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Any mobility aid for the visually impaired people should be able to accurately detect and warn about nearly obstacles. In this paper,
we present a method for support system to detect obstacle in indoor environment based on Kinect sensor and 3D-image processing.
Color-Depth data of the scene in front of the user is collected using the Kinect with the support of the standard framework for 3D
sensing OpenNI and processed by PCL library to extract accurate 3D information of the obstacles. The experiments have been
performed with the dataset in multiple indoor scenarios and in different lighting conditions. Results showed that our system is
able to accurately detect the four types of obstacle: walls, doors, stairs, and a residual class that covers loose obstacles on the floor.
Precisely, walls and loose obstacles on the floor are detected in practically all cases, whereas doors are detected in 90.69% out of 43
positive image samples. For the step detection, we have correctly detected the upstairs in 97.33% out of 75 positive images while the
correct rate of downstairs detection is lower with 89.47% from 38 positive images. Our method further allows the computation of

the distance between the user and the obstacles.

1. Introduction

In 2014, the World Health Organization estimated that 285
million people were visually impaired in the world: 39 million
are blind and 246 million have low vision [1]. Furthermore,
about 90% of the world’s visually impaired live in low-income
settings and 82% of people living with blindness are aged 50
and above. Generally, these individuals are facing important
difficulties with independent mobility that relates to sensing
the near-field environment, including obstacles and potential
paths in the vicinity, for the purpose of moving through
it [2]. The recent advances of computer science now allow
the development of innovative solutions to assist visually
impaired people. Various types of assistive devices have
been developed to provide blind users means of learning or
getting to know the environment. A recent literature review
of existing electronic aids for visually impaired individuals

has identified more than 140 products, systems, and assistive
devices while providing details on 21 commercially available
systems [3]. A large number of these systems are based on
the Global Position System (GPS) that unfortunately prevent
them to be effectively and efficiently employed in indoor
environment. Indeed, these systems are not able to provide
local information on the obstacles that are encountered due
to the inaccurate nature and the susceptibility to loss of the
GPS signal. Other types of mobility and navigational aids
are based on the sonar to provide information about the
surroundings by means of auditory cues [4-6]. They use
short pulses of ultrasound to detect objects but there are
some disadvantages with this. Different surfaces differ in how
well they reflect ultrasound and ultrasonic aids are subject to
interference from sources of ultrasound. Finally, another type
of assistive devices for blind and visually impaired people has
been developed based on the stereo vision technique like [7].



With the advances of computer vision algorithms, intel-
ligent vision systems have received a growing interest. The
computer vision-based assistive technology for the visually
impaired people has been studied and developed extensively.
These systems can improve the mobility of a person who has
an impaired vision by reducing risks and avoiding dangers.
As imaging techniques advance, such as RGB-D cameras of
Microsoft Kinect [8] and ASUS Xtion Pro Live [9], it has
become practical to capture RGB sequences as well as depth
maps in real time. Depth maps are able to provide addi-
tional information of object shape and distance compared to
traditional RGB cameras. Some existing systems use RGB-
D camera and translate visual images into corresponding
sounds through stereo headphones [10, 11]. However, these
systems can distract the blind user’s hearing sense that could
limit their efficient use in daily life.

In this paper, we present a Microsoft Kinect-based
method specifically dedicated to the detection of obstacles
in indoor environment based on 3D image processing with
color-depth information (Figure 5). Precisely, our system
was designed to obtain reliable and accurate data from the
surrounding environment and to detect and warn about near
obstacles such as walls, doors, stairs, and undefined obstacles
on the floor with the ultimate goal in order to ultimately
assist visually impaired people in their mobility. This paper,
indeed, is a part of our long-term research on low vision
assistance devices. Inside, the main objective is to design and
evaluate a complete prototype of an assistive device which
can help the visually impaired in their mobility (Figure 2).
To achieve this goal, we rely on various themes explored
in literature, including obstacle detection using computer
vision, embedded system design, and sensory substitution
technology. The main novelty of our work is unifying into a
single prototype and this paper is result of image processing
module.

2. Related Work

In the last decades, obstacle detection has received a great
interest. Interestingly, the majority of the existing systems
have been developed for mobile robots [12, 13]. In this section,
we will only focus on the works related to assistive technology
to help visually impaired people. Wearable systems have
been developed based on various technologies such as laser,
sonar, or stereo camera vision for environment sensing and
using audio or tactile stimuli for user feedback. For instance,
Benjamin et al. [14] have developed a laser cane for the
blind called C-5 Laser Cane. This device is based on optical
triangulation to detect obstacles up to a range of 3.5 m ahead.
It requires environment scanning and provides information
on one nearest obstacle at a time by means of acoustic
feedback. Molton et al. [15] have used a stereo-based system
for the detection of the ground plane and the obstacles.
With the RGB-D sensor-based computer vision technolo-
gies, the scientists are finding incredible uses for these devices
that have already led to advances in the medical field. For
instance, Costa et al. [16] used the low-cost RGB-D sensors to
reconstruct human body. Other systems based on the RGB-
D devices (e.g., Microsoft Kinect or ASUS Xtion Pro) are
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able to detect and recognize human activities [17, 18]. Other
researchers have developed the methods for detecting falls
in the homes of older adults using the Microsoft Kinect. For
instance, Mundher and Jiaofei [19] have developed a real-time
fall detection system using mobile robot and Kinect sensor.
The Kinect sensor is used to introduce a mobile robot system
to follow a person and detect when the target person has
fallen. This system can also send an SMS message notification
and make an emergency call when a fall is detected. Stone and
Skubic [20] have also presented a method for detecting falls in
the homes of older adults using an environmentally mounted
depth-imaging sensor. RGB-D sensor based assistive technol-
ogy can improve the mobility of blind and visually impaired
people to travel independently. Numerous electronic mobility
or navigation assistant devices have been developed based on
converting RGB-D information into an audible signal or into
tactile stimuli for the visually impaired persons. For instance,
Khan et al. [21] have developed a real-time human and
obstacle detection system for a blind or visually impaired user
using a Xtion Pro Live RGB-D sensor. The prototype system
includes a Xtion Pro live sensor, a laptop for processing and
transducing the data, and a set of headphones for providing
feedback to the user. Tang et al. [22] presented an RGB-D
sensor based computer vision device to improve the perfor-
mance of visual prostheses. First, a patch-based method is
employed to generate a dense depth map with region-based
representations. The patch-based method generates both a
surface-based RGB and depth (RGB-D) segmentation instead
of just 3D point clouds. Therefore, it carries more meaningful
information and it is easier to convey the information to
the visually impaired person. Then, they applied a smart
sampling method to transduce the important/highlighted
information and/or remove background information, before
presenting it to visually impaired people. Lee and Medioni
[23] have conceived a wearable navigation aid for the visually
impaired, which includes an RGB-D camera and a tactile vest
interface device. Park and Howard [24] presented a real-time
haptic telepresence robotic system for the visually impaired
to reach specific objects using an RGB-D sensor. In addition,
Tamyjidi et al. [25] developed a smart cane with SR4000 3D
camera for cameras pose estimation and obstacle detection
in an indoor environment. More recently, Yus et al. [26] have
proposed a new stair detection and modelling model that
provides information about the location, orientation, and the
number of steps of the staircase. Aladren et al. [27] have also
developed a robust system for visually impaired people based
on visual and range information. This system is able to detect
and classify the main structural elements of the scene.

3. The Proposed System

3.1. Overview of the Proposed System. Figure 1 illustrates the
overall structure of our proposed system. The proposed
system uses a personal computer (PC) for processing color-
depth images captured from a RGB-D camera. An obstacle
detection method aims to define the presence of obstacles
and to warn the visually impaired users by using the feedback
devices such as auditory, tactile, and vibration.
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FIGURE 2: Prototype of an obstacle detection and warning for visually impaired people.

In this paper, we focus on obstacle detection using
information coming from RGB-D cameras. To warn the
visually impaired users, we use a sensory substitution device
called Tongue Display Unit (TDU) [32]. In [33], we have
presented a complete system for obstacle detection and
warning for visually impaired people based on electrode
matrix and mobile Kinect. However, this system detects only
loose obstacle on the floor. We extend this work by proposing
new approach for detecting different types of obstacles for
visually impaired people.

3.2. User Requirements Analysis. In order to define the
obstacles, we have done a survey with ten blind students in
Nguyen Dinh Chieu school in Vietnam. The results of the
preliminary study indicated that there are many obstacles in
an indoor environment such as moving objects, walls, doors,
stairs, pillar, rush bins, and flower pots that blind students
have to avoid. In this study, we have defined four frequent
types of obstacle that the blind students face in typical indoor
environments of their school: (1) doors, (2) stairs, (3) walls,
and (4) a residual class that covers loose obstacles (see some
examples in Figure 3).

3.3. Obstacles Detection. In this section, we provide
the obstacle detection process as illustrated in Figure 4.

The process is divided into five consecutive steps of which
the first one is dedicated to the acquisition data. In this step,
color-depth and accelerometer data of the scene in front of
the user are acquired using a RGB-D camera. These data
are then used to reconstruct point cloud in the second step.
The third step subsequently filters the obtained point cloud
which is fed to the segmentation step. The main goal of the
segmentation step is to identity the floor plane. Finally, in the
obstacles detection step, we can identify the types of obstacle
based on their characteristics.

Step 1 (acquisition data). Various types of RGB-D camera
such as Microsoft Kinect and ASUS Xtion Pro can be used
in our work. However, in this work, we use Kinect sensor
(Figure 5). Kinect is a low-cost 3D camera that is able to work
with various hardware models. It is also supported by various
framework and drivers. It should be noted, however, that the
fundamental part of our system does not need to be changed
if we want to use another type of RGB-D cameras in the
future.

RGB-D camera captures both RGB images and depth
maps at a resolution of 640 x 480 pixels with 30 frames
per second. The effective depth range of the Kinect RGB-D
camera is from 0.4 to 3.5 m. The Kinect color stream supports
a speed of 30 frames per second (fps) at a resolution of
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FIGURE 4: Block diagram of obstacle detection process.

640 x 480 pixels [34]. Figure 6 shows an illustration of the Step 2 (reconstruction). Color and depth are combined to
viewable range of the Kinect camera. create a Point Cloud; it is a data structure used to represent

In this step, in order to capture color and depth infor-  a collection of multidimensional points and is commonly
mation of the scene, we use the standard framework for 3D used to represent three-dimensional data. In a 3D Point
sensing OpenNL Cloud, the points usually represent the X, Y, and Z geometric
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FIGURE 5: The different components of a Kinect sensor.

FIGURE 6: The viewable range of the Microsoft Kinect.

FIGURE 7: Location of the Kinect on the body.

coordinates of an underlying sampled surface. We use the
parameters provided by Burrus [35] in order to calibrate color
and depth data. Once the Point Cloud is created, it is defined
in the reference system of the Kinect, indicated by K¢ in
Figure 7.

This represents a disadvantage because we have to deter-
mine the location of obstacles in the reference system cen-
tered at the user’s feet, indicated by H,;. Therefore, we apply
the transformations geometry including translation, rotation,
and reflection to bring Point Cloud from the reference
system of the Kinect K¢ to H,;. The orientation information
computed from accelerometer data and Point Cloud data has
been used to perform this task.

Step 3 (filtering). The execution time of the program depends
on the number of points in Point Cloud. We thus need to
reduce the number of points to ensure that the system can
be able to respond fast enough. We will use Voxel Grid Filter
to downsample the Point Cloud and, then, Pass Though Filter
will remove all points that are located at a position larger than
75 cm in the x-axis (see Figure 8).

Step 4 (segmentation). The next step is Plane Segmentation.
Random Sample Consensus (RANSAC) algorithm [36] is
used for plane detection in Point Cloud data. RANSAC is an
iterative method to estimate the parameters of a model using
data that contains outliers. In the present work, RANSAC can
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FIGURE 8: Point Cloud after Pass Through.

FIGURE 9: Image of a floor plane.

FIGURE 10: Floor detection using RANSAC.

choose a set of points which satisfy the equation of the plane:
ax + by + cz + d = 0, combined with parallel condition
between the floor plane and the xy-plane (see Figure 7).
An example of floor image is illustrated in Figure 9 and the
detected floor plane is shown in Figure 10.

Step 5 (obstacles detection). Consider the following:

(a) Obstacles on the Floor Detection. After performing the
floor detection, Euclidean Cluster Extraction is used to
determine the clusters on the floor plane. Each cluster is a set
of the points in Point Cloud. In a cluster, the distance of each
point to the other is smaller than a threshold and it presents
for each obstacle [37]. An example of loose obstacle detection
is illustrated in Figure 11.

In addition, some classes in PCL library will help us
provide the obstacle’s size. Each obstacle can be approximated

with a different structure. In our study, each obstacle is
approximated by a rectangular parallelepiped (see Figure 12).

(b) Door Detection. The detection of door is based on certain
conditions on door width as described in [37]. The algorithm
can be summarized as follows.

Algorithm I (door detection). Consider the following:

(1) Input is Point Cloud P.

(2) Estimate the local surface normal #; of the points p;
belonging to a Point Cloud P.

(3) Segment the set of planes V. = {V,V,,...,Vy} of
potential doors using both the surface normal and the
color information.

(4) Use RANSAC to estimate the parameters of each
plane as in the following equation:

ax+by+cz+d=0.

)

Herein, (a, b, ¢) is the normal »;, of plane V,.

(5) Determine the angle between 7, and the normal of
the ground plane. This angle should approximate 90
degrees since doors are perpendicular to the floor.

(6) Determine the dimensions of each plane.

(7) Check for each plane V), € V if its width satisfies the
conditions. Remove V, if this is not the case.

(c) Staircase Detection. A staircase consists of at least 3 equally
spaced steps as Figure 13.

The authors of Monash University [38] have developed
an algorithm to detect the steps of a staircase with the high
performance. This algorithm is able to provide the end user
with the information as the presence of a staircase (both
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F1GURE 11: The rush bin is detected with the distance between it and the user.
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FIGURE 12: An example of the obstacle size approximated by a rectangular parallelepiped.
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F1GURE 13: Definition of staircase, a staircase has to consist of at least
3 equally spaced steps.

Ground plane

the upstairs and the downstairs) and the number of steps of a
staircase in the field of view. The staircase detection algorithm
can be summarized as follows.

Algorithm 2. The staircase detection algorithm is as follows:

(1) Input is Point Cloud P.

(2) Estimate the local surface normals #; of the points p;
belonging to a Point Cloud P.

(3) Filter p; based on n; where #; is parallel to the ground
plane.

(4) Initialize N = 1. Determine Py = {p,}, the set of
points that are located at height h = Hy + H,.
Herein, Hy = Hg,, X N where H, is an estimate of
the height of a step and H,,; is the tolerance measure.

(5) Estimate a plane V) using the set of points Py in a
RANSAC based manner.

(6) Determine the number of inliers of Vy. If |[V| <
Hge,/h no step is found and the procedure quits.

(7) In the other case, increment N by 1 and restart the
procedure from step (4).

The value of H,; can be changed. In our program, we can

choose Hy, = 1/2 - Hg,, to make sure not to miss a step.

(d) Wall Detection. With the support of the RANSAC algo-
rithm, we can determine the planes in the scene and calculate
the local surface normal of each point in the Point Cloud. The
wall was detected based on the perpendicular characteristic
with the floor plane (see Figure 17). In other words, the wall
consists of points with a normal that forms an angle of
approximately 90 degrees with the z-axis (see Figure 7) and
the number of points within a fixed range.

4. Results and Discussion

We have developed the program in C++ using Visual Studio
2010. The implementation extensively makes use of the Point
Cloud Library (PCL), an open source for 2D/3D image and
Point Cloud processing. PCL supports natively the OpenNI
3D interfaces and can thus acquire and process data from
the Microsoft Kinect sensor. Outside the PCL, we also
work with some external libraries including Boost, Eigen,
OpenCV, FLANN, QHull, and VTK. Our image processing
program was tested on a computer, 2.4 GHz. The experiments
have been performed in multiple indoor environments with
different light conditions.



(a) Captured image

(c) Captured image

FIGURE 14: Some examples of ground plane detection: (a)

(a) Captured image
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(b) False detection

FIGURE 15: A false case of ground detection.

In the obstacle detection process, the floor detection is
very important and the performance of our system is based
on floor detection. Indeed, in the case that we cannot detect
the floor accurately, the system will not be able to detect
the obstacles. The program has been tested with a dataset in
multiple indoor scenarios. The results showed that the ground
plane was detected in most cases in the indoor environment.
Figure 14 shows some results of ground plane detection.
However, there still exist some situations in which it could
fail. For example, the light condition is too strong for Kinect
camera.

In another case, when an obstacle consists of a large
horizontal plane, in this situation, the horizontal plane of the
obstacle could be wrongly identified as the ground plane (see
Figure 15).

With regard to the detection of the wall and the loose
obstacle on the floor plane (see Figure 16), the result showed

FIGURE 16: An example of loose obstacle detection.

that the wall and the loose obstacle are detected in practically
all cases. After measuring the real distance between the user
and the obstacles, we further have compared this value with
the results obtained by the obstacle detection program and
the result showed that the error was negligible (<2%).
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(a) Captured image

Wall detected at distance of: 1.60 m

(b) Detected wall

FIGURE 17: Wall detection.

FIGURE 18: The original image of doors.

Door detected!

Door detected!

Door detected!

FIGURE 19: Detected doors.

In order to evaluate the performance of the door algo-
rithm, we use the standard measures widely used for classi-
fication or identification evaluation, namely, Precision [39].
This is defined as follows:

TP
TP + FP’

where TP and FP denote the number of true positives and
false positives, respectively. The doors are detected in 90,69%
out of 43 positive images (Figures 18 and 19). The results are
summarized in Table 1. We further can compare our results
with the performance of some other systems (see Table 2).
With our data, we see that the program also operates
well when the camera is approaching the door at an angle

2)

Precision =

TABLE 1: Performance of the door detection.

Number of TP FP Precision Detectiqn time
images per an image
43 39 4 0.90 0.410s

of approximately 45 degrees. Figures 20 and 21 show some
examples in this case.

In another experiment, we have tested our approach on
the dataset with 75 images of upstairs. We also used the stan-
dard measures proposed by [39] for evaluating the upstairs
algorithm. The results of this experiment are presented in
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Door detected!

FI1GURE 21: Detected doors.

FIGURE 22: Some examples of upstairs.

TABLE 2: The performance of some other approaches.

TABLE 3: Performance of the upstair detection.

Authors Method/technique Dataset Result
(28] 2D image processing 76 images  79.00%
[29] 2D/perceptual fuzzy 390 images  90.50%
models
30] 2D/edges and corners 210 images 91.90%
features
[31] 2D/Canny edge 196 images  80.00%
detection
Our solution 3D RGB—D.image 30 images 90.69%
processing

Table 3. Some examples of upstairs images are shown in
Figure 22 and the detected downstairs are shown in Figure 23.

The program was also capable of detecting the downstairs
but with the lower performance. The downstairs are detected

Number of TP FP Precision Detect.ion time
images per image
75 73 2 0.97 0.433s

TABLE 4: Performance of the downstairs detection.

Number of TP FP Precision Detect.ion time
images per image
38 34 4 0.89 ~0.40s

in 89.47% out of 38 positive image samples. Table 4 shows the
performance measures of the downstairs detection using our
approach. Representative downstairs images and the detected
downstairs are shown in Figures 24 and 25. In addition, there
are some cases that the program cannot detect downstairs; see
Figures 26 and 27.
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6 steps detected!

3 steps detected!

FIGURE 23: Detected upstairs.

1 step detected!

FIGURE 26: Some examples of downstairs.

The results show that our approach can be used for The execution time for intermediate processing steps
the low-light environments. This feature can overcome the  is negligible (about 0.04s for the floor segmentation time
limitations of the monocular or stereo vision technique (7, and 0.009 s for the normal estimation time). The detection

8,16]. time per image (see Tables 2 and 3) includes all the steps
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0 steps detected!

FIGURE 27: Undetected downstairs.

such as reconstruction, filtering, and segmentation. The total
execution time of the algorithms is fast enough to develop
the real-time applications for visually impaired people; the
experiments performed in different indoor environments
have produced positive results in terms of accuracy and time
response.

5. Conclusions

In this paper, we have presented a Microsoft Kinect-based
method specifically dedicated to the detection of obstacles
in indoor environment based on 3D image processing with
color-depth data. The proposed solution was designed to pro-
vide information about the space in front of the user in real
time by using color-depth data acquired by Microsoft Kinect
sensor. Our main contribution is the obstacle detection
module, which combines different algorithms for obstacle
detection such as walls, doors, stairs, and the bumpy parts on
the floor.

Our proposed system shows good results with our
dataset. However, a number of caveats and limitations still
have to be taken into account. Firstly, the system is not reliable
in all kinds of scenarios or data. For example, when the light
condition is too strong, the Kinect cannot capture the depth
information. In the future, we plan to combine the color and
depth information in order to build a reliable approach for
obstacle detection. Secondly, our obstacle detection replies
on the floor ground detection. In the case that floor cannot
be detected, our system will fail. For this, we have to use
different cues for detecting the obstacle candidates. Thirdly,
the performance of the downstairs detection program is still
low, and we need a new approach for downstairs detection
from far distance. Finally, our approach performs obstacle
detection in every frame; therefore it does not take into
account the results of the previous frame. In the future,
we can reduce program execution time by combining four
algorithms and apply probabilistic models for estimating the
presence of obstacles in a given frame based on the result of
previous ones.
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