169 research outputs found

    Detection and modelling of staircases using a wearable depth sensor

    Get PDF
    In this paper we deal with the perception task of a wearable navigation assistant. Specifically, we have focused on the detection of staircases because of the important role they play in indoor navigation due to the multi-floor reaching possibilities they bring and the lack of security they cause, specially for those who suffer from visual deficiencies. We use the depth sensing capacities of the modern RGB-D cameras to segment and classify the different elements that integrate the scene and then carry out the stair detection and modelling algorithm to retrieve all the information that might interest the user, i.e. the location and orientation of the staircase, the number of steps and the step dimensions. Experiments prove that the system is able to perform in real-time and works even under partial occlusions of the stairway

    Detección y modelado de escaleras con sensor RGB-D para asistencia personal

    Get PDF
    La habilidad de avanzar y moverse de manera efectiva por el entorno resulta natural para la mayoría de la gente, pero no resulta fácil de realizar bajo algunas circunstancias, como es el caso de las personas con problemas visuales o cuando nos movemos en entornos especialmente complejos o desconocidos. Lo que pretendemos conseguir a largo plazo es crear un sistema portable de asistencia aumentada para ayudar a quienes se enfrentan a esas circunstancias. Para ello nos podemos ayudar de cámaras, que se integran en el asistente. En este trabajo nos hemos centrado en el módulo de detección, dejando para otros trabajos el resto de módulos, como podría ser la interfaz entre la detección y el usuario. Un sistema de guiado de personas debe mantener al sujeto que lo utiliza apartado de peligros, pero también debería ser capaz de reconocer ciertas características del entorno para interactuar con ellas. En este trabajo resolvemos la detección de uno de los recursos más comunes que una persona puede tener que utilizar a lo largo de su vida diaria: las escaleras. Encontrar escaleras es doblemente beneficioso, puesto que no sólo permite evitar posibles caídas sino que ayuda a indicar al usuario la posibilidad de alcanzar otro piso en el edificio. Para conseguir esto hemos hecho uso de un sensor RGB-D, que irá situado en el pecho del sujeto, y que permite captar de manera simultánea y sincronizada información de color y profundidad de la escena. El algoritmo usa de manera ventajosa la captación de profundidad para encontrar el suelo y así orientar la escena de la manera que aparece ante el usuario. Posteriormente hay un proceso de segmentación y clasificación de la escena de la que obtenemos aquellos segmentos que se corresponden con "suelo", "paredes", "planos horizontales" y una clase residual, de la que todos los miembros son considerados "obstáculos". A continuación, el algoritmo de detección de escaleras determina si los planos horizontales son escalones que forman una escalera y los ordena jerárquicamente. En el caso de que se haya encontrado una escalera, el algoritmo de modelado nos proporciona toda la información de utilidad para el usuario: cómo esta posicionada con respecto a él, cuántos escalones se ven y cuáles son sus medidas aproximadas. En definitiva, lo que se presenta en este trabajo es un nuevo algoritmo de ayuda a la navegación humana en entornos de interior cuya mayor contribución es un algoritmo de detección y modelado de escaleras que determina toda la información de mayor relevancia para el sujeto. Se han realizado experimentos con grabaciones de vídeo en distintos entornos, consiguiendo buenos resultados tanto en precisión como en tiempo de respuesta. Además se ha realizado una comparación de nuestros resultados con los extraídos de otras publicaciones, demostrando que no sólo se consigue una eciencia que iguala al estado de la materia sino que también se aportan una serie de mejoras. Especialmente, nuestro algoritmo es el primero capaz de obtener las dimensiones de las escaleras incluso con obstáculos obstruyendo parcialmente la vista, como puede ser gente subiendo o bajando. Como resultado de este trabajo se ha elaborado una publicación aceptada en el Second Workshop on Assitive Computer Vision and Robotics del ECCV, cuya presentación tiene lugar el 12 de Septiembre de 2014 en Zúrich, Suiza

    Stairs detection with odometry-aided traversal from a wearable RGB-D camera

    Get PDF
    Stairs are one of the most common structures present in human-made scenarios, but also one of the most dangerous for those with vision problems. In this work we propose a complete method to detect, locate and parametrise stairs with a wearable RGB-D camera. Our algorithm uses the depth data to determine if the horizontal planes in the scene are valid steps of a staircase judging their dimensions and relative positions. As a result we obtain a scaled model of the staircase with the spatial location and orientation with respect to the subject. The visual odometry is also estimated to continuously recover the current position and orientation of the user while moving. This enhances the system giving the ability to come back to previously detected features and providing location awareness of the user during the climb. Simultaneously, the detection of the staircase during the traversal is used to correct the drift of the visual odometry. A comparison of results of the stair detection with other state-of-the-art algorithms was performed using public dataset. Additional experiments have also been carried out, recording our own natural scenes with a chest-mounted RGB-D camera in indoor scenarios. The algorithm is robust enough to work in real-time and even under partial occlusions of the stair

    Real-Time Obstacle Detection System in Indoor Environment for the Visually Impaired Using Microsoft Kinect Sensor

    Get PDF
    Any mobility aid for the visually impaired people should be able to accurately detect and warn about nearly obstacles. In this paper, we present a method for support system to detect obstacle in indoor environment based on Kinect sensor and 3D-image processing. Color-Depth data of the scene in front of the user is collected using the Kinect with the support of the standard framework for 3D sensing OpenNI and processed by PCL library to extract accurate 3D information of the obstacles. The experiments have been performed with the dataset in multiple indoor scenarios and in different lighting conditions. Results showed that our system is able to accurately detect the four types of obstacle: walls, doors, stairs, and a residual class that covers loose obstacles on the floor. Precisely, walls and loose obstacles on the floor are detected in practically all cases, whereas doors are detected in 90.69% out of 43 positive image samples. For the step detection, we have correctly detected the upstairs in 97.33% out of 75 positive images while the correct rate of downstairs detection is lower with 89.47% from 38 positive images. Our method further allows the computation of the distance between the user and the obstacles

    Calculating Staircase Slope from a Single Image

    Get PDF
    Realistic modeling of a 3D environment has grown in popularity due to the increasing realm of practical applications. Whether for practical navigation purposes, entertainment value, or architectural standardization, the ability to determine the dimensions of a room is becoming more and more important. One of the trickier, but critical, features within any multistory environment is the staircase. Staircases are difficult to model because of their uneven surface and various depth aspects. Coupling this need is a variety of ways to reach this goal. Unfortunately, many such methods rely upon specialized sensory equipment, multiple calibrated cameras, or other such impractical setups. Here, we propose a simpler approach. This paper outlines a method for extracting the slope dimensions of a staircase using a single monocular image. By relying on only a single image, we negate the need for extraneous accessories and glean as much information from common pictures. We do not hope to achieve the high level of accuracy seen from laser scanning methods but seek to produce a viable result that can both be helpful for current applications and serve as a building block that contributes to later development. When constructing our pipeline, we take into account several options. Each step can be achieved with different techniques which we evaluate and compare on either a qualitative or quantitative level. This leads to our final result which can accurately determine the slope of a staircase with an error rate of 31.1%. With a small amount of previous knowledge or preprocessing, this drops down to an average of 18.7% Overall, we deem this an acceptable and optimal result given the limited information and processing resources which the program was allowed to utilize

    State-of-the-Art Review on Wearable Obstacle Detection Systems Developed for Assistive Technologies and Footwear

    Get PDF
    Walking independently is essential to maintaining our quality of life but safe locomotion depends on perceiving hazards in the everyday environment. To address this problem, there is an increasing focus on developing assistive technologies that can alert the user to the risk destabilizing foot contact with either the ground or obstacles, leading to a fall. Shoe-mounted sensor systems designed to monitor foot-obstacle interaction are being employed to identify tripping risk and provide corrective feedback. Advances in smart wearable technologies, integrating motion sensors with machine learning algorithms, has led to developments in shoe-mounted obstacle detection. The focus of this review is gait-assisting wearable sensors and hazard detection for pedestrians. This literature represents a research front that is critically important in paving the way towards practical, low-cost, wearable devices that can make walking safer and reduce the increasing financial and human costs of fall injuries

    Human activity recognition using a wearable camera

    Get PDF
    Tesi en modalitat cotutela Universitat Politècnica de Catalunya i Queen Mary, University of London. This PhD Thesis has been developed in the framework of, and according to, the rules of the Erasmus Mundus Joint Doctorate on Interactive and Cognitive Environments EMJD ICE [FPA n° 2010-0012]Advances in wearable technologies are facilitating the understanding of human activities using first-person vision (FPV) for a wide range of assistive applications. In this thesis, we propose robust multiple motion features for human activity recognition from first­ person videos. The proposed features encode discriminant characteristics form magnitude, direction and dynamics of motion estimated using optical flow. M:>reover, we design novel virtual-inertial features from video, without using the actual inertial sensor, from the movement of intensity centroid across frames. Results on multiple datasets demonstrate that centroid-based inertial features improve the recognition performance of grid-based features. Moreover, we propose a multi-layer modelling framework that encodes hierarchical and temporal relationships among activities. The first layer operates on groups of features that effectively encode motion dynamics and temporal variaitons of intra-frame appearance descriptors of activities with a hierarchical topology. The second layer exploits the temporal context by weighting the outputs of the hierarchy during modelling. In addition, a post-decoding smoothing technique utilises decisions on past samples based on the confidence of the current sample. We validate the proposed framework with several classi fiers, and the temporal modelling is shown to improve recognition performance. We also investigate the use of deep networks to simplify the feature engineering from first-person videos. We propose a stacking of spectrograms to represent short-term global motions that contains a frequency-time representation of multiplemotion components. This enables us to apply 2D convolutions to extract/learn motion features. We employ long short-term memory recurrent network to encode long-term temporal dependency among activiites. Furthermore, we apply cross-domain knowledge transfer between inertial­ based and vision-based approaches for egocentric activity recognition. We propose sparsity weightedcombination of information from different motion modalities and/or streams . Results show that the proposed approach performs competitively with existing deep frameworks, moreover, with reduced complexity.Los avances en tecnologías wearables facilitan la comprensión de actividades humanas utilizando cuando se usan videos grabados en primera persona para una amplia gama de aplicaciones. En esta tesis, proponemos características robustas de movimiento para el reconocimiento de actividades humana a partir de videos en primera persona. Las características propuestas codifican características discriminativas estimadas a partir de optical flow como magnitud, dirección y dinámica de movimiento. Además, diseñamos nuevas características de inercia virtual a partir de video, sin usar sensores inerciales, utilizando el movimiento del centroide de intensidad a través de los fotogramas. Los resultados obtenidos en múltiples bases de datos demuestran que las características inerciales basadas en centroides mejoran el rendimiento de reconocimiento en comparación con grid-based características. Además, proponemos un algoritmo multicapa que codifica las relaciones jerárquicas y temporales entre actividades. La primera capa opera en grupos de características que codifican eficazmente las dinámicas del movimiento y las variaciones temporales de características de apariencia entre múltiples fotogramas utilizando una jerarquía. La segunda capa aprovecha el contexto temporal ponderando las salidas de la jerarquía durante el modelado. Además, diseñamos una técnica de postprocesado para filtrar las decisiones utilizando estimaciones pasadas y la confianza de la estimación actual. Validamos el algoritmo propuesto utilizando varios clasificadores. El modelado temporal muestra una mejora del rendimiento en el reconocimiento de actividades. También investigamos el uso de redes profundas (deep networks) para simplificar el diseño manual de características a partir de videos en primera persona. Proponemos apilar espectrogramas para representar movimientos globales a corto plazo. Estos espectrogramas contienen una representación espaciotemporal de múltiples componentes de movimiento. Esto nos permite aplicar convoluciones bidimensionales para aprender funciones de movimiento. Empleamos long short-term memory recurrent networks para codificar la dependencia temporal a largo plazo entre las actividades. Además, aplicamos transferencia de conocimiento entre diferentes dominios (cross-domain knowledge) entre enfoques inerciales y basados en la visión para el reconocimiento de la actividad en primera persona. Proponemos una combinación ponderada de información de diferentes modalidades de movimiento y/o secuencias. Los resultados muestran que el algoritmo propuesto obtiene resultados competitivos en comparación con existentes algoritmos basados en deep learning, a la vez que se reduce la complejidad.Postprint (published version

    Human activity recognition using a wearable camera

    Get PDF
    Advances in wearable technologies are facilitating the understanding of human activities using first-person vision (FPV) for a wide range of assistive applications. In this thesis, we propose robust multiple motion features for human activity recognition from first­ person videos. The proposed features encode discriminant characteristics form magnitude, direction and dynamics of motion estimated using optical flow. M:>reover, we design novel virtual-inertial features from video, without using the actual inertial sensor, from the movement of intensity centroid across frames. Results on multiple datasets demonstrate that centroid-based inertial features improve the recognition performance of grid-based features. Moreover, we propose a multi-layer modelling framework that encodes hierarchical and temporal relationships among activities. The first layer operates on groups of features that effectively encode motion dynamics and temporal variaitons of intra-frame appearance descriptors of activities with a hierarchical topology. The second layer exploits the temporal context by weighting the outputs of the hierarchy during modelling. In addition, a post-decoding smoothing technique utilises decisions on past samples based on the confidence of the current sample. We validate the proposed framework with several classi fiers, and the temporal modelling is shown to improve recognition performance. We also investigate the use of deep networks to simplify the feature engineering from first-person videos. We propose a stacking of spectrograms to represent short-term global motions that contains a frequency-time representation of multiplemotion components. This enables us to apply 2D convolutions to extract/learn motion features. We employ long short-term memory recurrent network to encode long-term temporal dependency among activiites. Furthermore, we apply cross-domain knowledge transfer between inertial­ based and vision-based approaches for egocentric activity recognition. We propose sparsity weightedcombination of information from different motion modalities and/or streams . Results show that the proposed approach performs competitively with existing deep frameworks, moreover, with reduced complexity.Los avances en tecnologías wearables facilitan la comprensión de actividades humanas utilizando cuando se usan videos grabados en primera persona para una amplia gama de aplicaciones. En esta tesis, proponemos características robustas de movimiento para el reconocimiento de actividades humana a partir de videos en primera persona. Las características propuestas codifican características discriminativas estimadas a partir de optical flow como magnitud, dirección y dinámica de movimiento. Además, diseñamos nuevas características de inercia virtual a partir de video, sin usar sensores inerciales, utilizando el movimiento del centroide de intensidad a través de los fotogramas. Los resultados obtenidos en múltiples bases de datos demuestran que las características inerciales basadas en centroides mejoran el rendimiento de reconocimiento en comparación con grid-based características. Además, proponemos un algoritmo multicapa que codifica las relaciones jerárquicas y temporales entre actividades. La primera capa opera en grupos de características que codifican eficazmente las dinámicas del movimiento y las variaciones temporales de características de apariencia entre múltiples fotogramas utilizando una jerarquía. La segunda capa aprovecha el contexto temporal ponderando las salidas de la jerarquía durante el modelado. Además, diseñamos una técnica de postprocesado para filtrar las decisiones utilizando estimaciones pasadas y la confianza de la estimación actual. Validamos el algoritmo propuesto utilizando varios clasificadores. El modelado temporal muestra una mejora del rendimiento en el reconocimiento de actividades. También investigamos el uso de redes profundas (deep networks) para simplificar el diseño manual de características a partir de videos en primera persona. Proponemos apilar espectrogramas para representar movimientos globales a corto plazo. Estos espectrogramas contienen una representación espaciotemporal de múltiples componentes de movimiento. Esto nos permite aplicar convoluciones bidimensionales para aprender funciones de movimiento. Empleamos long short-term memory recurrent networks para codificar la dependencia temporal a largo plazo entre las actividades. Además, aplicamos transferencia de conocimiento entre diferentes dominios (cross-domain knowledge) entre enfoques inerciales y basados en la visión para el reconocimiento de la actividad en primera persona. Proponemos una combinación ponderada de información de diferentes modalidades de movimiento y/o secuencias. Los resultados muestran que el algoritmo propuesto obtiene resultados competitivos en comparación con existentes algoritmos basados en deep learning, a la vez que se reduce la complejidad

    Human activity recognition using a wearable camera

    Get PDF
    Advances in wearable technologies are facilitating the understanding of human activities using first-person vision (FPV) for a wide range of assistive applications. In this thesis, we propose robust multiple motion features for human activity recognition from first­ person videos. The proposed features encode discriminant characteristics form magnitude, direction and dynamics of motion estimated using optical flow. M:>reover, we design novel virtual-inertial features from video, without using the actual inertial sensor, from the movement of intensity centroid across frames. Results on multiple datasets demonstrate that centroid-based inertial features improve the recognition performance of grid-based features. Moreover, we propose a multi-layer modelling framework that encodes hierarchical and temporal relationships among activities. The first layer operates on groups of features that effectively encode motion dynamics and temporal variaitons of intra-frame appearance descriptors of activities with a hierarchical topology. The second layer exploits the temporal context by weighting the outputs of the hierarchy during modelling. In addition, a post-decoding smoothing technique utilises decisions on past samples based on the confidence of the current sample. We validate the proposed framework with several classi fiers, and the temporal modelling is shown to improve recognition performance. We also investigate the use of deep networks to simplify the feature engineering from first-person videos. We propose a stacking of spectrograms to represent short-term global motions that contains a frequency-time representation of multiplemotion components. This enables us to apply 2D convolutions to extract/learn motion features. We employ long short-term memory recurrent network to encode long-term temporal dependency among activiites. Furthermore, we apply cross-domain knowledge transfer between inertial­ based and vision-based approaches for egocentric activity recognition. We propose sparsity weightedcombination of information from different motion modalities and/or streams . Results show that the proposed approach performs competitively with existing deep frameworks, moreover, with reduced complexity.Los avances en tecnologías wearables facilitan la comprensión de actividades humanas utilizando cuando se usan videos grabados en primera persona para una amplia gama de aplicaciones. En esta tesis, proponemos características robustas de movimiento para el reconocimiento de actividades humana a partir de videos en primera persona. Las características propuestas codifican características discriminativas estimadas a partir de optical flow como magnitud, dirección y dinámica de movimiento. Además, diseñamos nuevas características de inercia virtual a partir de video, sin usar sensores inerciales, utilizando el movimiento del centroide de intensidad a través de los fotogramas. Los resultados obtenidos en múltiples bases de datos demuestran que las características inerciales basadas en centroides mejoran el rendimiento de reconocimiento en comparación con grid-based características. Además, proponemos un algoritmo multicapa que codifica las relaciones jerárquicas y temporales entre actividades. La primera capa opera en grupos de características que codifican eficazmente las dinámicas del movimiento y las variaciones temporales de características de apariencia entre múltiples fotogramas utilizando una jerarquía. La segunda capa aprovecha el contexto temporal ponderando las salidas de la jerarquía durante el modelado. Además, diseñamos una técnica de postprocesado para filtrar las decisiones utilizando estimaciones pasadas y la confianza de la estimación actual. Validamos el algoritmo propuesto utilizando varios clasificadores. El modelado temporal muestra una mejora del rendimiento en el reconocimiento de actividades. También investigamos el uso de redes profundas (deep networks) para simplificar el diseño manual de características a partir de videos en primera persona. Proponemos apilar espectrogramas para representar movimientos globales a corto plazo. Estos espectrogramas contienen una representación espaciotemporal de múltiples componentes de movimiento. Esto nos permite aplicar convoluciones bidimensionales para aprender funciones de movimiento. Empleamos long short-term memory recurrent networks para codificar la dependencia temporal a largo plazo entre las actividades. Además, aplicamos transferencia de conocimiento entre diferentes dominios (cross-domain knowledge) entre enfoques inerciales y basados en la visión para el reconocimiento de la actividad en primera persona. Proponemos una combinación ponderada de información de diferentes modalidades de movimiento y/o secuencias. Los resultados muestran que el algoritmo propuesto obtiene resultados competitivos en comparación con existentes algoritmos basados en deep learning, a la vez que se reduce la complejidad

    STEP-UP: Enabling low-cost IMU sensors to predict the type of dementia during everyday stair climbing

    Get PDF
    Posterior Cortical Atrophy is a rare but significant form of dementia which affects peoples’ visual ability before their memory. This is often misdiagnosed as an eyesight rather than brain sight problem. This paper aims to address the frequent, initial misdiagnosis of this disease as a vision problem through the use of an intelligent, cost-effective, wearable system, alongside diagnosis of the more typical Alzheimer’s Disease. We propose low-level features constructed from the IMU data gathered from 35 participants, while they performed a stair climbing and descending task in a real-world simulated environment. We demonstrate that with these features the machine learning models predict dementia with 87.02% accuracy. Furthermore, we investigate how system parameters, such as number of sensors, affect the prediction accuracy. This lays the groundwork for a simple clinical test to enable detection of dementia which can be carried out in the wild
    corecore