5 research outputs found

    Towards Bio-impedance Based Labs: A Review

    Get PDF
    In this article, some of the main contributions to BI (Bio-Impedance) parameter-based systems for medical, biological and industrial fields, oriented to develop micro laboratory systems are summarized. These small systems are enabled by the development of new measurement techniques and systems (labs), based on the impedance as biomarker. The electrical properties of the life mater allow the straightforward, low cost and usually non-invasive measurement methods to define its status or value, with the possibility to know its time evolution. This work proposes a review of bio-impedance based methods being employed to develop new LoC (Lab-on-a-Chips) systems, and some open problems identified as main research challenges, such as, the accuracy limits of measurements techniques, the role of the microelectrode-biological impedance modeling in measurements and system portability specifications demanded for many applications.Spanish founded Project: TEC 2013-46242-C3-1-P: Integrated Microsystem for Cell Culture AssaysFEDE

    Broadband Bioimpedance Spectroscopy Based on a Multifrequency Mixed Excitation and Nuttall Windowed FFT Algorithm

    Get PDF
    Bioimpedance spectroscopy (BIS) has become an important clinical indicator for monitoring the pathological status of biological tissues, and multifrequency simultaneous measurement of BIS may provide more accurate diagnostic information compared with the traditional frequency-sweep measurement technology. This paper proposes a BIS multifrequency simultaneous measurement method based on multifrequency mixed (MFM) signal excitation and a Nuttall windowed interpolation FFT algorithm. Firstly, the excitation source adopts the nine-frequency MFM signal f(9,t), which has excellent spectral characteristic and is very suitable for BIS measurement. On this basis, a Nuttall window is adopted to truncate sample data, and an interpolation FFT algorithm based on Nuttall window is built to perform spectral analysis, in which the parameter correction formula is provided based on polynomial approximation. A BIS measurement simulation experiment is performed on an RC three-element equivalent circuit, and results on the 9 primary harmonic frequencies ranging from 3.9 kHz to 1 MHz show a high accuracy with the impedance amplitude relative error |Ez|<0.3%, and the phase absolute error |Ep|<0.1°. This paper validates the feasibility of BIS multifrequency simultaneous measurement method and establishes an algorithm foundation for the development of practical broadband BIS measurement system

    On the calculation of the D-optimal multisine excitation power spectrum for broadband impedance spectroscopy measurements

    Get PDF
    The successful application of impedance spectroscopy in daily practice requires accurate measurements for modeling complex physiological or electrochemical phenomena in a single frequency or several frequencies at different (or simultaneous) time instants. Nowadays, two approaches are possible for frequency domain impedance spectroscopy measurements: (1) using the classical technique of frequency sweep and (2) using (non-)periodic broadband signals, i.e. multisine excitations. Both techniques share the common problem of how to design the experimental conditions, e.g. the excitation power spectrum, in order to achieve accuracy of maximum impedance model parameters from the impedance data modeling process. The original contribution of this paper is the calculation and design of the D-optimal multisine excitation power spectrum for measuring impedance systems modeled as 2R-1C equivalent electrical circuits. The extension of the results presented for more complex impedance models is also discussed. The influence of the multisine power spectrum on the accuracy of the impedance model parameters is analyzed based on the Fisher information matrix. Furthermore, the optimal measuring frequency range is given based on the properties of the covariance matrix. Finally, simulations and experimental results are provided to validate the theoretical aspects presented.Peer ReviewedPostprint (published version

    Novel Methods for Weak Physiological Parameters Monitoring.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2017
    corecore