 research outputs found

    ROADS—Rover for Bituminous Pavement Distress Survey: An Unmanned Ground Vehicle (UGV) Prototype for Pavement Distress Evaluation

    Get PDF
    Maintenance has a major impact on the financial plan of road managers. To ameliorate road conditions and reduce safety constraints, distress evaluation methods should be efficient and should avoid being time consuming. That is why road cadastral catalogs should be updated periodically, and interventions should be provided for specific management plans. This paper focuses on the setting of an Unmanned Ground Vehicle (UGV) for road pavement distress monitoring, and the Rover for bituminOus pAvement Distress Survey (ROADS) prototype is presented in this paper. ROADS has a multisensory platform fixed on it that is able to collect different parameters. Navigation and environment sensors support a two-image acquisition system which is composed of a high-resolution digital camera and a multispectral imaging sensor. The Pavement Condition Index (PCI) and the Image Distress Quantity (IDQ) are, respectively, calculated by field activities and image computation. The model used to calculate the I-ROADS index from PCI had an accuracy of 74.2%. Such results show that the retrieval of PCI from image-based approach is achievable and values can be categorized as "Good"/"Preventive Maintenance", "Fair"/"Rehabilitation", "Poor"/"Reconstruction", which are ranges of the custom PCI ranting scale and represents a typical repair strategy

    Enhancing Road Infrastructure Monitoring: Integrating Drones for Weather-Aware Pothole Detection

    Get PDF
    The abstract outlines the research proposal focused on the utilization of Unmanned Aerial Vehicles (UAVs) for monitoring potholes in road infrastructure affected by various weather conditions. The study aims to investigate how different materials used to fill potholes, such as water, grass, sand, and snow-ice, are impacted by seasonal weather changes, ultimately affecting the performance of pavement structures. By integrating weather-aware monitoring techniques, the research seeks to enhance the rigidity and resilience of road surfaces, thereby contributing to more effective pavement management systems. The proposed methodology involves UAV image-based monitoring combined with advanced super-resolution algorithms to improve image refinement, particularly at high flight altitudes. Through case studies and experimental analysis, the study aims to assess the geometric precision of 3D models generated from aerial images, with a specific focus on road pavement distress monitoring. Overall, the research aims to address the challenges of traditional road failure detection methods by exploring cost-effective 3D detection techniques using UAV technology, thereby ensuring safer roadways for all users

    INVESTIGATION AND ANALYSIS OF CRACK DETECTION USING UAV AND CNN: A CASE STUDY OF HOSPITAL RAJA PERMAISURI BAINUN

    Get PDF
    Crack detection in old buildings has been shown to be inefficient, with many technical challenges such as physical inspection and difficult measurements. It is important to have an automatic, fast visual inspection of these building components to detect cracks by evaluating their conditions (impact) and the level of their risk. Unmanned Aerial Vehicles (UAV) can automate, avoid visual inspection, and avoid other physical check-ups of these buildings. Automated crack detection using Machine Learning Algorithms (MLA), especially a Conventional Neural Network (CNN), along with an Unmanned Aerial Vehicle (UAV), can be effective and both can efficiently work together to detect the cracks in buildings using image processing techniques. The purpose of this research project is to evaluate currently available crack detection systems and to develop an automated crack detection system using Aggregate Channel Features (ACF) that can be used with unmanned aerial vehicles (UAV). Therefore, we conducted a real-world experiment of crack detection at Hospital Raja Permaisuri Bainun using DJI Mavic Air (Drone Hardware) and DJI GO 4(Drone Software) using CNN through MATLAB software with CNN-SVM method with the accuracy rate of 3.0 percent increased from 82.94% to 85.94%. in comparison with other ML algorithms like CNN Random Forest (RF), Support Vector Machine (SVM) and Artificial Neural Network (ANN)

    Investigation and analysis of crack detection using UAV and CNN: A case study of Hospital Raja Permaisuri Bainun

    Get PDF
    Crack detection in old buildings has been shown to be inefficient, with many technical challenges such as physical inspection and difficult measurements. It is important to have an automatic, fast visual inspection of these building components to detect cracks by evaluating their conditions (impact) and the level of their risk. Unmanned Aerial Vehicles (UAV) can automate, avoid visual inspection, and avoid other physical check-ups of these buildings. Automated crack detection using Machine Learning Algorithms (MLA), especially a Conventional Neural Network (CNN), along with an Unmanned Aerial Vehicle (UAV), can be effective and both can efficiently work together to detect the cracks in buildings using image processing techniques. The purpose of this research project is to evaluate currently available crack detection systems and to develop an automated crack detection system using Aggregate Channel Features (ACF) that can be used with unmanned aerial vehicles (UAV). Therefore, we conducted a real-world experiment of crack detection at Hospital Raja Permaisuri Bainun using DJI Mavic Air (Drone Hardware) and DJI GO 4(Drone Software) using CNN through MATLAB software with CNN-SVM method with the accuracy rate of 3.0 percent increased from 82.94% to 85.94%. in comparison with other ML algorithms like CNN Random Forest (RF), Support Vector Machine (SVM) and Artificial Neural Network (ANN)

    Assessment of Small Unmanned Aircraft Systems for Pavement Inspections

    Get PDF
    692M15-20-T-00034Pavement inspections play an integral role in ensuring airport safety. The FAA Airport Technology Research and Development (ATR) branch performed research to assess the integration of small Unmanned Aircraft Systems (sUAS) into an airport\u2019s Pavement Management Program (PMP). To conduct sUAS-based pavement inspections, the research team tested across five different airports between 2020 and 2022. The objective was to provide a repeatable set of processes and procedures for data collection, analysis, and reporting for sUAS-based pavement inspections. This report presents sUAS data collection parameters, data processing techniques, and data analysis, as well as workflows associated with each inspection. A summary of distresses identifiable via sUAS is also provided

    Pavement Surface Distress Detection, Assessment, and Modeling Using Geospatial Techniques

    Get PDF
    Roadway pavement surface distress information is essential for effective pavement asset management, and subsequently, transportation agencies at all levels dedicate a large amount of time and money to routinely collect data on pavement surface distress conditions as the core of their asset management programs. These data are used by these agencies to make maintenance and repair decisions. Current methods for pavement surface distress evaluation are time-consuming and expensive. Geospatial technologies provide new methods for evaluating pavement surface distress condition that can supplement or substitute for currently-adopted evaluation methods. However, few previous studies have explored the utility of geospatial technologies for pavement surface distress evaluation. The primary scope of this research is to evaluate the potential of three geospatial techniques to improve the efficiency of pavement surface distress evaluation, including empirical analysis of high-spatial resolution natural color digital aerial photography (HiSR-DAP), empirical analysis of hyper-spatial resolution natural color digital aerial photography (HySR-DAP), and inferential geospatial modeling based on traffic volume, environmental conditions, and topographic factors. Pavement surface distress rates estimated from the aforementioned geospatial technologies are validated against distress data manually collected using standard protocols. Research results reveal that straightforward analysis of the spectral response extracted from HiSR-DAP can permit assessment of overall pavement surface conditions. In addition, HySR-DAP acquired from S-UAS can provide accurate and reliable information to characterize detailed pavement surface distress conditions. Research results also show that overall pavement surface distress condition can be effectively estimated based on the extent of geospatial data and inferential modeling techniques. In the near term, these proposed methods could be used to rapidly and cost-effectively evaluate pavement surface distress condition for roadway sections where field inspectors or survey vehicles cannot gain access. In the long term, these proposed methods are capable of being automated to routinely evaluate pavement surface distress condition and, ultimately, to provide a cost-effective, rapid, and safer alternative to currently-adopted evaluation methods with substantially reduced sampling density

    Pavement Crack Detection from Hyperspectral Images Using a Novel Asphalt Crack Index

    Get PDF
    Detection of road pavement cracks is important and needed at an early stage to repair the road and extend its lifetime for maintaining city roads. Cracks are hard to detect from images taken with visible spectrum cameras due to noise and ambiguity with background textures besides the lack of distinct features in cracks. Hyperspectral images are sensitive to surface material changes and their potential for road crack detection is explored here. The key observation is that road cracks reveal the interior material that is different from the worn surface material. A novel asphalt crack index is introduced here as an additional clue that is sensitive to the spectra in the range 450–550 nm. The crack index is computed and found to be strongly correlated with the appearance of fresh asphalt cracks. The new index is then used to differentiate cracks from road surfaces. Several experiments have been made, which confirmed that the proposed index is effective for crack detection. The recall-precision analysis showed an increase in the associated F1-score by an average of 21.37% compared to the VIS2 metric in the literature (a metric used to classify pavement condition from hyperspectral data)

    Combined use of GPR and Other NDTs for road pavement assessment: an overview

    Get PDF
    Roads are the main transportation system in any country and, therefore, must be maintained in good physical condition to provide a safe and seamless flow to transport people and goods. However, road pavements are subjected to various defects because of construction errors, aging, environmental conditions, changing traffic load, and poor maintenance. Regular inspections are therefore recommended to ensure serviceability and minimize maintenance costs. Ground-penetrating radar (GPR) is a non-destructive testing (NDT) technique widely used to inspect the subsurface condition of road pavements. Furthermore, the integral use of NDTs has received more attention in recent years since it provides a more comprehensive and reliable assessment of the road network. Accordingly, GPR has been integrated with complementary NDTs to extend its capabilities and to detect potential pavement surface and subsurface distresses and features. In this paper, the non-destructive methods commonly combined with GPR to monitor both flexible and rigid pavements are briefly described. In addition, published work combining GPR with other NDT methods is reviewed, emphasizing the main findings and limitations of the most practical combination methods. Further, challenges, trends, and future perspectives of the reviewed combination works are highlighted, including the use of intelligent data analysis.Xunta de Galicia | Ref. ED431F 2021/08Ministerio de Ciencia e Innovación | Ref. RYC2019–026604-

    Revisión de métodos para la clasificación de fallas superficiales en pavimentos flexibles

    Get PDF
    The status of the road infrastructure affects the social, economic, and political environment of a nation. Evaluation of the pavement surface condition is essential to plan timely and effective interventions. Timely actions avoid operating cost overruns, prevent uncontrolled deterioration and reduce operational and safety inconveniences. The problem raises the concern of studying alternatives to evaluate the status of pavement, for which a large number of investigations on automatic detection of surface flaws in flexible pavements through image processing techniques have been developed. The objective of this article is to review and analyze these contributions. Based on the review, it was concluded that the performance of this type of systems is determined by two factors: data collection and processing. The analysis presented herein unfolds based on these factors. The development of systems that take advantage of the qualities of different sensors in data acquisition and that integrate the detection and classification of a variety of faults including severity data is considered opportune.El estado de la infraestructura vial impacta el entorno social, económico y político de una nación. La evaluación de la condición superficial del pavimento es esencial para planificar intervenciones oportunas y eficaces. Las acciones oportunas evitan sobrecostos de operación, impiden el deterioro no controlado y disminuyen los inconvenientes operacionales y de seguridad. El problema expuesto plantea la inquietud de estudiar alternativas para evaluar el estado del pavimento, por lo cual un gran número de investigaciones sobre detección automática de fallas superficiales en pavimentos flexibles a través de técnicas de procesamiento de imágenes han sido desarrolladas. El objetivo de este artículo es revisar y analizar estos aportes. Sobre la base de la revisión, se concluyó que el rendimiento de este tipo de sistemas está determinado por dos factores: la recopilación de los datos y su procesamiento. El análisis presentado se despliega en función de estos factores. Se considera oportuno el desarrollo de sistemas que aprovechen las cualidades de diferentes sensores en la adquisición de datos y que integren la detección y clasificación de variedad de fallas incluyendo datos de severidad

    Drone usage for pavement damage identification

    Get PDF
    Abstract: The timely use of appropriate renovation measures can effectively extend the life of road surfaces. For this purpose, it is necessary to carry out a detailed identification of damage, and then on its basis to assess the condition of road surfaces. Due to the development of advanced measurement techniques and computer applications, damage to pavements can be monitored faster and more accurately. This article presents a method of identifying damage to the pavement of a large area of the square with the use of a drone. The applicated method allowed to visualize and differentiate various surface defects faster and more preciously. The method also enabled determine causes and genesis of damage more greatly. Keywords: Drone; Pavement damage; DJI SPARK, Damage Identificatio
    corecore