3,127 research outputs found

    Modeling and Analysis of Fault Tolerant Multistage Interconnection Networks

    Get PDF
    Performance and reliability are two of the most crucial issues in today\u27s high-performance instrumentation and measurement systems. High speed and compact density multistage interconnection networks (MINs) are widely-used subsystems in different applications. New performance models are proposed to evaluate a novel fault tolerant MIN arrangement, thereby assuring performance and reliability with high confidence level. A concurrent fault detection and recovery scheme for MINs is considered by rerouting over redundant interconnection links under stringent real-time constraints for digital instrumentation as sensor networks. A switch architecture for concurrent testing and diagnosis is proposed. New performance models are developed and used to evaluate the compound effect of fault tolerant operation (inclusive of testing, diagnosis, and recovery) on the overall throughput and delay. Results are shown for single transient and permanent stuck-at faults on links and storage units in the switching elements. It is shown that performance degradation due to fault tolerance is graceful while performance degradation without fault recovery is unacceptable

    Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Get PDF
    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network

    Fault-tolerant interconnection networks for multiprocessor systems

    Get PDF
    Interconnection networks represent the backbone of multiprocessor systems. A failure in the network, therefore, could seriously degrade the system performance. For this reason, fault tolerance has been regarded as a major consideration in interconnection network design. This thesis presents two novel techniques to provide fault tolerance capabilities to three major networks: the Baseline network, the Benes network and the Clos network. First, the Simple Fault Tolerance Technique (SFT) is presented. The SFT technique is in fact the result of merging two widely known interconnection mechanisms: a normal interconnection network and a shared bus. This technique is most suitable for networks with small switches, such as the Baseline network and the Benes network. For the Clos network, whose switches may be large for the SFT, another technique is developed to produce the Fault-Tolerant Clos (FTC) network. In the FTC, one switch is added to each stage. The two techniques are described and thoroughly analyzed

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Toward Fault-Tolerant Applications on Reconfigurable Systems-on-Chip

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Multistage interconnection networks : improved routing algorithms and fault tolerance

    Get PDF
    Multistage interconnection networks for use by multiprocessor systems are optimal in terms of the number of switching element, but the routing algorithms used to set up these networks are suboptimal in terms of time. The network set-up time and reliability are the major factors to affect the performance of multistage interconnection networks. This work improves routing on Benes and Clos networks as well as the fault tolerant capability. The permutation representation is examined as well as the Clos and Benes networks. A modified edge coloring algorithm is applied to the regular bipartite multigraph which represents a Clos network. The looping and parallel looping algorithms are examined and a modified Tree-Connected Computer is adopted to execute a bidirectional parallel looping algorithm for Benes networks. A new fault tolerant Clos network is presented

    A Method to Support Diagnostics of Dynamic Faults in Networks of Interconnections

    Get PDF
    The article is devoted to the method facilitating the diagnostics of dynamic faults in networks of interconnection in systems-on-chips. It shows how to reconstruct the erroneous test response sequence coming from the faulty connection based on the set of signatures obtained as a result of multiple compaction of this sequence in the MISR register with programmable feedback. The Chinese reminder theorem is used for this purpose. The article analyzes in detail the various hardware realizations of the discussed method. The testing time associated with each proposed solution was also estimated. Presented method can be used with any type of test sequence and test pattern generator. It is also easily scalable to any number of nets in the network of interconnections. Moreover, it supports finding a trade-off between area overhead and testing time

    Algorithms in fault-tolerant CLOS networks

    Get PDF
    corecore