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TERMINOLOGY 

Aerial Triangulation. Aerial Triangulation software packages determine the corrected exterior 
orientation of each image so they can be compiled into a well-ordered and controlled set. The 
exterior orientation of an image refers to its position and orientation related to an exterior 
coordinate system.     

Airframe. The airlifting component of a small Unmanned Aircraft System (sUAS); does not 
include the sensor.  

Asphalt Concrete. Aggregate mixture with an asphalt cement binder. 

Capture Area. A buffered area around the intended test area in which the sUAS captures 
imagery. 

Distress Severity Levels. Pavement distresses are most commonly categorized as high, medium, 
or low severity, depending on the extent and/or depth of the damage. 

Ground Control Points. Specific, identifiable points on the ground that are used as reference 
points for creating or verifying mapping or surveying data.  

Ground Sampling Distance. The distance, as measured along the ground, between adjacent 
pixels in an image. Ground sampling distance (GSD) governs how much information can be 
inferred about features from image measurements. With smaller GSDs, finer features are able to 
be resolved. The GSD and image resolution determine the footprint size of the image captured by 
the sensor. GSD represents the ideal mathematical distance on the ground as measured between 
pixels and as such might not always describe the smallest visible feature.  

High-Severity Distress. High-severity pavement distress refers to when the pavement is in very 
poor condition and needs to be repaired or replaced as soon as possible. High-severity distresses 
are typically characterized by large areas of total or near-total surface disintegration, severe 
rutting, and extensive cracking that can lead to safety hazards for aircraft and increase the 
likelihood of pavement failure.  

Low-Severity Distress. Low-severity pavement distress can be defined as surface irregularities 
and imperfections that are not considered critical to the pavement’s overall structural integrity. 
These defects can include cracks, potholes, and raveling, and typically occur in areas with low 
traffic volume or weight. While they might not pose an immediate safety threat, they can impact 
the function and appearance of the pavement and should be corrected as soon as possible. 

Medium-Severity Distress. Medium-severity pavement distress refers to a level of damage 
significant enough to require corrective action but not so severe that the pavement cannot be 
used safely. These defects can be caused by a number of factors, such as wear and tear from 
aircraft traffic or weather conditions. Treatment for medium-severity airport pavement distress 
can vary depending on the specific cause but might involve patching or resurfacing the affected 
area. 

Orthoimagery. A form of remotely sensed imagery that has been orthorectified. 
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Orthomosaic. A digital image composed of individual photos of a scene or surface that have 
been stitched together through orthorectification. An orthomosaic contains distance 
measurements that are consistent across the entire image. This imagery is commonly used in 
mapping and surveying applications. 

Overlap. Forward overlap is the amount of coverage between consecutive images along the 
same flight line, as measured in percentages. Side overlap is the amount of coverage between 
images in adjacent flight lines, as measured in percentage. 

Pavement Condition Index. A numerical rating of pavement condition ranging from 0 to 100, 
with 0 being the worst possible condition and 100 being the best possible condition.  

Pavement Distress. External indicators of pavement deterioration caused by loading, 
environmental factors, construction deficiencies, or a combination thereof.  

Portland Cement Concrete. Aggregate mixture with Portland cement binder, including 
nonreinforced and reinforced jointed pavement. 

Random Sample. A sample unit of the pavement section selected for inspection by random 
sampling techniques, such as a random number table or systematic random procedure. 

Sample Unit. A subdivision of a pavement section that has a standard size range: 20 contiguous 
slabs for PCC airfield pavement and 5,000 contiguous square feet for AC airfield pavement and 
porous friction surfaces. 

Sensor. A light-sensitive chip that records an image as a pattern of tiny squares, called pixels. 
The more photosites a sensor has, the higher the resolution of the image will be. 

Small Unmanned Aircraft System. A small, unmanned aircraft and its associated elements 
(including attachments, communication links, and the components that control the small, 
unmanned aircraft) that are required for the safe and efficient operation of the small, unmanned 
aircraft in the national airspace system. 

Spatial Alignment. The process of ensuring that all aspects of an image are in proper alignment 
with one another. 

Spatial Resolution/Resolving Power. Like GSD, resolving power describes the amount of 
detail visible in an image. The higher the resolving power of an image, the more accurately it can 
reproduce the details of the original scene. The amount of detail actually resolved is influenced 
by the size of the image sensor, the quality of the lens, and the digital processing capabilities of 
the camera. The relationship between the resolving power and GSD is inverse; an image with a 
small GSD (each pixel represents a small area) is said to have a high spatial resolution. 

Test Area. The intended area for pavement distress analysis. 

  



  

xix 

Units of conversion. GSD values can be represented in millimeters (mm), centimeters (cm), or 
inches (in.). GSD values and the ability to see finer details in an image are inversely 
proportional, i.e., a 2-mm GSD will reveal finer details in an image than a 25.4-mm GSD. GSD 
values can be represented as follows: 

GSD (mm) GSD (cm) GSD (in.) 
2 0.20 0.08 
3 0.30 0.12 
4 0.40 0.16 

4.9 0.49 0.19 
7.9 0.79   0.311 
8.0 0.80   0.315 

10.8 1.08 0.43 
13.7 1.37 0.54 
25.4 2.54 1.00 
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EXECUTIVE SUMMARY 

Recognizing the challenges and limitations of traditional methods for pavement condition 
inspections, the Federal Aviation Administration (FAA) Airport Technology Research and 
Development (ATR) branch performed research to assess the integration of small Unmanned 
Aircraft Systems (sUAS) into an airport’s Pavement Management Program (PMP). The two 
overarching objectives of this research effort were to (1) develop a repeatable set of processes 
and procedures for data collection, analysis, and reporting; and (2) disseminate technical 
performance specifications of sUAS acceptable for use when conducting PMP inspections. 

This research effort kicked off with a thorough assessment of relevant literature from academic, 
military, and industry sources followed by a strengths, weaknesses, opportunities, and threats 
(SWOT) analysis of existing airframes and sensors to set a baseline for the first phase of data 
collection. The analysis indicated that the multirotor sUAS was cost-efficient, presented 
improved imaging capabilities, and has the ability to fly low and slow to collect high-resolution 
imagery. 

Phase 1 testing was executed at the Cape May County Airport (WWD) with successful data 
collection from 78 flights. The analysis of all processed orthoimagery revealed that 2-mm ground 
sampling distance (GSD) from a DJI M210 RTK v2 and X7-35mm sensor is effective in 
identifying a wide range of pavement distresses. The resulting Pavement Condition Index (PCI) 
from sUAS was in line with foot-on-ground (FOG) and digital survey vehicle (DSV) inspections; 
however, utilizing higher imagery overlaps for this phase resulted in longer data collection times 
for the sUAS. Further research was required to limit the imagery overlap, while maintaining data 
quality, to make sUAS data collection operationally feasible. 

The recommendations and best practices established in Phase 1 were taken into consideration 
prior to Phase 2 testing. Phase 2 testing was executed at WWD, Savannah/Hilton Head 
International Airport (SAV), Cincinnati/Northern Kentucky International Airport (CVG), Grosse 
Ile Municipal Airport (ONZ), and Custer Airport (TTF) to perform several tests, such as 
increasing operational efficiency and testing new systems. The subject matter expert’s (SME) 
reviews and analyses of orthoimagery in Phase 2 indicated that a minimum of 2-mm ground 
sampling distance (GSD) (or smaller) and overlap settings of 40/40 were required to evaluate 
PCI values using sUAS. The 2-mm GSD imagery at 40/40 overlap provided the maximum 
operational efficiency without compromising the data quality. The research team identified that 
multirotor systems were better suited for data collection, sUAS data collection was of better 
quality and resolution than that of the DSV-derived data, and processed imagery without 
surveyed ground control indicated negligible geographical shift with no impact on identifying 
and analyzing the pavement distresses. 

Final validation data collection and analysis were performed on a full scale at WWD, including 
PCI surveys of Runway 10/28 and the airport’s two primary aprons. Inspections were executed 
per ASTM D5340 and represent real-life application of PCI inspections for the use of managing 
airport pavements. Final products resulted in a geodatabase with 2-mm orthomosaic imagery 
with digitized pavement distresses as well as a PAVER pavement management database. This 
database can be directly imported into the FAA’s PAVEAIR software for combined analysis 
with future data sets.  



  

xxi 

Analysis concluded that, while further research is required for detection of some vertical 
distresses, most asphalt concrete (AC) and Portland cement concrete (PCC) distresses can be 
identified, qualified, and quantified at a higher level of accuracy than what is traditionally 
completed during FOG inspections. This results in overall pavement conditions typically 
receiving lower PCI scores based on sUAS data collection as compared to FOG inspections. 
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1.  INTRODUCTION 

Airport pavements deteriorate continually due to aircraft loading and environmental exposure. 
This deterioration results in pavement distresses (e.g., longitudinal and transverse (L&T) 
cracking, rutting, increased roughness, potholes, weathering, raveling) that impact the 
serviceability of the pavement. The Federal Aviation Administration (FAA) recognizes that 
approximately 70% of its Airport Improvement Program (AIP) budgets are invested into 
maintaining airfield pavements. Currently, airfield pavement inspections are performed using 
one of two methods: 
 

• Foot-on-ground (FOG). FOG inspections require inspectors to walk the pavement area 
and collect detailed distress data. These data include recording the type, severity, and 
quantity of distresses in the field, with manual geo-tagging of each. 

• Digital survey vehicle (DSV). DSV inspections require inspectors to drive over the 
paved area and collect distress data. The DSV collects downward-facing video, 
photographs, and other data while traveling at speeds up to 60 miles per hour. Collected 
data are processed and developed into pavement inspection surveys. 

 
These survey methods are subjective, time-consuming, risky, labor-intensive, and expensive, 
limiting the number of surveys an airport can conduct. Limitations are encountered when 
surveying sections such as fillets and small taxiways, or near elevated light fixtures. Spatial 
alignment also presents an issue for the DSV, as it is difficult to maintain passes that merge 
seamlessly to map the entire inspection area.  
 
In recent years, airport stakeholders have experimented with using small Unmanned Aircraft 
Systems (sUAS) for pavement condition assessment. Use of sUAS has the potential to aid airport 
operators in conducting frequent inspections through increased time efficiency, improved cost-
effectiveness, and increased safety for inspection personnel. Recognizing the challenges and 
limitations of traditional methods for pavement inspections, the FAA Airport Technology 
Research and Development (ATR) branch performed research on integration of sUAS into 
Pavement Management Program (PMP) inspections.  
 
1.1  RESEARCH PURPOSE 

The purpose of this research was to develop and recommend best practices and performance-
based technical specifications for using sUAS to collect pavement data to supplement airport 
PMP inspections. 
 
1.2  RESEARCH OBJECTIVES 

The two overarching objectives of this research effort were to: 
 

• develop a repeatable set of processes and procedures for data collection, analysis, and 
reporting. 
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• disseminate technical specifications for acceptable use of sUAS to conduct PMP 
inspections in an airport environment. 

 
1.3  RESEARCH APPROACH 

This research effort was executed using a five-step approach, breaking the data collection efforts 
down in three phases; Phase 1 and Phase 2 testing followed by Validation Testing. The research 
approach was as follows: 
 

• Perform a comprehensive literature review and strengths, weaknesses, opportunities, and 
threats (SWOT) analysis of the technology to identify baseline parameters for initial 
testing of sUAS for pavement inspections. 

• Plan, conduct, analyze, and document the operational tests for Phase 1 testing with 
multiple sUAS technologies at Cape May County Airport (WWD).  

• Initiate Phase 2 testing with additional sUAS technologies, validate and refine Phase 1 
testing parameters, and conduct testing at three additional airports with distinct pavement 
distresses and environmental conditions. 

• Perform Validation Testing. 

• Develop a final compilation of research, including a performance-based technical 
specifications report. 

 
Figure 1 illustrates the research approach process. 
 

 

Figure 1. Research Approach 

1.4  APPLICABLE STANDARDS 

Applicable standards for task-specific items were followed and are summarized in Table 1.  

Literature 
Review and 

SWOT 
Analysis

Airport Test 
Procedures And 
Results – Phase 

1

Airport Test 
Procedures And 
Results – Phase 

2

Validation 
Testing

Research 
Findings and 
Performance 

Specifications
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Table 1. Applicable Standards 

Task Applicable Standards/Regulations 
Literature Review N/A 
Phase 1, Phase 2, and Validation Testing  
       Site Selection N/A 

       FOG Surveys 

ASTM D5340-20—Standard Test Method for 
Airport Pavement Condition Index Surveys, FAA 
Advisory Circular 150/5380-7B—Airport 
Pavement Management Program 

       DSV Surveys ASTM D5340-20—Standard Test Method for 
Airport Pavement Condition Index Surveys 

       sUAS Survey and Inspection 

Airport Specific Certificate of Authorization, 14 
CFR Part 107—Small Unmanned Aircraft 
Systems; ASTM D5340-20—Standard Test 
Method for Airport Pavement Condition Index 
Surveys 

Analysis and Technical Brief N/A 
 
1.5  REPORT ORGANIZATION 

Section 1 provides a high-level overview of the research background and methodology. 
 
Section 2 summarizes the literature review along with relevant government and industry 
reference standards. An in-depth literature review is included in Appendix A. 
 
Section 3 delivers an overview of sUAS technology available at the time the literature review 
was performed, along with a SWOT analysis that demonstrates its implementation capabilities 
and limitations for use in pavement inspections. 
 
Section 4 discusses airport test procedures and results from Phase 1. This section details the 
research team’s workflow, initial sUAS testing parameters, and evaluation of pavement imagery 
followed by recommendations for Phase 2. 
 
Section 5 builds upon the findings from Phase 1 and discusses airport test procedures and results 
from Phase 2. This section introduces additional sUAS testing parameters while increasing 
operational efficiency in data collection workflow.  
 
Section 6 validates the key findings from Phase 1 and Phase 2 and discusses full-scale Validation 
Testing with a different sUAS. A cost-benefit analysis between FOG and sUAS follows. 
 
Section 7 highlights key conclusions and recommendations for further research. 

2.  LITERATURE REVIEW 

Airport pavements require continual routine maintenance, rehabilitation, and upgrade, and the 
most effective means of preserving airside pavements is to implement a comprehensive PMP. 
The PMP should be updated routinely, and airports should make repairs and take preventive 
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measures to optimize pavement performance. Different agencies use different methods to collect, 
process, and report the data to be used in PMPs. Some agencies collect data in-house, while 
others hire consultants for FOG and/or DSV collection. Distress analysis is performed using 
manual, semi-automated, or fully automated methods. This has resulted in miscellaneous formats 
for data collection and development of proprietary software programs for data processing. 
Regarding airfield pavements, although the method to be used for condition surveys is not 
mandated by the FAA, the Advisory Circulars 150/5380-6C, Guidelines and Procedures for 
Maintenance of Airport Pavements and 150/5380-7B, Airport Pavement Management Program 
(FAA, 2014a and 2014b) recommend following the procedures documented in ASTM D5340 
(ASTM International, 2020), Standard Test Method for Airport Pavement Condition Index 
Surveys. 
The American Society for Testing and Materials (ASTM) distress codes provide classification of 
pavement distresses, and each code corresponds to a specific type of distress. The distresses are 
categorized as high (H), medium (M), or low (L) severity, depending on the extent and/or depth 
of the damage. Table 2 lists distresses commonly found at airfields along with their respective 
codes.  

Table 2. The ASTM Distress Codes 

ASTM AC Distresses  ASTM PCC Distresses 
Distress 

Code 
Distress 

Description Severities  Distress 
Code 

Distress 
Description Severities 

41 Alligator Cracking L, M, & H  61 Blowup L, M, & H 
42 Bleeding N/A  62 Corner Break L, M, & H 
43 Block Cracking L, M, & H  63 Linear Crack L, M, & H 
44 Corrugation L, M, & H  64 Durability 

Cracking 
L, M, & H 

45 Depression L, M, & H  65 Joint Seal Damage L, M, & H 
46 Jet Blast N/A  66 Small Patch L, M, & H 
47 Joint Reflection 

Crack 
L, M, & H  67 Large Patch L, M, & H 

48 L&T Crack L, M, & H  68 Pop-outs N/A 
49 Oil Spillage N/A  69 Pumping N/A 
50 Patching L, M, & H  70 Scaling L, M, & H 
51 Polished 

Aggregate 
N/A  71 Faulting L, M, & H 

52 Raveling L, M, & H  72 Shattered Slab L, M, & H 
53 Rutting L, M, & H  73 Shrinkage Crack N/A 
54 Shoving L, M, & H  74 Joint Spall L, M, & H 
55 Slippage Crack L, M, & H  75 Corner Spall L, M, & H 
56 Swelling L, M, & H  76 ASR L, M, & H 
57 Weathering L, M, & H     

N/A = Not applicable  
ASR = Alkali-silica reaction 
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The Pavement Condition Index (PCI) is a measure of the pavement condition that is used to help 
prioritize maintenance and rehabilitation needs. A PCI value is calculated by determining 
distress according to type, severity, and quantity, and ranges from 0 to 100, with 100 
representing a new pavement and 0 representing a failed pavement. These rating scales are 
illustrated in Figure 2.  
 

 

Figure 2. The PCI Rating Scale (ASTM International, 2020) 

A gradient color scheme, as shown in Figure 3, was applied to each PCI summary table in 
Section 4 and Section 5 to further visualize where on the scale each sample unit was rated. 
 

 

Figure 3. Color Scheme Applied to PCI Rating  

In recent years, there have been efforts to use sUAS for pavement condition assessments. 
However, guidance on minimum technical specifications, such as airframe type, sensor type and 
capability, flight parameters, and safety and coordination with air traffic, are yet to be 
established. This section explores key pieces of organizational reference standards and literature 
on sUAS-based pavement inspections with the aim of establishing interim guidance for Phase 1 
testing. Following the reference standards, key findings from the literature review are 
summarized. A detailed literature review is included in Appendix A. 
 
2.1  REFERENCE STANDARDS 

This section summarizes the identified reference standards specifically related to pavement 
management and sUAS operations. 
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2.1.1  The FAA Reference Standards 

The FAA reference standards presented in Table 3 were applicable at the time this research was 
performed. The research team adhered to these standards to determine the baseline guidance as it 
pertains to airport pavement inspections. 

Table 3. The FAA Reference Standards 

FAA Advisory 
Circular Reference 

150/5200-18C Airport Safety Self Inspection 
150/5380-6C Guidelines and Procedures for Maintenance of Airport Pavements 
150/5380-7B Airport Pavement Management Program 

 
2.1.2  Professional/Industry Organizational Standards 

The research team performed a thorough review of case studies, minimum standards, and best 
practices that have been developed by professional organizations that are related to remote 
sensing, sUAS operations, airport operations, and pavement management. The following are 
examples of professional organizations that the research team took into consideration. 
 
2.1.2.1  American Society for Photogrammetry and Remote Sensing 

The American Society for Photogrammetry and Remote Sensing (ASPRS) is an organization that 
promotes photogrammetry and remote sensing with divisions in Geographical Information 
Systems (GIS), Light Detection and Ranging (LiDAR), photogrammetric applications, primary 
data acquisition, professional practice, remote sensing applications, and sUAS. The sUAS 
division serves as a resource for mapping standards and industry insights. Table 4 presents these 
standards. 

Table 4. The ASPRS Reference Standard 

Document Number Reference 
Edition 1, Version 1.0, 
November 2014 

ASPRS Positional Accuracy Standards for Digital 
Geospatial Data 

 
2.1.2.2  American Society for Testing and Materials 

ASTM is a globally recognized leader that develops and publishes technical standards for 
businesses, services, and other organizations. ASTM has issued multiple standards for 
terminology, definitions, and data collection techniques applicable to airfield, highway, road, and 
parking lot classifications. ASTM standards have also been adopted at federal and state levels. 
These standards are used to improve product quality, enhance health and safety, strengthen 
market access and trade, and build consumer confidence. Table 5 presents the applicable 
standards published by ASTM. 
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Table 5. The ASTM Reference Standards 

Document Number Reference 
ASTM D5340-20 (2020) Standard Test Method for Airport Pavement Condition Index 

Surveys 
ASTM D6433-20 Standard Practice for Roads and Parking Lots Pavement 

Condition Index Surveys 
ASTM E1778-98a Standard Terminology Relating to Pavement Distress 
ASTM E1777-09 Standard Guide for Prioritization of Data Needs for 

Pavement Management 
ASTM WK29844 New Guide for Classifying and Measuring Pavement 

Cracking from the Image Collected by Automated Pavement 
Condition Survey Equipment 

ASTM WK32849 Standard Guide for Classification of Automated Pavement 
Condition Survey Equipment 

 
2.1.2.3  Association for Unmanned Vehicle Systems International 

The Association for Unmanned Vehicle Systems International (AUVSI) is the world's largest 
non-profit organization that is dedicated to the advancement of unmanned systems and robotics. 
AUVSI represents corporations and professionals from more than 60 countries involved in 
industry, government, and academia. AUVSI maintains an Unmanned Systems and Robotics 
Database (USRD) that is the largest comprehensive and searchable database for all vehicles 
operating in civil, commercial, and military markets. This database was considered to assist with 
any sUAS performance or dimensional data needed in this research effort. 
 
2.1.2.4  Federal Highway Administration 

The Federal Highway Administration (FHWA) is an agency tasked with supporting state and 
local governments for the maintenance, construction, and design of the interstate highway system 
and federal and tribal-owned lands. FHWA acknowledges that the benefits of sUAS are wide-
ranging and impact nearly all aspects of highway transportation, including FOG inspections, 
increased accuracy, quicker and more efficient data collection, and access to hard-to-reach 
locations. sUAS use is expanding across the state Departments of Transportation (DOTs), and 
the numbers of sUAS applications are increasing steadily. A 2019 survey by the American 
Association of State Highway and Transportation Officials (AASHTO) found that 36 states are 
already using high-definition cameras, LiDAR, and other sensors to enhance construction 
inspection, bridge inspection, and incident response operations (AASHTO, 2019). While state 
DOTs have used sUAS technology for survey and data mapping, no formal standard has been 
developed for either use case. However, FHWA shares best practices and technical guidance 
under Technical Briefs that are available to the public via online sources, such as the FHWA 
website. Table 6 presents the FHWA standards applicable to this research. 
  

https://www.auvsi.org/usrd
https://www.auvsi.org/usrd
https://highways.dot.gov/
https://highways.dot.gov/


 

8 

Table 6. The FHWA Publication Standards 

FHWA Report Number Publication 
FHWA-HIF-11-11 The Pavement Management Roadmap 
T5040.38 Pavement Friction Management 
FHWA-PROJ-12-0016 Pavement Structural Evaluation at the Network Level 
FHWA-RC-20-004 2020 Calibration, Certification, and Verification of Transverse 

Pavement Profile Measurements 
FHWA-HIF-20-085 2020 Interstate Highway Pavement Sampling Final Phase 2 

Report 
November 2017 Developing Transportation Asset Management Financial 

Plans 
June 2018 Guidelines for Development and Approval of State Data 

Quality Management Programs 
FHWA -2013-0053 National Performance Management Measures; Assessing 

Pavement Condition for the National Highway 
Performance Program and Bridge Condition for the 
National Highway Performance Program 

FHWA-HRT-13-092 Distress Identification Manual for the Long-Term 
Pavement Performance Program 

HIF-11-026 Local Calibration of the MEPDG Using Pavement 
Management Systems 

Tech Brief Use of sUAS for Land Survey  
Tech Brief Use of sUAS for Construction Inspection 
Tech Brief Use of sUAS for Bridge Inspection 
Tech Brief Use of sUAS for Emergency Management of Flooding 
 
2.1.2.5  American Association of State Highway and Transportation Officials 

AASHTO establishes guidelines for highway design and construction throughout the United 
States. A 2018 survey by AASHTO found that, of the 50 states, 20 use sUAS in their day-to-day 
business (AASHTO, 2018). Historically, there has been a lack of uniformity in collecting surface 
distress imagery data. However, there have been efforts in recent years to standardize definitions 
of distress types and severities, and measurement procedures. Table 7 provides the standards 
developed by AASHTO and adopted by multiple agencies around the country. 

Table 7. The AASHTO Publication Standards 

Standard Reference 
AASHTO R55 Quantifying Cracks in Asphalt Pavement Surfaces 
AASHTO PP67 Standard Practice for Quantifying Cracks in Asphalt 

Pavement Surfaces from Collected Pavement Images 
Utilizing Automated Methods 

AASHTO PP68 Collecting Images of Pavement Surfaces for Distress 
Detection 

AASHTO PP70 Collecting the Transverse Pavement Profile 
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Standard Reference 
AASHTO R48 Determining Rut Depth in Pavements 
AASHTO R36 Standard Practice for Evaluating Faulting of Concrete 

Pavements 
 
2.1.2.6  American Society of Civil Engineers 

The American Society of Civil Engineers (ASCE) works towards the advancement of civil 
engineering and enhancement of human welfare. ASCE serves professionals within specified 
fields of civil engineering that include, but are not limited to, the Architectural Engineering 
Institute (AEI), Geo-Institute (G-I), Construction Institute (CI), Utility Engineering and 
Surveying Institute (UESI), and Transportation and Development Institute (T&DI). Table 8 
presents documentation found in the ASCE library applicable to this research effort. 

Table 8. Applicable ASCE Documentation 

Source Reference 

ASCE Library Pavement Surface Permanent Deformation Detection and Assessment 
Based on Digital Aerial Triangulation 

 
2.1.2.7  American National Standards Institute 

The American National Standards Institute (ANSI) facilitates uniform solutions and standards 
and conformity assessment activities in the United States. ANSI encompasses every industry and 
has the mission of facilitating the development of American National Standards by accrediting 
the procedures of standards-developing organizations and approving their documents. Table 9 
presents the documentation published by ANSI related to this research effort. 

Table 9. Applicable ANSI Documentation 

Source Reference 
ANSI Unmanned Aircraft 
Systems Standardization 
Collective, June 2020 

Standardization Roadmap for Unmanned Aircraft Systems, 
Version 2.0 

 
2.1.3  Small Unmanned Aircraft System Operational Reference Standards 

The 14 Code of Federal Regulations (CFR), Part 107 outlines regulations for the operation of 
sUAS or drones. These regulations include requirements for registration and pilot certification 
and limitations for aircraft operations. The purpose of these regulations is to ensure the safety of 
both crewed and unmanned aircraft operators and the general public. Table 10 presents the 
applicable regulations at the time of this research.  
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Table 10. Applicable sUAS Reference Standards 

Standard Reference 
14 CFR Part 107 Small Unmanned Aircraft Systems 
14 CFR Part 77 Safe, Efficient Use and Preservation of the Navigable Airspace 
Advisory Circular 107-2 Small Unmanned Aircraft Systems (sUAS) 
 
2.2  LITERATURE REVIEW SUMMARY 

An extensive industry and academia literature review identified that, although a standardized 
methodology does not exist, sUAS technologies have been successfully used in various 
applications related to pavement, roadways, railroads, bridges, construction, monitoring, and 
inspection. Table 11 demonstrates the following key findings, which were taken into 
consideration when planning for Phase 1 testing. 

Table 11. Overall Findings from Literature Review 

 

Using multirotor systems for data collection led to improved imaging 
capabilities and cost efficiency. 

 

The spatial resolution appeared to be the most important factor in analyzing 
data for use in PMP inspections. It was identified that testing should initiate 
with a minimum altitude of 50 feet (ft) above the ground, then increase 
gradually to ascertain a ceiling for best practices. 

 

Point clouds generated from a sUAS-based LiDAR system or stereo-matching 
photogrammetry is effective in identifying vertical pavement distresses. 

 
Thermal infrared imagery could provide insight on pavement deterioration and 
condition. 

 

While thermal and multispectral sensors exist for fixed-wing sUAS, the 
minimum safe flying height would yield resolutions that are too low for usable 
data. 

 

Manufacturer limitations for the thermal sensor on fixed-wing sUAS prevent 
flight plans from being developed based on the sensor specifications. (The 
eBee thermal camera is combined with a color camera into a single sensor 
package, however, the flight planning is only based on color camera.) 

 

The ability to fly low and slow was deemed critical in successful acquisition of 
high-resolution imagery. Operating a fixed-wing in a low-altitude airport 
environment has the potential for extremely high risks and could deem fixed-
wing operations unrealistic for this application. 

 
3.  TECHNOLOGY REVIEW 

The research team tested and evaluated a variety of airframes and sensors as part of this research 
effort. The study of small, unmanned aircraft (sUA) airframes and sensors investigated the 
repeatability and integration of the technology under diverse climatic and geographic conditions 
for both asphalt concrete (AC) and Portland cement concrete (PCC) pavements. 
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3.1  AIRFRAME TYPES FOR sUA 

Multirotor: Multirotor, also known as rotary-wing, platforms are equipped with lift-generating 
rotors to achieve vertical takeoff and landing (VTOL) capabilities and to sustain flight. In 
principle, multirotor platforms operate like helicopters. These platforms can have a single, 
multiple, coaxial, or even tiltrotor configuration with capabilities to hover, and are commonly 
operated in smaller areas. 
 
Fixed-wing: Fixed-wing sUASs resemble more traditional-looking aircraft made up of a central 
body, two wings, and a propulsion source. Fixed-wing platforms can have a variety of wing 
shape layouts, such as rectangular, tapered, or rounded straight-wing configurations; high-, 
medium-, or low-swept wing configurations; and delta wing configurations. Typically, these 
platforms can sustain long flight times and carry heavy payloads. 
 
Hybrid: Hybrid sUASs offer the advantages of both multirotor and fixed-wing airframe 
operational characteristics. These systems typically use a lift-generating rotor to achieve VTOL 
and have fixed wings to sustain flight.  
 
Each type of sUA airframe can have a variety of sensors, and each has unique capabilities and 
limitations. Some key attributes to consider when selecting an airframe are as follows: 
 

• Aircraft navigation 
• Geotagging accuracy 
• Operational endurance 
• Speed 
• Situational awareness 
• Sensor integration and capabilities 

 
A detailed guide on airframe performance specifications and attributes can be found in 
Performance Report for sUAS Based Pavement Inspections (Woolpert, Inc., 2023), which offers 
direction on selecting the appropriate airframe. 
 
3.2  SENSOR TYPES FOR sUA 

Red, Green, Blue (RGB): RGB imagery captures specific bands of light in the visible spectrum 
(red, green, and blue) and converts them to a color image replicating standard human vision.  
 
LiDAR: Topographic LiDAR sensors use a near-infrared laser to measure distance and generate 
precise, three-dimensional (3D) information about the terrain and its surface characteristics by 
developing a point cloud data set. 
 
Thermal: A thermographic sensor creates an image that depicts temperature differences by 
collecting and analyzing long-wave and medium-wave wavelengths of infrared radiation. 
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Hyperspectral: Hyperspectral sensors are capable of collecting a continuous portion of the 
electromagnetic spectrum which can be converted into pixels and can be viewed in various band 
combinations as an image. 
  
GPR: Ground-penetrating radar (GPR) sensors use a non-intrusive method of emitting radar 
pulses to develop an image of the sub surface condition. 
 
Airframes can be equipped with sensors that collect a variety of data types, and the 
characteristics of the sensor can affect the quality of the data collected. Physically larger sensors 
can deliver higher dynamic range but offer shallower depth of field than smaller sensors, while 
higher resolutions can provide increased detail and clarity to captured images. The key attributes 
to consider when selecting a sensor are as follows: 
 

• Camera system characteristics 
• Shutter type 
• Focus 
• Metering mode 
• Exposure modes 
• Mounting 
• Gimbal 

 
A detailed guide on sensor performance specifications and attributes can be found in 
Performance Report for sUAS Based Pavement Inspections (Woolpert, Inc., 2023), which offers 
direction on selecting the appropriate sensor for desired results. 
 
3.3  STRENGTHS, WEAKNESSES, OPPORTUNITIES, AND THREATS ANALYSIS 

The research team developed recommendations for the most viable sUAS solutions that support 
and meet both operational and technical requirements. These recommendations were determined 
by analyzing the SWOT of different types of sUAS. 
 
3.3.1  Small Unmanned Aircraft Airframes SWOT Analysis 

Table 12 highlights the SWOT analysis performed by the research team on fixed-wing, rotary, 
and hybrid airframes. Conclusions from the SWOT analysis are presented in Section 3.3.3.  
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Table 12. Airframes SWOT Analysis 

 S W O T 

Fixed-Wing 

Longer flight 
endurance than 

multirotor. 
Increased data 

collection speed. 

Requires linear 
space for launch 

and recovery. 
Requires 

additional space to 
perform turns. 

Higher minimum 
flight speed. 

Long flight 
durations could 

increase 
operational 
efficiency. 

Constant forward 
flight limiting 

maneuverability is 
not ideal during an 

emergency. 

Multirotor 

Smaller footprint 
required for 
takeoff and 

landing. More 
precise 

maneuverability. 

Shorter flight 
endurance. 

Ability to better 
constrain flights 

over smaller areas. 

More takeoffs and 
landings increase 
operational time. 
A loss of a motor 
entails a loss of 

control. 

Hybrid 

Smaller footprint 
required for 
takeoff and 

landing. Longer 
flight endurance 
than multirotor. 
Increased data 

collection speed. 

Requires 
additional space to 

perform turns. 
Higher minimum 

flight speed. 
Typically, the 

most expensive 
hardware. 

Long flight 
durations could 

increase 
operational 
efficiency. 

Propulsion failure 
can lead to a loss 

of VTOL 
capabilities. 

 
3.3.2  Small Unmanned Aircraft Sensors SWOT Analysis 

Table 13 highlights the SWOT analysis performed by the research team on RGB, thermal, 
LiDAR, hyperspectral, and GPR sensors. Conclusions from the SWOT analysis are presented in 
Section 3.3.3.  
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Table 13. Sensors SWOT Analysis 

 S W O T 

RGB 

Most commonly 
available 

technology, and 
typically the least 

expensive. 
Ability to acquire 
high-resolution 

imagery. 

Unless turned 
into point cloud 

or Digital 
Elevation Models 
(DEMs), imagery 
only produces a 
two-dimensional 

data set. 

Similarity of product 
to FOG observations 

enables faster 
analysis with minimal 

retraining 
requirements. Higher 

resolution sensors 
will allow for 

increase in efficiency. 

If not combined 
with a 3D 

technology, RGB 
cannot quantify 

vertical distresses. 

LiDAR 

Produces a 3D 
point cloud data 

set. 
Can successfully 

collect data 
regardless of 

lighting 
conditions. 

Limited 
horizontal 

resolving power, 
even at high 

point densities. 

3D data allow 
detection of elevation 
or vertical distresses. 

Can be combined 
with other sensors to 
derive more accurate 

colorized point 
clouds than 3D 
imagery auto 
correlation. 

If not combined 
with high-

resolution imagery, 
some distresses 

could be harder to 
identify. 

Thermal 

Allows 
visualization of 

temperature 
variances. 

Unless turned 
into point cloud 

or DEMs, 
imagery only 

produces a two-
dimensional data 
set. Lower spatial 

resolution than 
RGB. Limited 

collection 
window to 

maximize the 
visibility of 
temperature 
variances. 

Seeing thermal 
variances might help 
identify surface and 

subsurface 
characteristics not 

visible to other sensor 
technologies. 

Cannot quantify 
vertical distresses. 
If not combined 

with a high-
resolution 

technology, some 
distresses could be 
harder to identify. 

Hyperspectral 

Ability to detect 
a surface’s 

chemical and 
mineral 

properties. 

Unless turned 
into point cloud 

or DEMs, 
imagery only 

produces a two-
dimensional data 
set. Lower spatial 

resolution than 
RGB. Large data 

files and high 
processing power 

requirements. 

Hyperspectral 
imagery might help 
identify surface and 

subsurface 
characteristics, such 

as settlement/faulting 
and joint reflection 
cracking, which are 

not as visible to other 
sensor technologies. 

Cannot quantify 
vertical distresses. 
If not combined 

with a high-
resolution 

technology, some 
distresses could be 
harder to identify. 
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 S W O T 

GPR 

Ability to 
determine 
subsurface 
conditions 

through 
nondestructive 

testing. 

Low horizontal 
resolution. Not a 
surface condition 

detection 
technology. High 

complexity of 
use. 

GPR might help 
identify subsurface 
characteristics, such 
as rooting, substrate 

cracking, and 
infrastructure 

penetrations, which 
are not as visible to 

other sensor 
technologies. 

Air-coupled GPR 
antennas are 

potential sources of 
interference to both 

radar and 
communications 
equipment. This 

technology is best 
suited for 
subsurface 
analysis. 

 
3.3.3  Conclusions of the SWOT Analysis Conclusions 

As a conclusion of SWOT analysis, the research team selected all the airframes for testing due to 
their unique capabilities and advantages. While all identified sensor types demonstrated 
research/implementation in various applications, it was determined that hyperspectral and GPR 
were not applicable to conduct PCI analysis and were therefore removed from testing 
consideration. 
 
The RGB sensor was chosen due to its high resolution and common availability. RGB imagery is 
the closest analog to FOG inspections. While RGB imagery does not natively enable the 
measurement of vertical distresses, the team believed that the majority of pavement distresses 
could be adequately detected and rated without vertical information.  
 
The research team anticipated that the 3D point clouds generated by LiDAR would allow for 
detection and rating of vertical distresses that might be missed with an RGB imagery analysis. It 
was believed that LiDAR’s lower resolving power would not negatively impact the research 
because it would be paired with the high-resolution RGB imagery. 
 
Thermal was chosen for investigation due to its ability to capture temperature variances that are 
not visible in RGB imagery. The research team believed these temperature variances might 
reveal distresses not otherwise visible to the human eye. Similar to LiDAR, it was hypothesized 
that thermal’s lower resolving power would not hinder the research when paired with RGB data 
sets. 
 
The application potential of hyperspectral imagery and GPR for PCI analysis was unknown at 
the time of this research and was therefore removed from testing consideration. While these 
sensors might help identify pavement characteristics, the research team deemed that their 
challenges outweighed their potential benefits. Further research is recommended to understand 
their application in PCI analysis. 

4.  AIRPORT TEST PROCEDURES AND RESULTS—PHASE 1 

Phase 1 testing was conducted at WWD, located in Rio Grande, New Jersey. sUAS data 
collection for Phase 1 was broken up into two stages: Stage 1 and Stage 2. The data collection 
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and processing were conducted during the months of December 2020 and January/February 2021 
for FOG, DSV, and sUAS. 
 
4.1  AIRPORT SELECTION 

The research team selected WWD, an uncontrolled Class G airspace, as the initial testing site. 
WWD offered several key advantages ideal for initial testing: accessibility to both AC and PCC 
pavement surfaces; a wide variety of pavement distresses (as indicated in the 2020 survey); and a 
minimal level of additional coordination required due to an existing Memorandum of Agreement 
(MOA) between the FAA’s ATR branch and the Delaware River and Bay Authority (DRBA) to 
safely execute FOG-, DSV-, and sUAS-based pavement inspections. 
 
4.2  SMALL UNMANNED AIRCRAFT AIRFRAMES AND SENSORS 

The research team tested a variety of airframes and sensors during Phase 1. Airframes can be 
equipped with sensors that collect a variety of data types, and the characteristics of the sensor 
can affect the quality of the data collected. Physically larger sensors can deliver higher dynamic 
range but offer shallower depth of field than smaller sensors, while higher resolutions can 
provide increased detail and clarity to captured images.  
 
The airframes and sensors that were selected for initial testing represent the most used surveying 
and mapping platforms at the time this research was performed. The Mavic 2 Pro platform 
represents a consumer-grade platform, while other airframes and sensors used are all 
commercially available. Table 14 summarizes airframes, sensors, ground sampling distances 
(GSDs), data types, and software packages used in Phase 1. 

Table 14. Summary of Systems and Software Used in Phase 1 

Airframe Sensor GSD (mm) Data Type 
Image 

Processing 
Data 

Analysis 

DJI M210 
RTK v2 

X7-16mm, 
24mm, 
35mm 

2, 4.9, 7.9, 
10.8, 13.7, 

25.4 
RGB 

Pix4D 
Esri ArcMap, 

FAA 
PAVEAIR 

XT2 13mm 25.4 Thermal 

X5S 
2, 4.9, 7.9, 
10.8, 13.7, 

25.4 
RGB 

DJI Mavic 2 
Enterprise 

Dual 
M2ED 2, 13.7, 25.4 RGB 

DJI Mavic 2 
Pro Mavic 2 Pro 2, 13.7, 25.4 RGB 

SenseFly 
eBee X RTK S.O.D.A 3D 13.7 RGB 

DJI M210 RTK v2, shown in Figure 4, utilized the DJI Zenmuse X7 (RGB), X5S (RGB), and 
Zenmuse XT2 (thermal) payloads. This airframe, RGB cameras, and thermal camera were 
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identified to be used during Phase 1. The DJI Zenmuse X7 (24-megapixel) and DJI X5S (16-
megapixel) cameras are commonly used in the surveying industry. The Zenmuse XT2 is a 13mm 
thermal camera, commonly used in a variety of applications. While the XT2 also has an RGB 
sensor, it was not evaluated in this research. The DJI M210 RTK v2 will herein be referred to as 
M210. 

    

(a) (b) (c) (d) 

Figure 4. DJI M210 RTK v2 (a) with (b) Zenmuse X7, (c) Zenmuse X5S, and (d) Zenmuse XT2 

DJI Mavic 2 Enterprise Dual, shown in Figure 5, was selected as it is a commonly used system 
in many industrial applications. This airframe utilized an onboard camera with RGB and thermal 
sensors. The onboard camera contains a 12-megapixel RGB, and a 0.30-megapixel thermal 
sensor, but the RBG was the only sensor evaluated in this research. The DJI Mavic 2 Enterprise 
Dual will herein be referred to as M2ED. 

  

 
(a)  (b) 

Figure 5. DJI Mavic 2 Enterprise Dual (a) with Onboard Camera (b) 

DJI Mavic 2 Pro, shown in Figure 6, was selected due to it being a commonly used system in 
many industrial applications. This airframe utilized a 20-megapixel onboard RGB camera. The 
DJI Mavic 2 Pro will herein be referred to as M2P. 
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(a) (b) 

Figure 6. DJI Mavic 2 Pro (a) with Onboard Camera (b) 

SenseFly eBee X RTK, shown in Figure 7, was selected because it is a fixed-wing system 
capable of long endurance flight for data collection, thereby increasing operational efficiencies 
by eliminating the need for repeated landings. This system was equipped with a senseFly 
S.O.D.A. 3D, a 1-in., 20-megapixel camera that can achieve high resolutions even at a high 
altitude. The senseFly eBee X RTK will herein be referred to as eBee. 
 

  

(a) (b) 

Figure 7. SenseFly eBee X RTK (a) with SenseFly S.O.D.A. 3D (b) 

4.3  TESTING METHODOLOGY 

Before mobilizing field crews to the test areas, the research team developed a comprehensive 
testing methodology. Test areas at WWD allowed the team to perform initial testing, test a 
variety of airframes and sensors, collect data across several GSDs, and assess identifiable ASTM 
pavement distresses. Table 15 shows a breakdown of the testing rationale performed across the 
five test areas. 
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Table 15. Phase 1 Testing Methodology 

Phase Airport Test Rationale Test Area 

1 WWD 

Test variety of airframes and sensors, 
collect data across several GSDs, 

collect data across different pavement 
surfaces, assess identifiable pavement 

distresses 

Runway 10/28 
General Aviation (GA) 

Asphalt Apron 
GA Concrete Apron 

Asphalt Taxiway 
Concrete Taxiway 

 
Phase 1 evaluated the minimum acceptable GSD for using sUAS-derived data for pavement 
inspections. The research team initially tested 2-mm, 13.7-mm, and 25.4-mm GSDs in Stage 1 to 
create a low, medium, and high threshold. GSDs of 4.9 mm, 7.9 mm, and 10.8 mm were later 
added in Stage 2 to further polish the minimally acceptable standard. 
 
4.4  STAGE 1 AND STAGE 2—WWD 

This section details the initial testing performed at WWD including test areas, control data, 
sUAS data collection parameters, data processing workflows, and data analysis for PCI. 
 
4.4.1  Test Areas 

The pavement surfaces at WWD include a range of material types, as illustrated in Figure 8. The 
green shading represents AC surfaces, blue represents an asphalt overlaid over asphalt concrete 
(AAC) surface, and the red shading indicates PCC pavement types.  
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Figure 8. Pavement Surfaces at WWD 

In June 2019, Applied Research Associates (ARA), a surveying company, conducted a 
conventional FOG PCI survey of the entire WWD airfield under a PMP update for the DRBA. 
This PCI survey was considered as a preliminary approach to the test area selection. Figure 9 
illustrates section-specific pavement condition ratings for the entire airfield as reported in the 
2019 survey. 
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Figure 9. Pavement Condition Rating at WWD, June 2019 

The average PCI rating for the airfield was found to be 71. The two runways had an average PCI 
of 79 and were above the minimum service level (MSL) of 70. MSL designates the minimum 
PCI threshold to trigger maintenance and/or rehabilitation. The MSL benchmarks for the runway, 
taxiway, and apron (or ramps) were documented to be 70, 65, and 60, respectively. Taxiways 
(including taxilanes) had an average inspected PCI of 72, and aprons had an average PCI of 62. 
Based on the ASTM D5340 PCI rating (ASTM International, 2020), the runways and taxiways 
were in “Satisfactory” condition, whereas the aprons were determined to be in “Fair” condition 
due to the higher severity of distresses identified during the survey. 
 
Figure 10 illustrates the five test areas selected for comparative sUAS, FOG, and DSV testing. 
PCC areas were designated as 1A and 1B, whereas the AC test areas were marked with 2A, 2B, 
and 2C. 
 



 

22 

 

Figure 10. Test Areas at WWD 

Each test area was further broken up into individual sample units. Table 16 presents the number 
of sample units to be inspected within those test sites.  

Table 16. Sample Units at WWD 

Test Area Airfield Infrastructure Type of Surface Samples Inspected 
1A Apron PCC 10 samples, 01–10 
1B Taxiway PCC 2 samples, 01–02 

2A Runway AC 
8 samples, 01–08, 10S 
8 samples, 09–16, 10C 
8 samples, 17–24, 10N 

2B Taxiway AC 2 samples, 01–02 
2C Apron AC 8 samples, 01–08 

 
4.4.1.1  Portland Cement Concrete Pavement 

Test Area 1A 
 
Test area 1A is a concrete apron located near the airport terminal on the southern side of 
Taxiway A. The 2019 PCI survey indicated that the rigid pavement in the apron area was in poor 
condition, with a PCI value of 58. This apron sees routine movement of most of the airport’s 
traffic and parking. Typical aircraft operating on this apron are single engine, transient, and local 
general aviation (GA) traffic. The research team observed multiple severities of faulting, small 
patching, large patching, joint spalling, and corner spalling during the site visit. Linear cracking, 
shrinkage cracking, and replacement slabs were also observed. Most of the linear cracking had 
been saw cut with joint seal applied. This was an ideal survey site, as it contained the most 
common concrete distresses observed in an airfield. Figure 11 illustrates Site 1A along with its 
corresponding representative sample units.  
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Figure 11. Test Area 1A at WWD 

This test area was divided into representative sample units, each consisting of 24 10-ft x 20-ft 
slabs. Figure 12 (a) through (d) shows some of the distresses found in this. 
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Figure 12. Distresses Observed on 1A at WWD 

Test Area 1B 
 
As illustrated in Figure 13, Test Area 1B is a concrete apron located at the southeast corner of 
the airfield, near Taxiway G. The 2019 PCI data showed the PCC pavement in this test area to be 
in very poor condition, with a PCI of 40. While the research team did not observe this test area 
during the site visit, the low PCI suggested that this area might have some unique distresses, such 
as shattered slabs and corner breaks. 
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Figure 13. Test Area 1B at WWD 

4.4.1.2  AC Pavement 

Test Area 2A 
 
Test Area 2A is situated at the west end of Runway 10/28, as illustrated in Figure 14. This 
runway, which was scheduled for complete reconstruction in 2021, had an aged asphalt 
pavement (non-grooved) with aged crack sealant and a PCI averaging approximately 65. Due to 
multiple distress severities of longitudinal and transverse cracking, weathering, and block 
cracking, the research team selected it as the primary asphalt test area. The entire runway was 
observed as part of the November 2020 site visit. Figure 15 highlights the observed block 
cracking and the longitudinal and transverse cracking. 
 
The AC runway is 150 ft wide. This transverse width was divided into three equal stretches of 
50 ft in accordance with the PCI section width. The middle 50-ft stretch represented the keel area 
where the AC pavement is subjected to most of the aircraft traffic. The other two transverse 
segments fall outside the keel area of the runway. These segmented widths were longitudinally 
divided every 100 ft to constitute a sample unit having an area of 5,000 square feet (sq ft) (50 ft x 
100 ft). 
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Figure 14. Test Area 2A at WWD 

 

Figure 15. Distresses Observed on Test Area 2A at WWD 

Test Area 2B 
 
Figure 16 illustrates Test Area 2B, located on Taxiway E. It is an asphalt taxiway with some 
medium-severity alligator cracking that was observed during the site visit (see Figure 17). The 
2019 PCI for Area 2B was 34, indicating that the pavement was in very poor condition. The 70-
ft-wide taxiway was segmented into two 80-ft-long sample units. Thus, sample units 11 and 12 
had an area of 5,600 sq ft, slightly larger than the Runway 10/28 and apron sample unit areas. 
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Figure 16. Test Area 2B at WWD 

 

Figure 17. Alligator Cracking Observed on Test Area 2B at WWD 

Test Area 2C 
 
Figure 18 illustrates the AC surface in Test Area 2C. This aged asphalt apron area is adjacent to 
the PCC Area 1A. The research team selected it as a complementary test location due to three 
unique distresses that were not observed on Runway 10/28: shoving near the adjacent PCC 
apron, raveling due to loss of an aged surface seal, and an oil spillage. Like the Runway 10/28 
sample units, these samples also had an area of 5,000 sq ft. Figure 19 depicts the shoving, and 
the oil spillage between the AC and PCC apron interface. 



 

28 

 

Figure 18. Test Area 2C at WWD 

 

Figure 19. Distresses Observed on Test Area 2C at WWD 

Appendix B includes the specific distresses recorded during the November 2020 site visit. 
Associated PCI values from the 2019 survey are also presented alongside the prominent distress 
description and ASTM standardized numerical identifiers. 
 
4.4.2  Control Data—FOG and DSV 

Control data sets were collected through FOG and DSV surveys. This section discusses FOG and 
DSV workflows for pavement inspections. 
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4.4.2.1  Foot-on-Ground Data Collection and Processing 

Experienced pavement technicians from ARA conducted FOG PCI evaluations for all five test 
areas at WWD in December 2020. Figure 20 shows ARA technicians on site. 
 

 

Figure 20. Collection of FOG Data at WWD 

The FOG data collection team employed the following workflow, illustrated by Figure 21. 
 

 
Note: MicroPAVER was used with current GIS and tag image file format (TIFF) information and with active Global 
Positioning System (GPS) on handheld tablets. 

Figure 21. Workflow for FOG Data Collection 

Table 17 summarizes the distresses that technicians observed at WWD during the FOG survey 
conducted as part of this research effort.   

Stake out samples with 
spray paint according 

to the GIS data

Locate centroid and 
create a sample 
inspection in the 

Pavement Management 
System (PMS) 

(MicroPAVER)

Identify and measure 
distress quantities and 

severities using 
measuring wheels and 

rulers

Enter data, at a per 
sample level, into the 

PMS

Perform Quality 
Control (QC) review of 
all collected data at the 
end of each inspection
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Table 17. Distresses Observed During FOG Survey at WWD 

AC Distresses  PCC Distresses 
Distress 

Code 
Distress 

Description Severities  Distress 
Code 

Distress 
Description Severities 

41 Alligator Cracking L, M, & H  63 Linear Crack L, M, & H 
43 Block Cracking L, M, & H  66 Small Patch L, M, & H 
48 L&T Crack L, M, & H  67 Large Patch L, M, & H 
49 Oil Spillage N/A  71 Faulting L, M, & H 
52 Raveling L, M, & H  73 Shrinkage Crack N/A 
54 Shoving L, M, & H  74 Joint Spall L, M, & H 
57 Weathering L, M, & H  75 Corner Spall L, M, & H 

 
The FOG data processing team implemented the following workflow (illustrated in Figure 22) 
upon completing the field data collection. 
 

 
Figure 22. Processing Workflow for FOG Data  

To ensure research and testing for a full range of pavement distresses, the remaining distresses—
some of which are rarely encountered in an airfield—were specifically sought when developing 
Testing Methodologies for data collection at other airports in Phase 2 testing. 
 
4.4.2.2  Data Collection and Processing for DSV 

The survey team collected DSV data for all five test areas at WWD in December 2020. 
Temperatures experienced on these days were in the mid-30s to low 40s °Fahrenheit, which is 
the optimal operating temperature for a DSV.  
 
The DSV data collection workflow was as follows: 
 

• Panoramic imagery was captured via a 360° camera on the vehicle roof.  
• A Pavemetrics proprietary Laser Crack Measurement System (LCMS) was deployed on 

the pavement surface scans to map and quantify the pavement distresses.  
• Ride quality (roughness), macrotexture (raveling), and transverse profile (rutting and 

defect depth) data were also collected with the same LCMS system.   

Input distresses and 
severities into PAVER 
using handheld tablets

Produce user-defined 
reports from PAVER to 

rectify any errors

Populate reports for 
Network ID, Branch 

ID, Section ID, Sample 
ID, Section PCI, 

Sample PCI Distress 
Description, Distress 

Severities, and Distress 
Quantities 
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• Geolocation and linear distance data for each data element were recorded.  
• Four onboard computers, shown in Figure 23, collected and stored each data set. 
• Using a triple monitor workstation (also shown in Figure 23), the operator observed and 

reviewed data as they were collected. 

 

Figure 23. Computers Onboard DSV 

• Prior to collection, a routing plan was developed in-office by utilizing the airport’s GIS 
and its predefined sectioning system for FOG PCI survey.  

• The DSV traversed along 10 evenly spaced transverse offsets over the full length of the 
runway to ensure optimal coverage of the entire length and width.  

• The photographic scans were overlapped such that no area of the runway was omitted 
from subsequent distress mapping. 

• For PCC sections that were 10-ft wide, one pass was made in the center of each 
longitudinal set of slabs with the DSV. The DSV’s capture range from center is 6.5 ft. 

• To ensure that the operator maintained a straight pass, lines were measured and marked 
with spray paint (shown in Figure 24) at the beginning, middle, and end of each sample.  

 

Figure 24. Collection of DSV Data at WWD 

• All AC DSV data were collected from west to east.  
• An initial pass was made centered 6 ft from the north side of each test area with each 

sequential pass shifted 12 ft south to allow for partial imagery overlap. 
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The routing plan ensured the most efficient survey route while providing full coverage of all 
pavements requiring evaluation. When collecting data over wide pavements, such as airport 
runways and taxiways, the survey plan included an overlap of approximately 2 to 4 ft for each 
pass to ensure no areas of pavement were missed. Following the DSV survey, all raw data were 
sent for immediate quality assurance (QA) review, imagery extraction, data archival, and editing 
for the evaluation process. 
 
The DSV used was a first-generation LCMS and was constructed by International Cybernetics 
Connect (ICC). The data processing was completed via ICC workstations via the workflow 
illustrated in Figure 25. 
 

 

Figure 25. Processing Workflow for DSV Data  

4.4.3  Data Collection Parameters for sUAS 

sUAS data collection efforts were carried out in two stages at WWD. Stage 1 was executed in 
December 2020 and Stage 2 was executed in January and February 2021. Each of these sUAS 
data collection days represents a range of weather, from cloudy, overcast skies to bright, sunny 
days, and calm to gusting wind conditions. Weather conditions for each flight were logged in 
flight cards that were completed before and after each operation. Adverse weather resulted in the 

Digital data were 
overlaid on the airfield’s 
PMS data, utilizing the 

shapefile layer and 
events recorded by the 
DSV operator to assign 
the data to the correct 
section of pavement.

Data were manually 
analyzed to quantify the 
distresses for the entire 

pavement section.

Random “samples” were 
extracted from the data 

set.

The processing technique 
was then adjusted for 
comparison with the 
FOG and sUAS data 
sets. This technique 

sectioned each sample 
into their own individual 

sections and properly 
aligned the data with the 
samples from the FOG 

and sUAS.

Intensity and depth 
imagery were analyzed 
by a pavement inspector 

to conduct a manual 
distress takeoff of the 
pavement sections as 
each type of imagery 
accentuates certain 

distresses.
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delayed execution of Stage 2, but separating the sUAS operations into two stages allowed the 
research team to review and implement lessons learned during Stage 1 and further refine the 
execution of Stage 2.  
 
Figure 26 presents the workflow followed by the data collection team. 
 

 

Figure 26. Raw Data Collection Workflow for sUAS 

4.4.3.1  Stage 1 Data Collection Parameters 

Initial testing during Stage 1 was aimed at conducting 30 sUAS operations over test areas 1A and 
2C. These parameters focused on testing a wide variety of systems at several GSDs ranging from 
2 mm to 25.4 mm. 
 
A summary of the sUAS flights executed as part of Stage 1 (and actual flight time and total 
number of photos captured in each test area) is presented in Appendix C, Table C-1. All flights 
with a dual-frequency-enabled system were connected to a real-time kinematic network during 
flight. Real-time kinematic (RTK) and post-processing kinematics (PPK) are techniques that 
enable greater accuracy than autonomous global navigation satellite system (GNSS) positioning. 
They are accomplished by having a GNSS base receiver set at a point with a known position, and 
a rover (aircraft) GNSS receiver at the unknown point. This allows for accurate determination of 
the rover’s position relative to the base. 
 
Flights crossed out in red in Appendix C, Table C-1 could not be executed, as they were 
operationally incapable or posed a safety concern due to extremely low altitudes flown or 
proximity to buildings. Table 18 summarizes these flights. 
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Table 18. Field Flight Cancellations During Stage 1 Data Collection 

Flight 
Number Field Flight Cancellation Reason 

8  Very low to buildings and would cross Runway 10/28 safety area. 
9  Very low to buildings and would cross Runway 10/28 safety area. 
13  Cannot plan for flight lower than 40 ft above ground level (AGL). 
23  Very low to buildings/vegetation, area was very small for fixed-wing. 
24  Very close to Runway 10/28 safety area, area was very small for fixed-wing. 
28  Cannot plan for flight lower than 40 ft AGL. 

All other sUAS missions summarized in Appendix C, Table C-1 were executed successfully, but 
several modifications to flight plans were made to allow the sUAS to complete the data 
collection. Table 19 summarizes modifications made in the field to the Stage 1 flight plans. 

Table 19. Field Modifications During Stage 1 Data Collection 

Flight 
Number Field Modifications & Justification 

1  Revised to 35mm sensor at 75/60 overlap and switched into continuous flying data 
capture setting to allow sUAS to operate at 61.5 ft AGL. 

5  Revised to 74/60 overlap and switched into continuous flying data capture setting 
to allow sUAS to operate at 30 ft AGL. 

10  Revised to 74/60 overlap and switched into continuous flying data capture setting 
to allow sUAS to operate at 30.4 ft AGL. 

16  Revised to 35mm sensor at 75/60 overlap and switched into continuous flying data 
capture setting to allow sUAS to operate at 61.5 ft AGL. 

20  Revised to 74/60 overlap and switched into continuous flying data capture setting 
to allow sUAS to operate at 30 ft AGL. 

25  Revised to 74/60 overlap and switched into continuous flying data capture setting 
to allow sUAS to operate at 30 ft AGL. 

 
In addition to the flight modifications listed in Table 18, the sUAS data collection team made 
and documented several observations that needed to be taken into consideration for future sUAS 
data collection efforts. These in-flight findings are as follows: 
 

• “Hover and Capture” vs “Continuous Flying” data capture mode 
 
For 2-mm GSD, the flight operations team found that DJI systems fail to maintain their 
gimbal settings (i.e., pitch, yaw, roll) when the sUAS is commanded to hover at each 
photo center. During “hover and capture,” the sUAS quickly pitches hard forward to gain 
speed and then commands a stop by performing a hard-backwards pitch. The flight team 
found that this appears to confuse the onboard computer into drifting out of its zero point. 
To mitigate this system limitation, the flights were revised to follow the “continuous 
flying” mode with the “equal distance capture interval” method. Additionally, to collect 
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data at the 2-mm GSD, four of the flights required the overlap settings to be reduced by a 
small margin—from 75 forward overlap down to 74. 
 

• Surface brightness of collection area effects data consistency 
 
Similar to a human eye being blinded when a light turns on in a dark room, sUAS sensors 
can also be “blown out” when collecting imagery of pavement. All the tested systems 
allow the user to set and use “automatic” settings that allow the camera to adjust the ISO, 
aperture, and shutter speed, but this does not always occur quickly enough relative to the 
sUAS’s speed, which leads to inconsistent exposure levels. For the purposes of this 
testing, all payloads testing on multirotor airframes were set to “Shutter Priority Mode,” 
where the pilot locks the shutter speed, and the camera adjusts the ISO and aperture to 
decrease the likelihood of motion blur during image capture. The flight team found two 
major conditions that could cause sUAS sensors to incorrectly expose an image, 
potentially leading to issues with data consistency: 
 

1. Transitions between different pavement materials (concrete vs asphalt)  
2. Transitions between buildings (such as a highly reflective tin roof) and the target 

concrete/asphalt 

The research team considered this finding during data processing and analysis. 
 

• DJI—Focus issues at low altitudes 
 
The flight team discovered that the DJI systems used to collect high-resolution imagery at 
low altitudes sometimes struggled with autofocusing. When using best practices such as 
focusing on features with high contrast, this issue was mostly mitigated.  
 

• M210—Gimbal drift 
 
The flight team found that the gimbals used on the M210 drifted over time. Drift was 
most commonly observed during “hover and capture” mode and with an increased 
number of flight lines. Both scenarios resulted in excessive aircraft movement. The most 
common axis of drift was yaw. Halfway through data collection, remote pilots observed 
(through the live camera feed) that the camera was drifting a yaw of up to 10 degrees 
from the correct orientation. Data were collected with the sensor’s widest section 
perpendicular to the flight line. When the camera fails to maintain the proper orientation, 
issues with image overlap could occur. When utilizing best practices, such as manually 
adjusting the yaw during flight, this issue was mostly mitigated. 
 

4.4.3.2  Stage 2 sUAS Data Collection 

Data collection for Stage 2 aimed at conducting a total of 58 sUAS operations over Test Areas 
1B, 2A, 2B, and 2C. Three additional GSDs between 2 mm and 13.7 mm were evaluated as an 
attempt to collect sufficient image quality while introducing operational efficiencies. A summary 
of the sUAS flights executed, as actual flight times, and total number of photos captured in each 
test area are presented in Appendix C, Table C-2.  
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Flights crossed out in red could not be executed, as they were operationally incapable or posed a 
safety concern due to extremely low altitudes flown or proximity to buildings. Table 20 
summarizes these flights. 

Table 20. Field Flight Cancellations During Stage 2 Data Collection 

Flight Number Field Flight Cancellation Reason 
77  Hangar obstruction—flight altitude too low 
82  Hangar obstruction—flight altitude too low 

87  Equipment limitations prevented operating at lower AGLs, and intrusion 
into RWY 01 safety area. 

RWY = Runway 
 
The sUAS missions summarized in Appendix C, Table C-2 that were executed successfully were 
then sent to the data processing team for orthomosaic generation. 
 
4.4.4  Stage 2 sUAS Data Processing 

After data collection was complete, the data processing team used Pix4Dmapper to stitch 
unedited images together for orthomosaic generation. The data processing team organized and 
established a workflow for data collected from each flight card listed in Stage 1 and Stage 2 data 
collection parameters. Figure 27 illustrates the workflow followed by the processing team. 
 

 

Figure 27. The sUAS Raw Data to Orthomosaic Processing Workflow 
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The processed orthomosaics were carefully reviewed for anomalies before they were delivered 
for pavement analysis. Any anomalies identified were documented and evaluated for 
reprocessing.  
 
Figure 28 illustrates the images generated in different steps of the processing workflow 
illustrated in Figure 27. 

 

Figure 28. The sUAS Raw Data to Orthomosaic Processing Workflow  

4.4.5  Data Analysis and Evaluation for sUAS 

After orthomosaic generation, the subject matter experts (SMEs) performed both an automated 
and a manual distress analysis to assess the pavement health. The aim of this step was to identify 
the types and severity of pavement distresses that are recognizable in both the automated and the 
manual workflows. 
 
The SMEs reviewed the orthomosaics, with the initial review indicating that the 2-mm GSD 
imagery was the most effective for identifying pavement distress. Therefore, 2-mm GSD 
imagery was chosen to perform the manual analysis.  
 
Figure 29 represents examples for the quality of sUAS imagery acquired with the same sensor 
across several GSDs. It was apparent that the 2-mm GSD was the most effective when used for 
pavement condition assessment due to its ability to capture low-severity distresses. As the GSD 
increased, the ability to digitally identify low-severity distresses decreased. 
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Figure 29. Comparison of GSD on AC and PCC Pavement 
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It should be noted that the 2-mm GSD imagery varied in quality when captured with a range of 
sensors. Figure 30 shows a comparison of the same distress at 2-mm GSD across the variety of 
sensors tested. 
 

(a) DJI M210 X7-35mm  

 

(b) DJI M210-X5S  

 

(c) DJI Mavic 2 Pro  

 
 

Figure 30. Sensor Comparison at 2-mm GSD 

4.4.5.1  Automated Distress Analysis 

Based on the recommendations from the initial review of the processed orthomosaics, a 2-mm 
GSD orthomosaic from Flight 14 (M210) was processed in eCognition to test workflows 

b 

c 
 

a 
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associated with the automated extraction of pavement distress. To reduce processing time, this 
orthomosaic was tiled out into 50 smaller individual data sets. Figure 31 illustrates the workflow 
for automated distress analysis. 
 

 

Figure 31. Automated Distress Analysis Workflow 

The following methods were used within eCognition to extract pavement distresses. This 
workflow was developed to assess concrete data sets and only extract cracking distresses. The 
methods developed are sensor-specific, and the extraction algorithms will need to be adjusted 
when being used on another sensor. 
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Band Math and Edge Extraction 
 
At a finer resolution, edge extraction methods were a viable option and were incorporated into 
the analysis in combination with simple band ratios. eCognition has different edge extraction 
processes; for crack analysis, the best option is the Lee Sigma Edge Extraction1 method as 
depicted in Figure 32. Before the output layer from this process could be used, the research team 
utilized a convolutional layer to get rid of noise and pixilation. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 32. Lee Sigma Edge Extraction Showing the Original Image (a), with Convolutional 
Layer Added (b), and Incorporated Image Segmentation (c)  

In Figure 32, the original RGB image (a) shows cracking. The Lee Sigma operation was utilized, 
and a convolutional layer was applied to smooth out the image, which reduces noise and helps 
define cracking (b). This layer was then incorporated into the image segmentation,2 creating 
more defined image objects (c).  
 
The Lee Sigma extraction method can only ingest a single image at a time. So, finding the 
correct band or combination of bands to maximize the potential of the edge extraction methods 

 
 
1 Lee Sigma Edge Extraction is a technique for extracting features from a digital image. It uses a mathematical 

algorithm to identify and extract edges in the image. 
2 Segmentation is the process of dividing an image into meaningful parts. This can be done manually by identifying 

regions of interest and then separating them from the rest of the image, or it can be done automatically using a 
variety of algorithms. 
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was a pivotal step. For the purpose of this research, the research team chose to use the red band 
as the input for the edge extraction, as this provided the best information in terms of single-band 
usage. The edge extraction layer was used as the primary layer for segmentation. After the 
creation of the edge layer, a contrast split segmentation was implemented. This segmentation 
method created image objects based on their dissimilarity to neighboring pixels, which was 
perfect for implementation on an edge layer. Figure 33 displays the final product. 
 

  

Figure 33. Contrast Split Segmentation 

The contrast split segmentation resulted in a rough image object that represented cracking. Image 
objects were classified according to their values and refined further. During classification, only 
the previously created edge layer was used, since it was the layer used during segmentation. 
While the specific value used in classification might change slightly between different areas, the 
crack distresses had a significantly larger value compared to surrounding features. To refine 
classification, a contrast split segmentation was performed for a second time to remove excess 
over capture. 
 
This first classification was a broad operation and was refined further due to over-capture. 
Cracks have distinct geometric features that can be used to distinguish between darker objects 
that might have also been picked up during the classification. First, cracks often display 
asymmetrical values with a large perimeter value. Second, cracks will be smaller objects when 
compared to their homogenized surroundings. Cracks will be present in relation to large slabs of 
concrete. Once classification is complete, eCognition allows for the extraction of centerlines 
depicted in Figure 34. 
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Figure 34. Shapefile Export 

Missed Classifications and Partial Classifications 
 
Unfortunately, not all cracks will be classified using this method, and manual cleanup will be 
necessary. Cracks that are not defined enough by image contrast are difficult to detect by this 
form of automated analysis. This is likely because their pixel values are still somewhat similar to 
their surrounding neighbors. When this happens, the whole crack is lost during classification. 
Also, there are cracks that have been partially sealed. It is impossible for this automated method 
to extract these instances of cracking without the help of a technician. Figure 35 displays both 
types of missed classification. Overall, out of the 34 cracks present in this subset, the automated 
process was able to fully extract 25 cracks, with 5 partial classifications and 4 missed 
classifications. 
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Figure 35. Missed Classification on Left, Partial on Right 

4.4.5.2  Manual Distress Analysis 

The research team’s initial evaluation of the data revealed that the imagery collected with the 
M210 at 2-mm GSD was most efficient in identifying a multitude of distresses as compared to all 
other airframes and sensors used for data collection. This led the research team to conduct 
manual distress analysis of all the test areas with the imagery captured at 2-mm GSD using 
ESRI’s ArcGIS software.  
 
The team followed similar steps to analyze the distresses for both AC and PCC pavements and 
referred to the ASTM D5340-20 and the handbook of distress categories to record the data 
accurately. Figure 36 represents the workflow followed for the manual analysis. 
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Figure 36. Manual Distress Analysis Workflow 

Figure 37 shows workflow images followed from Step 1 through Step 5 of the manual analysis. 
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Figure 37. Manual Data Analysis Workflow Images 

While the PCI rating color scheme is standard (following the PCI Rating Scale shown in 
Figure 2), for Tables 20 through 24, the resulting specific PCI values, as determined by FOG, 
DSV, and sUAS, are highlighted with a gradient (illustrated in Figure 3) to better visualize where 
within the limits each one rated. 
 
Test Area 1A 
 
For the manual analysis of Test Area 1A, which is the PCC apron, Flight 1 imagery was used. 
The sample size was 60 ft x 80 ft = 4,800 sq ft. The slab size was 10 ft x 20 ft = 200 sq ft. There 
was a total of 24 slabs in each sample unit (4 slabs across and 6 slabs down). Figure 38 illustrates 
these sample units. 
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Figure 38. Sample Units of Test Area 1A at WWD (The sample units 9 and 10 were analyzed for 
20 slabs [four slabs across and five slabs down] as opposed to 24 due to the missing imagery.) 

Sample units illustrated in Figure 38 were analyzed, and their PCI values are shown in Table 21. 

Table 21. The PCI Values of Test Area 1A at WWD 

Test 
Area 

Sample 
Number 

FOG 
PCI 

DSV 
PCI 

sUAS 
PCI 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 

1A 

1 76 77 72 

64 71 55 

2 68 82 41 
3 72 76 63 
4 78 81 83 
5 72 70 59 
6 60 78 49 
7 46 61 42 
8 59 53 40 
9 59 68 41 
10 50 62 63 

 
In Test Area 1A, the PCI values of FOG and DSV were greater than that of sUAS. One area of 
difference was joint seal damage, where the sUAS inspector reported high severity while the 
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FOG inspector reported low. If the sUAS severities were adjusted to low, then the PCI values 
would match. 
 
Other differences include the sUAS reporting no faulting, unlike FOG, and the sUAS not 
reporting many shrinkage cracks, while the FOG inspection reported 24% coverage. 

Test Area 1B 
 
For the manual analysis of Test Area 1B, which is the PCC taxilane, Flight 72 imagery was used. 
The sample size was 50 ft x 80 ft = 4,000 sq ft. The slab size was 10 ft x 20 ft = 200 sq ft. There 
was a total of 20 slabs in each sample unit (4 slabs across and 5 slabs down). Figure 39 illustrates 
these sample units. 
 

 

Figure 39. Sample Units of Test Area 1B at WWD 

Each sample unit illustrated in Figure 39 was analyzed and their PCI values are shown in 
Table 22. 

Table 22. The PCI Values of Test Area 1B at WWD 

Test 
Area 

Sample 
Number 

FOG 
PCI 

DSV 
PCI 

sUAS 
PCI 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 

1B 1 32 35 15 30 38 16 2 29 42 17 

In Test Area 1B, the PCI values of FOG and DSV were greater than that of sUAS. Among the 
differences noted were that the FOG inspection did not report any high-severity linear cracking 
or pop-outs, while the sUAS did. In addition, the sUAS analysis reported 55% patching 
coverage, while the FOG analysis reported only 21% coverage. 
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Test Area 2A 
 
For the manual analysis of Test Area 2A, which is the AC runway, Flight 56 imagery was used. 
The sample size was 50 ft x 100 ft = 5,000 sq ft. The runway sample units were divided into 
10N, 10C, and 10S, with eight sample units each. Figure 40 illustrates these sample units. 
 

 

Figure 40. Sample Units of Test Area 2A at WWD (The sample units 1, 2, 9, 10, 17, and 18 were 
not analyzed due to the missing imagery.) 

Sample units illustrated in Figure 40 were analyzed, and their PCI values are shown in Table 23. 

Table 23. The PCI Values of Test Area 2A at WWD 

Test 
Area 

Sample 
Number 

FOG 
PCI 

DSV 
PCI 

sUAS 
PCI 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 

2A- 
10S 

1 56 69 NA 

61 70 50 

2 63 68 NA 
3 64 71 50 
4 66 73 53 
5 67 73 49 
6 65 70 48 
7 58 67 48 
8 47 67 50 

2A- 
10C 

9 68 69 NA 

69 67 51 

10 68 65 NA 
11 71 67 53 
12 71 67 56 
13 67 64 49 
14 68 66 53 
15 69 66 44 
16 70 67 51 

2A-10N 17 62 69 NA 63 66 49 
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Test 
Area 

Sample 
Number 

FOG 
PCI 

DSV 
PCI 

sUAS 
PCI 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 
 
 
 

2A-10N 

18 65 69 NA  
 
 

63 

 
 
 

66 

 
 
 

49 

19 64 67 48 
20 63 66 49 
21 66 66 48 
22 63 58 47 
23 64 62 46 
24 56 69 58 

 
In Test Area 2A, the sUAS PCI value was lower than both FOG and DSV. The PCI values 
between all three data sets would have been similar, but the sUAS analysis indicated more 
raveling. Section 10S showed about the same amount of L&T cracking in the FOG inspection as 
the sUAS. However, in Section 10C the sUAS showed more L&T cracking, while in Section 
10N the FOG inspection showed more. 

Test Area 2B 
 
For the manual analysis of Test Area 2B, which is the AC taxiway, Flight 40 imagery was used. 
The sample unit was 70 ft x 93 ft = 6,510 sq ft. The actual sample size of the imagery was 68 ft x 
91 ft = 6,188 sq ft. Figure 41 illustrates these sample units. 

 

 
 

Figure 41. Sample Units of Test Area 2B at WWD  
(The sample unit 1 was not analyzed due to half-missing imagery.) 

Sample units illustrated in Figure 41 were analyzed, and their PCI values are shown in Table 24. 
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Table 24. The PCI Values of Test Area 2B at WWD 

Test 
Area 

Sample 
Number 

FOG 
Sample 

PCI 

DSV 
Sample 

PCI 

UAS 
Sample 

PCI 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

UAS 
Section 

PCI 

2B 1 46 55 NA 40 49 28 2 33 44 28 

In Test Area 2B, the sUAS PCI value continued to be lower than both FOG and DSV. This was 
largely attributed to medium- and high-severity alligator cracking reported in the sUAS data set, 
where the FOG inspection rated the alligator cracking low or medium severity. 

Test Area 2C 
 
For the manual analysis of Test Area 2C, which is the AC taxiway, Flight 16 imagery was used. 
The sample size was 50 ft x 10 ft = 5,000 sq ft. Figure 42 illustrates these sample units. 
 

 
 

Figure 42. Sample Units of Test Area 2C at WWD (The sample units 9 and 10 were not analyzed 
due to half-missing imagery.) 

Sample units illustrated in Figure 42 were analyzed and their PCI values are shown in Table 25. 

Table 25. The PCI Values of Test Area 2C at WWD 

Test Area Sample 
Number 

FOG 
Sample 

PCI 

DSV 
Sample 

PCI 

sUAS 
Sample 

PCI 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 
 
 

2C 
 
 

1 64 61 56  
 

55 
 
 

 
 

58 
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2 41 50 57 
3 63 64 49 
4 53 54 46 
5 58 62 46 
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Test Area Sample 
Number 

FOG 
Sample 

PCI 

DSV 
Sample 

PCI 

sUAS 
Sample 

PCI 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 
 
 

2C 

6 54 55 55  
 

55 

 
 

58  

 
 

52 
7 59 62 51 
8 58 54 59 
9 54 63 NA 
10 46 53 NA 

In Test Area 2C, the sUAS PCI value was comparable to both the FOG and DSV. The FOG 
inspection reported no weathering. Should that distress be added, the FOG PCI value would be 
51, similar to the sUAS. There were minor differences between the data sets in the reporting of 
cracking, with the sUAS reporting about 15% more than the FOG inspection. In addition, the 
sUAS did not report any shoving or swelling. 

Table 26 presents a summary of PCI values of each test area/section.  

Table 26. Summary of PCI Values at WWD 

Test Area FOG Section PCI DSV Section PCI sUAS Section PCI 
1A 64.00 71.00 55.00 
1B 30.00 38.00 16.00 

2A–10C 69.00 67.00 51.00 
2A–10N 63.00 66.00 49.00 
2A–10S 61.00 70.00 50.00 

2B 40.00 49.00 28.00 
2C 55.00 58.00 52.00 

While there were differences between FOG, DSV, and sUAS PCI results, they were not 
attributed to the data collection method. As the results indicate, distresses observed were the 
same across all platforms. Differences in PCI values were attributed to two factors: interpretation 
of the ASTM for PCI inspections and the method by which global distresses were observed. 
 
During a FOG PCI inspection or a distress takeoff from digital imagery, there is room for 
interpretation on many of the ASTM distress severities. For example, Figure 43 displays a joint 
spall on the PCC apron at WWD. 
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Figure 43. Joint Spall at WWD 

The spall depicted in Figure 43 is greater than 2 ft in length and is either a medium- or high- 
severity distress (ASTM International, 2020). Since there is no cracking associated with the 
spall, the determining factor for severity is the amount of foreign object debris (FOD) potential. 
The ASTM description for FOD potential for a medium-severity joint spall is “some FOD 
potential” and the description for high severity is “severely frayed.” Depending on the pavement 
inspector, one might consider this spall to be high-severity due to the amount of fraying. 
However, another pavement inspector might consider the spall to be medium-severity because 
the spall has been swept and there does not appear to be a high potential for future FOD. 
Additionally, there is some amount of estimation occurring for other distresses. Figure 44 
displays an example of the network of L&T cracking and a close-up image of one of those cracks 
on the AC apron at WWD. 
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Figure 44. Network of L&T Cracking at WWD 

The L&T cracking illustrated in Figure 44 is low or medium severity; the deciding factor is 
whether the crack has been sealed or has a mean width less than or equal to ¼ in. for low severity 
and greater than ¼ in. for medium severity (according to the ASTM). During the FOG 
inspection, all cracks that were on the border between low and medium severity were measured 
with a ruler to determine if the mean width was greater than ¼ in. During the DSV and sUAS 
distress takeoff, all cracks were measured using an electronic measuring tool. Depending on 
what point a crack’s width was measured and how often a crack was measured, severities for a 
crack could change from one inspection to the next. The FOG and sUAS inspection both resulted 
in an average of approximately 600 ft of L&T cracking per sample on the AC apron. 
 
With such a large amount of cracking, efficiency and airfield exposure had to be considered 
during the FOG inspection, and crack width measurements had to be limited. Therefore, 
inspectors made estimations during FOG inspections. In the case of DSV processing, ICC allows 
a pavement inspector to measure the width of a crack. However, the depth and intensity images, 
along with a poor measuring tool, make it difficult to get an accurate measurement during DSV 
inspections. In many instances, the pavement inspector must rely on their experience in 
performing FOG inspections to visually estimate the severity of a crack. In contrast, the 2-mm 
GSD from the sUAS allows crack widths to be accurately measured, and more measurements 
can be made to better identify the distress severity. 
 
Global distress ratings such as weathering, raveling, and joint seal damage also differ between 
data collection platforms. FOG inspectors can physically touch and test these distresses in the 
field, but producing a rating from digital imagery is more difficult. In the instance of the DSV, 
the pavement inspector used field notes to quantify global distresses that were collected by the 
DSV operator. An attempt to quantify these distresses was made from the sUAS imagery and is 
reflected in the analysis. Consequently, the distresses and severities differ from the FOG and 
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DSV. If field notes were used for the sUAS ratings, the standard deviation of PCI values between 
sUAS and FOG inspection was decreased. 
 
In summary, the FOG, DSV, and sUAS distress takeoffs were all performed by different 
pavement inspectors. In instances when the pavement inspector provided judgement, the FOG 
and DSV inspectors leaned towards the lower severities, while the sUAS pavement inspector 
leaned towards higher severities. The examples given in Figures 43 and 44 would require the 
same maintenance and rehabilitation, regardless of their severity, and the differences in severities 
resulted in differences between PCI values. 

4.5  PHASE 1 SUMMARY 

The testing and research performed during Phase 1 across multiple areas at WWD led to the 
conclusions presented in Table 27. 

Table 27. Summary Conclusions from Phase 1 Testing 

 

The M210 at 2-mm GSD was most efficient in identifying a multitude of 
distresses, as compared to all other airframes and sensors used for data 
collection. Therefore, any future 2-mm GSD data collected by the DJI M210 
RTK v2 and X7-35mm sensor in this report will be referred to as M210. 
However, this platform—along with all the platforms tested during this 
research effort—had inherent limitations with collecting data at the 
recommended GSD. 

 

Slow shutter speeds could cause nadir imagery to appear blurry. Shadows from 
buildings could result in lost data if shutter speed is not fast enough, making 
the analysis and evaluation more difficult.  

 

Distresses observed were the same across all platforms. Differences in PCI 
values were attributed to two factors: interpretation of the ASTM for PCI 
inspections and the method by which global distresses were observed. 

 

Crack widths could be accurately measured using sUAS-derived imagery, and 
several measurements could be made to better identify the distress severity in 
an office setting. 

4.5.1  Small Unmanned Aircraft Systems Data Capture Interim Recommendations 

Based on the field findings at the conclusion of Phase 1 testing, the following recommendations 
were made to improve the efficiency and effectiveness of data capture practices: 
 

• Extending the flight area boundaries beyond the edges of the test area will ensure full 
image coverage. 
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• DJI systems can “hover and capture” at low-altitude missions but need to be forced into 
“continuous capture” mode due to start-stop movements being too aggressive during 
“hover and capture.” 

• DJI sensors can drift on the yaw axis during missions; the pilot needs to be aware of this 
tendency and correct as needed. 

• Camera yaw should be in line with aircraft orientation. 
• The camera should be focused before the mission begins.  
• Focus should be set and locked through the duration of the operation. 
• Metering mode should be set to “Center Weighted Average” when able. 
• Camera shutter speed should be fast enough to reduce motion blur. 
• Camera feed and camera settings should be monitored throughout the mission. 
• The live feed can lag and display a poor-quality image, therefore, the data must be 

validated in the field on a separate device, such as a laptop. 
• Thermal imagery lacked the spatial resolution to accurately assess pavement distresses 

and was therefore dismissed from future testing. 
 
4.5.2  Small Unmanned Aircraft Systems Data Processing Interim Recommendations 

At the conclusion of Phase 1 testing, the recommendation for orthomosaic generation was to use 
a traditional three-step workflow as follows:  
 

1. Tie point/pass point generation and development, a bundle block adjustment, camera 
calibration, and ground control measurement 

2. Dense point cloud and mesh generation, setting the foundation for the orthomosaic  
3. Orthomosaic generation and review 

 
4.5.3  Small Unmanned Aircraft Systems Data Analysis and Evaluation Interim 
Recommendations 

At the conclusion of Phase 1 testing, the recommendation for analyzing the processed 
orthomosaic images was to utilize the following workflow: 
 

• Impose the PCI blocks on to the ortho before starting the analysis. These blocks represent 
the sample units in a section. 

• Identify distresses with a zoom ratio of 1:10 within the desired software. 
• Zoom in farther on imagery to identify the accurate widths of identified cracks. 
• Record all the distress-related data (e.g., distress type, severity, width/area, sample unit, 

slab number) within the attributes for consistency. This also reduces the time required to 
clean up the data after exporting it. 

 
4.6  RECOMMENDATIONS FOR PHASE 2 TESTING 

In addition to the interim recommendations, the research team made the following 
recommendations for Phase 2 testing: 
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• Test upgraded systems that allow longer flight times while carrying more robust payloads 
for more efficient data capture. 

• Validate that 2-mm GSD imagery is adequate for sUAS-based pavement distress 
analysis. 

• Reduce overlap settings on 2-mm GSD imagery and assess the quality of the resulting 
orthomosaic to improve operational efficiencies. 

• Test larger GSD imagery on more robust payloads to determine differences in resolution 
while introducing operational efficiencies. 

• Reduce overlap settings on 3-mm GSD imagery and assess the quality of the resulting 
orthomosaic to improve operational efficiencies. 

• Test the efficacy of reducing or removing the number of ground control points (GCPs).  
• Test additional sensors (i.e., LiDAR) to identify distresses that cannot be captured with 

RGB or thermal sensors. 
• Quantify the spatial resolution of the test platforms by evaluating resolving power. 

5.  AIRPORT TEST PROCEDURES AND RESULTS—PHASE 2 

The recommendations made during Phase 1 were tested and validated in Phase 2. Phase 2 sought 
to implement operational efficiencies of the data collection to ensure practicality. Once the 
research team selected airports and test sites, FOG inspections were executed at each test site and 
used as control data. DSV inspections complemented the FOG inspections at WWD, 
Savannah/Hilton Head International Airport (SAV), and Cincinnati/Northern Kentucky 
International Airport (CVG), followed by sUAS data collection at all test sites. DSV inspections 
were not conducted at Grosse Ile Municipal Airport (ONZ) or Custer Airport (TTF). 

5.1  AIRPORT SELECTION 

Phase 2 testing was conducted at five airports: WWD, SAV, CVG, ONZ, and TTF. Airport 
selection during Phase 2 included locations that offer different pavement surface types, varying 
pavement ages, unique distresses (not previously identified), and differing accessibility to the 
airport. The selected airports also encountered diverse environmental conditions throughout the 
year. Airport selection was conducted in four stages: 
 
Stage 1. WWD served as a continued testing location from Phase 1. 
 
Stage 2. SAV was chosen due to the research team’s existing relationship and approved airspace 
authorization with the airport. SAV is a Class C airspace and provided opportunity to identify 
additional pavement distresses that were not previously identified. 
 
Stage 3. CVG is in close proximity to Woolpert headquarters, which allowed the research team 
to mobilize additional sensors for testing. CVG also has an established relationship with the 
research team and is located in Class B airspace. 
 
Stage 4. ONZ and TTF were selected to validate operational efficiency parameters. ONZ and 
TTF also offered new distress types due to environmental conditions.  
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5.2  SMALL UNMANNED AIRCRAFT AIRFRAMES AND SENSORS 

A variety of additional airframes and sensors were tested during Phase 2. Table 28 shows a 
summary of these additional airframes, sensors, GSDs, data types, and software packages used in 
Phase 2. 

Table 28. Summary of Systems and Software Used in Phase 2 

Airframe Sensor 

GSD 
Parameters 

(mm) 
Test 

Location Data Type 
Image 

Processing 
Data 

Analysis 

M210 X7-35mm 2, 3 

WWD, 
SAV, 
CVG, 

ONZ, TTF RGB Pix4D 
Mapper 

Esri 
ArcMap, 

FAA 
PAVEAIR 

Wingtra 
One 

Sony 
RX1R-II 8 WWD 

HAMR Cannon 
EOS 5DS 4 WWD 

M210 Rock R2A N/A CVG LiDAR Rock 
Cloud 

Global 
Mapper, 

ESRI 

HAMR = Hybrid Advanced Multi-Rotor  
 
Rock Robotic R2A LiDAR, shown in Figure 45, can emit 240,000 pulses per second and is 
equipped with a Sony A5100 with a 16mm lens for point cloud colorization. This sensor can be 
carried by a number of airframes, but this study utilized the M210, as that airframe was already 
being used to test the Zenmuse X7. 
 

 

Figure 45. Rock Robotic R2A 

Wingtra WingtraOne, shown in Figure 46, was selected due to its unique hybrid system, which 
allows for VTOL operations for takeoff and landing and transitions into fixed-wing for flight. 
This system is equipped with a Sony RX1R-II; a full frame, 42-megapixel camera that can 
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achieve high resolutions even at high altitudes. The Wingtra WingtraOne will herein be referred 
to as Wingtra. 
 

  

 

(a)  (b) 

Figure 46. Wingtra One (a) with RX1R-II (b) 

Hybrid Advanced Multi-Rotor (HAMR™), shown in Figure 47, uses a full-frame DSLR 
(Digital Single-Lens Reflex) camera, the Canon EOS 5DS with a 24mm lens. The HAMR 
system combines electric and combustion power sources to sustain flight. The HAMR airframe 
was chosen to evaluate the viability of using a large, heavier, fuel-powered aircraft capable of 
long endurance flight for data collection, thereby increasing operational efficiencies by 
eliminating the need for repeated landings. 
 

  

 

Figure 47. The HAMR Airframe (a) with Canon EOS 5DS (b) 

5.3  TESTING METHODOLOGY 

The research team developed a comprehensive methodology for Phase 2 testing at WWD, SAV, 
CVG, ONZ, and TTF before mobilizing field crews to the test sites. Using the test areas at the 
airports selected for Phase 2, the research continued validation of previous findings, introduced 
operational efficiencies with data collection, and attempted to capture ASTM pavement 
distresses not previously identified during Phase 1. Table 29 shows a breakdown of the testing 
rationale performed at each airport.  
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Table 29. Phase 2 Testing Methodology 

Phase Airport Test Rationale Test Area 

2.1 WWD 

Operationally efficient system tests 
(HAMR/Wingtra) Runway 10/28 

Operationally efficient low overlap tests (DJI) WWD Area 2C (GA 
Asphalt Apron) 

2.2 SAV Validate 2-mm GSD imagery (M210) 
No RTK/standalone GPS, no ground control 

West End Runway 
10/28 and Taxiway 

GA4 

2.3 CVG 

Operationally efficient low-overlap tests (M210 
2-mm GSD), no ground control Remote Aircraft 

Parking and Apron 1 
South 

Operationally efficient low-overlap tests and 
validation (M210 3-mm GSD), no ground control 

LiDAR data collection, no ground control 

2.4 

ONZ Validation Testing of 2-mm GSD imagery 
derived via an M210, no ground control 

North half of Runway 
17/35 and 
Taxiway A 

TTF Validation Testing of 2-mm GSD imagery 
derived via an M210, no ground control 

Middle half of Runway 
03/31 

and Taxiway A, 
connector A2 and A3 

 
5.4  STAGE 1—WWD 

This section expands on the testing performed at WWD including test areas, control data, the use 
of ground control, sUAS data collection parameters, data processing workflows, and data 
analysis for PCI.  
 
5.4.1  Test Areas 

The test areas at WWD were the asphalt Runway 10/28 (4,998 ft x 150 ft) and a GA asphalt 
apron. These test areas were also previously evaluated as Test Areas 2A and 2C during Phase 1 
of this research effort. When possible, the research team purposely overflew these test areas to 
ensure full coverage across the edges of the pavement. This practice was established as a lesson 
learned from Phase 1. Data collection during this best practice resulted in a minimal loss of data 
around the test area boundaries. 
 
Figures 48 and 49 illustrate the two test areas selected for data collection. 
 

 
 

Figure 48. Full Runway 10/28 at WWD (Capture limits in yellow, test limits in red.) 
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Figure 49. Asphalt Apron Area at WWD (Capture limits in yellow, test limits in red.) 

5.4.2  Control Data—FOG and DSV 

Control data sets were collected through FOG and DSV surveys. Phase 1 and Phase 2 sUAS data 
collections were performed within 2 months of one another, and the two test sections that were 
evaluated in Phase 2 were the same as two of the test sections evaluated in Phase 1. Therefore, 
there was no need for additional FOG or DSV data collection. Field notes of global and elevation 
distresses were used to supplement the DSV data. 
 
The summary of field notes is as follows: 
 

• Runway 10/28 (AC Pavement)—100% low-severity weathering. 
• GA Apron (AC Pavement)—Low-severity raveling on entire apron. There is low-severity 

shoving within 2 ft of the PCC GA Apron joint. In this area, the raveling is medium 
severity. 

 
Generally, FOG and DSV PCI data were close in comparison, with the DSV PCI being slightly 
higher than that of the FOG PCI. This was attributed to a minor loss in total quantity of cracking, 
difficulty in determining crack widths, and inability to observe global and elevation distresses 
while performing a distress takeoff from the DSV’s intensity and depth imagery. 
 
5.4.3  Ground Control 

GCPs were RTK surveyed using a Trimble R8-3 GNSS receiver connected to a Virtual 
Reference Station (VRS). These data were used in the processing stage to ensure that the data 
sets were spatially accurate. Figures 50 and 51 show the numbers and locations of each point. 



 

62 

 

Figure 50. Eighteen GCP Locations over the Runway 10/28 at WWD 

 

Figure 51. Four GCP Locations over the GA Apron at WWD 

5.4.4  Small Unmanned Aircraft System Data Collection Parameters 

During Phase 2 data collection at WWD, the research team used two additional systems to 
collect imagery over the runway: the Wingtra and the HAMR. The Wingtra flight utilized a dual 
frequency GNSS receiver and used PPK for accurate airframe positioning. The M210 flights 
utilized a dual frequency GNSS receiver and used RTK for accurate airframe positioning. The 
HAMR does not have RTK or PPK capabilities and it’s autonomous GPS position was used. The 
data collected at GA Asphalt Apron area were refined from recommendations in Phase 1 and 
utilized an M210 at 2-mm GSD. While maintaining the minimum GSD requirements (2 mm) 
from Phase 1, Phase 2 testing introduced lower overlap settings to assess operational efficiencies. 
Table 30 presents the data collection parameters at WWD. 

Table 30. Data Collection Parameters for sUAS at WWD 

Flight # 
Test 
Area Airframe Sensor 

Data 
Type 

Overlap 
(Forward/Side

) 
Altitude 

(ft) 
GSD 
(mm) 

Actual Flight 
Time 
(min.) 

Actual 
# Photos 

1 RWY 
10/28 Wingtra Sony 

RXIR-II 

 
 

RGB 
 
 

80/60 172 8 10 414 
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Flight # 
Test 
Area Airframe Sensor 

Data 
Type 

Overlap 
(Forward/Side

) 
Altitude 

(ft) 
GSD 
(mm) 

Actual Flight 
Time 
(min.) 

Actual 
# Photos 

2 RWY 
10/28 HAMR Cannon 

EOS 5DS 

 
 
 
 
 
 
 
 
 
 

RGB 

80/60 75 4 30 1,323 

3* 2C (GA 
Apron) HAMR Cannon 

EOS 5DS 80 / 60 N/A 2 0 0 

4 2C (GA 
Apron) M210 X7- 35mm 60/60 59.59 2 29 557 

5 2C (GA 
Apron) M210 X7- 35mm 50/50 59.59 2 15 336 

6 2C (GA 
Apron) M210 X7- 35mm 40/40 59.59 2 10 241 

     Total Flying 
Time (Minutes) 94  

Flight 3 was not collected due to equipment issues.  
 
A total of five missions were successfully executed as part of data collection in Stage 1 at WWD. 
All flights collected RGB imagery. Operationally, the Wingtra could not fly lower due to 
manufacturer restriction; therefore, minimum GSD was 8 mm. The HAMR system appeared to 
have focus issues, which caused the imagery to be of insufficient quality. The integrated camera 
requires manual settings on the ground prior to flight. Therefore, the research team determined 
that a live view of the camera and in-flight camera adjustments are valuable assets while 
conducting sUAS-based pavement inspections. 
 
5.4.5  Resolving Power Test 

Throughout this research effort, the research team leveraged GSD values to compare the 
resolution of imagery collected by different sensors. GSD, however, is not the sole factor that 
indicates the resolving power of a sensor lens combination. The actual resolving power (the 
smallest feature able to be distinctly captured) of a camera system depends on many variables, 
including not only the GSD but also lens sharpness (or lack thereof), the camera’s electronics 
(which can introduce image compression and gamma correction artifacts), missed focus, and the 
stability of the airframe and its sensor. Higher sensor pixel densities alone do not provide any 
added value if the system as a whole produces images that are not sharp enough to resolve fine 
features. 
 



 

64 

Early in the research, the team determined that a 2-mm GSD, as collected by the M210, was 
sufficient in identifying fine pavement surface features. For the purpose of repeatability and 
duplication of the results with a different airframe and sensor, the research team attempted to 
turn this GSD into a more objective number describing the resolving power of the imagery by 
using an ISO-12233:2000 high-contrast test chart. The research team printed the test chart 
(shown in Figure 52) at 24 in. x 48 in. and placed it on the ground during imagery acquisition. 

 

Figure 52. Test Chart from ISO-12233:2000 

Subsequent analysis of the test chart as captured in the field shows that most of the line samples 
start to become indistinguishable at or near 200 lines per picture height. With a picture height of 
24 in. as measured on the ground (approximately 610 mm), the analysis suggested that the M210 
at 2-mm GSD has the ability to resolve high contrast features down to approximately 3 mm in 
size.  
 
Figure 53 illustrates the test chart that was placed in field at WWD while collecting imagery with 
the M210 at a GSD of 2 mm and Figure 54 illustrates a closeup of Figure 53.  
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Figure 53. Test Chart from ISO-12233:2000 at WWD at 2-mm GSD 

 

Figure 54. Closeup of Figure 53 Showing the Resolution Limit at 3 mm 

This test was not duplicated for any other sensors used throughout this research. 
 
5.4.6  Small Unmanned Aircraft System Data Processing 

The processing team successfully generated orthomosaics with no loss of data or stitching 
artifacts when the overlap settings were reduced to 40/40. Table 31 presents the results of 
processed orthomosaics and their viability for distress analysis.   
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Table 31. Processing Results for sUAS Data at WWD 

Flight 
Number System Overlap GSD 

(mm) 
Successful 

Orthomosaic 
Acceptability 
for Analysis 

1 Wingtra 80/60 8   
2 HAMR 80/60 4   
4* M210 60/60 2   
5* M210 50/50 2   
6* M210 40/40 2   

*Color banding was identified in the imagery of Flights 4, 5, and 6. Banding was a result of auto exposure during 
imagery collection while transitioning from a bright, concrete pavement to darker asphalt. This does not affect the 
resulting pavement distress analysis. 
 
5.4.7  Small Unmanned Aircraft System Data Analysis and Evaluation 

Full Runway 10/28 
 
For the purposes of evaluating operational times, the capture limits during Phase 2 encompassed 
the entire runway 10/28 at WWD. However, the test limits only included three sections: 10N, 
10C, and 10S, with eight sample units each as illustrated in Figure 55. Each sample unit was 50 
ft x 100 ft (5,000 sq ft).  
 

 

Figure 55. Sample Units of Runway 10/28 at WWD 

Each sample unit illustrated in Figure 55 was analyzed, and their PCI values are shown in 
Table 32. 
  



 

67 

Table 32. The PCI Values of Runway 10/28 at WWD 

Section 
Sample 
Number 

FOG 
PCI 

DSV 
PCI 

sUAS PCI 
(Wingtra) 

sUAS 
PCI 

(HAMR) 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS Section 
PCI 

(Wingtra) 

sUAS 
Section PCI 

(HAMR) 

10N 

17 62 69 51-66 55-69 

63 66 51-66 53-68 

18 65 68 52-67 55-69 
19 64 67 52-66 54-68 
20 63 66 50-66 51-66 
21 66 66 51-66 54-68 
22 63 58 50-65 52-66 
23 64 62 46-62 51-66 
24 56 69 56-70 57-71 

10C 

9 68 69 54-68 54-68 

69 67 54-68 56-70 

10 68 65 55-69 56-70 
11 71 67 56-70 58-72 
12 71 67 55-69 58-72 
13 67 64 52-67 54-69 
14 68 66 53-68 56-70 
15 69 66 52-67 55-69 
16 69 67 52-67 59-72 

10S 

1 56 69 53-67 54-68 

60 70 54-68 55-69 

2 53 68 58-71 57-70 
3 64 71 54-68 54-68 
4 66 73 56-70 57-70 
5 67 73 54-68 56-70 
6 65 70 53-68 54-69 
7 58 67 53-68 56-69 
8 47 67 53-68 54-68 

Note: Full runway data were not analyzed and were only collected for full-scale sUAS operation evaluation. 
 

In addition to field findings for newly introduced systems, the runway analysis indicated that the 
resolutions of Flights 1 and 2 were not adequate in identifying 100% of the low-severity 
cracking. Additionally, crack widths were not accurately measured when performing the sUAS 
distress takeoff, due to the lower resolution and lack of image clarity. Figure 56 shows a 
comparison of Flight 1 and Flight 2 at WWD. 
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Flight 1 - WingtraOne | Sony RXIR-II |  
80/60 Overlap | 8-mm GSD 

Flight 2 - HAMR | Cannon EOR 5DS |  
80/60 Overlap | 4-mm GSD 

  

Figure 56. Flight 1 (a) vs Flight 2 (b) at WWD 

Assumptions could have been made to estimate crack severities, such as rating cracks with 
apparent crack seal as low severity and the remaining cracking as medium severity. However, 
due to the objective of this research effort, this was not considered. Instead, the research team 
calculated PCI ranges based on what was physically measured and quantified during the distress 
takeoff. The top end of the PCI range considers all of the L&T cracking as low severity, and the 
bottom end of the PCI range considers all of the L&T cracking as medium severity. Therefore, 
due to low-quality imagery and its inadequacy for analysis, Wingtra and HAMR were not 
considered for further testing. 
 
GA Asphalt Apron Area 2C 
 
The sample size was 50 ft x 100 ft (5,000 sq ft), and eight samples were analyzed (as illustrated 
in Figure 57). For purposes of data comparison, sample units 9 and 10 were not analyzed in 
Phase 2 due to the lack of imagery in Phase 1 data. 
 

a b 
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Figure 57. Sample Units of GA Asphalt Apron at WWD 

Table 33 shows the PCI values of analyzed sample units. 

Table 33. The PCI Values of Asphalt Apron at WWD 

Section 
Sample 
Number 

FOG 
PCI 

DSV 
PCI 

sUAS 
PCI 

(60/60) 

sUAS 
PCI 

(50/50) 

sUAS 
PCI 

(40/40) 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 
(60/60) 

sUAS 
Section 

PCI 
(50/50) 

sUAS 
Section 

PCI 
(40/40) 

30 

1 64 61 59 60 61 

56 58 51 52 50 

2 41 50 49 50 41 
3 63 64 48 48 49 
4 53 54 50 53 47 
5 58 62 50 51 48 
6 54 55 48 50 49 
7 59 62 49 50 51 
8 58 54 55 57 57 

 
The GA Asphalt Apron was an aged pavement with a 10+-year-old surface seal and crack seal 
applied. As shown in Figure 58, these aged/weathered maintenance and rehabilitation (M&R) 
applications have deteriorated and made observations of the excessive amounts of cracking 
difficult to track in the field. 
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Figure 58. Asphalt Apron Pavement Deterioration at WWD 

Flights 4, 5, and 6 demonstrated the ability to accurately perform a PCI distress survey while 
increasing operational efficiencies by reducing the amount of overlap between the images. The 
PCI values for these flights were all within 2 points of one another and averaged to be 5 points 
lower than the FOG control data set. While there was an 8% reduction in total amount of L&T 
cracking from Flight 4 to Flight 5 and an additional 2% reduction from Flight 5 to Flight 6, all 
three flights were able to identify significantly more cracking than was observed in the FOG 
survey. As shown in Figure 59, the slight variance between the sUAS flights did not affect 
overall PCIs, but rather, small differences could be attributed to where (or at how many 
locations) a pavement inspector measured a crack’s width to determine its severity. 
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Flight 4 - DJI M210 RTK v2 | 
X7-35mm | 60/60 Overlap |  

2-mm GSD 

Flight 5 - DJI M210 RTK v2 | 
X7-35mm | 50/50 Overlap |  

2-mm GSD 

Flight 6 - DJI M210 RTK v2 | 
X7-35mm | 40/40 Overlap |  

2-mm GSD 

   

Figure 59. Flight 4 (a) vs Flight 5 (b) vs Flight 6 (c) at WWD 

In conclusion, there were no identifiable functional differences between the 60/60, 50/50, and 
40/40 overlaps, and the differences in PCI values are indicative of inspector differences and fall 
within the ASTM standard deviation. The key highlight from this phase of data collection at 
WWD was the added benefit of being able to inspect an area of pavement in an office setting 
with such precision and certainty that distresses are not missed. 
 
Figure 60 demonstrates how difficult it would be to accurately track the quantity of cracking in 
the field. The ability to digitize and track distresses demonstrates superiority over manually 
measuring distresses in the field or performing a distress takeoff from the DSV laser-based 
imagery. 

a b c 
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Figure 60. Example of sUAS Distress Analysis for GA Apron at WWD 

5.5  STAGE 2—SAV 

This section expands on the testing performed at SAV including test areas, control data, the use 
of ground control, sUAS data collection parameters, data processing workflows, and data 
analysis for PCI. 
 
5.5.1  Test Areas 

The test areas at SAV included the west end of Runway 10/28 and Taxiway GA4. Figures 61 and 
62 illustrate the capture areas (yellow) and test areas (red) selected for data collection. 
 

 

Figure 61. West End of Runway 10/28 at SAV 
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Figure 62. Taxiway GA4 at SAV 

5.5.2  Control Data—FOG and DSV 

Control data sets were collected through FOG and DSV surveys at SAV. Procedures followed 
were identical to those performed at WWD.  
 
A summary of field notes that inspectors recorded to supplement the DSV data is as follows: 
 

• Runway 10/28—100% Low-severity weathering 
• Runway 10/28—100% Low-severity joint seal damage 
• Taxiway GA4—Minimal low-severity blowups along the centerline 

 
FOG and DSV PCI data were close in comparison on the Runway 10/28 sections with very 
similar distresses, severities, and quantities being recorded. However, due to the inability to 
accurately quantify or determine where the low-severity blowups were located on Taxiway GA4 
(based on the field notes), and since these distresses were not observed in the intensity imagery 
from the DSV, these distresses were not captured in the DSV distress analysis. Consequently, the 
DSV PCI was 5 points higher than the FOG PCI for the PCC Taxiway GA4 section. 
 
5.5.3  Ground Control 

GCPs were RTK surveyed using a Trimble R8-3 GNSS receiver connected to a local base station 
at SAV. These data were assessed in the processing workflow to evaluate the requirement of 
having GCPs for a pavement distress analysis. Figures 63 and 64 show the numbers and 
locations of each point. 
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Figure 63. Five GCP Locations over Runway 10/28 at SAV 

 

Figure 64. Five GCP Locations over Taxiway GA4 at SAV 

5.5.4  Small Unmanned Aircraft System Data Collection Parameters 

The data collection at SAV used an M210 at 2-mm GSD. These data were collected to validate 
the 2-mm orthoimagery at a high overlap of 75/60. Table 34 presents the data collection 
parameters. 

Table 34. Data Collection Parameters for sUAS at SAV 

Flight 
Number 

Test 
Area Airframe Sensor 

Data 
Type 

Overlap 
(Forward/Side) 

Altitude 
(ft) 

GSD 
(mm) 

Actual 
Flight 
Time 
(min) 

Actual 
Number 
Photos 

1 
W End 
RWY 
10/28 

M210 X7- 
35mm RGB 75/60 59.59 2 68 1,543 

2* 
TXY 
B & 

Apron 
M210 X7- 

35mm RGB 75 / 60 59.59 2 0 0 

3 TWY 
GA4 M210 X7- 

35mm RGB 75/60 59.59 2 52 1,213 

     Total Flying 
Time (Minutes) 120  

Note: Flight 2 was not collected due to airspace limitations.  
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Two flights were successfully executed as part of the data collection in Stage 2 at SAV. All 
completed flights collected RGB imagery. Due to connectivity issues, RTK on the sUA was not 
utilized for either flight at SAV.  
 
5.5.5  Small Unmanned Aircraft System Data Processing 

While ground control was surveyed, both data sets were processed with and without using those 
points. The processed data without GCPs indicated negligible geographical shift with no impact 
on identifying and analyzing the pavement distresses. Additionally, data processing without 
GCPs or RTK indicated negligible shift in relation to the established pavement sample units. It 
was determined that standalone GPS provided adequate absolute accuracy for pavement analysis. 
The benefit of this lies in reduced survey data collection time and was considered for further 
validation testing.  
 
Table 35 presents the results of processed orthomosaics and their viability for distress analysis. 

Table 35. Processing Results for sUAS Data at SAV 

Flight 
Number System Overlap GSD 

(mm) 
Successful 

Orthomosaic 
Acceptability 
for Analysis 

1 M210 75/60 2   
3 M210 75/60 2   

 
5.5.6  Small Unmanned Aircraft System Data Analysis and Evaluation 

West End of Runway 10/28 
 
Runway 10/28 is 150 ft wide and a mix of AC and PCC pavement. The central sections are PCC, 
and the north and south sections are AC. The pavement is divided into north, central, and 
southern sections and further divided into sample units as shown in Figure 65. The size of the 
sections and sample units vary. While the capture limits included the western 1,250 ft of the 
runway, the test limits only encompassed north sections 01, 02, and 03, south sections 01, 02, 
and 03, and central sections 01, 02, 03, 04, 05, and 06. 
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Figure 65. Sample Units of Runway 10/28 at SAV 

Table 36 shows the PCI values of analyzed sample units. 

Table 36. The PCI Values of Runway 10/28 at SAV 

Section 
Sample 
Number 

FOG 
Sample 

PCI 

DSV 
Sample 

PCI 

sUAS 
Sample 

PCI 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 

10C 

01 84 87 80 84 84 78 
02 92 95 87    
03 84 81 71    
04 83 85 78    
05 83 82 77    
06 83 82 79    

10N 
01 69 70 68 69 68 67 
02 69 69 67    
03 69 67 66    

10S 
01 68 74 65 73 72 69 
02 68 74 68    
03 79 70 72    

 
The observed distresses and overall PCIs on Runway 10/28 were comparable between all data 
collection methods. In all three sections, the sUAS PCIs were slightly lower than those of the 
FOG and DSV. 
 
In Section 10C of the PCC pavement, patching, shrinkage cracking, linear cracking, joint seal 
damage, joint spalling, and corner breaks were observed across FOG, DSV, and sUAS. The 
research team attributed the differences in PCI in this section to a 30% increase in shrinkage 
cracking and an increase in patching severity in the sUAS analysis.  
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Joint reflective cracking, weathering, and L&T cracking were observed on both of the asphalt 
overlay over Portland cement concrete (APC) pavement areas (Sections 10N and 10S). The 
differences in PCI in the AC sections were attributed to a 6% increase in overall cracking, with 
2% more of the cracking recorded as medium severity in the sUAS analysis. It is worth noting 
that the joint seal damage and weathering previously added as supplemental data from field notes 
at WWD were analyzed during the sUAS distress takeoff. This analysis yielded the same results 
as the FOG inspection. Figure 66 illustrates an example of distress identified on Runway 10/28 at 
SAV. 
 

 

Figure 66. Distress Example on Runway 10/28 at SAV 

Overall, the differences between the sUAS and control data sets were minor and are attributed to 
being able to spend more time analyzing the pavement distresses in an office setting. 
 
Taxiway GA4 
 
Taxiway GA4, a mix of AC and PCC pavement, was broken into sample units, as illustrated in 
Figure 67. 
 

Figure 67. Sample Units of Taxiway GA4 at SAV 

Each of the seven sample units was analyzed, and their PCI values are shown in Table 37.  
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Table 37. The PCI Values of Taxiway GA4 at SAV 

Section 
Sample 
Number 

FOG 
Sample 

PCI 

DSV 
Sample 

PCI 

sUAS 
Sample 

PCI 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 

20 

1 53 67 58 

69 74 72 

2 70 77 76 
3 70 74 71 
4 73 76 76 
5 73 76 76 
6 78 77 78 
7 68 68 66 

 
Identical distresses were observed on Taxiway GA4 as on Runway 10/28. The sUAS PCI was 3 
points higher than that of the FOG PCI, with the difference directly attributed to three, low-
severity blowups recorded in the FOG survey that were not observed in the sUAS data. Figure 68 
displays sample unit 1, where two of the blowups were recorded in the FOG survey. 
 

 

Figure 68. Sample Unit 1 of Taxiway GA4 at SAV 

While the associated linear cracking was observed, there was no evidence of a blowup along the 
centerline as indicated in the field notes. Additional research is required to capture depth 
distresses, such as these blowups. Figure 69 illustrates an example of distress identified on 
Taxiway GA4 at SAV. 
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Figure 69. Distress Example on Taxiway GA4 at SAV 

5.6  STAGE 3—CVG 

This section expands on the testing performed at CVG including test areas, control data, the use 
of ground control, sUAS data collection parameters, data processing workflows, and data 
analysis for PCI. 
 
5.6.1  Test Areas 

The test area at CVG was the Remote Aircraft Parking Apron 1 South. Figure 70 illustrates the 
capture areas (yellow) and test areas (red) that were selected for data collection. 
 



 

80 

 

Figure 70. Remote Aircraft Parking Apron 1 South at CVG 

5.6.2  Control Data—FOG and DSV 

Control data sets were collected through FOG and DSV surveys, and identical procedures were 
followed to those performed at WWD and SAV. A summary of field notes recorded to use as 
supplemental data to the DSV data is as follows: 
 

• Apron—Section 10 (PCC Pavement)—100% High-severity joint seal damage 
• Apron—Section 20 (AC Pavement)—100% Medium-severity weathering 
• Apron—Section 30 (AC Pavement)—100% Medium-severity weathering 
• Apron—Section 40 (AC Pavement)—100% Low-severity weathering 

 
As seen at WWD, the DSV PCI values for Sections 10, 20, and 30 were higher than the FOG 
PCI values. This was attributed to the poor resolution of the intensity and depth imagery, 
resulting in some of the DSV distresses being rated at a lesser severity than the FOG distresses. 
Section 40 of the apron experienced the same PCI value between the FOG and DSV surveys. 
Since this was a newer pavement with low-severity weathering and minimal other distresses, the 
weathering was the largest contribution to the PCI deductions and minimized the impact of the 
cracking distresses. 
 
5.6.3  Ground Control 

GCPs were RTK surveyed using a Trimble R8-3 GNSS receiver connected to a VRS. These data 
were not used in the production of the imagery that was analyzed and were only collected as a 
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backup for use in image processing if the resulting imagery was not spatially accurate. Figure 71 
shows the number and locations of each point. 
 

 

Figure 71. Five GCP Locations Over the Remote Aircraft Parking Apron 1 South at CVG 

5.6.4  Small Unmanned Aircraft System Data Collection Parameters 

The data collection at CVG used an M210 for RGB imagery and a Rock R2A sensor for LiDAR. 
For the RGB imagery, the research team aimed to further validate the data acquired at lower 
overlap settings and to introduce 3-mm GSD. Table 38 presents the data collection parameters. 
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Table 38. Data Collection Parameters for sUAS at the Remote Aircraft Parking Apron 1 South  
at CVG 

Flight 
Number Airframe Sensor 

Data 
Type 

Overlap 
(Forward/ 

Side) 
Altitude 

(ft) 
GSD 
(mm) 

Actual 
Flight 
Time 
(min) 

Actual 
Number 
Photos 

1 M210 X7- 
35mm 

RGB 

30/30 58.65 2 97 1,975 

2 M210 X7- 
35mm 30/30 87.97 3 44 880 

3 M210 X7- 
35mm 20/20 58.65 2 64 1,517 

4 M210 X7- 
35mm 20/20 87.97 3 31 666 

5 M210 Rock 
R2A 

Lidar 

5/33 39 N/A N/A N/A 

6 M210 Rock 
R2A 5/33 60 N/A N/A N/A 

7 M210 Rock 
R2A 5/33 145 N/A N/A N/A 

8 M210 X7- 
35mm RGB 40/40 87.97 3 47 1,199 

 
A total of eight flights were successfully executed as part of data collection, three of which were 
flown to collect LiDAR, and the remaining five to collect RGB imagery. The LiDAR flight 
parameters were developed to derive a certain point density, with an ortho being a secondary 
derivative if possible. However, due to time constraints, lower overlap was collected, which did 
not yield imagery that could be processed into an ortho. 
 
No operational issues were encountered during data collection at CVG. However, Flight 4 was 
repeated at a later time due to poor image quality during the first attempt. As a result, the 
research team optimized the field Quality Assurance/Quality Control (QA/QC) procedures. The 
initial processing for data collected with 30/30 overlap indicated loss of data in the orthomosaic. 
For these reasons, an overlap of 40/40 was added and collected along with the repeated Fight 4.  
 
5.6.5  Light Detection and Ranging Data 

LiDAR was introduced to identify texture and vertical distresses at CVG. The LiDAR data 
collection had no issues. LiDAR processing involves multiple steps to achieve accurate elevation 
information: 
 
Airborne GPS Processing. In this process, kinematic corrections for the aircraft position are 
resolved using aircraft GPS and static ground GPS (1-Hz) for each geodetic control (base station) 
within the test limits. 
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Inertial Measurement Unit (IMU) Processing. Post processing of the IMU system data is 
completed to compute an optimally accurate blended navigation solution based on Kalman 
filtering technology, or the Smooth Best Estimate of Trajectory (SBET).  
 
LiDAR Point Processing and Quality Control. Once the data acquisition, GPS, and IMU 
processing are complete, a formal data reduction process occurs that includes:  
 

• Calculating laser point position by associating SBET position to each laser point return 
time, scan angle, intensity, etc. The raw laser point cloud data are created for the entire 
survey; each point will maintain the corresponding scan angle; return number (echo); 
intensity; and x, y, z information. 

• Ground and nonground points are classified and statistical absolute accuracy is assessed 
via direct comparisons of ground classified points to the ground control (RTK survey 
data). 

• Data are then converted to orthometric elevations and the appropriate map projection. 
• Relative accuracy is tested using ground classified points per each flight line. 
• Additional ground models can then be created, such as the DEM shown in Figure 72. 

 

 

Figure 72. A DEM Derived from LiDAR Point Cloud at CVG 
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Figure 73 illustrates a sample cross section through both an RGB and a LiDAR data set. The 
results from this specific flight (Flight 5) indicated that LiDAR lacked the point density 
(resolution) to accurately determine crack depth. 
 

Cross Section 
through RGB 
Orthomosaic 

 

Cross Section 
through 
LiDAR 

 

Figure 73. Cross Section Through a Crack of LiDAR Data 

5.6.6  Small Unmanned Aircraft System Data Processing 

The research team introduced a combination of variables and sensors in Stage 3 of testing. The 
RGB sensors tested new overlap and GSD values, while the LiDAR sensor was tested at 
different altitudes and flying speeds. As a result, the research team found holes and gaps in some 
of the processed data. Flight 4 processing generated an orthomosaic, but stitching issues during 
the automatic tiling process resulted in the orthomosaic being too incomplete for analysis. 
Alternatively, while it was still possible to generate a full orthomosaic through manual stitching 
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of the images, a significant amount of time is needed to accomplish the desired results. Due to 
these reasons, Flight 8 was introduced in the test plan to collect data at 40/40 overlap and 3-mm 
GSD. This parameter led to generating a complete orthomosaic acceptable for analysis. 
 
Table 39 presents a summary of all processed flights for RGB data. Figures 74 through 77 
illustrate the orthomosaic results of Flights 1, 2, 4, and 8. Processing for Flight 3 completely 
failed due to a combination of large GSD (small image footprint) and low overlap. 

Table 39. Processing Results for sUAS RGB Data at CVG 

Flight 
Number System Overlap 

GSD 
(mm) 

Successful 
Orthomosaic 

Acceptable 
for Analysis 

1 M210 30/30 2   
2 M210 30/30 3   
3 M210 20/20 2   
4 M210 20/20 3   
8 M210 40/40 3   

Flight 1 
DJI M210 RTK v2 | X7-35mm | 30/30 Overlap | 2-mm GSD 
Successful Orthomosaic: No; minor gaps were present. 
Acceptable for Analysis: Yes; gaps were in areas not being analyzed. 
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Figure 74. Flight 1 at CVG 

Flight 2 
DJI M210 RTK v2 | X7-35mm | 30/30 Overlap | 3-mm GSD 
Successful Orthomosaic: Yes; no gaps in the orthomosaic due to larger image footprint. 
Acceptable for Analysis: Yes. 



 

87 

 

Figure 75. Flight 2 at CVG 

Flight 3 
DJI M210 RTK v2 | X7-35mm | 20/20 Overlap | 2-mm GSD 
Successful Orthomosaic: Processing completely failed due to a combination of small GSD 
(leading to a small image footprint) and low overlap. 
Acceptable for Analysis: No. 
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Flight 4 
DJI M210 RTK v2 | X7-35mm | 20/20 Overlap | 3-mm GSD 
Successful Orthomosaic: Yes; however, there are many gaps within the orthomosaic. 
Acceptable for Analysis: No. 
 

 

Figure 76. Flight 4 at CVG 
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Flight 8 
DJI M210 RTK v2 | X7-35mm | 40/40 Overlap | 3-mm GSD 
Successful Orthomosaic: Yes. 
Acceptable for Analysis: Yes. 
 

 

Figure 77. Flight 8 at CVG 

Table 40 presents a summary of all processed flights for LiDAR data. Flights 5, 6, and 7 did not 
have enough side overlap to generate an orthomosaic from the RGB images. However, Figures 
78 through 80 illustrate the LiDAR point densities for these flights. Further research is required 
to assess the viability of LiDAR data in PMP inspections. Section 7 details these research gaps 
and recommendations.  
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Table 40. Processing Results for sUAS LiDAR Data at CVG 

Flight 
Number System 

Side 
Overlap 

Minimum 
Density 

(points/m2) 
Successful 

Orthomosaic 
Acceptability 
for Analysis 

5 M210 | Rock R2A 33 3,355  Further 
research 
required 

6 M210 | Rock R2A 33 1,633  
7 M210 | Rock R2A 33 676  

 
Flight 5 
DJI M210 RTK v2 | Rock R2A | 33% Side Overlap | 3,355 Minimum points/m2 Density 
Successful Orthomosaic: Not applicable. 
Acceptable for Analysis: Further research required. 
 

   

Figure 78. Flight 5 at CVG 

Flight 6 
DJI M210 RTK v2 | Rock R2A | 33% Side Overlap | 1,633 Minimum points/m2 Density 
Successful Orthomosaic: Not applicable. 
Acceptable for Analysis: Further research required. 
 

a b c 
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Figure 79. Flight 6 at CVG 

Flight 7 
DJI M210 RTK v2 | Rock R2A | 33% Side Overlap | 676 Minimum points/m2 Density 
Successful Orthomosaic: Not applicable. 
Acceptable for Analysis: Further research required. 
 

   

Figure 80. Flight 7 at CVG 

5.6.7  Small Unmanned Aircraft System Data Analysis and Evaluation 

Remote Aircraft Parking Apron 1 South 
The Remote Aircraft Parking Apron 1 South is approximately 580,000 sq ft and a mix of APC 
and PCC pavements. The pavement is divided into four sections and further divided into sample 
units as shown in Figure 81. Section 10 is PCC pavement with 20 samples. Sections 20, 30, and 
40 are APC pavement. The size of the sections and sample units vary. While the capture limits 
included the entire Remote Aircraft Parking Apron 1 South, the test limits encompassed sections 
10 and 40, and only portions of sections 20 and 30. 

a b c 

a b c 
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Figure 81. Remote Aircraft Parking Apron 1 South Sample Units at CVG 

Tables 41 through 44 show the PCI values of analyzed samples. 

Table 41. The PCI Values of Section 10 at CVG 

Section 
Sample 
Number 

FOG 
PCI 

DSV 
PCI 

sUAS PCI 
(Flight 1) 

sUAS 
PCI 

(Flight 2) 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 
(Flight 1) 

sUAS 
Section 

PCI 
(Flight 2) 

 
 
 
 
 
 
 
 
 
 

10 
 
 
 
 
 
 
 
 
 

001 52 54 52 55  
 
 
 
 
 
 
 
 

78 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

80 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

82 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

83 
 
 
 
 
 
 
 
 
 
 

002 64 65 69 69 
003 60 65 72 72 
004 63 67 73 73 
005 83 88 91 91 
006 87 87 89 89 
007 88 83 85 85 
008 88 88 86 86 
009 86 84 88 88 
010 82 88 85 91 
011 85 87 85 85 
012 87 88 88 88 
013 83 87 84 84 
014 83 88 88 88 
015 83 81 86 88 
016 77 83 86 86 
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Section 
Sample 
Number 

FOG 
PCI 

DSV 
PCI 

sUAS PCI 
(Flight 1) 

sUAS 
PCI 

(Flight 2) 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 
(Flight 1) 

sUAS 
Section 

PCI 
(Flight 2) 

 
 

10 

017 83 88 85 85  
 

78 

 
 

80 

 
 

82 

 
 

83 018 82 84 85 86 
019 79 80 80 80 
020 56 60 68 70 

Table 42. The PCI Values of Section 20 at CVG 

Section 
Sample 
Number 

FOG 
PCI 

DSV 
PCI 

sUAS PCI 
(Flight 1) 

sUAS 
PCI 

(Flight 2) 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 
(Flight 1) 

sUAS 
Section 

PCI 
(Flight 2) 

20 

025 37 43 43 43 

47 56 46 48 

026 41 45 44 43 
027 44 60 41 41 
028 48 58 46 46 
029 47 61 16 51 
030 49 59 48 43 
031 56 63 56 55 
032 48 63 64 62 
041 44 51 48 48 
042 53 55 53 54 
043 43 56 46 42 
044 47 58 51 50 

Table 43. The PCI Values of Section 30 at CVG 

Section 
Sample 
Number 

FOG 
PCI 

DSV 
PCI 

sUAS PCI 
(Flight 1) 

sUAS 
PCI 

(Flight 2) 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 
(Flight 1) 

sUAS 
Section 

PCI 
(Flight 2) 

30 

076 30 32 37 38 

28 31 27 27 

077 31 33 37 37 
078 30 25 36 36 
080 31 32 39 40 
081 35 35 27 28 
082 23 34 40 40 
083 33 30 22 22 
084 20 34 23 23 
085 22 26 2 3 
086 29 32 18 19 
087 23 28 18 19 
088 28 32 22 18 
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Table 44. The PCI Values of Section 40 at CVG 

Section 
Sample 
Number 

FOG 
PCI 

DSV 
PCI 

sUAS PCI 
(Flight 1) 

sUAS 
PCI 

(Flight 2) 

FOG 
Section 

PCI 

DSV 
Section 

PCI 

sUAS 
Section 

PCI 
(Flight 1) 

sUAS 
Section 

PCI 
(Flight 2) 

40 

112 90 87 90 89 

88 88 87 86 

113 89 86 86 85 
114 89 87 87 86 
115 87 88 88 86 
116 84 88 83 82 
117 86 90 89 87 

The four test sections at CVG were diverse in terms of deterioration. While the airport was not 
actively using any of these sections at the time of this research, Section 10 and Section 20 were 
better maintained and represented typical airfield pavements. Regardless, all four sections 
experienced very similar PCI results between each data collection method.  
 
The global distresses were not supplemented into the data set from field notes, but, rather, were 
analyzed from the imagery. There was an instance where the sUAS data did not match the FOG 
data in Section 10. The severity of joint-seal damage was split between medium and high 
severity, instead of 100% high severity recorded in the FOG data. However, field notes indicate 
oxidation or hardening of the joint seal, which is only able to be observed by physically touching 
the joint seal.  
 
Section 10 also included a new distress that had not been observed at WWD or SAV: durability 
cracking. Only two out of the 1,000+ inspected slabs displayed signs of durability cracking. Both 
were identified in the sUAS analysis, while only one was recorded in the FOG collection. 
 
5.7  STAGE 4—ONZ AND TTF 

This section expands on the testing performed at ONZ and TTF including test areas, control data, 
the use of ground control, sUAS data collection parameters, data processing workflows, and data 
analysis for PCI. 
 
5.7.1  Test Areas 

The test areas at ONZ included Runway 17/35, Taxiway A, and connector taxiways. Figures 82 
and 83 illustrate the data capture areas (yellow) and test areas (red) that were selected for data 
collection. 
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Figure 82. Runway 17/35 at ONZ 

 

Figure 83. Taxiway A at ONZ 

The test areas at TTF included Runway 03/21 and Taxiway A. During data collection, the data 
for the connector Taxiways A2 and A3 were also collected. Hence, Taxiways A2 and A3 were 
included in the analysis and evaluation of the PCIs. Figure 84 illustrates the capture areas 
(yellow) and test areas (red) selected for data collection. 
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Figure 84. Runway 03/21 and Taxiway A at TTF 

5.7.2  Control Data—FOG and DSV 

Control data sets were collected through FOG survey and consisted of a 100% survey of all test 
areas. A total of 188 PCC samples were inspected at ONZ, and 47 AC samples were inspected at 
TTF. It was determined that sUAS-derived orthoimagery was of better quality than the DSV 
data. The sUAS had the ability to 
 

• Identify a wider range of distresses. 
• Collect higher resolution imagery. 
• Analyze lower-severity distresses. 
• Collect data with significantly cheaper equipment. 
• Produce PCI values comparable to FOG inspections. 

 
Hence, it was determined that DSV data collection was not required for comparison against the 
FOG or sUAS data sets. 
 
5.7.3  Ground Control 

GCPs were surveyed using a Trimble R8-3 through RTK GNSS surveying. GCPs were not used 
in the production of the analyzed imagery and were only collected as a backup for use in image 
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processing if the resulting imagery was not spatially accurate. Figures 85 and 86 show the 
numbers and locations of each point. 
 

 

Figure 85. Ground Control Points Locations Over Each Test Area at ONZ 

 

Figure 86. Ground Control Points Locations Over Each Test Area at TTF 
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5.7.4  Small Unmanned Aircraft Systems Data Collection Parameters 

The data at ONZ were collected to evaluate the efficiency of collecting 2-mm GSD with a 
previously untested overlap. Table 45 presents the data collection parameters. 

Table 45. Data Collection Parameters for sUAS at ONZ 

Flight 
Number Test Area Airframe Sensor 

Data 
Type 

Overlap 
(Forward/ 

Side) 
Altitude 

(ft) 
GSD 
(mm) 

Actual 
Flight 
Time 
(min) 

Actual 
Number 
Photos 

2 Runway 
17/35 M210 X7- 

35mm RGB 50/50 58.65 2 128 2,234 

4 TWY A M210 X7- 
35mm RGB 50/50 58.65 2 137 2,640 

 
The data at TTF were collected to evaluate the efficiency of collecting 2-mm GSD with a 
previously untested overlap. Table 46 presents the data collection parameters. 

Table 46. Data Collection Parameters for sUAS at TTF 

Flight 
Number Test Area Airframe Sensor 

Data 
Type 

Overlap 
(Forward/ 

Side) 
Altitude 

(ft) 
GSD 
(mm) 

Actual 
Flight 
Time 
(min) 

Actual 
Number 
Photos 

6 Runway 
03/21 M210 X7- 

35mm RGB 50/50 58.65 2 89 1,622 

8 TWY A, 
A2, A3 M210 X7- 

35mm RGB 50/50 58.65 2 102 1,461 

 
Four flights were successfully executed as part of the data collection in Stage 2.4 at ONZ and 
TTF. All flights collected RGB imagery. The data collection team had to pause flight operations 
numerous times during data collection efforts due to manned aircraft activity at both airports. 
 
5.7.5  Small Unmanned Aircraft System Data Processing 

The research team encountered issues during the orthoimagery processing for Flight 8 at TTF 
due to inconsistent results obtained from the Pix4D Mapper software. 
 
Following initial preparation, the processing team used an aerial triangulation (AT) software 
package to process the imagery and photo control data. Due to inaccuracies in the sUAS reported 
payload orientation for Flight 8, the use of ground control targets was needed to correct for the 
sUAS imagery’s erroneous initial exterior orientation. Without these targets, the AT software 
was unable to produce a viable solution or complete orthorectification successfully. Had the 
sUAS payload accurately reported the camera orientation, the team believes that GCPs would not 
have been needed to generate an orthomosaic, as evidenced by the successful processing of 
Flight 6, which did not require ground control.  
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The processed data for Flights 2, 4, and 6 without ground control indicated negligible 
geographical shift with no impact on identifying and analyzing the pavement distresses. Table 47 
presents the results of processed orthomosaics and their viability for distress analysis. 

Table 47. Processing Results for sUAS RGB Data at ONZ & TTF 

Flight 
# System Site Overlap 

GSD 
(mm) 

Successful 
Orthomosaic 

Acceptability 
for Analysis 

2 M210 ONZ RWY 17/35 50/50 2   
4 M210 ONZ TWY A 50/50 2   
6 M210 TTF RWY 03/21 50/50 2   
8 M210 TTF TWY A 50/50 2   

 
5.7.6  Small Unmanned Aircraft System Data Analysis and Evaluation 

Six total test areas, which covered a large portion of each airfield, were selected at ONZ and 
TTF. These airfields were selected so that new pavement distresses that were not observed at 
previous airports could be identified, namely, alkali-silica reactions (ASR) of the PCC 
pavements at ONZ.  
 
ONZ test areas consisted of one PCC runway and one PCC taxiway. Eighteen samples from 
Runway 17/35 and 20 samples from Taxiway A were evaluated as part of ONZ distress analysis. 
Both test sections consisted of very aged pavement with a considerable amount of ASR reported 
by the airport. ASR is a rare pavement distress; however, it carries a high level of importance 
when observed on an airfield due to the extreme FOD potential that it creates. 
 
Note: Random samples were selected for all four test areas at ONZ and TTF to evaluate and 
perform a distress and PCI analysis. 
 
Runway 17/35 
 
Runway 17/35 is 75 ft wide and entirely PCC pavement. The pavement is composed of a single 
section and divided into sample units, as shown in Figure 87. Each sample unit is 30 ft x 75 ft 
(2,250 sq ft). While the capture limits included the northern 2,500 ft of the runway, the test limits 
only encompassed 18 sample units chosen to represent the varied conditions across the section. 
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Figure 87. Sample Units of Runway 17/35 at ONZ 

Table 48 shows the PCI values of analyzed sample units. 

Table 48. The PCI Values of Runway 17/35 at ONZ 

Section Sample 
Number FOG PCI sUAS PCI FOG Section 

PCI 
sUAS Section 

PCI 
 
 
 
 
 
 

RWY 
17/35 

 
 
 
 
 
 
 
 

2 13 36  
 
 
 
 
 
 

28 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

19 
 
 
 
 
 
 
 
 

5 13 13 
10 13 13 
15 36 13 
20 18 11 
25 45 40 
30 45 18 
35 13 8 
40 13 13 
46 13 13 
50 13 13 
55 36 13 
61 26 13 
66 11 12 
71 45 26 
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Section Sample 
Number FOG PCI sUAS PCI FOG Section 

PCI 
sUAS Section 

PCI 
RWY 
17/35 

76 51 48  
28  

 
19 82 46 9 

87 46 27 
 
Taxiway A 
 
Taxiway A is 40 ft wide and entirely PCC pavement. The pavement is composed of a single 
section and divided into sample units as shown in Figure 88. Each sample unit on Taxiway A is 
40 ft x 50 ft (2,000 sq ft), while the samples on the connector taxiways vary in size. Although the 
capture limits included the entirety of Taxiway A and portions of associated connectors, the test 
limits only encompassed 23 sample units chosen to represent the varied conditions across the 
section. 
 

 

Figure 88. Sample Units of Taxiway A at ONZ 

Table 49 shows the PCI values of analyzed sample units. 

Table 49. The PCI Values of Taxiway A at ONZ 

Section 
Sample 
Number FOG PCI sUAS PCI 

FOG Section 
PCI 

sUAS Section 
PCI 

 
 
 
 
 
 

TWY A 
 
 
 
 
 

4 45 17  
 
 
 
 
 

46 
 
 
 
 
 

 
 
 
 
 
 

38 
 
 
 
 
 

9 56 35 
14 58 51 
19 53 39 
23 63 49 
28 54 43 
33 0 52 
38 67 59 
43 42 16 
47 24 19 
52 45 28 
57 36 18 
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Section 
Sample 
Number FOG PCI sUAS PCI 

FOG Section 
PCI 

sUAS Section 
PCI 

 
 
 
 
 
 

TWY A  

62 59 56  
 
 
 
 
 

46 

 
 
 
 
 
 

38 

66 48 45 
71 72 58 
76 50 39 
81 68 53 
*85 50 42 
*87 25 19 
*88 18 35 
91 51 40 
96 45 37 
99 36 22 

*Samples 85, 87, and 88 are part of connecter taxiways that were considered for the PCI evaluation of Taxiway A. 
 
FOG and sUAS trends between each sample unit and section PCI value were largely aligned 
with one another, however, there were some obvious dissimilarities. sUAS values were typically 
lower than that of the FOG inspection due to the surveyor’s interpretation of the ASTM guidance 
on determining ASR severity levels.  
 
ASR was observed in every sample on the airfield. The deduct values were not only impactful to 
the PCI score, but they also had a drastic difference in deduction per severity level. In a typical 
20-slab PCC sample, with one slab exhibiting low-severity ASR, one slab presenting medium-
severity ASR, and one slab showing high-severity ASR, deduct values for each distress would be 
-5.04, -14.03, and -23.13, respectfully. For comparison, the same sample with equal amounts of 
corner breaks would have deduct values of -4.07, -8.41, and -13.15, respectively. Therefore, 
when a surveyor evaluates whether there is—as defined in the ASTM—“Minimal,” “Some,” or 
“High,” amount of FOD potential caused by the ASR, the resulting PCI can change drastically. 
Nevertheless, when comparing the total number of slabs that contained ASR from the FOG and 
sUAS inspections, the total was nearly identical, confirming that sUAS data collection can 
effectively observe this distress. 
 
Ten samples from Runway 03/21, eight samples from Taxiway A, two samples from Taxiway 
A2, and two samples from Taxiway A3 were evaluated as a part of the TTF distress analysis. 
These test sections consisted of moderately aged pavements with pavement distresses typical to 
most airfields. 
 
Runway 03/21 and Taxiways A, A2, and A3 
 
Runway 03/21 and Taxiways A, A2, and A3 are 100 ft wide and are entirely AC pavement. The 
runway is composed of a single section, as are each taxiway. The sections are further divided 
into sample units as shown in Figure 89. Each runway sample unit size is 50 ft x 100 ft (5,000 sq 
ft) while the taxiway sample units vary in size. Although the capture limits included 1,700 ft of 
the runway and 2,000 ft of taxiway, the test limits only encompassed 22 sample units chosen to 
represent the varied conditions across the sections. 
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Figure 89. Sample Units of Runway 03/21 and Taxiways A, A2, and A3 at TTF 

Tables 50 and 51 show the PCI values of analyzed sample units. 

Table 50. The PCI Values of Runway 03/21 at TTF 

Section 
ID 

Sample 
Number FOG PCI sUAS PCI 

FOG Section 
PCI 

sUAS Section 
PCI 

RWY 
03/21 

2 81 75 

77 77 

4 74 77 
6 76 76 
10 76 77 
14 77 76 
16 82 81 
18 72 73 
22 80 82 
26 72 73 
30 79 80 
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Table 51. The PCI Values of Taxiway A, A2, and A3 at TTF 

Section 
ID 

Sample 
Number FOG PCI sUAS PCI 

FOG Section 
PCI 

sUAS Section 
PCI 

TWY A 

2 70 70 

70 70 

3 70 70 
4 70 70 
6 70 70 
7 69 70 
8 70 71 
9 70 70 
10 69 70 

TWY A2 1 59 65 64 67 2 70 69 

TWY A3 1 64 63 67 64 2 70 66 

As observed at WWD, SAV, and CVG, sUAS data collection performs very closely to FOG 
surveys when evaluating airfield pavement, such as on the TTF pavement sections. Distresses 
were largely limited to weathering and L&T Cracking, and the PCI values between the FOG and 
sUAS evaluations were nearly identical. 
 
5.8  PHASE 2 SUMMARY 

The testing and research performed during Phase 2 across WWD, SAV, CVG, ONZ, and TTF 
led to the following conclusions: 
 

• 2-mm GSD (or smaller) orthomosaic imagery derived from sUAS data collection is 
preferred for PCI analysis. 

• 3-mm GSD orthomosaic imagery derived from sUAS data collection is acceptable but 
requires minimal assumptions to identify global distresses. Some minor severity L&T 
cracking can also be missed at this resolution. 

• 4-mm GSD (or larger) is not acceptable for pavement inspection, as it does not 
consistently identify low-severity distresses. Additionally, global distresses can appear 
blurry and are harder to identify with lower resolution imagery. 

• The parameters tested with LiDAR data did not provide enough detail for analysis. 
• The processed imagery without surveyed ground control indicated negligible 

geographical shift with no impact on identifying and analyzing the pavement distresses. 
• The PCI values did not indicate a significant difference when RTK was not utilized for 

either test area at SAV. 
• A live video feed with in-flight camera adjustments (ISO, shutter speed, aperture) is a 

valuable asset while conducting sUAS-based pavement inspections, as it allows for 
minute adjustments to ensure consistent and reliable data collection. 

• Distresses identified in FOG surveys can be equally identified in 2-mm GSD sUAS 
imagery for PCI evaluation. 
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• Orthomosaics derived from 2-mm GSD sUAS imagery are of better quality and 
resolution than the DSV data. 

• The ability to evaluate pavement from orthoimagery in an office environment using GIS 
tools ensures a quantifiable and high-accuracy analysis.  

• sUAS-based pavement inspections provide digital records of pavement assets at the time 
of collection and can be used for change management. 

• Expanding the collection area by at least two full-image frames at the beginning and end 
of each flight line and at least one flight line on either side of the test area resolved issues 
found during Phase 1 with data lost near the edge of the test area.  

• Executing tests with lower overlap settings minimized field time, which increased 
operational efficiency. A minimum overlap setting of 40/40 leads to a full orthomosaic 
without any loss of data. 

 
Table 52 and Figure 90 present the estimated amount of time required for data collection at a 
runway (WWD is used as an example) using a multirotor sUAS tested in this. 

Table 52. Estimated Collection Time at WWD Using a Multirotor sUAS 

WWD Full RWY 10/28 (150 ft X 5,000 ft) 

GSD (mm) 
Overlap 

(Forward %/Side %) 
Estimated Photo 

Count 
Estimated Capture 

Time1 (Hours) 

2 

80/60 N/A2 N/A2 
75/60 11,700 7.75 
60/60 7,400 5 
65/50 6,700 4.75 
50/50 4,700 3.25 
40/40 3,300 2.25 

3 

80/60 6,500 4.5 
75/60 5,200 3.5 
60/60 3,300 2.25 
65/50 2,300 2 
50/50 2,100 1.5 
40/40 1,600 1.25 

4 

80/60 3,400 2.75 
75/60 2,720 2 
60/60 1,700 1.25 
65/50 1,700 1.25 
50/50 1,200 1 
40/40 810 0.75 

1 This is only accounting for the time the sUA is flying and collecting imagery. It does not account for 
starting/ending flights due to battery changes (i.e., from takeoff position to start point and end point to landing 
position), battery changes themselves, flight line redos, or equipment troubleshooting. 
2 Cannot capture using these parameters—equipment limitation. 
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Figure 90. Estimated Collection Time at WWD using a Multirotor sUAS 

5.8.1  Small Unmanned Aircraft System Data Capture Recommendations 

The research team recommended the following for data capture using sUAS: 
 

• A 2-mm GSD or smaller must be achieved. 
• As validated by the testing at TTF, surveyed GCPs are recommended to ensure sufficient 

geolocation of the imagery, but not required. 
• RTK/PPK image position corrections can be used to increase overall absolute accuracy 

but is not required to determine PCI values. 
• The minimum forward and side overlap can vary based on the system and its capability in 

processing a full orthoimagery with no loss of data. The minimum forward overlap of 
40% and a minimum side overlap of 40% allowed seamless orthomosaic generation. 

• Due to the small GSD, extensive field QC must be done at the completion of each flight 
to ensure imagery is clean and usable. 

• In-flight camera control allows for minute adjustments to ensure consistent and reliable 
data collection but is not required. 

 
5.8.2  Small Unmanned Aircraft System Data Processing Recommendations 

The research team recommended the following for processing of sUAS-acquired imagery: 
 

• Using software that can measure GCPs and adjust camera parameters. 
• Using software that can consistently produce georeferenced orthoimagery. 
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5.8.3  Small Unmanned Aircraft System Data Analysis and Evaluation Recommendations 

The analysis and processing workflows established during Phase 1 were further refined for 
efficiency in Phase 2. The research team recommended the following for analyzing the processed 
orthoimagery: 
 

• Georeference the sUAS imagery to directly overlay the GIS database containing section, 
sample, and slab layouts. 

• Create three layers to map distresses: AC linear distresses, AC area distresses, and PCC 
point distresses. 

• Create attributes for the layers including Section ID, Sample Unit ID, Slab Number (for 
PCC pavements), Distress, Severity, and Area/Length, which are automatically filled 
during the distress takeoff. 

• Create a template to easily switch between distress types, which introduces the ability to 
assign all attributes during the inspection, limiting the time needed to evaluate the 
updated attributes at the end of the inspection. Update this template for each new distress 
throughout the analysis. 

• Initially identify distresses at a zoom ratio of 1:50, zooming in to clarify severities as 
needed. At this zoom level, 50% to 70% of the distresses can be identified and mapped. 

• Reanalyze the imagery at a 1:20 zoom ratio. This will now capture 85% to 95% of the 
distresses. 

• Perform final analysis at a 1:10 zoom ratio to capture the smaller/less-severe distresses. 
• Export the attributes tables and concatenate distresses per sample, including limiting 

distress to one per slab for PCC pavements. 
 
5.9  RECOMMENDATIONS FOR FINAL VALIDATION TESTING 

Based on conclusions drawn from Phase 2, the research team made the following 
recommendations for Validation Testing: 
 

• Fly an entire runway to assess the feasibility of using sUAS in an airport environment for 
pavement inspections. 

• Fly a system that was not tested during Phase 1 or Phase 2 to demonstrate viability of 
minimum performance standards for pavement inspections. 

• Implement final Validation Testing at 2-mm GSD and 40/40 overlap settings to reduce 
excessive image coverage and increase time efficiency. 

• Survey ground control for accuracy validation. 
• Perform a cost-benefit analysis of FOG vs sUAS methods for pavement inspections. 

6.  VALIDATION TESTING 

For Validation Testing, the research team considered the recommendations, findings, and best 
practices identified from Phase 1 and Phase 2. Validation Testing sought to implement an 
operationally efficient, full-scale test at WWD to showcase the viability and reliability of using 
sUAS for pavement inspections. This testing did not require data collection through FOG or 
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DSV methods; however, the research team had access to FOG data collected in previous phases 
of this research effort. 
 
6.1  AIRPORT SELECTION 

The research team selected WWD for Validation Testing, as it provides accessibility to both AC 
and PCC pavement surfaces with a wide variety of pavement distresses. Both Phase 1 and 
Phase 2 of this research effort involved testing at WWD.  
 
6.2  TESTING METHODOLOGY 

A comprehensive methodology for Validation Testing at WWD was developed in advance of 
mobilizing field crews to the test area. Test areas at WWD allowed the research team to validate 
the operational efficiency of lower forward/side overlap, validate data collection parameters with 
a system not tested in prior testing, and attempt to capture ASTM pavement distresses that were 
not previously identified in prior testing. Table 53 shows a breakdown of the testing rationale 
performed for Validation Testing. 

Table 53. Validation Testing Methodology 

Airport Test Rationale Test Area 

WWD 

Final validation—validate the 
operational efficiency of lower 
forward/side overlap, validate data 
collection parameters with a system not 
tested in prior testing, and attempt to 
capture ASTM pavement distresses that 
were not previously identified 

W End RWY 10/28 

Apron (Entire AC and PCC) 

 
6.3  SMALL UNMANNED AIRCRAFT AIRFRAMES AND SENSORS 

To reflect recent industry sUAS offerings, a new airframe and sensor were introduced while 
performing Validation Testing. Table 54 shows a summary of this airframe, sensor, GSD, data 
type, and software package used in Validation Testing. 

Table 54. Summary of Systems and Software Used in Validation Testing 

Airframe Sensor GSD (mm) Data Type 
Image 

Processing Data Analysis 
DJI M300 

RTK P1-35mm 2 RGB Pix4D Mapper Esri ArcMap, 
FAA PAVEAIR 

DJI M300 RTK, shown in Figure 91, utilized the DJI Zenmuse P1-35mm (RGB) payload. This 
airframe and RGB camera were identified during Validation Testing since they were an airframe 
and payload that were not included in any prior testing. The DJI Zenmuse P1 is a 45-megapixel 
camera commonly used in the surveying industry. The DJI M300 RTK with Zenmuse P1-35mm 
payload will herein be referred to as M300. 
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(a) (b) 

Figure 91. The DJI M300 RTK (a) with Zenmuse P1 (b) 

6.4  VALIDATION TESTING—WWD 

This section expands on Validation Testing performed at WWD including test areas, control 
data, the use of ground control, sUAS data collection parameters, data processing workflows, 
and data analysis for PCI. 
 
6.4.1  Test Areas 

The test areas for full-scale testing at WWD included the west end of asphalt Runway 10/28 and 
a GA apron (AC and PCC). When possible, the research team purposely overflew these areas to 
ensure full coverage across the edges of the pavement.  
 
Figures 92 and 93 illustrate the two test areas selected for data collection. 
 

 
Note: Capture limits in yellow, test limits in red.  

Figure 92. West End of Runway 10/28 at WWD 
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Note: Capture limits in yellow, test limits in red.  

Figure 93. Apron at WWD 

6.4.2  Control Data 

Ground control data were surveyed as part of Validation Testing but were not used in processing, 
as it proved to be unnecessary. The research team also had access to ground control data 
acquired in previous phases of this research. 
 
6.4.3  Small Unmanned Aircraft System Data Collection Parameters 

The final validation at WWD utilized a DJI M300 RTK with P1-35mm sensor at 2-mm GSD. 
These data were collected to validate the 2-mm GSD orthoimagery at an operationally efficient 
low overlap of 40/40. Table 55 presents the data collection parameters. 

Table 55. Parameters for sUAS Data Collection—Validation Testing 

Flight 
Number 

Test 
Area Airframe Sensor 

Data 
Type 

Overlap 
(Forward/ 

Side) 
Altitude 

(ft) 
GSD 
(mm) 

Actual 
Flight 
Time 
(min) 

Actual 
Number 
Photos 

1 
W End 
RWY 
10/28 

M300 P1-
35mm RGB 40/40 53.75 2 35 1,350 

2 
Apron 
(AC, 
PCC) 

M300 P1-
35mm RGB 40/40 53.75 2 29 1,256 
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6.4.4  Data Processing 

Following initial preparation, the processing team used Pix4D Mapper to process the imagery 
into seamless orthomosaics. The processed data without ground control indicated negligible 
geographical shift with no impact on identifying and analyzing the pavement distresses. 
 
6.4.5  Data Analysis and Evaluation 

Three total test areas, including five pavement sections, were surveyed as a part of the final 
validation at WWD. These areas were surveyed to a lesser degree during earlier phases of 
research but were surveyed as per ASTM sampling requirements during this phase and represent 
a real-life PCI survey for an airfield. 
 
West End of Runway 10/28 
 
Runway 10/28 is 150 ft wide and consists of AC pavement. The pavement is divided into north, 
central, and southern sections and further divided into sample units as shown in Figure 94. The 
size of each sample unit is 50 ft x 100 ft (5,000 sq ft). Although the capture limits included 2,500 
ft of the runway, the test limits only encompassed 18 sample units chosen to represent the varied 
conditions across the sections. 
 

 

Figure 94. Sample Units of Runway 10/28 at WWD 

Table 56 shows the PCI values of analyzed sample units. 
 

Table 56. The PCI Values of Runway 10/28 at WWD 

Section 
Sample 
Number FOG PCI sUAS PCI 

FOG 
Section PCI 

sUAS 
Section PCI 

10S 

3 61 62 

63 61 

9 65 62 
12 65 63 
15 66 61 
21 59 59 
27 62 59 

10C 
2 68 67 

70 64 8 67 62 
11 70 67 
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Section 
Sample 
Number FOG PCI sUAS PCI 

FOG 
Section PCI 

sUAS 
Section PCI 

14 76 60 
20 71 61 
26 70 66 

10N 

1 66 68 

62 64 

7 63 64 
10 64 62 
13 54 65 
19 62 64 
25 63 63 

 
GA Apron 
 
The GA Apron capture limits were approximately 340 ft x 575 ft (195,500 sq ft) and consisted 
entirely of AC pavement. The capture limits encompassed two sections, further divided into 
sample units of varying size as shown in Figure 95. Although the capture limits included 38 
sample units, the test limits encompassed only nine sample units chosen to represent the varied 
conditions across the sections. 
 

 

Figure 95. Sample Units of Apron Section 30 at WWD 

Table 57 shows the PCI values of analyzed sample units. 

Table 57. The PCI Values of Apron Section 30 at WWD 

Section 
Sample 
Number FOG PCI sUAS PCI 

FOG Section 
PCI 

sUAS 
Section PCI 

 
 
 

30 
 
 
 

3 58 59  
 
 

59 
 
 
 

 
 
 

57 
 
 
 

11 64 59 
14 55 59 
18 64 60 
19 63 60 
23 63 56 
26 60 60 
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Section 
Sample 
Number FOG PCI sUAS PCI 

FOG Section 
PCI 

sUAS 
Section PCI 

 
30 

28 43 43  
59 

 
57 33 54 51 

Terminal Apron 
 
The Terminal Apron capture limits were approximately 470 ft x 1280 ft (433,000 sq ft) and 
consisted entirely of PCC pavement. The capture limits encompassed one section, further divided 
into sample units of varying size as shown in Figure 96. Although the capture limits included 
123 sample units, the test limits encompassed only 18 sample units chosen to represent the varied 
conditions across the section. 

 

Figure 96. Sample Units of Apron Section 40 at WWD 

Table 58 shows the PCI values of analyzed sample units. 
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Table 58. The PCI Values of Apron Section 40 at WWD 

Section 
Sample 
Number FOG PCI sUAS PCI 

FOG Section 
PCI 

sUAS 
Section PCI 

40 

4 73 73 

61 59 

10 75 71 
19 53 65 
20 61 63 
22 55 57 
35 74 78 
40 68 66 
45 57 63 
55 62 62 
60 70 56 
64 61 70 
69 76 72 
75 73 61 
80 72 48 
89 45 55 
95 42 35 
100 39 27 
102 43 45 

All distress ratings that were used to determine the PCIs during the final validation were strictly 
observed via the sUAS imagery, and no field notes were used to supplement the analysis. 
Furthermore, these inspections were completed 16 months apart from one another, so the team 
expected to see further degradation of the pavements and a lower PCI for the sUAS inspection. 
Additionally, there is evidence that the airport had performed M&R between the inspections on 
the PCC Apron by means of small and large patches. 

PCI values, at the section and sample level, were very consistent between the FOG and sUAS 
inspections. Given the age of the pavements and the geographical location of WWD, it is 
expected that the AC pavements would deteriorate at a rate of 2 to 3 PCI points per year and the 
PCC pavements at 1 to 2 PCI points per year. This is precisely what was observed in the analysis 
of the FOG and sUAS data, with the AC pavements deteriorating at 2.5 points per year and the 
PCC pavements deteriorating at 1.5 points per year on average.  

Deterioration is attributed to weather-related distress increasing in severity and in quantity. The 
leading distress for AC pavements that contributed to this deterioration was L&T cracking. Low-
severity L&T cracking increased by 17% and medium-severity L&T cracking increased by 3%. 
The leading distresses for PCC pavement that contributed to this deterioration were small 
patches, joint spalls, and corner spalls. Thirty-four additional small patches were observed during 
the sUAS inspection, and seven others increased from low to medium severity. That is a 28% 
increase in small patches and a 78% increase in medium-severity small patches.  
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Joint and corner spalling doubled in quantity between the inspections. It is unlikely that this large 
increase is strictly due to deterioration, but that the field inspector neglected smaller spalls as 
compared to the sUAS inspector. However, the number of medium- and high-severity spalls 
increased by 75%, which had a greater impact on the pavement’s PCI values. 

6.5  COST-BENEFIT ANALYSIS 

The collection of FOG and DSV control data on Runway 10/28 at WWD during Stage 1 and the 
implementation of a refined sUAS workflow during Validation Testing across the same test area 
provided datapoints that allowed the research team to assess the cost of each pavement 
inspection method.  
 
The research team used generic hourly rates and developed rough order-of-magnitude cost 
estimates to maintain the integrity of the analysis provided and protect confidential proprietary 
information. It should be noted that the costs represent an implementation of mature workflows 
for FOG and DSV inspections against a workflow that is validating components in a test 
environment. Additionally, to maintain consistency, the following assumptions were made as 
part of this cost analysis: 
 

• FOG inspection costs consider a three-person crew composed of two inspectors and one 
driver. 

• DSV cost analysis considers a two-person crew composed of one operator and one driver. 
Data processing for the DSV considers a 100% analysis of 150 sample units and includes 
one day of typical equipment fee. 

• sUAS cost estimate considers additional effort for the preparation phase to account for 
airport coordination and airspace authorizations and represents a two-pilot crew 
collecting data. Data processing for the sUAS cost also considers a 100% analysis of 150 
sample units and includes one day of typical equipment fee. 

Table 59 summarizes an analysis that determines the cost per square yard of each pavement 
inspection method for Runway 10/28 at WWD. 

Table 59. Cost-Benefit Analysis, FOG vs DSV vs sUAS 

Based on 100% Survey of a 5,000-ft x 150-ft Runway in Fair Condition 

Data Collection 
Type Process 

Time 
(Labor Hours) 

RWY 
Closure 
(Hours) 

Cost per  
Sq Yd 

FOG Preparation 5 -- 8% 
FOG Data Collection 48 12 79% 
FOG Processing/QC 8 -- 13% 

TOTAL FOG 61 12 $.08 - $.15 
DSV Preparation 5 -- 4% 
DSV Data Collection 12 4 10% 
DSV Processing/QC 100 -- 86% 

TOTAL DSV 117 4 $.10 - $.25 
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Based on 100% Survey of a 5,000-ft x 150-ft Runway in Fair Condition 

Data Collection 
Type Process 

Time 
(Labor Hours) 

RWY 
Closure 
(Hours) 

Cost per  
Sq Yd 

sUAS Preparation 10 -- 8% 
sUAS Data Collection 6 5 5% 
sUAS Processing/QC 105 -- 87% 

TOTAL sUAS 121 5 $.10 - $.25 
 
The cost analysis indicated that, at its current level of implementation during research validation, 
costs associated with sUAS for pavement inspections are comparable to that of mature DSV 
workflows. As operational efficiencies are gained by implementing improved workflows, 
airframes, and sensors, these costs will be reduced further. 
 
6.6  VALIDATION TESTING SUMMARY 

The Validation Testing performed at WWD led to the following conclusions: 
 

• A 2-mm GSD (or smaller) orthomosaic imagery derived from sUAS data collection is 
acceptable for PCI analysis. 

• 40/40 overlap is sufficient in generating a seamless orthomosaic across the entire test 
area. 

• Multirotor systems are typically less complicated to operate and best compensate for 
wind. 

• The processed imagery without surveyed ground control indicates negligible 
geographical shift with no impact on identifying and analyzing the pavement distresses. 

• Overall, it was determined that the sUAS data offer more benefits than the DSV data. 
• Overall, it was determined that the sUAS is comparable to FOG in evaluating pavement 

health.  
• Increased sensor size leads to increased operational efficiency. 
• With the current stage of using sUAS for pavement inspection, the cost is comparable to 

DSV, however it is expected to decrease once more widely used. 
 
7.  CONCLUSIONS AND RECOMMENDATIONS 

There are numerous variables that determine the success of using small unmanned aircraft 
systems (sUAS) for pavement inspections at an airport, i.e., longer flight times can result in 
extended closures of the inspection area. To use the benefits of operational efficiencies like low 
overlap, extensive field quality control (QC) must be performed at the completion of each flight 
to ensure imagery meets the standards necessary for pavement inspection. 
 
A total of 97 mission plans were executed at the airports in varying environmental and 
geographic conditions resulting in approximately 1.5 terabyte of pavement imagery data 
collected and analyzed for pavement distress per ASTM standards. Additionally, under the 
direction of the FAA, two technical interchange meetings were held with the Michigan 
Technological Research Institute, Iowa State University, and APTech research teams that were 
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performing research concurrently. These interchanges provided opportunities for both teams to 
share findings, validations, and best practices. 
 
All analyzed data sets can be viewed in their full resolution using the Geographical Information 
System (GIS) tool3 created by the research team. 
 
While no system can be deemed the definitive minimum, some features and capabilities, such as 
airframe/sensor characteristics and product requirements, must be accounted for. Therefore, the 
research team produced a performance report that establishes key recommendations and 
requirements for successful execution of sUAS-based pavement inspections. The rapidly 
evolving sUAS industry could present improved and more efficient technologies in the future, 
which could require re-evaluation of currently recommended minimum performance standards.  
 
7.1  DISTRESS IDENTIFICATION MATRIX FOR ASPHALT CONCRETE 

The research team developed a distress identification matrix, shown in Table 60, that lists all 
airport pavement distresses. This matrix shows a comparison of the distresses identified via foot-
on-ground (FOG), digital survey vehicle (DSV), and sUAS on asphalt concrete (AC) surface. 

Table 60. Distress Identification Matrix—AC Surface 

Distress Breakdown FOG 
DSV 

(Manual) 
DSV 

(Automated) sUAS (Manual) 
Alligator Cracking     
Bleeding     
Block Cracking     
Corrugation     
Depression     
Jet Blast     
Joint Reflection Crack     
L&T Crack     
Oil Spillage     
Patching     
Polished Aggregate     
Raveling     
Rutting     
Shoving     
Slippage Crack     

 
 

3 GIS tool  
Login Details: 
Username: faa_collaboration 
Password - Woolpert-FAA-2021GO! 

https://woolpertinc.maps.arcgis.com/sharing/oauth2/authorize?canHandleCrossOrgSignin=true&client_id=arcgisonline&response_type=code&state=%7b%22portalUrl%22%3A%22https%3A%2F%2Fwoolpertinc.maps.arcgis.com%22%2C%22uid%22%3A%22z42B5xHcvKoBOEyrijBqOJRhKxkjNfe23YjZMN7pUEE%22%7d&expiration=20160&redirect_uri=https%3A%2F%2Fwoolpertinc.maps.arcgis.com%2Fapps%2Fwebappviewer%2Findex.html%3Fid%3D779dc10ad2ad4b08a0c406e2e491c134&redirectToUserOrgUrl=true&code_challenge=W6jPtS47MOkhGbU6McDY6wSMkMZ3i4ZnFJQWZ71UcH0&code_challenge_method=S256
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Distress Breakdown FOG 
DSV 

(Manual) 
DSV 

(Automated) sUAS (Manual) 
Swelling     
Weathering     

 
Distresses such as rutting and shoving can be identified via DSV but not sUAS (Red, Green, 
Blue [RGB]). Because of DSV’s laser-based imagery collection, DSV can more accurately 
determine elevation differences and can therefore identify those distresses. However, it is an 
output that needs to be carefully and manually QC-ed since the processing software does not take 
into consideration the location of the vehicle, i.e., if the vehicle is in a wheel path or at a 
pavement change. 

7.1.1  Longitudinal & Transverse Cracking 

Figures 97 through 103 show photographs comparing AC distresses from FOG and sUAS 
inspections. Some AC distresses were not captured during the FOG data collection but were 
identified in these sUAS data sets. 
 
Figure 97 illustrates low-severity longitudinal and transverse (L&T) cracking as identified at 
WWD via FOG and sUAS inspections.  
 

  
(a) (b) 

Figure 97. Low-Severity L&T Cracking Detected via FOG (a) and sUAS (b) Inspections 

Figure 98 illustrates medium-severity L&T cracking as identified at WWD via FOG and sUAS 
inspections. 
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(a) (b) 

Figure 98. Medium-Severity L&T Cracking Detected via FOG (a) and sUAS (b) Inspections 

Figure 99 illustrates high-severity L&T cracking as identified at Cape May County Airport 
(WWD) via FOG and sUAS inspections. 
 

  
(a) (b) 

Figure 99. High-Severity L&T Cracking Detected via FOG (a) and sUAS (b) Inspections 
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7.1.2  Raveling 

Figure 100 illustrates low-severity raveling as identified at WWD via FOG and sUAS 
inspections. 
  

  
(a) (b) 

Figure 100. Low-Severity Raveling Detected via FOG (a) and sUAS (b) Inspections 

Figure 101 illustrates medium-severity raveling as identified at WWD via FOG and sUAS 
inspections.  
 

  
(a) (b) 

Figure 101. Medium-Severity Raveling Detected via FOG (a) and sUAS (b) Inspections 

7.1.3  Weathering 

Figure 102 illustrates low-severity weathering as identified at WWD via FOG and sUAS 
inspections.  
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(a) (b) 

Figure 102. Low-Severity Weathering Detected via FOG (a) and sUAS (b) Inspections 

Figure 103 illustrates medium-severity weathering as identified at WWD via FOG and sUAS 
inspections.  

 

 
(a) (b) 

Figure 103. Medium-Severity Weathering Detected via FOG (a) and sUAS (b) Inspections 

7.2  DISTRESS IDENTIFICATION MATRIX FOR PORTLAND CEMENT CONCRETE 

The research team developed a distress identification matrix that lists all airport pavement 
distresses. Table 61 presents this matrix, which shows a comparison of the distresses identified 
via FOG, DSV, and sUAS on Portland cement concrete (PCC) surface. 
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Table 61. Distress Identification Matrix—PCC Surface 

Distress Breakdown FOG DSV (Manual) 
DSV 

(Automated) 
sUAS 

(Manual) 
Blowup     
Corner Break     
Linear Crack     
Durability Cracking     
Joint Seal Damage     
Small Patch     
Large Patch     
Pop-outs     
Pumping     
Scaling     
Faulting     
Shattered Slab     
Shrinkage Crack     
Joint Spall     
Corner Spall     
Alkali-Silica Reaction     

 
Figures 104 through 117 show photographs comparing PCC distresses from FOG and sUAS 
inspections. Some PCC distresses were not captured during the FOG data collection but were 
identified in the sUAS data set.  
 
7.2.1  Corner Break 

Figure 104 compares low- vs medium-severity corner break as identified at WWD via sUAS 
inspections. 
 

  
(a) (b) 

Figure 104. Low- (a) vs Medium-Severity (b) Corner Break Detected via sUAS Inspections 
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7.2.2  Linear Crack 

Figure 105 illustrates a low-severity linear crack as identified at WWD via FOG and sUAS 
inspections. 
 

  
(a) (b) 

Figure 105. Low-Severity Linear Crack Detected via FOG (a) and sUAS (b) Inspections 

Figure 106 illustrates medium-severity linear crack with seal no longer bonded to PCC as 
identified at WWD via sUAS inspections. 
 

 

Figure 106. Medium-Severity Linear Crack Detected via sUAS Inspections 
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7.2.3  Small Patch 

Figure 107 illustrates low-severity small patch as identified at WWD via FOG and sUAS 
inspections. 
 

 
 

(a) (b) 

Figure 107. Low-Severity Small Patch Detected via FOG (a) and sUAS (b) Inspections 

Figure 108 compares medium- vs high-severity small patch as identified at WWD via sUAS 
inspections. 
 

  
(a) (b) 

Figure 108. Medium- (a) vs High-Severity (b) Small Patch Detected  
via sUAS Inspections 
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7.2.4  Large Patch 

Figure 109 illustrates low-severity large patch as identified at WWD via FOG and sUAS 
inspections. 
 

  
(a) (b) 

Figure 109. Low-Severity Large Patch Detected via FOG (a) and sUAS (b) Inspections  

Figure 110 illustrates medium-severity large patch as identified at WWD via FOG and sUAS 
inspections. 
 

 
 

(a) (b) 

Figure 110. Medium-Severity Large Patch Detected via FOG (a) and  
sUAS (b) Inspections 
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7.2.5  Scaling 

Figure 111 compares low-severity vs medium-severity scaling as identified at WWD via sUAS 
inspections. 
 

  
(a) (b) 

Figure 111. Low- vs Medium-Severity Scaling Detected via sUAS Inspections 

7.2.6  Shrinkage Crack 

Figure 112 illustrates shrinkage crack as identified at WWD via FOG and sUAS inspections. 
 

 
 

(a) (b) 

Figure 112. Shrinkage Crack Detected via FOG (a) and sUAS (b) Inspections 
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7.2.7  Joint Spall 

Figure 113 compares low-, medium-, and high-severity joint spall as identified at WWD via 
sUAS inspections. 
 

(a) (b) (c)  

Figure 113. Low- (a), Medium- (b), and High-Severity Joint Spall Detected  
via sUAS (c) Inspections 

7.2.8  Corner Spall 

Figure 114 illustrates low-severity corner spall as identified at WWD via sUAS inspections. 
 

 

Figure 114. Low-Severity Corner Spall Detected via sUAS Inspections 

Figure 115 illustrates medium-severity corner spall as identified at WWD via FOG and sUAS 
inspections. 
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(a) (b) 

Figure 115. Medium-Severity Corner Spall Detected via FOG (a) and sUAS (b) Inspections 

Figure 116 illustrates high-severity corner spall as identified at WWD via FOG and sUAS 
inspections. 
 

  
(a) (b) 

Figure 116. High-Severity Corner Spall Detected via FOG (a) and sUAS (b) Inspections 

7.2.9  Alkali-Silica Reaction 

Figure 117 compares low-, medium-, and high-severity ASR as identified at WWD via sUAS 
inspections. 
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(a) (b) 

 

 
 (c) 

Figure 117. Low-(a), Medium- (b), and High-Severity (c) ASR Detected via sUAS Inspections 

7.3  RESEARCH GAPS AND RECOMMENDATIONS FOR FURTHER TESTING 

The research team identified several gaps at the time of this research. These gaps merit additional 
research and investigation, as follows: 
 

• Conduct further study on LiDAR sensors to evaluate and quantify depth- and elevation-
related distresses. 

• Test additional integrations of aircraft airframes and sensors. 
• Test additional software packages. 
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• Collect data in additional lighting and environmental conditions. 
• Explore application of artificial intelligence (AI) for pavement distress data analysis, 

which is the focus of significant research and development. Incorporating its use into a 
standard, repeatable set of processes and procedures for sUAS data analysis and reporting 
has the potential to automate distress identification. 

• Test the application potential of hyperspectral imagery and ground-penetrating radar 
(GPR) for PCI analysis. Hyperspectral sensors possess the ability to detect a surface’s 
chemical and mineral properties while GPR sensors can determine subsurface conditions 
through nondestructive testing. 
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APPENDIX A—LITERATURE REVIEW 

A.1  ACRONYMS AND ABBREVIATIONS 
 
5A9 Roosevelt Memorial Airport 
ACRP Airport Cooperative Research Program 
AFN Jaffrey Airport 
AI Artificial Intelligence 
AJR Habersham County Airport 
AMG Automated Machine Guidance 
ATL Hartsfield-Jackson Atlanta International Airport 
BCA Benefit-Cost Analysis 
CMOS Complementary Metal-Oxide Semiconductor 
CNN Convolutional Neural Network 
DL Deep learning 
DOT Department of Transportation 
DSV Digital survey vehicle 
DTM Digital terrain model 
FAA Federal Aviation Administration 
FHWA Federal Highway Administration 
FMA Fitchburg Municipal Airport 
FOG Foot-on-Ground 
FTG Front Range Airport 
GDOT Georgia Department of Transportation 
GIT Georgia Institute of Technology 
GNSS Global navigation satellite system 
GPR Ground-penetrating radar 
GSD Ground sampling distance 
IP Image Processing 
IRT Infrared thermography 
ITV Iterative tensor voting 
JNX Johnston Regional Airport 
KTH Kungliga Tekniska Högskolan 
MassDOT Massachusetts Department of Transportation 
MAVLink Micro Air Vehicle Link 
MDOT Michigan Department of Transportation 
ML Machine learning 
NAS National Airspace System 
NDVI Normalized Difference Vegetation Index 
NHDOT New Hampshire Department of Transportation 
NIOSH National Institute of Occupational Safety and Health 
NN Neural Networks 
PMP Pavement Management Program 
PPK Post-processing kinematic 
RAM Random-access memory 
ROI Return on investment 
RTK Real-time kinematic 
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SfM Structure from motion 
SPR State Planning and Research 
sUAS Small Unmanned Aircraft System 
SWIR Short-wavelength infrared 
TLS Terrestrial Laser Scanning 
UAS Unmanned aircraft system 
USDOT U.S. Department of Transportation 
 
A.2  INDUSTRY LITERATURE REVIEW 
 
The research team conducted an extensive review of industry and academic literature on 
successful implementation of small unmanned aircraft system (sUAS) technologies for 
applications related to pavement, roadway, railroad, bridges, construction, monitoring, and 
inspection. This section details the key pieces of literature relevant to this research. 
 
A.2.1  Massachusetts Department of Transportation (Mogawer et al., 2019) 
 
In 2019, the Massachusetts Department of Transportation (MassDOT) used sUAS to assess 
roadway pavement condition (Mogawer et al., 2019). This research program, supported via the 
Federal Highway Administration (FHWA) State Planning and Research (SPR) funds, had two 
main objectives:  
 
(1) Perform a review of existing sUAS technologies for pavement condition survey.  
(2) Conduct a pilot study to evaluate the applicability of using sUAS for pavement condition 
analysis. 
 
A literature review was conducted on the use of sUAS technologies for data collection and deep 
learning applications. Based on the results reflected in the literature review, the research team 
observed and experimented with the use of two different methods of pavement crack detection. 
One was the MATLAB CrackIT toolbox, and the other was a deep-learning algorithm 
(convolutional neural network algorithm). 
 
The research team used sUAS to collect two sets of data at the Fitchburg Municipal Airport 
(FMA), in addition to those previously acquired by the MassDOT Aeronautics Division. As part 
of the data collection effort at FMA, several heights were tested to find the optimal altitude at 
which cracks in the pavement are still identifiable. Table A-1 identifies a summary of tested 
parameters for data collection. 
 

Table A-1. Massachusetts Department of Transportation Data Collection Parameters 
 

Airframe/Sensor Altitudes Tested (ft) Coverage Flight Description 

DJI Matrice 
210/XT2 Dual 

10–70 (at a 5-ft interval), 
80–150 (10-ft interval), and 

200 
Single Point Elevator flight, visual and 

thermal cameras 

DJI Inspire 2/X4S 32, 40, 50, and 60 Half Runway Coverage flight, visual 
camera 70, 90, 120, and 200 Full Runway 
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The pavement evaluation from collected images was performed using a MATLAB toolbox called 
CrackIT and two deep-learning approaches, Feature Pyramid and Hierarchical Boosting Network 
(FPHBN) and U-Net. The online image data set was used to train the deep-learning models via 
transfer learning. 
 
For data collection using sUAS, the study suggested that a 50-ft altitude provided balanced 
efficiency and accuracy for crack detection applications and resulted in 0.16 in. per pixel ground 
sampling distance (GSD). The study found that the increase in flight altitude had a negative 
impact on the image quality. Additionally, the image quality associated with thermal imagery did 
not exhibit clearer characteristics compared to the red, green, blue (RGB) imagery and was 
therefore removed from further consideration. 
 
Deep-learning models outperformed the MATLAB CrackIT toolbox, but these models required 
pixel-level ground marking to be successfully applied in image analysis. The ground marking is 
done manually and, therefore, requires significant effort in visual detection of pavement 
distresses to be effective. The time-intensive job of annotating a training data set can be an 
obstacle to the successful application of deep-learning models in pavement crack detection. 
Furthermore, the research suggested that combining a multirotor platform with selected cameras 
proved to be feasible in the data collection efforts and provided useful crack information with the 
deep learning methods. (Mogawer et al., 2019)  
 
A.2.2  Michigan Department of Transportation (Brooks et al., 2018) 
 
A 2018 study conducted by the Michigan Department of Transportation (MDOT) conducted 
field tests with five distinct airframes equipped with thermal, visual, and light detection and 
ranging (LiDAR) sensors to determine their implementation into MDOT workflows for 
transportation infrastructure inspections (Brooks et al., 2018). Field demonstrations included 
bridges, roadway corridors, construction sites, and highways, and data were processed using 
customized algorithms and tools. A cost-benefit analysis of manual vs automated bridge 
evaluation techniques and an implementation plan were also presented in a separate report. 
 
The team performed ten tests that used five different airframes and eight different sensors and 
covered four different types of infrastructure environments and needs. While the study did not 
share any flight parameters, such as GSD and altitude, Table A-2 summarizes the test sites, 
systems selected, and deliverables. 
 

Table A-2. Michigan Department of Transportation Field Tests 
 

Test Site Platforms Used Deliverables Produced 
South Warren Road Bridge: hot mix 
asphalt with some delamination and a 
surface condition rating of 5 

Bergen Hexacopter/Nikon 
D810/ FLIR Vue Pro 
DJI Phantom 3A 

Orthophotos, Digital 
Elevation Model, hillshade, 
thermal imagery 

Gordonville Road Bridge: concrete 
with some spalling and a surface 
condition rating of 5 

Bergen Hexacopter/Nikon 
D810/ FLIR Vue Pro 
DJI Phantom 3A 

Orthophotos, Digital 
Elevation Model, hillshade, 
thermal imagery 
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Test Site Platforms Used Deliverables Produced 
I-75/Square Lake Road: construction 
site (no pavement, aggregate mound) 

Riegl Ri-COPTER/LiDAR unit 
Bergen Hexacopter/Nikon 
D810 

Point cloud data, 
orthophotos, Digital 
Elevation Model, hillshade 

Uncle Henry Road: concrete with 
several spalls and delamination and a 
surface rating of 5 

Bergen Hexacopter/Nikon 
D810/ FLIR Vue Pro 
DJI Phantom 3A 

Orthophotos, Digital 
Elevation Model, hillshade, 
thermal imagery 

Beyer Road/STR 9293: concrete 
bridge deck with spalling and 
delamination and a surface rating of 5 

Bergen Hexacopter/Nikon 
D810/ FLIR Vue Pro 
DJI Phantom 3A 

Orthophotos, Digital 
Elevation Model, hillshade, 
thermal imagery 

M-120/Holton Road: 0.23-mile 
asphalt roadway corridor 

Bergen Hexacopter/Nikon 
D810/ FLIR Vue Pro/FLIR 
Vue Pro R 
DJI Phantom 3A 
DJI Mavic Pro 

Orthophotos, Digital 
Elevation Model, hillshade, 
thermal imagery, traffic 
video 

US-31/White River Corridor: 169-ft 
concrete bridge deck with several 
delaminations and a pavement 
surface rating of 4 

Bergen Hexacopter/ Nikon 
D810/ FLIR Vue Pro/ FLIR 
Vue Pro R/ FLIR Duo/ GoPro 
Hero 3 
DJI Phantom 3A 
DJI Mavic Pro 

Orthophotos, Digital 
Elevation Model, hillshade, 
thermal orthophotos 

Merriman Road: 176-ft concrete 
bridge deck with several patched 
spallings and a surface rating of 4 

Bergen Hexacopter/ Nikon 
D800/ FLIR Tau2 

Orthophotos, Digital 
Elevation Model, hillshade, 
thermal orthophotos 

MTRI Highway Corridor: concrete 
highway corridor, good condition 

DJI Mavic Pro 4K Video 

MTRI Highway/US 23: asphalt 
roadway 

Bergen Hexacopter/ Velodyne 
LP-16 LiDAR unit 

Point Cloud 

 
The study suggested that implementation of sUAS within MDOT workflows had several benefits 
in detecting bridge deck surface and subsurface conditions, including spalls and delamination, 
through optical and thermal imagery; monitoring and quantifying construction surface elements; 
low-cost traffic monitoring; and identifying inventory of roadway assets. Table A-3 presents the 
suggested combination of airframes and sensors. 
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Table A-3. Combination of Airframes and Sensors 
 

Platform Sensors Conclusion 
Bergen Hexacopter Optical and 

Thermal 
Most appropriate for high-resolution imaging of 
transportation infrastructure 

Bergen, Quad-8 
Octocopter 

Optical and 
LiDAR 

Most appropriate for flying both sensors simultaneously 
for testing purposes and along a road corridor 

DJI Phantom 3A Optical Most useful for rapid overview imaging of bridges and 
road corridors 

DJI Mavic Pro Optical Most useful for rapid overview imaging of a scene, 
traffic monitoring video, and close imagery of the side 
of a bridge 

The Mariner 2 Splash Optical Most useful for collecting imagery under a bridge 
 
The cost-benefit analysis suggested that the manual bridge evaluation techniques over-estimated 
the distresses, which led to higher maintenance costs as compared to the accuracy of sUAS, 
which possessed lower maintenance costs and improved deterioration modeling. (Brooks et al., 
2018) 
 
A.2.3  Airport Cooperative Research Program (Booz Allen Hamilton, 2020b) 
 
Established in 2005 by the FAA, the Airport Cooperative Research Program’s (ACRP) goal is to 
solve common problems, learn about new technologies, and assess innovations in service and 
operations through research efforts. ACRP Report 212, published in 2020, provides guidance for 
airports on unmanned aircraft system (UAS) applications and discusses the use of UAS in 
pavement inspections. The report considers pavement inspections among the most common types 
of UAS use cases and explores its potential implementation in the short term. UAS can improve 
the efficiency of the current process by inspecting runways, taxiways, aprons, and ramps to meet 
any FAA-mandated condition levels. The report discusses the three steps required in UAS 
operations (pre-planning coordination, flight planning, and executing the operation) in detail and 
provides successful case studies of high-resolution imagery data collection that were used to 
determine pavement conditions at Front Range (FTG) and Johnston Regional (JNX) Airports. 
(Booz Allen Hamilton, 2020b)  
 
The following ACRP research guidance (listed in Table A-4) was reviewed and considered as 
part of this research effort. 
 

Table A-4. Airport Cooperative Research Program Research References 
 

Report Number Report Name 
ACRP Research Report 212, 
Volume 3  
(Booz Allen Hamilton, 2020b)  

Airports and Unmanned Aircraft Systems: Potential Use of 
UAS by Airport Operators  

ACRP Research Report 212, 
Volume 2  
(Booz Allen Hamilton, 2020a) 

Airports and Unmanned Aircraft Systems: Incorporating 
UAS into Airport Infrastructure Planning Guidebook 
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Report Number Report Name 
ACRP Synthesis 104 
(Prather, 2019) 

Current Landscape of Unmanned Aircraft Systems at 
Airports 

 
A.2.4  Federal Highway Administration 
 
Report FHWA-HIF-19-089, Effective Use of Geospatial Tools in Highway Construction 
(Jagannath et al., 2018), provides a look at the past, current, and future of the industry’s use of 
new technology, such as UAS, LiDAR, and photogrammetry. The report examines the benefits 
and limitations of using various geospatial technologies. Of interest to this research were those 
that relate to UAS. It was observed that the industry in general was exploring the use of UAS for 
 

• Surveillance and traffic monitoring 
• Structural inspections 
• Construction safety inspection and security 
• Pavement inventory collection, pavement condition assessment, and inspection 
• Topographic mapping and earthwork quantities assessment 
• Construction progress monitoring 
• Slope stability assessment 
• Crash investigation 

 
The report tracks the growth of geospatial technologies and introduces commonly used ones like 
UAS, LiDAR, Photogrammetry, structure from motion (SfM), and Global Navigation Satellite 
System (GNSS), and also presents the current status and details of spinoffs like automated 
machine guidance (AMG), ground-penetrating radar (GPR), and total stations. The report 
investigates the benefits, challenges, and existing and potential uses of these technologies. The 
UAS used in the study included multicopters and helicopters, as summarized in Table A-5. 
 

Table A-5. Use Cases for UAS 
 

Operator Platforms Purpose 
Ohio State University 
for Ohio DOT 

senseFly’s albris 
sUAS 

Bridge inspections. 

Utah DOT senseFly’s albris, 
Phantom4, and the 
3DR Solo system 

Evaluate sUAS’s ability to deliver 3D 
imagery/models, perform topographic 
mapping, compute construction quantities, 
and perform construction inspection. 

Ohio DOT Aibotix Aibot X6 
Hexacopter with 
traditional RGB 
cameras 

Ohio DOT’s intent was to help survey areas 
designated for construction. 
Finding: a learning curve for surveying 
(specifically the post-processing of 
imagery), limited vertical accuracy. 

Large Highway 
Contractor #1; sUAS 
operations from NV 
regional office 

Five sUAS operated in 
different offices, in-
house data processing  
 

Stockpile monitoring, construction 
inspection, surveillance of environmentally 
sensitive areas, pre-construction records. 
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Operator Platforms Purpose 
Large Highway 
Contractor #2: rent 
sUAS 

Multi/Quadcopter Imagery capture for photogrammetry and 
generating 3D surfaces, construction 
inspection, stockpile monitoring, accurate 
logistic planning. 

Geospatial Service 
Company 

Operates multiple 
sUAS—multicopters, 
fixed-wing aircraft 

Drones as a service, construction progress, 
earthwork quantity estimation, intermediate 
as-builts. 

The authors found that highway contractors and geospatial services companies (e.g., Woolpert) 
were the early adopters of this technology, but State Departments of Transportation (DOTs) also 
realized that these systems could increase efficiency. The delay in adoption of these tools at the 
time of writing this report were attributed to the difficulty in quantifying the return on investment 
(ROI). However, many State DOTs have overcome this challenge and are finding that these tools 
allow them to increase staff utilization and productivity with fewer resources. The report 
includes case studies and details gleaned from discussions with highway contractors and 
geospatial service providers along with sample benefit cost analysis (BCA) and ROI 
calculations. 
 
The major benefits of UAS use were found to be in enhancing safety through reducing the 
requirement of human inspectors, improving construction reporting via high-resolution imagery 
and videos, and real-time construction quantity monitoring. UAS can typically fly a diverse set 
of sensors to collect different data types. In some cases, UAS can also access areas that can be 
difficult or dangerous to reach. With its smaller cost, as compared to fixed-wing aircraft, the 
ability to perform repetitive flights allows for change detection capability. And unlike fixed-wing 
aircraft, rotary-wing UAS can be flown close to the ground to collect high-resolution data 
efficiently. A major limitation that was reported was the limited time on station, typically under 
one hour. Consequently, for flights requiring longer on-station time, the operator must have an 
adequate supply of batteries or gasoline as needed. 
 
A.2.5  Health & Safety Fund of North America (Dorsey, 2018) 
 
The Laborers’ Health & Safety Fund of North America (LHSFNA) published a report in 2018 
that stresses the important role that UAS plays in project forecasting and construction monitoring 
(Dorsey, 2018). The agency believes that UAS technology offers a tool for rapidly gauging 
progress, particularly on construction sites that span large areas. UAS mounted with a diverse 
range of sensors (e.g., thermal, radar) can facilitate a quantum leap in surveillance capabilities, 
enabling the tracking of equipment, workers, and material, in addition to construction progress. 
The use of UAS in hazardous conditions also reduces risk exposures of workers. 
 
The FAA has one set of regulations for drone operations for recreational use, while commercial 
use falls under its UAS rules. The regulations for commercial operations require the platform to 
be registered with the FAA, fly below 400 ft and within line of sight, fly mindful of privacy and 
airspace restrictions, and never fly near other aircraft or near airports (Dorsey, 2018). 
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The agency did not provide UAS platform details, but the article illustrated quadcopters and 
multirotor platforms. The agency cautions that potential hazards to workers from drones—like 
risk of injury due to a falling drone—could open employers to liability or privacy issues. 
Consequently, the agency advises employers to purchase adequate insurance. However, with 
those concerns out, the agency feels positive about the potential of this technology and lists the 
following applications: 
 

• Construction progress monitoring 
• Structural integrity assessment 
• Preventive maintenance 
• Construction site surveillance 
• Search and rescue 
• Time lapse recording of construction sites 
• Frequent inspections permitted by increased time on station 

 
A.2.6  Hartsfield-Jackson Atlanta International Airport (Michael Baker International, 2017) 
 
In 2017, Hartsfield-Jackson Atlanta International Airport (ATL), a Class B airport, partnered 
with Michael Baker International and used a UAS to inspect Runway 9L/27R to develop a 
pavement condition assessment after obtaining approval from the FAA (Michael Baker 
International, 2017). 
 
The team inspected the busiest and longest runway (12,390 ft) at ATL, which incurs the most 
pavement distress and damage due to the operations of heavy aircraft. A Topcon Falcon 8 UAS 
was used to collect high-resolution imagery of Runway 9L/27R. The aerial data were used to 
generate elevation contours, high-resolution orthomosaic imagery, a RGB 3D textured mesh, and 
a digital terrain model (DTM). Data were then analyzed using a suite of Autodesk, Esri, and 
Bentley software. 
 
With the use of UAS, the inspection was completed in fewer than 20 minutes, and more than 630 
high-resolution photos of the airfield were collected. The process took less than half the time to 
complete the inspections, as compared to the traditional, time-intensive, and cost-inefficient 
methods used today. The use of UAS provided the research team with a large amount of data that 
will help identify future areas for rehabilitation and improvement. (Michael Baker International, 
2017) 
 
A.2.7  Drone Deploy (Drone Deploy, 2018) 
 
Bolton & Menk—an engineering, planning, and consulting firm—carried out a pavement 
analysis study to evaluate pavement deterioration for the City of Elko New Market, Minnesota 
(Drone Deploy, 2018). 
 
The firm used DJI’s Phantom 4 for pavement analysis in real time across 26 miles of roadway 
infrastructure. The team involved in this effort planned flights using the Linear Flight Plan 
application inside DroneDeploy to capture high-resolution aerial imagery through 18 separate 
missions over 2 days. Data were then processed using DroneDeploy’s cloud-based platform. 
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The study showed that UAS can be effective in counteracting the need for ground-based surveys 
and can provide quick and convenient imagery-based data for city infrastructure planning. By 
reducing field times by more than 60% and testing high-accuracy imagery data, this novel 
implementation was a lucrative tool for city officials. (DroneDeploy, 2018) 
 
A.3  UNIVERSITY/ACADEMIC LITERATURE REVIEW 
 
A.3.1  Texas A&M (Henrickson et al., 2016) 
 
In 2016, Texas A&M conducted a study to evaluate the use of UAS for infrastructure assessment 
(Henrickson et al., 2016). The team collected imagery of a variety of infrastructure elements, 
such as runway segments and roads (among others). The objective of the research was to assess 
the quality of imagery produced using specific sensors at a specific flight altitude and while 
maintaining a specific airspeed. 
 
The selected tests included a variety of terrain types (e.g., paved runway, paved taxiway, grass 
field, trees), and the normalized difference vegetation index (NDVI) was used as spectral 
vegetation index. The three sensors used in the study were as follows: 
 

• Sentek GEMS Multispectral and dual Complementary Metal-Oxide Semiconductor 
(CMOS) with visual and infrared imagery  

• Canon EOS 5D Mark III DSLR along with CMOS for visual imagery and Marrex MX-
G10 external Global Positioning System (GPS) antenna 

• GoPro Hero3+ silver edition 
 
The research team used two fixed-wing airframes (Anaconda and Super Club) to cover large 
areas, and two rotary-wing airframes (DJI S1000+ Octocopter and a Hexacopter) for areas that 
required detailed imagery. The collected geo-tagged images were later processed using Pix4D 
software with a 75% forward overlap and 60% side overlap. 
 
The research team detected weeds growing through cracks on the runway pavement. In addition, 
they detected changes in surface uniformity on the runway from the texture maps they had 
developed. The study found that large areas could be assessed with a two-man crew and Sentek 
sensor along with the Anaconda. The team was successful in achieving the research objective at 
an altitude of 400 ft and airspeed of 35 mph at 2.34 in. (59 mm) GSD. (Henrickson et al., 2016) 
 
A.3.2  Georgia Institute of Technology (Irizarry and Johnson, 2019) 
 
The Georgia Institute of Technology (GIT) partnered with the Georgia Department of 
Transportation (GDOT) to conduct a study on Field-Test-Based Guideline Development for 
Integrating UAS in GDOT Operations (Irizarry and Johnson, 2019). GIT experimented with 
integrating UAS in applications such as airports, rail terminals, construction sites, and bridges to 
help provide Federal Aviation Administration (FAA)-adhered UAS guidelines. The purpose of 
the study was to determine technological feasibility, advantages, and limitations, and FAA 
guidelines compatibility; and to conduct a workshop for GDOT to understand the use of UAS 
technology and integrate it in GDOT division operations. GIT used several UAS platforms to 
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collect data via manual and automated modes. The reviewed literature focuses on GIT’s tests at 
two different airports where runway inspections have been performed. 
 
GIT conducted field tests at two airports: Habersham County Airport (AJR) and Roosevelt 
Memorial Airport (5A9). Both airports are located in the State of Georgia and were selected after 
site visits at four airports. The research team used six different UAS platforms to conduct runway 
inspections, construction inspections, and obstruction inspections, with Skysight as their industry 
partner. Four of the six platforms were used to conduct runway pavement inspections to identify 
and measure cracks. These four platforms were: 
 

• DJI Phantom 4 
• DJI Mavic Pro 
• Yuneec Typhoon 
• DJI Matrice 210 

 
The four platforms collected still images, 3D model, and infrared images, and the 3D models 
were developed using photogrammetry. The team used Pix4D Mapper for data processing due to 
its high compatibility with DJI platforms and stored the data in a cloud environment. 
 
The FAA requirements corresponded to GDOT standards for UAS use in the National Airspace 
System (NAS) and were suitable for the study of UAS operations. The study found that GDOT 
could use UAS for operations in their divisions with the help of technical training. The team 
identified that hiring an experienced contractor was beneficial to conduct UAS operations 
efficiently and relatively faster, particularly for airport inspections. GDOT recommended having 
a UAS-dedicated group that would help with the operations across various GDOT divisions. The 
study found that operating UAS was technologically feasible. 
 
UAS proved to be time-efficient at gathering quantifiable information and enabled access to 
remote or otherwise inaccessible areas, in addition to increasing the safety of team members. 
However, data storage, insufficient training for data processing using photogrammetry, legal and 
privacy issues like liability insurance, and liability management were noted areas of concern. 
 
Lastly, a workshop conducted for GDOT helped with education on UAS technology, FAA 
regulations, data collection planning, software, and processing. Further research with advanced 
use of data and newly developed sensors was recommended. (Irizarry and Johnson, 2019) 
 
A.3.3  South Dakota University (Zhang, 2008) 
 
In 2008, South Dakota State University conducted a study (Zhang, 2008)—sponsored by the U. 
S. Department of Transportation (USDOT)—to use remote sensing technology to assess the 
condition of unpaved road. The research was focused on developing image processing 
algorithms to detect and extract road defects from the UAS-collected imagery, including various 
road distresses from two-dimensional (2D) imagery, analysis of the inherent three-dimensional 
(3D) geometry information in images using photogrammetric techniques, and the fusion of 2D 
and 3D information to derive road condition parameters in an efficient and cost-effective way. 
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To assess the condition of unpaved road, an Airstar International Mongoose airframe helicopter 
used a pre-programmed flight path. The UAS’s parameters (like position, velocity, and altitude) 
were recorded using GPS and geomagnetic sensor. 
 
Preliminary results of the 2D road imagery analysis showed that UAS images were suitable for 
extracting many distresses needed for monitoring the condition of unpaved roads. For the 
imagery acquired right after sunrise, potholes, rutting, loss of aggregate cover, drainage issues, 
and poor overall cross section were identifiable despite the large shadows of roadside trees. The 
study concluded that 2D imagery is limited in distress identification and does not provide enough 
information on vertical dimensions of a surface distress. Hence, the study suggested 3D models 
for enhanced detection of distresses such as potholes and rutting. (Zhang, 2008) 
 
A.3.4  University of New Vermont 
 
The University of New Vermont conducted a study on integration of UAS to increase safety and 
decrease costs of transportation projects and related tasks for the New Hampshire Department of 
Transportation (NHDOT) (O’Neil-Dunne and Estabrook, 2019). The University of New 
Vermont established eight case studies to analyze UAS implementation in the transportation 
infrastructure. One of the case studies involved airport runway and airspace inspection. The team 
worked with Jaffrey Airport (AFN), NHDOT, and the FAA to collect the data using UAS. 
 
Table A-6 summarizes the eight case sites, platforms used for testing, and deliverables. 
 

Table A-6. University of New Vermont Test Sites and Platforms 
 

Test Study and Site Platforms Deliverables 
Simulated Car Accident, New 
Hampshire Motor Speedway, 
Loudon, NH 

senseFly eBee RTK, 
DJI Phantom 4 

Orthomosaic imagery, 3D point cloud 

Airport Runway and Airspace 
Inspection, AFN 

senseFly eBee Plus Orthomosaic imagery, digital surface 
model, digital elevation model, and 3D 
point cloud 

Bridge Inspection, Lebanon, NH senseFly Albris, DJI 
Phantom 4 

High-resolution inspection photos, aerial 
photos, aerial videos 

Construction Monitoring, Derry and 
Windham, NH 

senseFly eBee Plus Orthomosaic imagery, digital surface 
model, digital elevation model, and 3D 
point cloud 

Emergency Management, Murphy 
Dam on Connecticut River, 
Pittsburg, NH 

senseFly Albris, 
senseFly eBee Plus 

Orthomosaic imagery, digital surface 
model, digital elevation model, 3D point 
cloud, and high-resolution inspection 
photos 

Traffic Monitoring, I-95 (1430-
1630), Portsmouth, NH; Franconia 
State Park Parking Area (1030-
1430) 

DJI Phantom 4 
 

10 video files, 
8 video files and 38 photos 
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Test Study and Site Platforms Deliverables 
Rail and Bridge Inspection, NH 
Central Railroad, Lancaster, NH: 
(2-mile stretch) and bridge in the 
railroad corridor 

senseFly Albris, 
senseFly eBee Plus 

Orthomosaic imagery, digital surface 
model, digital elevation model, 3D point 
cloud, and high-resolution inspection 
photos 

RTK = Real-time kinematic 
 
For AFN’s runway and airspace inspection, a fixed-wing small UAS platform, eBee Plus, was 
used to capture 1,068 photos over an area of 210 acres, taking 53 minutes and two flights. An 
additional 1,058 pictures were captured on another day (for northern and southern runway 
approaches) across five flights in 115 minutes. The team used eMotion software after the flight 
to tally the collected images and Pix4D Mapper to generate 2D and 3D orthomosaic imagery; 
and a digital surface model, digital elevation model, and 3D point cloud for the total of 2,126 
pictures. 
 
The study suggested that using UAS was safe, time-efficient, and feasible for runway pavement 
inspections in comparison to foot-on-ground (FOG) inspections. The study found that the UAS 
technology was efficient in identifying fine cracks with a resolution of 1.8 cm (18 mm) 
compared to Esri base map of 30 cm (300 mm). 
 
Furthermore, the study found that UAS was helpful in areas that were traditionally inaccessible 
or unsafe for inspection personnel, and that the data extracted provided a spectrum of analysis 
and geospatial integration possibilities. According to the researchers, senseFly eBee Plus was 
comparatively a more complex platform than DJI Phantom 4, as it requires more technical GIS 
knowledge for operations. To implement the use of UAS within NHDOT, the evaluation 
determined quadcopters along with cameras and gimbals as the most viable solutions due to their 
minimum training requirements and capability to acquire aerial imagery. In addition to 
emphasizing the need for liability and insurance for UAS operators, the researchers looked into 
the privacy laws of New Hampshire and suggested private landowner approval prior to UAS 
operations. (O’Neil-Dunne and Estabrook, 2019) 
 
A.3.5  Massachusetts Institute of Technology (Petkova, 2016) 
 
This thesis study focused on deploying drones for autonomous detection of pavement distress 
(Petkova, 2016). The motivation for the research is to push the state of the art and improve how 
pavement assessments are performed. During FOG inspections that are time-consuming and 
labor-intensive, assumptions are made about the condition of a large percentage of the pavement. 
With the right tools, these tasks can be automated to enhance coverage and reduce inspectors’ 
exposure to risk. 
 
This research employs a UAS to perform video-based remote sensing in conjunction with 
employing an automated feature extraction algorithm to identify and locate distresses. The 
mission-control software uses Python to determine vehicle operating parameters and issue 
navigation directions to complete the mission. Control commands are communicated to the 
platform using Micro Air Vehicle Link (MAVLink) protocol. The algorithm can be tweaked to 
carry out a simplistic function like pothole finding or to perform a comprehensive function such 
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as looking for pavement distresses (cracks) in addition to the simplistic pothole search. The 
system stores an image of the identified distress with the GPS coordinates and a timestamp of 
when it was found. 
 
The research used 3DR’s Solo UAS with a GoPro Hero4 Black Camera. The UAS is composed 
of a dual processor with a clock speed of 1 GHz and with 512 MB of random-access memory 
(RAM), which can fly at maximum speeds of 55 mph. The GoPro camera was installed using a 
gimbal with three-axis stabilization. This setup facilitates the camera’s angular motion between 0 
and 90 degrees, with the latter for downward recording. The video frame capture capability was 
24 fps at 1080p video resolution. Python software using application programming interfaces 
(APIs) developed by 3DR for communication, control, software updates, and UAS application 
development was used. Autonomous flight missions were generated using Google Maps™ in 
conjunction with a custom application that extracted path coordinates from the keyhole markup 
language (kml) file. With the issuance of 14 C.F.R. Part 107 (Small Unmanned Aircraft Systems) 
in May 2016 allowing students to operate and test sUAS for research, the system was flown in 
Massachusetts near Cambridge and Somerville.  
 
The system suffered from limitations of the hardware used. The processor onboard the 3DR solo 
was found to be incapable of performing real-time analysis. A configuration of a processor with 
a rated speed of 1.8GHz and at least 4GB of RAM could perform real-time analysis in 1 second 
compared to approximately 10 seconds for the 3DR Solo’s hardware. Flight times available due 
to battery constraints were limited to 20 minutes with a payload sensor. The research also 
suffered from connectivity issues with the UAS, leading to recurrent video interruptions. The 
UAS had issues in connecting to the required number of satellites (9) to achieve a horizontal 
positioning accuracy of 5 m or less. The resulting accuracies were in the 5 to 10 m range. 
 
With a powerful processor, which will become available in time, this system shows potential for 
real-time monitoring and pavement management. (Petkova, 2016) 
 
A.3.6  European Transport Research Review: Review of Remote Sensing Methodologies for 
Pavement Management and Assessment (Schnebele et al., 2015) 
 
This literature review and survey of current pavement evaluation and management techniques 
sought to evaluate the role of remote sensing technologies in reducing the expense, labor 
intensity, and time required to make assessments. In this paper, Schnebele et al. (2015) define 
“remote sensing” as a technique for surveying transportation infrastructure without actual contact 
with its surface. Remote sensing offers the potential to perform infrastructure condition 
assessment, with the notable benefit of increased spatial coverage. This stands in stark contrast 
with traditional evaluation methods that use FOG inspections limited to point observations. Such 
methods also suffer from the subjectivity of human inspectors, who may report different 
distresses and cause variability in data and, therefore, in understanding pavement condition. The 
integration of geospatial tools and techniques is making it possible to perform comprehensive, 
frequent, and safe monitoring and assessment of transportation infrastructure. Remote sensing 
tools provide an especially useful means to perform infrastructure assessment in the aftermath of 
major disasters. The paper reports that although $182 billion was spent on maintaining and 
improving the more than 6,000,000-km U.S. road network, the American Society of Civil 

https://infrastructurereportcard.org/cat-item/roads-infrastructure/
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Engineers (ASCE) gave it a grade of D. With the extensive spatial spread of this large network, 
remote sensing presents an opportunity for assessment and improvement. The platforms 
evaluated in the research include vehicles, airplanes, satellites, and UAS. 
 
This paper serves to provide a comprehensive repository of conventional and remote sensing 
tools for roadway evaluation for pavement managers. It includes a detailed review of available 
literature and promising techniques. The available literature tracks the introduction and growth in 
usage of remote sensing techniques by states. Schnebele et al. (2015) cites the National 
Cooperative Highway Research Program (NCHRP) Synthesis 203 (1994), which found that each 
of the 40 states sampled were using manual methods . Ten years later, of 45 agencies sampled, 
28 were using automated data collection including video monitoring while 17 were still using 
manual data collection. By 2007, State DOTs like the Virginia Department of Transportation had 
developed data quality standards. A limitation to widespread adoption of these tools was the lack 
of systems that provided the required functionality. However, based on the rapid adoptions by 
states, the widespread use of remote sensing technologies is inevitable.  
 
The authors reviewed the following remote sensing techniques through available literature: 
 
Image Processing (Visible) is the actual method for automated detection using image processing 
and pattern recognition to identify surface distresses. These involve isolating the distresses and 
creating a binary image that is then used with segmentation algorithms for distress identification. 
From their literature review, the authors observed that the primary segmentation algorithms used 
were edge detection and thresholding. Prior research was able to identify cracks, and through 
texture analysis and segmentation, was also able to identify potholes. Through the use of wavelet 
transforms, segmentation algorithm, and thresholding, researchers were able to detect and 
classify longitudinal cracks, transverse cracks, alligator cracking, and block cracking in flexible 
pavement. The authors found that available literature documented the difficulties of crack 
detection using image processing. This is attributed to the typically small spatial coverage of 
cracks and texture and lighting that can hide distresses. The authors observe that 
photogrammetry is a lower-cost option that offers 3D information that can be used for pavement 
assessment. 
 
Ground-Penetrating Radar utilizes electromagnetic waves and can detect changes in materials 
and moisture contents. GPR finds use in the measurement of pavement layer thickness (which 
helps avoid surface closures for destructive assessment) and identification of voids. While GPR 
can predict asphalt pavement thickness, it does not have similar success with PCC pavements. 
The composition of PCC layers results in attenuation of radar waves, and the similarity in the 
die-electric constants of the surface and base layers makes identification of the layers difficult. 
Detecting voids filled with water and air provides a way to understand pavement deterioration. 
Moisture between asphalt and the base causes distresses such as cracking, rutting, potholes, and 
raveling. Researchers have found GPR capable of detecting moisture in the subgrade of asphalt 
pavements and identifying cracks in asphalt layers and measuring their depths. 
 
Infrared Thermography (IRT) overcomes the drawbacks of GPR technology, which can 
measure depth and thickness of surface distresses in asphalt pavements but cannot provide 
horizontal measurements. IRT measures the amount of radiation emitted by objects in the 
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infrared spectrum. The emissivity of an object is a function of its composition and temperature. 
As asphalt ages, its emissivity changes due to wearing away of the binder. Researchers have 
been able to identify distresses and areas of delamination in airport pavements by picking up 
temperature differences as low as 0.5 °C. However, IRT is affected by climatic conditions such 
as rainfall, wind, and sunlight. 
 
LiDAR and Terrestrial Laser Scanning (TLS) both work by transmitting and recording the 
reflection of electromagnetic radiation in the near-infrared region. The measurement results in 
point clouds with precise x, y, and z position data. With its dense point clouds, LiDAR finds use 
in mapping and creating Digital Elevation Models (DEMs). LiDAR produces similar results 
during day or night, unlike other competing techniques. LiDAR can detect pavement distresses 
and help estimate repair quantities. TLS can provide continuous 3D pavement surveys and has 
been used to detect pavement distresses like rutting, shoving and potholes, cracks larger than 2 
mm in asphalt pavements, and faulting of concrete panels. The data collection proceeds at 
highway speeds and is, therefore, safer than manual techniques. However, the high cost of TLS 
instrumentation and hardware are barriers for its widespread implementation. The results are 
consistent with standard techniques. 
 
Hyperspectral Imagery collects spectral information that provides insight into the chemical and 
mineral makeup of objects. As asphalt ages and its binder wears out, its reflectance increases in 
the near-infrared and short-wavelength infrared (SWIR) spectrum by as much as 10% compared 
to new pavement. However, cracking exposes potentially unweathered material, which makes the 
discrimination of old and new materials complex.  
 
The use of remote sensing techniques offers new potential for pavement managers to assess large 
areas, often in a short time. The authors acknowledge that, although remote sensing techniques 
cannot replace traditional geotechnical methods, they do provide an opportunity to reduce the 
number or size of areas requiring site visits or manual methods (Schnebele et al., 2015). 
 
A.3.7  Kungliga Tekniska Högskolan Royal Institute of Technology (Millian, Julian D.R., 2019) 
 
This study, conducted by the Kungliga Tekniska Högskolan Royal Institute of Technology 
(KTH), emphasizes the need for managing pavement assets because of the large spatial extent 
and significant cost of maintaining pavements (Millian, Julian D.R., 2019). Managing pavements 
requires periodic condition assessments by inspectors walking the pavements or by use of mobile 
vans equipped with a wide range of sensors. Using traditional methods to inspect large networks 
is both cost-prohibitive and labor-intensive. This study was developed jointly by KTH and 
Stockholm Hamn AB for managing the new deep-sea Norvik port in Sweden, which commenced 
operations in May 2020 as expected. The port will handle 500,000 containers and 200,000 
rolling goods vehicles annually, and maintaining its pavements is a critical factor to its efficient 
operation. A literature review (Zakeri et al., 2016) performed by the authors found that UAS 
imagery outperforms that obtained through satellites and mobile vans on account of its lower 
cost, rapid deployment, and high safety. Other studies (Henrickson, et al., 2016) found that using 
UAS helped to reduce the cost and time for inspection of pavement assets. A further study 
(Zhang, 2008) observed that UAS imagery provided adequate detail for the extraction of 
pavement condition attributes. 
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The objective of the study was to explore the state of the art in the use of UAS for infrastructure 
inspection and management, evaluate operating conditions and platforms, lay out processing 
details, and identify additional application of the collected data (Millian, Julian D.R., 2019). In 
Figure A-1, Coenen and Golroo (2017) give a broad outline of the pavement management system 
implementation used in practice. 
 

 
Figure A-1. Pavement Management Systems (Coenen & Golroo, 2017) 

 
Despite the technological innovations available today, a large amount of data collection is still 
performed by skilled inspectors using the standard procedure in ASTM D6433. However, 
manual inspections face the problem of intra-inspector variability (due to subjectivity), concerns 
about the safety of inspectors from traffic and exposure to pollution, and high costs (including 
labor and time). 
 
One improvement on manual inspections is the van-based inspection procedure, which uses 
sensor suites mounted inside and outside the vehicle. The sensors include cameras for capturing 
imagery, GPS, TLS, and illumination devices. One drawback of vehicle-based pavement 
inspection systems is their inability to cover the entire pavement width in one pass. 
Consequently, procedures to overcome this have evolved, i.e., data collection in the outermost 
traffic lane, which is typically loaded with the heaviest traffic. Additionally, for roadways with 
fewer than four lanes, data are collected in just one direction. One disadvantage of collecting 
data from only the heaviest loaded lane is that conditions in the other lanes can be missed, and 
impacts of difference pavement structures might not be captured. 
 
Table A-7 provides a list of the various sensors and their applicability to detect the various 
distresses and is a very useful tool for the selection of the most appropriate sensors for specific 
pavement distress assessments. 
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Table A-7. Review of Sensors and their Applicability to Different Distress Types  (Coenen & 
Golroo, 2017) 

 

Distress Type Camera 
Accelero- 

meter 
3D-

Sensor Microphone Sonar Pressure Friction 
Deflecto-

meter 
Cracking C/P  C/P      
Patching C/P  C      
Potholes C/P C/P C/P P P C/P   
Rutting P  C/P  C    
Shoving C P C/P   P   
Bleeding P  C/P      
Polished 
aggregate   P C/P     

Raveling   C/P C     
Edge drop-off   C  C    
Water 
bleeding and 
pumping 

  C C     

Additional 
road 
information 

        

IRI C C/P C/P C/P  C/P C  
Skid 
resistance   C    C  

Substructure   C/P     C 
Other C C C/P P C   C 

Note: C = Commercial Development, P = Scientific Research Papers 
 
The use of satellite photography could overcome some of the drawbacks of vehicle-based 
inspection. However, it is observed that satellite imagery was not able to detect distresses like 
rutting and cracking. The authors state that, based on available literature, UAS sensors can cover 
areas measuring several kilometers and can identify details, such as pavement distresses, 1 cm in 
size or less. Consequently, UAS can be used for 
 

• Traffic surveillance 
• Structural inspection 
• Construction inspection, progress monitoring, and safety  
• Roadway condition inventory collection 
• Survey  

 
The limitations of UAS listed in the research include: 
 

• Regulatory regime—operations close to airports and military installations are restricted. 
• Impact of winds on flight trajectory 
• Flight altitude control issues 
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• Low endurance due to battery limits 
• Rapid battery drains in temperatures below 15 °C 

 
The researchers evaluated three types of sensors and observed the following: 
 

• Cameras: Digital photographs from inexpensive cameras (costing under $100) could 
provide the resolution for the level of detail required to detect pavement distresses. They 
found that Coenen & Golroo (2017) used a Sony Cybershot DSC-W180 camera to collect 
aerial imagery with satisfactory results. The authors do not provide the details of extent 
of overlap but state that results from photogrammetric reconstruction for common 
distress types like rutting (outer wheel path), alligator cracking, and transverse cracking 
were satisfactory.  

 
• LiDAR: Recently, technological innovations have made it possible for LiDAR sensors to 

be carried by UAS. The authors observe that aerial LiDAR is cheaper than mobile 
LiDAR and can collect data in 60% of the time for 60% of the cost of mobile LiDAR, as 
reported by the Dye Management Group (2014). Although the benefits are there, point 
cloud densities for aerial LiDAR are lower than terrestrial LiDAR. Data quality was 
found to be dependent on parameters such as sensor capability, flight elevation, speed, 
and point density. The technology has potential and is used in conjunction with imagery 
collection. 

 
• Multi- and Hyperspectral Imagery: These sensors work similarly to cameras but capture 

imagery outside the visible spectrum. Due to the spectral bands used, these sensors are 
able to provide details of the chemical and mineral properties of an object. The technique 
is based on the reflectivity of objects, which varies with chemical composition. In the 
case of asphalt pavements, as the binder material degrades with age, its reflectivity also 
changes. This is used to detect distressed asphalt pavement. However, pavement 
contamination with external materials (oil, water, patches) makes the analysis 
complicated. 

 
The authors concluded from the literature review that resolution is the main challenge in 
automating pavement distress assessment. Resolution depends as much on the sensor’s capability 
as on the altitude or distance from which the picture is taken. Therefore, it is observed that pixel 
size is inversely proportional to altitude, though the spatial coverage increases with altitude. 
 
Processing data collected in the field is required to transform it into pavement condition data that 
can be input in typical pavement analysis software (PAVER or PAVEAIR) for PCI computation. 
The processing proceeds using traditional methods such as intensity thresholding and edge 
detection. However, this process can result in several false positives on account of shadows, 
particle texture, water ponding, or brightness. Deep Learning (DL) is helping to solve the feature 
extraction problem. The technique involves training the DL network with a learning set. The DL 
network uses this set to encode the image properties with the help of different analysis layers.   
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Three DL network algorithms that can be used for feature extraction are: 
 

• Caffe, developed by the University of California at Berkeley 
• TensorFlow, developed by the Google Brain Team 
• Keras, a Python DL library and API that can run with TensorFlow. 

 
The study also discusses the efficacy of various data processing for feature extraction. Figure A-
2 shows the process of the deep learning crack detection mechanism. 
 

 
 

Figure A-2. CrackTree Proposed Flow Chart  (Zou et al., 2012) 
 

a. Machine Learning and DL Algorithms with Imagery Data. Research by Zou et al. 
(2012) used convolutional neural networks (CNNs) for the feature extraction. The study 
used a geodesic shadow-removal algorithm and produced satisfactory results. However, 
they found discontinuities in the extracted features and were not able to determine crack 
widths, which are used to classify the severity of the distress. A later improvement on this 
study (Zhang et al., 2018) made computation more efficient without loss of data. Though 
the results were much improved, the algorithm still had issues with fine cracks and joints.  

b. Multispectral Imagery. The study by Pan et al. (2018) used multiple learning algorithms 
in addition to CNN and claimed 98.3% effectiveness in identifying cracks and potholes. 
The study also evaluated the influence of pixel resolution in the automatic distress 
identification procedure by flying UAS at different elevations and collecting imagery 
with different pixel resolutions. Researchers found that a number of missed distresses 
(cracks) greatly increased beyond a pixel size greater than 3 cm. It was determined that 
the pixel resolution should be selected based on expected crack widths. 

c. Hyperspectral Imagery. The application of this type of data has not been researched 
extensively.  

d. LiDAR Data: Guan et al. (2015) proposed a methodology using LiDAR point clouds 
termed ITVCrack (Iterative Tensor Voting). The pavement surface points are extracted 
and converted to imagery. This is then used with an edge extraction algorithm for the 
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feature extraction. The researchers claimed that the method outperformed other 
alternatives. 

 
The research presented in Millian (2019) was part of a master’s thesis. The data collection was 
performed on a test section using a UAS with a diverse set of parameters. The UAS and the 
pavement test section were provided by Stockholm Hamm AB. Data collected by the UAS was 
compared with traditional data collection methods including FOG and vehicle-based. The data 
collected will be processed using the techniques described earlier. 
 
Sensor selection was carried out to ensure the required precision, endurance, platform stability, 
and cost. LiDAR sensors were of interest to the research due to their ability to acquire 3D data. 
Cameras can acquire 2D and 3D data, though 3D data capture requires a considerable amount of 
time and computational power. The selection of the right camera that is suited for 
photogrammetry is desired for high accuracy. Such cameras are pricey, however, with high-end 
ones designed for UAS—like the Phase One IXU 1000 sensor with 100 Mega Pixels 
resolution—costing as much as $70,000. The most important parameter to bear in mind while 
selecting the right camera sensor is pixel size, as discussed earlier. Pixel size is affected by other 
variables like lens resolution, aperture, and focal length. Additional important factors include 
overlap and ground control point. Tables A-8, A-9, and A-10 present these comparisons. 
 

Table A-8. Comparison of UAS Camera Sensors 

Camera Megapixels 
Sensor Size 

(mm) Compatibility 

Ground Sampling 
Distance at 120m 

cm/pixel Shutter 
Phantom 4 12.0 6.27x4.55 Phantom 4 5.2 Rolling 
Phantom 4 
Pro 

20.1 12.8x9.6 Phantom 4 3.2 Mechanical 

DJI Zenmuse 
X3 

12.0 6.27x4.55 Inspire 
1/M100/M600 

5.2 Rolling 

Canon 5Ds 50.6 36x24 M600/ALTA 
8/Altura Zenith 

With 35mm lens–
0.9471 

Mechanical 

Canon 5D 
Mark 3 

22 36x24 M600/ALTA 
8/Altura Zenith 

With 35mm lens–
1.3714 

Mechanical 

DJI Zenmuse 
X5 

16.0 17.3x13 Inspire 
1/M100/M600 

With 15mm lens–3 Rolling 

DJI Zenmuse 
X5S 

20.1 17.3x13 Inspire 2 With 15mm lens - 
2.7 

Rolling 

DJI Zenmuse 
X4S 

20.1 12.8x9.6 Inspire 2 3.3 Mechanical 

DJI Zenmuse 
Z30 

2.1 4.95x3.42 M100/M600 3.4–0.3 Rolling 

DJI Zenmuse 
Z3 

12.0 6.32x3.55 Inspire 1/ 
M100/M600 

4.8–1.4 Rolling 

Sony RX100 
VI 

20.13 13.2x8.8 M600 3.3–2.15 Mechanical 
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Table A-9. Comparison of UAS Flight Mission Software Based on the Developer’s Information  
(Millian, Julian D.R., 2019) 

 

Software 
Operative 

System Sensor 
Flight Personalization Parameters 

Compatibility OL A HT PR S Alt CR AU MFP BDI 
DJI GS 
Pro 

iOS Camera 
        2 KMZ, 

SHP 
DJI drones 

Map Pilot 
for DJI 

iOS Camera 
        1  DJI drones 

Pix4D 
capture 

iOS/ 
Android 

Camera 
        4  DJI, Parrot, 

Yuneec 
UgCS Windows/

macOS/ 
Linux 

Camera/
LiDAR          KML, 

DEM 

DJI, Parrot, 
Yuneec, 
Others 

Note: OL = overlap, A = angle, HT = Height, PR = Pixel Resolution, S = Speed, Alt = Altitude, CR = Check 
Results, AU = Auto Upload, MFP = Mission Flight Patterns, BDI = Base Data Import 

 
Table A-10. Main Photogrammetry Software Comparison Based on the Developer’s Information 

(Millian, Julian D.R., 2019) 

Software 
Proc-
essing VE MC 

AP
CG 

DTM- 
DEM PCE GR V/D 

RTK/
PPK C PLP 

Output 
Formats 

PIX4D PC/ 
cloud          

3,990 
EUR 

las, shp, dxf, 
dgn, pdf, csv, 
klm, Geotiff 

Agisoft 
Metashape 

PC/ 
cloud          

3,499 
USD 

Geotiff, las, 
pdf, dxf, kmz 

Reality 
Capture Cloud          1,500 

EUR 

las, shp, dxf, 
dgn, pdf, csv, 
klm, Geotiff 

Autodesk 
ReCAP Cloud          

310 
USD/

yr 

las, shp, dxf, 
dgn, pdf, csv, 
klm, Geotiff 

Trimble 
Inpho PC           

las, shp, dxf, 
dgn, pdf, csv, 
klm, Geotiff 

Note: VE = Video Extraction, MC = Multi-Camera, APCG = Automatic Point Cloud Generation, DTM-DEM = 
Automatic DTM-DEM Generation, PCE = Point Cloud Editing, GR = Georeferencing, V/D = Volume/Distance 
Measurements, RTK/PPK = RTK/PPK Support, C = Contour and Map Editing, PLP = Perpetual License Price 
 
Using the details outlined in the preceding tables as a guide, the research team selected the DJI 
Inspire 2 UAS with Zenmuse X5S camera. The UAS has an endurance of 27 minutes, fast image 
processing, and obstacle avoidance capability. The Zenmuse X5S camera sensor has a 20.8- 
megapixel image capability, and a 17.3-mm focal length. The camera provides a pixel size of 
approximately 3 cm at a flight altitude of 120 m. The software used for mission planning was 
Map Pilot for DJI. The flight plan was manipulated to acquire pixel sizes ranging from 0.5 to 2 
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cm with a 70% overlap. With these inputs, the flight planning software made automatic 
adjustments to flight altitude and speed for the most appropriate data collection. 
 
The first go-around had problems in data collection for pixel sizes other than 1 cm, and had to be 
repeated. The last one could not be completed by the time this report was prepared. 
 
Post-processing steps included building the DEM and the orthophoto mosaic creation using 
Agisoft Metashape software. To get the distress data, elevation maps generated via AutoCAD 
Civil3D were used. These maps are useful in detecting settlement in pavements but not for lateral 
movements. Commercially available software like WiseCrax or CrackIT have the ability to 
automatically detect cracks from data collected by pavement survey vans. An alternative to these 
software programs is applying several filters to the orthophoto mosaics with Adobe® 
Photoshop®, as described by the following steps: 
 

• Image was duplicated in a new layer. 
• Colors were removed for the image. 
• A 100% color dodge filter was applied. 
• Colors were inverted in the image. 
• Contrast was increased to 100%.  
• RGB color levels were set to 0.25. 

 
Next, the following steps were performed: 
 

• Data of interest was extracted. 
• Distress data in models was used. 
• Decision support was attained for the most appropriate maintenance action.  

 
The sensor selection oftentimes represents trade-offs of precision vs cost or other factors. The 
sensor selected for the current research was a quadcopter branded as a professional filming 
model, the DJI Inspire 2. Other models like the DJI Matrice 200 (a hexacopter), are branded for 
industrial use. The Matrice 200 offers greater flight time, more damage reliability (due to the six 
propellers), and higher compatibility with third-party accessories and sensors. On the other hand, 
the DJI inspire is a more agile model, with a major number of flight modes, some cinematic 
camera options, and augmented image processing and storage. 
 
Fluctuations were observed in the picture mosaics obtained from the test flights in the Norvik 
port. One way to reduce the impact of wind on data collection is the use of hexacopters or 
octocopters, which are more stable, can better withstand wind forces, and can carry larger 
payloads with advanced navigation systems. 
 
The UAS used in the current research, like typical models, was equipped with standard GPS. 
Such positioning systems do not provide accurate flight attitude control. Depending on the type 
of usage, it may be necessary to increase the number of control points or to employ alternative 
technologies like RTK or post-processing kinematic (PPK) localization. The current study was 
focused on the resolution of data and not on the relative elevation of one point compared with 
another and not the real x, y, z coordinates of a given point. However, this becomes important for 
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other projects, and, therefore, it is necessary to ensure data quality by using control points or 
alternative technologies to improve the accuracy given by the GPS equipped in the UAS.  
 
It was felt that, with real-time access, data quality would be better and the requirement for 
repetitive flights could have been reduced. Using software that allowed real-time access to the 
data (like PIX4D) could have helped to reduce the necessity of repeat flights. 
 
The imagery gathered at a resolution of 0.5 cm/pixel clearly captured the separation among 
blocks even for the normal scenario. At lower resolutions (1 cm/pixel or 2 cm/pixel) these 
separations were not so easily noticeable with the human eye. However, with the use of machine 
learning (ML) or DL algorithms, even images at 2 cm/pixel resolution can be used for distress 
extraction. It is therefore extremely important to define sensor resolutions adequately. The 
current research was unable to detect cracked pavement blocks because the pavement was newly 
constructed. For simpler tasks like construction progress monitoring and even volume 
calculations, resolutions of 1 to 2 cm/pixel are acceptable. 
 
The current research was not able to use LiDAR sensors. 
 
A.4  SMALL UNMANNED AIRCRAFT SYSTEM-DERIVED DATA PROCESSING 
METHODOLOGIES 
 
The research team assessed available software and algorithms that can process the collected data 
for analysis. Image processing (IP) and AI tools have improved the overall performance of 
Pavement Management Programs (PMPs) by helping analyze big data originating from distress 
surveys. Pavement data analysis mainly focuses on three aspects: quantification of distresses, 
evaluation of the current condition, and prediction of future performance of pavements. 
Developments in the fields of IP and ML have substantially reduced processing time and costs 
associated with distress detection and quantification procedures. AI and DL are the current 
cutting-edge, breakthrough technologies of recent times that have been successfully used in 
several domains to improve the efficiency of computation. (Peraka & Biligiri, 2020) 
 
A.4.1  Distress Detection and Quantification 
 
The data collected from the field using automated data collection methods (digital survey vehicle 
[DSV] and sUAS) have to be processed to determine the condition of the pavement. 
Advancement in the field of computer science has enhanced the data analysis rate. Currently, IP 
and ML tools are being utilized for measuring severity and extent of various distresses (Coenen 
& Golroo, 2017). 
 
A.4.1.1  Cracking 
 
Major developments in the field of surface defect detection are being made towards 
identification and analysis of crack propagation. In imaging language, a crack can be defined as a 
structure composed of a linear, curve, or composite pattern. The intensity of crack is typically 
different from the surrounding environment. To map crack pixels of similar intensities and 
identify the crack patterns, several algorithms have been developed that include a combination of 
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pre-processing, segmentation, feature extraction, feature selection, and detection and 
classification. (Zakeri et al., 2016) 
 
1. Preprocessing: The data collection process is significantly affected by regional climate. 

Even with the use of highly sophisticated equipment, the captured images will have some 
contrast, noise, and blurred spots. These significantly affect the edges and cause sharp peaks 
in image pixel intensities, which actually represent cracks in the system. In preprocessing, a 
set of operations are performed to restore the images by removing noise. 

2. Segmentation: The process of extracting the region of image that is of interest. For example, 
the captured image might have airport markings, cracks, and potholes. The region of interest 
in that case would be cracks and potholes. The image would be segmented for the region so 
that the extent and severity can be measured. 

3. Feature extraction and selection: This is used to find similar featured members or links in 
the images so they can easily be detected and classified. There is a chance that a rut area will 
have been affected with hairline cracks. In segmentation, the region will be selected, and in 
feature extraction, the noise (such as the presence of shadow regions) will be eliminated, 
while at the same time, the areas of rut and cracks are extracted. In feature selection, similar 
features will be selected, such as cracks with similar widths. Then, the detected features that 
have similar characteristics are classified as medium, low, or high severity. 

4. Detection and classification: Significant research has been performed in the field of crack 
detection, classification, and quantification using IP and ML. Deficient real-time data 
processing, low quality of images, and high processing time have been found to be the major 
limitations in crack detection and classification. 

 
Oliveira & Correia (2014) observed that traditional IP algorithms take a significant amount of 
processing time and nominal accuracy in quantification when too many distresses are present in 
images. Also, they occupy substantially high memory to process data and to store the processed 
data, thus resulting in relatively high computation costs. Therefore, ML tools, such as neural 
networks (NN), which mimic the behavior of (efficient) neurons in the nervous system, have 
been introduced to detect cracks (Oliveira & Correia, 2014). 
 
A.4.1.2  Potholes 
 
Data related to potholes can be obtained using imaging, sensing, and vibration applications. The 
near-circular shape of potholes makes it an easy process for detection using IP algorithms. 
Several research studies have focused on detecting potholes in a cost-effective way and have 
helped agencies take immediate action for their repair. Jo and Ryu (2015) conducted a study and 
formulated a pothole detection algorithm using a black-box camera to capture the pavement 
images. In the setup, the images were processed using gray scaling, histogram thresholding, and 
image enhancement techniques. The processed images were analyzed using a pothole detection 
algorithm. Loading the trained algorithm onto the black-box camera allowed potholes to be 
automatically detected in the image (Jo & Ryu, 2015). 
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A.4.1.3  Rutting 
 
The major advancements in detecting and quantifying rutting were initiated with the inclusion of 
3D imaging techniques in the pavement data collection process. Currently, research has mostly 
focused on 3D surface generation and detection of rutting from the 3D surfaces. Since the 3D 
imaging techniques are expensive, more research is required to reduce the cost of data collection 
and focus towards creating 3D surfaces from 2D images. (Peraka & Biligiri, 2020) 
 
A.4.1.4  Other Distresses 
 
Overall, current state-of-the-art technology is not geared to detect other distresses. One study 
conducted in 2015 (Mathavan et al., 2015) reviewed 3D technologies in the fields of pavement 
imaging. The study concluded that the imaging conditions, in terms of lighting, etc., are very 
random. For instance, measuring the volume of the pothole requires a large field of view with a 
reasonable spatial resolution, whereas microtexture evaluation requires very accurate imaging. 
Within the two extremes, there is a range of situations that require 3D imaging. The study 
concluded that it is possible to collect the details of all distresses—such as cracking, potholes, 
rutting, macro- and micro- texture, shoving, raveling, joint faulting, and spalling—if the focus 
depth and time-of-flight principles are efficient enough. (Mathavan et al., 2015)  
  
A.4.2  Challenges in Incorporating Deep Learning to Distress Detection and PMPs 
 
Careful handling of the large amount of data collected using automated systems is a critical task 
in terms of decision-making with respect to maintenance interventions. AI and ML techniques 
are effective in dealing with big data, making incorporation of soft computing techniques such as 
IP, AI, and ML inevitable in PMPs in the future.  
 
There are some significant challenges in application of soft computing techniques in PMPs. For 
instance, selection of appropriate soft computing methods in data analysis is challenging, as it 
affects the performance of the entire system. In addition, assessing the reliability of the models 
developed using soft computing techniques is quite intricate. In training the algorithms, it is 
essential that the results are verified with the standard methods before implementation of the 
product. 
 
Currently, there is a gap between research findings and state of practice. To verify the 
practicality and reliability for incorporation of ML techniques in pavement distress evaluations, 
soft computational technologies have to be assessed at a much larger scale. This would transform 
PMPs from a data-driven approach to technology-driven approach, which is a step towards 
achieving sustainability goals in transportation. (Peraka & Biligiri, 2020) 
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A.4.3  Data Processing Software 
 
The research team evaluated the following post-processing software related to this research 
effort: 
 

• Pix4D 
• Bentley ContextCapture 
• ESRI ArcGIS  
• AutoDesk Recap, AutoCAD 
• Laser crack measurement system software, if available for sUAS 
• Others, as needed 

 
A.5  SMALL UNMANNED AIRCRAFT SYSTEM-DERIVED DATA OUTPUT AND 
ANALYSIS 
 
Primary deliverables from this research effort included georeferenced still photos, infrared 
imagery, and point cloud data of airport pavement infrastructure. These sUAS deliverables were 
analyzed by the research team to determine their validity for use in PMPs and for use in FAA 
PAVEAIR. 
 
The research team measured accuracy by verifying sUAS data and comparing it to the following 
control data sources: 
 

• Surveyed Geodetic Control 
• DSV data and Mobile LiDAR 
• FOG survey data 
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APPENDIX B—SITE VISIT: CAPE MAY COUNTY AIRPORT 

Table B-1. Summary of the 2019 Pavement Condition Survey at Cape May County Airport. 

Area Location 
Surface 

Type 
Distress 

Code 
Distress 

Description Severity 
2019 
PCI Comments 

1A Terminal 
Apron PCC 63 Liner Cracking L 58  

1A Terminal 
Apron PCC 66 Small Patching L & M 58  

1A Terminal 
Apron PCC 67 Large Patching L & M 58  

1A Terminal 
Apron PCC 71 Faulting L, M, & 

H 58  

1A Terminal 
Apron PCC 73 Shrinkage 

Cracking N/A 58  

1A Terminal 
Apron PCC 74 Joint Spalling L & M 58  

1A Terminal 
Apron PCC 75 Corner Spalling L & M 58  

1A Terminal 
Apron PCC N/A Replacement 

Slabs N/A 58  

1A Terminal 
Apron PCC 63 Liner Cracking L 58  

1A Terminal 
Apron PCC 66 Small Patching L, M, & 

H 58  

1A Terminal 
Apron PCC 67 Large Patching L & M 58  

1A Terminal 
Apron PCC 71 Faulting L, M, & 

H 58  

1A Terminal 
Apron PCC 73 Shrinkage 

Cracking N/A 58  

1A Terminal 
Apron PCC 74 Joint Spalling L, M, & 

H 58  

1A Terminal 
Apron PCC 75 Corner Spalling L, M, & 

H 58  

1A Terminal 
Apron PCC N/A Replacement 

Slabs N/A 58  

1B Taxiway G 
Apron PCC TBD TBD TBD 40 No Site 

Visit 

2A Runway 10/28 AC 48 L&T Cracking L, M, & 
H 50 

Old Crack 
Seal 

Applied 
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Area Location 
Surface 

Type 
Distress 

Code 
Distress 

Description Severity 
2019 
PCI Comments 

2A Runway 10/28 AC 57 Weathering M 50  

2A Runway 10/28 AC 48 L&T Cracking L & M 71 
Old Crack 

Seal 
Applied 

2A Runway 10/28 AC 57 Weathering M 71  

2A Runway 10/28 AC 43 Block Cracking M 67 
Old Crack 

Seal 
Applied 

2A Runway 10/28 AC 48 L&T Cracking L & M 67 
Old Crack 

Seal 
Applied 

2A Runway 10/28 AC 57 Weathering M 67  

2B Taxiway E AC 41 Alligator 
Cracking M 35 

Old Crack 
Seal 

Applied 

2B Taxiway E AC 48 L&T Cracking L & M 35 
Old Crack 

Seal 
Applied 

2B Taxiway E AC 57 Weathering M 35  

2C Terminal 
Apron AC 48 L&T Cracking L & M 72 Crack Seal 

Applied 

2C Terminal 
Apron AC 49 Oil Spillage N/A 72  

2C Terminal 
Apron AC 52 Raveling L 72 

Old 
Surface 

Seal 

AC = Asphalt concrete    L = Low severity 
L&T = Longitudinal and transverse   M = Medium severity 
PCC = Portland cement concrete   H = High severity 
N/A = Not applicable    TBD = To be determined 
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APPENDIX C—DATA COLLECTION PARAMETERS FOR SMALL UNMANNED AIRCRAFT SYSTEMS 

Table C-1. Stage 1 Data Collection Parameters for sUAS 
 

Flight 
Number 

Test 
Area Airframe Sensor 

Data 
Type 

Overlap 
(Forward / 

Side) 
Altitude 

(ft) 
GSD 
(mm) 

Actual 
Flight 
Time 
(min) 

Actual 
# 

Photos 
1 

1A 

M210 X7- 24mm RGB 75/60 40.00 2 130 1,950 
2 M210 X7-24mm RGB 80/60 270.00 13.7 3 40 
3 M210 X7- 16mm RGB 80/60 344.14 25.4 1 7 
4 M210 XT2- 13mm Thermal 80/50 63.57 25.4 16 756 
5 M210 X5s RGB 74/60 30.00 2 150 2,162 
6 M210 X5s RGB 80/60 206.92 13.7 14 52 
7 M210 X5s RGB 80/60 383.85 25.4 9 14 
8 eBee S.O.D.A. 3D RGB 80/60 198.80 13.7 0 0 
9 eBee S.O.D.A. 3D RGB 80/60 368.10 25.4 0 0 
10 M2P Mavic 2 Pro RGB 74/60 30.37 2 130 2,111 
11 M2P Mavic 2 Pro RGB 80/60 200.74 13.7 3 35 
12 M2P Mavic 2 Pro RGB 80/60 371.11 25.4 2 13 

13 M2ED Mavic 2 Enterprise 
Dual RGB 80/60 19.05 2 0 0 

14 M2ED Mavic 2 Enterprise 
Dual RGB 80/60 128.57 13.7 6 116 

15 M2ED Mavic 2 Enterprise 
Dual RGB 80/60 238.10 25.4 2 34 

16  
 
 

2C 
 
 
 

M210 X7- 24mm RGB 75/60 40.00 2 35 480 
17 M210 X7- 24mm RGB 80/60 270.00 13.7 1 7 
18 M210 X7- 16mm RGB 80/60 344.14 25.4 0.5 4 
19 M210 XT2- 13mm Thermal 80/50 63.57 25.4 5 166 
20 M210 X5S RGB 74/60 30.00 2 40 448 
21 M210 X5S RGB 80/60 206.92 13.7 1 14 
22 M210 X5S RGB 80/60 383.85 25.4 0.5 5 
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Flight 
Number 

Test 
Area Airframe Sensor 

Data 
Type 

Overlap 
(Forward / 

Side) 
Altitude 

(ft) 
GSD 
(mm) 

Actual 
Flight 
Time 
(min) 

Actual 
# 

Photos 
23  

 
 

2C 
 
 

eBee S.O.D.A. 3D RGB 80/60 198.80 13.7 0 0 
24 eBee S.O.D.A. 3D RGB 80/60 368.10 25.4 0 0 
25 M2P M2P RGB 74/60 30.37 2 32 486 
26 M2P M2P RGB 80/60 200.74 13.7 0.75 6 
27 M2P M2P RGB 80/60 371.11 25.4 0.5 4 
28 M2ED M2ED RGB 80/60 19.05 2 0 0 
29 M2ED M2ED RGB 80/60 128.57 13.7 2 33 
30 M2ED M2ED RGB 80/60 238.10 25.4 0.5 5 
      Total Flight Time 584.75  

Table C-2. Stage 2 Data Collection Parameters for sUAS 

Flight 
Number 

Test 
Area Airframe Sensor Data Type Overlap 

(Forward / Side) 
Altitude 

(ft) 
GSD 
(mm) 

Actual 
Flight 

Time (min) 

Actual 
# 

Photos 
31 

2C 

M210 X7- 24mm RGB 80/60 97.04 4.9 10 166 
32 M210 X7- 24mm RGB 80/60 158.33 7.9 5 59 
33 M210 X7- 24mm RGB 80/60 214.51 10.8 3 33 
34 M210 X5s RGB 80/60 71.66 4.9 10 217 
35 M210 X5s RGB 80/60 116.91 7.9 5 74 
36 M210 X5s RGB 80/60 158.40 10.8 3 44 
37 M2P Mavic 2 Pro RGB 80/60 70.79 4.9 10 198 
38 M2P Mavic 2 Pro RGB 80/60 115.50 7.9 5 76 
39 M2P Mavic 2 Pro RGB 80/60 156.48 10.8 3 34 
40  

 
2B 

 
 

M210 X7- 35mm RGB 75/60 59.59 2.0 35 780 
41 M210 X7- 24mm RGB 80/60 97.04 4.9 10 154 
42 M210 X7- 24mm RGB 80/60 158.33 7.9 5 63 
43 M210 X7 24mm RGB 80/60 214.51 10.8 3 35 
44 M210 X7 24mm RGB 80/60 275.80 13.7 2 19 
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Flight 
Number 

Test 
Area Airframe Sensor Data Type Overlap 

(Forward / Side) 
Altitude 

(ft) 
GSD 
(mm) 

Actual 
Flight 

Time (min) 

Actual 
# 

Photos 
45  

 
 
 
 

2B 
 

M210 X5s RGB 75/60 30.17 2.0 40 892 
46 M210 X5s RGB 80/60 71.66 4.9 10 183 
47 M210 X5s RGB 80/60 116.91 7.9 5 64 
48 M210 X5s RGB 80/60 158.40 10.8 3 36 
49 M210 X5s RGB 80/60 203.66 13.7 2 19 
50 M2P M2P RGB 74/60 29.81 2.0 35 812 
51 M2P M2P RGB 80/60 70.79 4.9 10 188 
52 M2P M2P RGB 80/60 115.50 7.9 5 66 
53 M2P M2P RGB 80/60 156.48 10.8 3 37 
54 M2P M2P RGB 80/60 201.19 13.7 2 19 
55 eBee S.O.D.A. 3D RGB 80/60 198.8 13.7 5 35 
56 

2A 

M210 X7- 35mm RGB 75/60 59.59 2.0 85 2,025 
57 M210 X7- 24mm RGB 80/60 97.04 4.9 20 427 
58 M210 X7- 24mm RGB 80/60 158.33 7.9 8 175 
59 M210 X7- 24mm RGB 80/60 214.51 10.8 4 79 
60 M210 X7- 24mm RGB 80/60 275.80 13.7 3 50 
61 M210 X5s RGB 75/60 30.17 2.0 101 2,392 
62 M210 X5s RGB 80/60 71.66 4.9 22 506 
63 M210 X5s RGB 80/60 116.91 7.9 8 177 
64 M210 X5s RGB 80/60 158.40 10.8 5 98 
65 M210 X5s RGB 80/60 203.66 13.7 3 51 
66 M2P M2P RGB 74/60 29.81 2.0 94 2,168 
67 M2P M2P RGB 80/60 70.79 4.9 20 446 
68 M2P M2P RGB 80/60 115.50 7.9 9 182 
69 M2P M2P RGB 80/60 156.48 10.8 5 101 
70 M2P M2P RGB 80/60 201.19 13.7 3 53 
71 eBee S.O.D.A. 3D RGB 80/60 198.80 13.7 6 135 
72  

1B 
M210 X7- 35mm RGB 75/60 59.59 2.0 50 1,013 

73* M210 X7- 24mm RGB 80/60 97.04 4.9 11 208 
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Flight 
Number 

Test 
Area Airframe Sensor Data Type Overlap 

(Forward / Side) 
Altitude 

(ft) 
GSD 
(mm) 

Actual 
Flight 

Time (min) 

Actual 
# 

Photos 
73FXD**  

 
 
 
 
 

1B 

M210 X7- 24mm RGB 80/60 97.04 4.9 11 208 
74 M210 X7- 24mm RGB 80/60 158.33 7.9 5 73 
75 M210 X7 24mm RGB 80/60 214.51 10.8 3 41 
76 M210 X7- 24mm RGB 80/60 275.80 13.7 2 21 
77 M210 X5s RGB 75/60 30.17 2.0 0 0 
78 M210 X5s RGB 80/60 71.66 4.9 12 271 
79 M210 X5s RGB 80/60 116.91 7.9 5 93 
80 M210 X5s RGB 80/60 158.40 10.8 4 55 
81 M210 X5s RGB 80/60 203.66 13.7 2 32 
82 M2P M2P RGB 74/60 29.81 2.0 0 0 
83 M2P M2P RGB 80/60 70.79 4.9 12 248 
84 M2P M2P RGB 80/60 115.50 7.9 6 95 
85 M2P M2P RGB 80/60 156.48 10.8 3 42 
86 M2P M2P RGB 80/60 201.19 13.7 2 22 
87 eBee S.O.D.A. 3D RGB 80/60 198.80 13.7 0 0 

      Total Flight 
Time 753  

RGB = Red, green, blue 

Note: Two data sets were collected for Flight #73. *Shutter Priority Mode vs **Manual Mode. Shutter Priority Mode had contrast 
variance; Manual Mode resulted in extremely dark areas in shaded regions.  
 


	Abstract
	Key Words
	Table of Contents
	List of Figures
	List of Tables



