109 research outputs found

    Categorizing Fetal Heart Rate Variability with and without Visual Aids

    Get PDF
    This present study examined the ability of clinicians and novices to correctly categorize fetal heart rate (FHR) variability with and without the use of exemplars. Clinicians and undergraduate students were asked to inspect FHR images and determine into which of four categories they belonged. Each participant took part in three conditions: one in which they were provided exemplars of prototypical FHR variability to use during their categorization task, another in which they were provided exemplars of nonprototypical FHR variability to use in their task, and a control condition in which no exemplars were available. The results showed that experts were more accurate and quicker in their category judgments than novices, but this difference was largely limited to the condition with no exemplars. The results also showed that participants correctly categorized more prototypical images than nonprototypical images and that the prototypical and nonprototypical cues were beneficial for experts and novices. The results suggest that providing clinicians with alignable, high similarity visual aids can improve judgments about FHR variability and potentially enhance safety in labor and delivery

    Automated Analysis of 3D Stress Echocardiography

    Get PDF
    __Abstract__ The human circulatory system consists of the heart, blood, arteries, veins and capillaries. The heart is the muscular organ which pumps the blood through the human body (Fig. 1.1,1.2). Deoxygenated blood flows through the right atrium into the right ventricle, which pumps the blood into the pulmonary arteries. The blood is carried to the lungs, where it passes through a capillary network that enables the release of carbon dioxide and the uptake of oxygen. Oxygenated blood then returns to the heart via the pulmonary veins and flows from the left atrium into the left ventricle. The left ventricle then pumps the blood through the aorta, the major artery which supplies blood to the rest of the body [Drake et a!., 2005; Guyton and Halt 1996]. Therefore, it is vital that the cardiovascular system remains healthy. Disease of the cardiovascular system, if untreated, ultimately leads to the failure of other organs and death

    Methodology for extensive evaluation of semiautomatic and interactive segmentation algorithms using simulated Interaction models

    Get PDF
    Performance of semiautomatic and interactive segmentation(SIS) algorithms are usually evaluated by employing a small number of human operators to segment the images. The human operators typically provide the approximate location of objects of interest and their boundaries in an interactive phase, which is followed by an automatic phase where the segmentation is performed under the constraints of the operator-provided guidance. The segmentation results produced from this small set of interactions do not represent the true capability and potential of the algorithm being evaluated. For example, due to inter-operator variability, human operators may make choices that may provide either overestimated or underestimated results. As well, their choices may not be realistic when compared to how the algorithm is used in the field, since interaction may be influenced by operator fatigue and lapses in judgement. Other drawbacks to using human operators to assess SIS algorithms, include: human error, the lack of available expert users, and the expense. A methodology for evaluating segmentation performance is proposed here which uses simulated Interaction models to programmatically generate large numbers of interactions to ensure the presence of interactions throughout the object region. These interactions are used to segment the objects of interest and the resulting segmentations are then analysed using statistical methods. The large number of interactions generated by simulated interaction models capture the variabilities existing in the set of user interactions by considering each and every pixel inside the entire region of the object as a potential location for an interaction to be placed with equal probability. Due to the practical limitation imposed by the enormous amount of computation for the enormous number of possible interactions, uniform sampling of interactions at regular intervals is used to generate the subset of all possible interactions which still can represent the diverse pattern of the entire set of interactions. Categorization of interactions into different groups, based on the position of the interaction inside the object region and texture properties of the image region where the interaction is located, provides the opportunity for fine-grained algorithm performance analysis based on these two criteria. Application of statistical hypothesis testing make the analysis more accurate, scientific and reliable in comparison to conventional evaluation of semiautomatic segmentation algorithms. The proposed methodology has been demonstrated by two case studies through implementation of seven different algorithms using three different types of interaction modes making a total of nine segmentation applications to assess the efficacy of the methodology. Application of this methodology has revealed in-depth, fine details about the performance of the segmentation algorithms which currently existing methods could not achieve due to the absence of a large, unbiased set of interactions. Practical application of the methodology for a number of algorithms and diverse interaction modes have shown its feasibility and generality for it to be established as an appropriate methodology. Development of this methodology to be used as a potential application for automatic evaluation of the performance of SIS algorithms looks very promising for users of image segmentation

    Scattering by two spheres: Theory and experiment

    Get PDF

    The Convergence of Human and Artificial Intelligence on Clinical Care - Part I

    Get PDF
    This edited book contains twelve studies, large and pilots, in five main categories: (i) adaptive imputation to increase the density of clinical data for improving downstream modeling; (ii) machine-learning-empowered diagnosis models; (iii) machine learning models for outcome prediction; (iv) innovative use of AI to improve our understanding of the public view; and (v) understanding of the attitude of providers in trusting insights from AI for complex cases. This collection is an excellent example of how technology can add value in healthcare settings and hints at some of the pressing challenges in the field. Artificial intelligence is gradually becoming a go-to technology in clinical care; therefore, it is important to work collaboratively and to shift from performance-driven outcomes to risk-sensitive model optimization, improved transparency, and better patient representation, to ensure more equitable healthcare for all

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology
    • …
    corecore