3,233 research outputs found

    Systematic methods for the computation of the directional fields and singular points of fingerprints

    Get PDF
    The first subject of the paper is the estimation of a high resolution directional field of fingerprints. Traditional methods are discussed and a method, based on principal component analysis, is proposed. The method not only computes the direction in any pixel location, but its coherence as well. It is proven that this method provides exactly the same results as the "averaged square-gradient method" that is known from literature. Undoubtedly, the existence of a completely different equivalent solution increases the insight into the problem's nature. The second subject of the paper is singular point detection. A very efficient algorithm is proposed that extracts singular points from the high-resolution directional field. The algorithm is based on the Poincare index and provides a consistent binary decision that is not based on postprocessing steps like applying a threshold on a continuous resemblance measure for singular points. Furthermore, a method is presented to estimate the orientation of the extracted singular points. The accuracy of the methods is illustrated by experiments on a live-scanned fingerprint databas

    A New Technique to Fingerprint Recognition Based on Partial Window

    Get PDF
    Fingerprint verification is a well-researched problem, and automatic fingerprint verification techniques have been successfully adapted to both civilian and forensic applications for many years. This paper present a new technique to fingerprint recognition based a window that contain  core point this window will be input ANN system to be model we can recognize another fingerprint , so we will firstly,  A recognition algorithm needs to recover fingerprints pose transformation between the input reduce time computation. Our detection algorithm works in the field orientation of the adaptive smoothed with a varying area. The adaptive window is used to attenuate the noise effectively orientation field while maintaining the information of the detailed guidance in the area of ??high curvature. A new approach to the core point location that is proposed is based on hierarchical analysis orientation consistency. The proposed adaptation singular point detection method increases the accuracy of the algorithm. Experiments show that our algorithm developed consistently locates a reference point with high precision only for all fingerprints. And very faster for recognition process. Keywords: Fingerprint recognition; field orientation; neural networks; core point, neural networks

    Migration of latent fingermarks on non-porous surfaces:observation technique and nanoscale variations

    Get PDF
    Latent fingermark morphology was examined over a period of approximately two months. Variation in topography was observed with atomic force microscopy and the expansion of the fingermark occurred in the form of the development of an intermediate area surrounding the main fingermark ridge. On an example area of a fingermark on silicon, the intermediate region exists as a uniform 4nm thick deposit; on day 1 after deposition this region extends approximately 2µm from the edge of the main ridge deposit and expands to a maximum of ~ 4µm by day 23. Simultaneously the region breaks up, the integrity is compromised by day 16, and by day 61 the area resembles a series of interconnected islands, with coverage of approximately 60%. Observation of a similar immediate area and growth with time on surfaces such as Formica was possible by monitoring the mechanical characteristics of the fingermark and surfaces though phase contrast in tapping mode AFM. The presence of this area may affect fingermark development, for example affecting the gold distribution in vacuum metal deposition. Further study of time dependence and variation with donor may enable assessment of this area to be used to evaluate the age of fingermarks

    FLAG : the fault-line analytic graph and fingerprint classification

    Get PDF
    Fingerprints can be classified into millions of groups by quantitative measurements of their new representations - Fault-Line Analytic Graphs (FLAG), which describe the relationship between ridge flows and singular points. This new model is highly mathematical, therefore, human interpretation can be reduced to a minimum and the time of identification can be significantly reduced. There are some well known features on fingerprints such as singular points, cores and deltas, which are global features which characterize the fingerprint pattern class, and minutiae which are the local features which characterize an individual fingerprint image. Singular points are more important than minutiae when classifying fingerprints because the geometric relationship among the singular points decide the type of fingerprints. When the number of fingerprint records becomes large, the current methods need to compare a large number of fingerprint candidates to identify a given fingerprint. This is the result of having a few synthetic types to classify a database with millions of fingerprints. It has been difficult to enlarge the minter of classification groups because there was no computational method to systematically describe the geometric relationship among singular points and ridge flows. In order to define a more efficient classification method, this dissertation also provides a systematic approach to detect singular points with almost pinpoint precision of 2x2 pixels using efficient algorithms

    An accurate fingerprint reference point determination method based on curvature estimation of separated ridges

    Get PDF
    This paper presents an effective method for the detection of a fingerprint’s reference point by analyzing fingerprint ridges’ curvatures. The proposed approach is a multi-stage system. The first step extracts the fingerprint ridges from an image and transforms them into chains of discrete points. In the second step, the obtained chains of points are processed by a dedicated algorithm to detect corners and other points of highest curvature on their planar surface. In a series of experiments we demonstrate that the proposed method based on this algorithm allows effective determination of fingerprint reference points. Furthermore, the proposed method is relatively simple and achieves better results when compared with the approaches known from the literature. The reference point detection experiments were conducted using publicly available fingerprint databases FVC2000, FVC2002, FVC2004 and NIST

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm

    Surface analysis and fingerprint recognition from multi-light imaging collections

    Get PDF
    Multi-light imaging captures a scene from a fixed viewpoint through multiple photographs, each of which are illuminated from a different direction. Every image reveals information about the surface, with the intensity reflected from each point being measured for all lighting directions. The images captured are known as multi-light image collections (MLICs), for which a variety of techniques have been developed over recent decades to acquire information from the images. These techniques include shape from shading, photometric stereo and reflectance transformation imaging (RTI). Pixel coordinates from one image in a MLIC will correspond to exactly the same position on the surface across all images in the MLIC since the camera does not move. We assess the relevant literature to the methods presented in this thesis in chapter 1 and describe different types of reflections and surface types, as well as explaining the multi-light imaging process. In chapter 2 we present a novel automated RTI method which requires no calibration equipment (i.e. shiny reference spheres or 3D printed structures as other methods require) and automatically computes the lighting direction and compensates for non-uniform illumination. Then in chapter 3 we describe our novel MLIC method termed Remote Extraction of Latent Fingerprints (RELF) which segments each multi-light imaging photograph into superpixels (small groups of pixels) and uses a neural network classifier to determine whether or not the superpixel contains fingerprint. The RELF algorithm then mosaics these superpixels which are classified as fingerprint together in order to obtain a complete latent print image, entirely contactlessly. In chapter 4 we detail our work with the Metropolitan Police Service (MPS) UK, who described to us with their needs and requirements which helped us to create a prototype RELF imaging device which is now being tested by MPS officers who are validating the quality of the latent prints extracted using our technique. In chapter 5 we then further developed our multi-light imaging latent fingerprint technique to extract latent prints from curved surfaces and automatically correct for surface curvature distortions. We have a patent pending for this method
    corecore