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Abstract 17 

Posterior Cortical Atrophy is a rare but significant form of dementia which affects peoples’ visual 18 

ability before their memory. This is often misdiagnosed as an eyesight rather than brain sight 19 

problem. This paper aims to address the frequent, initial misdiagnosis of this disease as a vision 20 

problem through the use of an intelligent, cost-effective, wearable system, alongside diagnosis of the 21 

more typical Alzheimer’s Disease. We propose low-level features constructed from the IMU data 22 

gathered from 35 participants, while they performed a stair climbing and descending task in a real-23 

world simulated environment. We demonstrate that with these features the machine learning models 24 

predict dementia with 87.02% accuracy. Furthermore, we investigate how system parameters, such as 25 

number of sensors, affect the prediction accuracy. This lays the groundwork for a simple clinical test 26 

to enable detection of dementia which can be carried out in the wild. 27 

Introduction 28 

The rate of people living with dementia is increasing. Alzheimer’s Disease (AD) is the most common 29 

cause of dementia and is often seen as simply part of the ageing process and something which will 30 

affect most people (International 2019) as the average living age increases. AD is a progressive 31 

disease which affects a person’s memory and therefore their ability to conduct activities of daily 32 
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living independently which decreases their quality of life (Gale, Acar, and Daffner 2018). However, 33 

AD is not a single disease type, instead there is the typical presentation and a number of atypical 34 

presentations (Graff-Radford et al. 2021). Posterior Cortical Atrophy (PCA) is one such atypical  35 

presentation which typically results in ‘a progressive, often striking, and fairly selective decline in 36 

visual-processing skills and other functions that depend on the parietal, occipital, and 37 

occipitotemporal regions of the brain’ (Crutch et al. 2012).  Different types of AD may often be 38 

misdiagnosed until quite advanced. This is indeed the case for PCA where the atypical vision-based 39 

symptoms present themselves at an early age (typically emerging during 50-65 years old) leading to a 40 

simple vision-problem diagnosis (Crutch et al. 2012). Therefore, it is important to develop methods 41 

that can identify AD regardless of its type so that people with rare forms can efficiently get the 42 

treatment they need. We do this by building on previous studies into everyday walking tasks 43 

detection. 44 

People with typical Alzheimer’s Disease (tAD) have characteristic issues when navigating their 45 

everyday environments (I. McCarthy et al. 2019) with a noticeable general decline in gait patterns 46 

(Valkanova and Ebmeier 2017). Previous lab-based research has demonstrated differences in gait 47 

parameters such as step-time and walking speed between people with dementia and age-matched 48 

controls (Cedervall, Halvorsen, and Åberg 2014; Marquis et al. 2002; Rosso et al. 2017; Verghese et 49 

al. 2007; Waite et al. 2005; L. Wang et al. 2006). These studies indicate that the decline is linked to 50 

both phenotype and stage of the disease (Allali et al. 2016; del Campo et al. 2016; Castrillo et al. 51 

2016; I. McCarthy et al. 2019; Yong et al. 2020).  Furthermore, a noticeable decline in gait is thought 52 

to predate other cognitive decline (Hall et al. 2000). Therefore, a decline in gait appears to be an 53 

appropriate biomarker for the detection of dementia (Montero-Odasso 2016). However, it is 54 

important to move out of the laboratory setting to in-the-wild settings for clinical tools to better aid 55 

persons with disability (Holloway and Dawes 2016). In the recent disability interactions manifesto 56 

(Holloway 2019) the need for in-the-wild data collection was clearly stated. Such data sets were 57 

deemed essential to ensure future technologies to aid persons with disabilities such as dementia in 58 

living more independently. 59 

This work is part of a wider investigation of gait and spatial navigation in people with dementia in a 60 

living lab environment, which specifically focusses on both people with tAD and PCA. Within the 61 

field of dementia there is a need for research in living labs, which move beyond highly controlled 62 

lab-based settings (Schneider and Goldberg 2020; Duff 2020). The living labs serve as a stepping-63 

stone to full in-the-wild testing (Alavi, Lalanne, and Rogers 2020). Full in-the-wild testing for 64 

dementia could reduce the stress of clinical tests for patients and allow for continuous monitoring of 65 

decline. Therefore, in this research we aim to pave the way to in-the-wild detection of dementia by 66 

discriminating people with dementia from controls in a living lab. Furthermore, we include a rare 67 

form of dementia – PCA – that is often missed by clinicians, demonstrating the benefits of this 68 

approach to dementia detection. The evidence-based discrimination of dementia, particularly its 69 

atypical presentations, not only has clinical applications, but also addresses a key desire of health and 70 

social-care professionals for better understanding of rarer presentations of dementia, for appropriate 71 

evidence-based assessment (McIntyre et al. 2019). Our apparatus uses low-cost, unobtrusive devices 72 

to discriminate dementia, which not only increases the applicability of our research, but also has not 73 

been achieved before. Furthermore, we analyse system parameters that led to accurate discrimination, 74 

which could aid future research seeking to extend this research or deploy it in the wild. 75 

Therefore, in this paper we focus specifically on the question – can wearable, low-cost, unobtrusive 76 

devices be used to detect AD regardless of its presentation? In answering this question, we contribute 77 

the following: 78 
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• Demonstrate the feasibility of discriminating controls from people with two types of dementia 79 

(the more typical Alzheimer’s disease (tAD) and a rare form of dementia – Posterior Cortical 80 

Atrophy (PCA)) in a simulated real-world environment – a staircase. To do this we analysed 81 

data from a low-cost, IMU system using machine learning classifiers. The developed analysis 82 

software tools are available at https://github.com/williambhot/detecting_dementia_stairs. 83 

• Examine different system parameters and the direction of traversal that promote accurate 84 

discrimination of dementia. 85 

• Release a data set of IMU data from people with tAD, older adults and people with PCA to 86 

foster this work in the research community. 87 

• Discuss use cases for the proposed system. 88 

While the primary aim of this study is to discriminate both the rare PCA and more typical 89 

Alzheimer’s Disease from healthy controls, we also analyse differences in the detection of these two 90 

types of the disease by analysing the performance of a ternary model that seeks to discriminate the 91 

two types of dementia from each other as well as from controls. 92 

We believe that this research, could provide a key stepping-stone in enabling potential applications in 93 

detecting dementia such as a screening tool for healthcare workers and practitioners, general self-94 

screening and support tool. Nevertheless, further research would be required before this is possible to 95 

address some of the limitations of this study (such as generalisation issues) and full in-the-wild 96 

testing. We discuss this further in the Discussion section. 97 

Related Work 98 

Posterior cortical Atrophy (PCA) 99 

PCA is a rare early-onset syndrome which presents with visual complaints and is most commonly 100 

caused by Alzheimer’s disease (AD) pathology. PCA has been identified as a distinct clinical 101 

syndrome as opposed to just AD with specific, noticeable visual deficits (Mendez, Ghajarania, and 102 

Perryman 2002). It also affects literacy, numeracy and gesture (Crutch, Yong, and Shakespeare 103 

2016). People with PCA, as opposed to typical AD (tAD) have better language and memory abilities 104 

(Crutch, Yong, and Shakespeare 2016; Firth et al. 2019), but these come at the cost of a greater 105 

understanding of the disease and higher levels of depression (Mendez, Ghajarania, and Perryman 106 

2002). Specific interventions need to be developed for people with PCA which help overcome the 107 

difficulties they face in visual tasks and help aid better mental health (Mendez, Ghajarania, and 108 

Perryman 2002). However, such interventions can only be developed once the disease has been 109 

detected and detection is often delayed due to the atypical symptoms compared to tAD and the early 110 

onset of the disease (Crutch et al. 2012; Graff-Radford et al. 2021). 111 

Detecting rare forms of dementia like PCA with confidence is not an easy task. People often notice 112 

something going wrong with their eyes, e.g. being unable to see a shuttlecock once it has landed on 113 

the ground but being able to see it when in flight. The first stop for people following these visual 114 

oddities is to visit the optician or GP. It is rare that the symptoms as presented are immediately 115 

associated with a form of AD. More generally health and social care practitioners are often unaware 116 

of, and find it difficult to appreciate that forms of dementia can affect people’s visual abilities 117 

(McIntyre et al. 2019).  118 

Dementia Detection 119 

https://github.com/williambhot/detecting_dementia_stairs
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Previous work in the detection of dementia has ranged from mobile-based automatic speech 120 

recognition tools (e.g. (Shibata et al. 2018), (Tröger et al. 2018)) to oculomotor performance during 121 

web browsing and multimodal interactions with computer avatars (Cano et al. 2017). However, to 122 

date these screening tools remain proofs of concept rather than clinical tools. 123 

Previous research has identified that changes in gait are sensitive to dementia, even at early disease 124 

stages (Hall et al. 2000), and during the transitional stage between normal cognitive decline and 125 

dementia also known as Mild Cognitive Impairment (Schaat et al. 2020; Halloway et al. 2019; Gwak, 126 

Woo, and Sarrafzadeh 2018). It was found that a decline in gait predates observable cognitive 127 

changes associated with dementia, and gait continues to decline with the progression of dementia 128 

(Verghese et al. 2007; Cedervall, Halvorsen, and Åberg 2014; L. Wang et al. 2006; Waite et al. 2005; 129 

Marquis et al. 2002). By comparing the gait of healthy age-matched controls to that of people with 130 

dementia, clinical research has identified that changes in the pace, rhythm and variability of gait are 131 

associated with the decline into dementia (Verghese et al. 2007). Researchers have found people with 132 

dementia to have a lower natural walking speed (Verghese et al. 2007; L. Wang et al. 2006; Waite et 133 

al. 2005; Marquis et al. 2002), lower cadence, shorter stride length, shorter swing times and longer 134 

stance times as well as longer double support times (Verghese et al. 2007). Furthermore, studies have 135 

also shown that variability in gait is higher amongst people with dementia, who lack rhythmic and 136 

consistent gait (Verghese et al. 2007). 137 

While previous clinical research has helped to identify the changes in gait that occur during the 138 

decline into dementia, this research has ignored two important factors that would allow such 139 

knowledge to be used for detection of the disease in the wild. Firstly, previous research relies heavily 140 

on experiments conducted in laboratory settings that do not mirror the complexities of the real-world 141 

environments through which people with dementia must navigate (I. McCarthy et al. 2019). These 142 

laboratory experiments usually involve monitoring the gait of participants while they walk along a 143 

straight, uninclined path for a short distance and use full biomechanics models to determine changes 144 

in gait (Verghese et al. 2007; L. Wang et al. 2006; Waite et al. 2005; Marquis et al. 2002).  For 145 

example, many use electronic walkways with inbuilt pressure sensors (Verghese et al. 2007; 146 

Callisaya et al. 2017; Wittwer, Webster, and Hill 2013) or motion capture systems (Cedervall, 147 

Halvorsen, and Åberg 2014). The form factor, complicated setup procedures and price of these 148 

measurement systems limit their use in real world environments. Secondly, while some previous 149 

studies have analysed different types of dementia (Mc Ardle et al. 2020), previous studies ignore the 150 

differences between types of dementia and either focus on one type of dementia (Cedervall, 151 

Halvorsen, and Åberg 2014; Callisaya et al. 2017; Wittwer, Webster, and Hill 2013) or consider 152 

dementia without looking at its type (L. Wang et al. 2006; Marquis et al. 2002). Furthermore, to our 153 

knowledge, gait of people with PCA has only been analysed by previous research in this line of 154 

investigation (Carton et al. 2016; I. D. McCarthy et al., n.d.; Ocal et al. 2017; Yong et al. 2020; I. 155 

McCarthy et al. 2019; Yong et al. 2018). This research has found that some patients with dementia 156 

show a consistent pattern of hesitation (which can be identified from step times) when navigating 157 

complex routes (I. McCarthy et al. 2019; Yong et al. 2020; I. McCarthy et al. 2019). However, it was 158 

not possible within that task to identify patterns which could be used for predictive purposes. We 159 

believe that the regular pattern offered by stairs will help to regularise these irregularities within the 160 

gait pattern which would then allow for successful detection of tAD and PCA. Once the feasibility of 161 

this approach is established, it will enable a low-cost detection device to be added to footwear. This 162 

could enable the detection of dementia in the wild, minimising stressful laboratory tests, and 163 

promoting data-driven methods for appropriate detection of dementia for both typical AD and the 164 

rarer PCA. Furthermore, the ability of the device to detect the typical Alzheimer’s disease (tAD) 165 

provides the final product with a much wider number of use cases. The unobtrusive, low-cost nature 166 
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of such a device enables its deployment in high-risk populations to continuously monitor changes in 167 

risk of developing dementia. 168 

Materials and Methods 169 

In this section, we present the proposed STEP-UP framework and technical details. 170 

Data Collection Protocol 171 

Participants’ gait was monitored using Inertial Measurement Units (IMUs) while they climbed a 172 

staircase in the living lab environment. This living lab was co-designed by clinical, engineering and 173 

computer science researchers, with inputs from patients. The IMUs used were MTw (Xsens 174 

Technologies B.V., The Netherlands). They are comprised of an accelerometer, a gyroscope, and a 175 

magnetometer (however, the magnetometer was not used for this study). Each participant had a 176 

sensor attached to the outside of each heel with the long axis being horizontal, as well as a sensor on 177 

the back of the pelvis attached orthogonally to the sensors on the heels (Figure 1). Participants were 178 

asked to walk up or down a short flight of stairs consisting of four steps (the dimensions of each step 179 

were 23 cm × 112 cm × 25 cm, H × W × D) (Figure 1) in a variety of environmental conditions. 180 

These environmental conditions included different lighting levels (low: 20 lux; high: 190 lux) and 181 

either the presence or absence of visual cues (i.e. hazard tape over the edge of steps). Each participant 182 

was asked to attempt 16 versions of the trial (twice for each combination of conditions – dim 183 

light/bright light, visual cues/no visual cues – in the upwards and downwards direction). No 184 

constraints were imposed on the way of descending or ascending the stairs. The ordering of trials was 185 

randomised for each participant (See Figure 2a). 186 

Participants 187 

Participants were from one of three groups – the group with PCA (containing 11 participants – 6 188 

female and 5 male – of age 64.6 ± 5.9 years, height 168.92 ± 6.49 cm, weight 68.22 ± 13.31 kg, with 189 

Mini Mental State Examination (MMSE) score 18.6 ± 6.1), the group with tAD (containing 10 190 

participants – 6 female and 4 male – of age 66.2 ± 5.0 years, height 167.91 ± 11.82 cm, weight 66.21 191 

± 5.03 kg, with MMSE score 18.6 ± 5.0) and the control group consisting of age matched participants 192 

with no diagnosed form of dementia (containing 14 participants – 6 female and 8 male – of age 64.2 193 

± 4.1 years, height 172.36 ± 13.21 cm, weight 73.23 ± 15.23 kg). The experimental design of having 194 

a control group of healthy age-matched participants is the standard experimental protocol used in this 195 

field (Callisaya et al. 2017; I. McCarthy et al. 2019). MMSE tests were only conducted on people 196 

with dementia, and not on control participants. One-way ANOVAs demonstrated that there were no 197 

statistically significant differences between the groups in age (𝐹(2,32) = 0.506; 𝑝 = 0.61), weight 198 

(𝐹(2,30) = 0.404; 𝑝 = 0.67) or height (𝐹(2,31) = 0.580; 𝑝 = 0.57). Furthermore, a student t-test 199 

showed that there was no difference between MMSE scores for participants in the PCA and tAD 200 

conditions (𝑡(18) = 0; 𝑝 = 1). Ethical approval for the study was provided by the National Research 201 

Ethics Service Committee London Queen Square, and written informed consent was obtained from 202 

all 35 participants. 203 

Pre-processing and Classification Strategy 204 

The data was processed in Python 3.7 (Python Programming Language, RRID:SCR_008394) using 205 

standard data processing libraries including NumPy (NumPy, RRID:SCR_008633), SciPy (SciPy, 206 

RRID:SCR_008058), Pandas (Pandas, RRID:SCR_018214), Matplotlib (MatPlotLib, 207 

RRID:SCR_008624) and Scikit Learn (scikit-learn, RRID:SCR_002577).  The data pre-processing 208 
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and classification strategy is shown in Figure 2. This process included hyperparameter optimisation 209 

on the models to select the best parameters and analysis of how direction of traversal and different 210 

system setups affected the performance of this model. This section summarises the methods we used 211 

to achieve this. The software tools we developed are released to foster this work in the research 212 

community (https://github.com/williambhot/detecting_dementia_stairs). 213 

Exclusion of Participants 214 

On visualising the IMU data – acceleration and gyroscope data – data for some trials was found to be 215 

corrupted. Visualising the raw data from these trials showed only noise and no evidence of cyclic, 216 

step-like motion (Figure 2b). Therefore, these trials were removed from further analysis. 217 

This resulted in the removal of 11 trials from a total of 527 trials (Table 1). After removing excluded 218 

trials, 40.12% of trials were controls, 29.07% were in the PCA condition and 30.81% were in the 219 

tAD condition. Up-sampling was conducted on the trials from the different conditions before training 220 

any models, so that the models did not overfit to these differences in the frequencies in the groups. 221 

Dead Reckoning and Gait Parameters 222 

Initially we tried to calculate velocity and displacement from the IMU data using a dead-reckoning 223 

technique with a zero-offset to account for sensor drift (Park and Suh 2010; Ojeda and Borenstein 224 

2007). Using this we calculated gait parameters that have been previously associated with dementia 225 

such as lower walking speed (Verghese et al. 2007; L. Wang et al. 2006; Waite et al. 2005; Marquis 226 

et al. 2002) and shorter stride length (Verghese et al. 2007). However, we found that in our current 227 

set up it was not possible to conduct dead reckoning with a high enough degree of accuracy for 228 

calculating the gait parameters required. We attribute this to the experimental setup as well as issues 229 

with controlling the task across participants, especially those with more advanced dementia. See the 230 

discussion for more details on this. 231 

Lower-level features 232 

Considering the difficulty of conducting dead-reckoning and calculating gait parameters in a system 233 

designed to be useable in the real world, we propose more low-level features that, from a low-cost 234 

IMU system, can be more easily designed for real-world use. This involved calculating the vector 235 

length of the 3d linear and angular acceleration to obtain the resultant linear and angular acceleration 236 

(See Figure 2c): 237 

𝑅 =  √𝑥2 + 𝑦2 + 𝑧2 238 

These two signals – resultant linear acceleration and resultant angular acceleration – were then split 239 

into a constant number of windows (𝑘) and the averages of each window (𝜇𝑖 where 𝑖 is the number of 240 

the window) were used as the features. The windows were calculated in the following way – across 241 

the entire dataset, the same number of windows (𝑘) were used and in a single trial these windows 242 

were of the same length (𝑙), however, across multiple trials window length was different (See Figure 243 

2c): 244 

𝜇𝑖 =  
∑ 𝑅𝑡

(𝑖+1)×𝑙
𝑡=𝑖×𝑙   

𝑙
 245 

Where 𝑖 ∈ [0, 𝑘) is the number of the current window varying between 0 and 𝑘 − 1, 𝑘 is the total 246 

number of windows and 𝑡 is the current sample for the linear or angular acceleration. 247 

https://github.com/williambhot/detecting_dementia_stairs
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These windowed averages were used as the feature values, allowing a constant number of features for 248 

each trial, while providing the model with information from different sections of the trial. The 249 

primary reason for using this approach was to have a constant number of features for all trials, which 250 

is required by many Machine Learning models. The number of windows was set using 251 

hyperparameter optimisation. Specifically, different numbers of windows were experimented with, 252 

but it was found that models using a multiple of four windows achieved a higher performance than 253 

others and specifically eight windows yielded the best performance (Figure 3). One reason for this 254 

could be that there were four steps in the staircase and, therefore, setting the number of windows to a 255 

multiple of four provides an approximate way to separate the data based on steps, assuming each step 256 

is traversed in approximately the same amount of time in a single trial. However, every participant 257 

did not take the same amount of time on each step, and several participants waited for a while on 258 

some steps. Therefore, for these participants segmenting the data in this way would not segment the 259 

trial by steps. Nevertheless, this was not our motivation for doing this, but rather it was to segment 260 

the trial into an equal number of windows so that models that required a fixed number of features 261 

could be employed. 262 

Machine Learning Models 263 

We assessed the ability of different machine learning models to classify the data, including decision 264 

trees (Random Forest and Gradient Boosting Models) and Multi-Layer Perceptron (MLP) models. To 265 

this end, we fit the models to the data and evaluated the models’ ability to generalise by testing it on 266 

unseen data (see the following section). Furthermore, we chose the parameters of this model through 267 

hyper-parameter optimisation discussed later (See Figure 2d). 268 

Two variants of all the models were fit to the data – a binary model to discriminate dementia from 269 

control participants and a ternary model to discriminate between controls, tAD and PCA participants. 270 

While we were able to discriminate people with dementia from control participants, we were unable 271 

to discriminate PCA from tAD with high accuracy (see results section for more details). We suggest 272 

that this is because the gait of the two types of dementia was similar to each other and therefore could 273 

not be discriminated using these low-level features (see discussion for more details). 274 

Nevertheless, given features (𝜇𝑖 ; 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ [0, 𝑘)) the models learnt a mapping (Γ) from features to 275 

the probability (𝑝) of this data belonging to the different classes (𝑐; 𝑤ℎ𝑒𝑟𝑒 𝑐 =276 

{𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑑𝑒𝑚𝑒𝑛𝑡𝑖𝑎} 𝑜𝑟 𝑐 = {𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑃𝐶𝐴, 𝑡𝐴𝐷}). This is as follows: 277 

𝑝(𝑐|𝜇0, … , 𝜇𝑘) = Γ(𝜇0, … , 𝜇𝑘) 278 

Based on the value of this probability for each class, the most likely class for that data can then be 279 

ascertained as the class with the maximum probability. 280 

Evaluation of Models 281 

A Leave-One-Person-Out (also called leave-one-subject-out, LOSO) cross validation was used to 282 

evaluate the generalization capabilities of our predictions (See Figure 2e). In this method, the model 283 

is trained on the data from all but one participant (Cho, Julier, and Bianchi-Berthouze 2019). 284 

Predictions are then made on the data from the remaining participant to gauge how well the model 285 

performs on unseen data from a participant on which it has not been trained. As data from each 286 

model are not independent from one another, the Cochran’s Q test was used to determine the 287 

significance of the overall accuracy of each model. This was done using the dichotomous ‘true’ or 288 

‘false’ prediction for each fold.  A pairwise post-hoc Dunn test with Bonferroni adjustments was used 289 
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to test for differences between models. All statistical tests were run with a significance level of 𝛼 =290 

0.05 and were conducted using IBM SPSS V25 (IBM SPSS Statistics, RRID:SCR_019096). 291 

Furthermore, we report accuracy and F1 scores for all models. These are calculated by exhaustively 292 

leaving each participant out (as explained above), training the model on the remaining participants 293 

and evaluating the model on the participant left out. The accuracy and F1 score were then calculated 294 

across all these folds of the data. The accuracy was calculated as the number of correctly classified 295 

trials over the total number of trials. F1 scores with respect to each class were calculated as: 296 

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 297 

Hyper-parameter optimization 298 

The hyper-parameters for all models were chosen using hyperparameter optimisation – a standard 299 

method in Machine Learning for systematically choosing the parameters of the model that are not 300 

directly learnt. All the models were tuned for this study using a type of hyper-parameter tuning – 301 

exhaustive grid search (Buitinck et al. 2013) in which variations of the model are run repeatedly 302 

using different values of the hyper-parameters, that have been identified manually. The hyper-303 

parameters chosen for the model for the final analyses were the parameters that produced the best 304 

performance while conducting the grid search (Table 2). This approach was also used for selecting 305 

the number of windows to use in constructing the features (See Figure 3). 306 

Direction of Traversal and System Analysis 307 

A secondary aim of the study was to identify the components of the system that promote a high 308 

classification accuracy. This involved analysing: the importance of the three sensors, the importance 309 

of the different features and the importance of the direction of traversal of the stairs.  310 

For the analysis of the importance of the sensors, the performance of different variants of the models 311 

was analysed. These variants of the models used features from different combinations of the sensors. 312 

The importance of the different features was analysed using the tree-based models (ie the Random 313 

Forest and Gradient Boosting models), firstly, because they provide methods for determining the 314 

importance of features in making a prediction and secondly, due to their high performance. This 315 

analysis was done, by calculating the reduction in impurity (or error) that each node (or partition) 316 

provides weighted by the probability of reaching that node in the tree and then averaged over all trees 317 

to give the final metric of importance. Therefore, importance represents how well the feature 318 

portioned the data into the relevant classes weighted by the likelihood of this feature being used in 319 

classifying a datapoint. The analysis of traversal direction was done by training the model on all the 320 

data, then separating predictions into those made on trials in the upward direction and those made in 321 

the downward direction and calculating the accuracy on these subsets separately. 322 

To understand which sensors were most effective a Kruskal-Wallis H-test was conducted and 323 

pairwise post-hoc Dunn tests with Bonferroni adjustments were used to determine which sensors to 324 

use in further analyses. Finally, a Friedman’s Two-Way Analysis of Variance was conducted to 325 

understand the importance of features and the influence of upwards and downwards traversal. 326 

Results 327 

Prediction Results 328 
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This section presents the results achieved in detecting whether participants had dementia as well as 329 

the type of dementia. 330 

In the binary models, trained to discriminate people with dementia from controls, the Random Forest 331 

Classifier was the most successful at predicting the presence of dementia, which it accurately did in 332 

87.02% of cases (see Table 3, Figure 4 for more details). Furthermore, the F1 score with respect to 333 

control class was 83.14% and 88.38% with respect to the dementia class, both of which were higher 334 

than the same for any other model. The Cochran's Q test confirmed the differences between the 335 

performance of the models, χ2(4, N = 516) = 47.56, p <.001. 336 

In the case of the ternary type-based classification (Control vs tAD vs PCA), the MLP classifier 337 

outperforms all other classifiers and accurately predicts the type of dementia in 68.22% of cases. 338 

Furthermore, the F1 score with respect to the control class was 83.72%, 64.8% with respect to the 339 

PCA class, and 47.69% with respect to the tAD class. The Cochran's Q test confirmed that there were 340 

differences between the performance of the models, χ2 (4, N = 516) = 47.56, p < .001. 341 

Furthermore, analysing the confusion matrix of the winning model (the MLP classifier) in the ternary 342 

case suggests that the model misclassifies more often between the two types of dementia than with 343 

controls (see Table 4, Figure 5). This could be because people with dementia share some similar 344 

symptoms no matter the type and therefore their gait is much more similar to each other than to that 345 

of controls. Moreover, it is more common for the model to confuse participants with tAD with the 346 

control group than it is for the model to confuse participants with PCA with the control group. This 347 

could be because PCA affects visual processing more than tAD, and therefore the effects of this 348 

disease are more prominent in a trial such as this. This trend has also been identified by previous 349 

research done in the same programme of work at Pedestrian Accessibility Movement Environment 350 

Laboratory (PAMELA), which found that participants with early stage PCA performed worse than 351 

people with tAD (Yong et al. 2020). Therefore, because the gait of participants with PCA is more 352 

easily distinguishable from ‘normal’ gait than the gait of participants with tAD, the model does not 353 

confuse PCA with controls as often as it confuses tAD with controls. 354 

In summary, these models could enable an in-the-wild screening tool for dementia, allowing people 355 

to conduct an initial screening, with reasonably high accuracy, before potentially receiving a clinical 356 

test to verify this. However, further research is required before this is possible, particularly in the case 357 

of the type-based classification where accuracy for the two types of dementia is lower than that for 358 

controls, suggesting that the current system may be sensitive to dementia, but not its type. See the 359 

discussion for more details.  360 

Direction of Traversal and System Analysis 361 

Analysis of number of sensors 362 

A Kruskal-Wallis H test showed that there was a statistically significant difference in the importance 363 

of the sensors, χ2(6) = 157.13, p <.001. Specifically, we tested the performance across model variants 364 

that used all different combinations of sensors (left foot; right foot; pelvis; left foot and right foot; left 365 

foot and pelvis; right foot and pelvis; left foot, right foot and pelvis). Post-hoc analysis showed the 366 

best performing combination was found to be the left and right foot sensor features together. These 367 

together gave a mean rank of 163.22 and an average accuracy of 85.94%. In contrast the worst 368 

performance was given by the pelvis features alone which had a mean rank of 13.00 and an accuracy 369 

of 74.45%. The importance of the placement and number of sensors, as given by the resulting 370 

accuracy, are given in Table 5.  371 
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The importance of the feet sensors in predictions could be explained simply because gait, which is 372 

heavily based on steps, can be more easily deduced from the movement of the feet, than the pelvis. 373 

Therefore, the accuracy of the model that uses a sensor on each foot is significantly higher than the 374 

others. Furthermore, it is interesting to note that the model that uses all three sensors yields a 375 

significantly lower accuracy than the model that uses only just two sensors – one on each foot. A 376 

potential reason for this is that given the data from each foot sensor, the pelvis sensor provides little 377 

additional useful information. Therefore, this information does not enhance the performance of the 378 

model, but could allow the model to identify trends that exist in the training set (or a subset of it) but 379 

do not generalise to other cases, causing the model to overfit to the training data. 380 

The rest of the analyses (presented in this paper) used only the sensors attached to the feet as these 381 

produced the best performance. This analysis shows that when the data from sensors is processed 382 

independently of each other, sensors attached to participants’ feet are more informative for making 383 

predictions. 384 

These results of this analysis could not only be interesting to clinicians, and other researchers aiming 385 

to build similar systems, but also means that the sensor system can be truly unobtrusive as it does not 386 

require a pelvis sensor that can cause discomfort, thereby allowing its use in the wild. See the 387 

Discussion for more information about this. 388 

The importance of features 389 

Further analysis of the models was conducted to better understand how features from the gyroscope 390 

and the accelerometer contributed to the overall prediction (Figure 6). This was analysed by looking 391 

at the feature importance, using the tree-based models. Feature importance was calculated as the 392 

reduction in impurity (or error) that each node (or partition) provides weighted by the probability of 393 

reaching that node in the tree and then averaged over all trees. A Kruskal-Wallis H test showed that 394 

linear acceleration was statistically more importance than angular acceleration χ2(31) = 795.47, p 395 

<.001. While there is no conclusive explanation for this it is possible that this occurs because 396 

acceleration and velocity are directly related. Therefore, acceleration provides the model with useful 397 

information about the speed of a participant, the points when the foot is at rest, and how quickly the 398 

participant progresses through the trial. These have been identified by previous research  (Verghese 399 

et al. 2007; del Campo et al. 2016; Carton et al. 2016; Castrillo et al. 2016; Montero-Odasso 2016; 400 

Cedervall, Halvorsen, and Åberg 2014) as factors that help distinguish participants with dementia 401 

from those without. 402 

Furthermore, it appears (Figure 6, Table 6) that if we divide the trial into two halves (windows 1-4 403 

and 4-8 respectively), then the second half appears more important generally for the model. To 404 

analyse this further the importance of the linear accelerations and the angular accelerations for the 4 405 

windows in the two halves were summed together for each sensor and each type of acceleration. A 406 

second Kruskal-Wallis H test was applied followed by pairwise post-hoc Dunn tests with Bonferroni 407 

adjustments. Each of the pairwise comparisons was significant. The importance of the linear 408 

acceleration in the second half of the trial was found to be significantly greater than that of the first 409 

(p=0.014), which in turn was found to be significantly greater than the angular acceleration in the last 410 

half (p<.001). The angular acceleration in the first half was the least important and significantly less 411 

than the angular acceleration in the second half (p=0.014).  412 

This analysis was conducted on all tree-based models (in both the binary and multi-class settings) 413 

which provide easy ways to calculate and analyse the importance of features, as well as being among 414 

the best performing models, and the trends identified across all these tree-based models were similar. 415 
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Therefore, this analysis identified the most informative components of the trial for distinguishing 416 

participants with dementia from controls, however, further research is required to provide an 417 

explanation for why these trends occur.  418 

The effect of traversal direction 419 

The analysis of the direction of traversal of the stairs that helps distinguish people with dementia 420 

from controls is presented in this section. The mean accuracy of the upward or downward directions 421 

are given in Table 7. This suggested that for people with dementia the binary models were more 422 

accurate in the upwards direction as compared to the downwards direction. 423 

To analyse this further, the same analysis was conducted in the multiclass setting with accuracies 424 

split according to the class. The results of this analysis are summarised in Table 8. 425 

A Friedman’s Two-Way Analysis of Variance was conducted which proved there was a significant 426 

difference between the models and between up and down conditions χ2(17) = 415.41, p <.001. 427 

Pairwise analysis across two independent variables (models and up/down) was not conducted as it 428 

was thought to be over analysis of the data. However, from Table 8 it can be seen that in the 429 

multiclass tree-based models the percentage of the trials that were correctly classified as PCA is 430 

generally higher in the downward direction, which is in contrast to the results found for classifying 431 

dementia with binary models. This could be attributed to the fact that on the way down, the stairs are 432 

not directly in participants’ line of sight when looking forward and, therefore, it is harder for them to 433 

process this information. Alternatively, it could be that descending stairs is less physically 434 

demanding, but the consequence of falling is greater when descending, causing anxiety in the 435 

participants. 436 

While this analysis provides interesting insights into which direction of traversal is more informative 437 

for predicting dementia, the varied results across different models led to this analysis being 438 

inconclusive. Moreover, further research is required to provide an explanation for these differences. 439 

The analysis of the importance of features and the direction of traversal provides some initial insights 440 

into how the gait of people with dementia (both PCA and tAD) could differ from that of controls, 441 

which may be informative to healthcare workers and patients. However, further analysis is required 442 

into the varied results and generalisability of these findings to other environments. See the 443 

Discussion for more details. 444 

Discussion 445 

This section discusses the contributions made, current limitations and future possible use cases of the 446 

STEP-UP system. 447 

Detection and Discrimination of Dementia 448 

While previous research has helped to identify the changes in gait that occur during the decline into 449 

dementia, the research has ignored two important factors that would allow such analyses to be used 450 

in the real world. Firstly, previous research relies heavily on experiments conducted in laboratory 451 

settings, using technologies such as optical systems that cannot be used in the real-world (Callisaya et 452 

al. 2017; Verghese et al. 2007; Wittwer, Webster, and Hill 2013) and treadmills which constrain the 453 

way of walking to a straight line. This limits the applications of this research as people hoping to use 454 

this method to screen for early cues of dementia would need to be subjected to these laboratory tests. 455 

Secondly, previous research often ignores different types of Alzheimer’s focusing instead on tAD. 456 
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The use of low-cost wearable technology offers the opportunity to gather data about people’s ability 457 

to conduct everyday tasks, including climbing or descending stairs as they go about their life. 458 

Previous research (Plant and Barton 2020) suggests that data from everyday life are more informative 459 

about a person’s disease than data in clinical assessment laboratory where people may attempt to over 460 

control their behaviour. In addition, as such sensors get integrated into people’s clothes and 461 

accessories, early detection of possible problems (especially rarer types of dementia like PCA) could 462 

be detected before people purposely look for a dementia assessment. 463 

Our study has demonstrated the feasibility of deploying low-cost sensors to measure gait patterns for 464 

predicting dementia (both tAD and a rarer type of dementia: PCA) in everyday tasks of climbing and 465 

descending stairs. We have achieved this by focusing on low-level input features and investigating 466 

their non-linear mapping onto types of dementia and controlled groups with supervised classifiers. 467 

This is of critical importance when it comes to low-cost systems being used in the real world as 468 

calculating hand-engineered high-level gait features (e.g. (Verghese et al. 2007)) is often infeasible 469 

and requires high level controls. Also, low-level features used with artificial neural networks have 470 

been shown repeatedly to have higher robustness for other sensing modalities (Cho, Julier, and 471 

Bianchi-Berthouze 2019; Kostek, Szczuko, and Zwan 2004). 472 

In this research we analysed the detection of dementia as compared to healthy participants, however, 473 

real-world deployment could enable larger datasets. This could further lead to an improvement in the 474 

performance not only on the detection of dementia cues but also on discriminating between different 475 

types of dementia. Moreover, the inclusion of more varied data such as that of participants with Mild 476 

Cognitive Impairement or early stages of dementia could enable this system to be used by these 477 

populations, allowing for early-stage detection. While we did not look at these populations, previous 478 

research analysing gait using similar methods and measures has found that gait is sensitive to early 479 

signs of dementia and can predict cognitive decline (Verghese et al. 2007; Cedervall, Halvorsen, and 480 

Åberg 2014; L. Wang et al. 2006; Waite et al. 2005; Marquis et al. 2002; Schaat et al. 2020; 481 

Halloway et al. 2019; Gwak, Woo, and Sarrafzadeh 2018). Therefore, deployment of this system in 482 

real-world settings could enable dementia detection in everyday settings which could bring several 483 

use cases and potential benefits. While in-depth analysis of this is left to future research, some of the 484 

potential future examples are discussed below: 485 

Screening Tool for healthcare workers and practitioners: A screening tool which could be 486 

deployed in clinical settings or as an at-home test can be developed. The clinical tool could be used 487 

by community healthcare workers as well as general practitioners to enable easy detection of typical 488 

and atypical presentations of Alzheimer’s disease. Carers’ wellbeing can often be neglected, however 489 

they are often under considerable stress (Gilhooly et al. 2016). The amount of stress carers 490 

experience decreases with acceptance of the diagnosis and social support networks, and is increased 491 

with wishful thinking, denial and avoidance strategies (Gilhooly et al. 2016). An early diagnosis 492 

gives more time for acceptance and support networks to be established. These benefit the person 493 

diagnosed, their families and carers. It could be that beyond the benefits of simple screening we 494 

could also investigate ways of developing support tools for the carers, which could be linked to the 495 

stage of dementia of the person for whom they caring. 496 

General self-screening: As sensors are increasingly integrated into our daily activities (e.g., sensor 497 

in shoes for running, imaging for fitness tracking) and used to quantify our wellbeing (Cho 2021; 498 

Cho et al. 2017), such sensors could be used together to detect and identify cues of decline and 499 

dementia. Our results provide some insights on how the sensors could be used in the wild. Firstly, our 500 

research found that the presence of dementia is more easily detected during upwards stair climbing, 501 
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suggesting that the gait of people with dementia is more abnormal during upwards stair climbing. 502 

The same sensors placed on the shoes could first detect upward stair climbing (Formento et al. 2014) 503 

and data from this activity can be prioritised for more accurate predictions. Similarly, the sensors 504 

could also detect long periods of activity and even fatigue or pain (C. Wang et al. 2019) and consider 505 

such variables when evaluating the assessment tool outcome. Finally, as any motor activity 506 

modelling suffers from people’s idiosyncrasy, such models could take advantage of the long history 507 

of sensor data gathered from the person to build personal models of what is a normal pattern (given 508 

the physical ability including vision of the person) and hence detect possible sudden declines that 509 

may indicate such underlying causes of dementia and even atypical causes.  510 

Support Tool for patients: It would seem feasible to also develop the ability to classify 511 

deteriorations in a person’s condition following diagnosis. This would need a larger data set collected 512 

in the wild. Once developed decline in gait such as those detected by lab-based studies (e.g. 513 

(Callisaya et al. 2017; Verghese et al. 2007)) could be detected as people conduct their daily 514 

activities and be directly linked to clinical care pathways. This would enable person-centred care to 515 

be established, rather than simply asking people to return for appointments based on standard time 516 

predictions of decline.  517 

An important perspective is on the effect of different combinations of sensors on the detection 518 

performance. Our research found that of all combinations of the sensors, models using only the 519 

sensors attached to the feet performed best. This led to us dropping the pelvis sensor from further 520 

analyses. Additionally, a sensor constantly attached to a person’s pelvis may cause discomfort. 521 

Therefore, our research suggests that a truly unobtrusive system could be built simply with sensors 522 

attached to people’s shoes. Furthermore, the support tool could be further developed to be predictive 523 

of decline, providing further support to people with dementia and their care givers. 524 

Limitations 525 

Despite promising results, there is room for improvement. We discuss points to help the deployment 526 

of such a system. 527 

Discriminating Type 528 

While the model has shown a good performance (from LOSO cross-validation) in the multi-class 529 

classification (Control vs tAD vs PCA), we have found lower performance in discriminating the two 530 

types of dementia when samples from the controlled group are not considered in the classification 531 

task. This can provide insights. First, this could be related to the fact that the gait of the two subtypes 532 

of dementia was very similar to each other, suggesting that gait is sensitive to dementia as a whole, 533 

but less sensitive to the type of dementia. This could suggest that different measures may be required 534 

to provide a more comprehensive diagnosis. For example, in PCA vision is predominantly affected 535 

with memory often being (initially) unaffected. Second, the data from healthy participants could play 536 

an essential role in discriminating patterns associated with each dementia type. Third, when it comes 537 

to the dementia detection task (dementia vs. control), the proposed system results in a very high 538 

accuracy of 87.02%.  539 

Generalization issues and Dataset 540 

Another potential limitation in this study is that models might be overfit to the data, reducing its 541 

ability to generalise to unseen data. While we prevented this as much as possible by using LOSO 542 

validation, ensuring the model was not only tested on unseen data but on data from an unseen 543 

participant. However, all the data from all participants was collected on the same staircase using the 544 
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same system setup to collect the data. Therefore, these models may not generalise to other 545 

environments, other staircases or other IMU systems. This may limit the direct application of this 546 

system to the real-world diagnosis of dementia. Therefore, further research is required to prove the 547 

generalisability of this research to other environments and system implementations. 548 

Another related issue was that it was more difficult to achieve a high degree of control in the task 549 

especially in people with dementia. This may have resulted in patients taking breaks in the middle of 550 

the task, not initially standing in the correct start position, etc. Therefore, the model might use these 551 

artefacts to discriminate patients from controls rather than their gait. Nevertheless, these behaviours 552 

are symptoms of dementia that should generalise across patients. 553 

Furthermore, in this study we only compared the gait of participants with dementia to healthy age-554 

matched controls. Therefore, this model may be overfit to distinguishing healthy and unhealthy 555 

participants and may not be able to distinguish dementia from other diseases with similar 556 

presentations or people with a bad physical condition. Therefore, this requires further research and 557 

fine-tuning of this issue. We believe that the deployment of this system in the real-world would 558 

enable overcoming these overfitting issues by allowing more varied data to be tested.  559 

Conclusion 560 

This research demonstrates the feasibility of automatically detecting both the more typical 561 

Alzheimer’s Disease (tAD) as well as a rarer and distinct form of dementia – Posterior Cortical 562 

Atrophy (PCA) – based on gait in a real world-environment. To this end, we propose the use of low-563 

level features based on windowed averaging of data from a low-cost, unobtrusive IMU system. These 564 

features are easy to calculate from a small number of IMU sensors, enabling their use in a real-world 565 

system. We also demonstrate that these features can be used with Machine Learning models to 566 

predict dementia with 87.02% accuracy. Furthermore, we demonstrate that a sensor placed on each 567 

foot is sufficient for this analysis. Lastly, we demonstrate the models are better able to discriminate 568 

people with dementia from healthy controls when they are climbing up stairs, suggesting that people 569 

with dementia find it harder to climb up stairs.  570 

Therefore, this research concludes that machine learning analysis of IMU data, gathered from a 571 

person’s gait in a real-world environment, could unobtrusively be used to assess the risk of having 572 

dementia. Once further researched, a system such as this could provide an initial assessment of the 573 

risk of having a certain type of dementia before conducting any clinical tests, thereby streamlining 574 

and enhancing the diagnostic process. Therefore, not only are these results interesting from a research 575 

perspective, but also have potential real-world applications. 576 

Figure Labels 577 

Figure 1. Project STEP-UP: to enable low-cost and wearable IMU sensors to infer dementia types in 578 

the wild whilst climbing stairs.  579 

Figure 2. Technical details of Step-up framework: (A) Gait Recording procedure using wearable 580 

IMUs, (B) Procedure for the exclusion of corrupted files, (C) Feature extraction procedure using 581 

windowed averaging, (D) Model training and tuning procedure, (E) Validation procedure using 582 

Leave One Out Validation. The procedure for splitting the dataset into training and testing sets is 583 

shown under (D) and (E). 584 
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Figure 3. A plot of the prediction accuracies of the Random Forest Classifier when using different 585 

numbers of windows (1 to 15) for constructing the features. 586 

Figure 4. A confusion matrix for the binary Random Forest model 587 

Figure 5. A confusion matrix for the ternary MLP model 588 

Figure 6. The Importance of the Features for the Random Forest Classifier when predicting 589 

Dementia.  The features used were the windowed averages (number of windows 8) of linear 590 

acceleration (blue bars) and angular acceleration data (orange bars) for both the left (left hand side) 591 

and right sensor (right hand side). Feature importance was calculated as the reduction in impurity (or 592 

error) that each node (or partition) provides weighted by the probability of reaching that node in the 593 

tree and then averaged over all trees. 594 

Tables 595 

Table 1. The dataset before the removing the corrupted files compared to the dataset after this 596 

removal.  597 

Group  Number of trials 

(before removal)  

Number of trials 

(after removal)  

Control  208  207  

PCA  159  150  

tAD  160  159  

Total  527  516  

Table 2. Values of the hyper-parameters (for each model) that yielded the highest performance 598 

and were used in all analyses. 599 

Model Parameter Name Binary Parameters Multiclass Parameters 

Gradient Boosting 

Number of trees 80 70 

Maximum depth of trees 1 3 

Minimum samples in leaf 

nodes 2 2 

Learning rate 0.15 0.05 

Random Forest Number of trees 120 120 
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Maximum depth of trees None 3 

Minimum samples in leaf 

nodes 5 2 

MLP 

Number of units in hidden 

layer 8 8 

  Non-linearity Logistic/Sigmoid Function 

 

Maximum number of 

iterations 750 750 

Learning rate 0.0002 0.0002 

Table 3. Results from a representative run of the models for detecting the dementia (PCA/tAD).  600 

Model  Accuracy  F1 Score (wrt the Control 

class)  

F1 Score (wrt the Dementia 

(PCA/tAD class)  

Gradient Boosting  86.05%  82.78%  88.27%  

Random Forest 87.02%  83.14%  88.38%  

MLP 86.63%  82.71%  87.75%  

Table 4. Results from a representative run of the models for detecting the type of dementia.  601 

Model  Accuracy  F1 Score (wrt the 

Control class)  

F1 Score (wrt the 

PCA class)  

F1 Score (wrt the tAD class)  

MLP  68.22%  83.72%  64.8%  47.69%  

Table 5. Average accuracies of Binary Gradient Boosting Classifiers using different sensors. 602 

The table shows the average accuracies (across 25 samples) of the Binary Gradient Boosting 603 

classifier when using the data from different combinations of the sensors to construct the 604 

features.  605 

Position of Sensors Used  Accuracy  

Left Foot  81.99%  

Right Foot  84.78%  

Pelvis  74.45%  

Left, Right Foot  85.94%  
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Left Foot, Pelvis  81.90%  

Right Foot, Pelvis  83.25%  

Left Foot, Right Foot, Pelvis  83.41%  

Table 6. Results of hypothesis testing comparing the linear and angular acceleration in the first 606 

(windows 1-4) and second (windows 5-8) halves of the trial. 607 

  First 

Half  

Second 

Half  

p-value  

Linear Acceleration  24.17%  42.25%  <0.001  

Angular 

Acceleration  

19.20%  14.37%  <0.001  

Table 7. Results of hypothesis testing comparing the prediction accuracies attained in the 608 

upward and downward directions.  609 

Model  Upward Accuracy  Downward Accuracy  

Random Forest  86.77%  85.31%  

Gradient Boosting  86.97%  86.08%  

MLP  89.29%  82.79%  

Table 8. The average accuracies (across 25 samples) of the better performing models for 610 

predicting dementia phenotype. 611 

Model  

Upwards Accuracy  Downwards Accuracy  

Control 

% 

PCA 

%  

tAD 

%  

Control 

%  

PCA 

%  

tAD 

%  

Random 

Forest  

80.12 56.43  51.1  79.46 63.11  41.16  

Gradient 

Boosting  

79.03 61.95 45.90  89.69  71.37 30.03  

MLP  79.42 74.32  49.5  92.19  71.9  34.89 
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