6 research outputs found

    Efficient Underground Object Detection for Ground Penetrating Radar Signals

    Get PDF
    Ground penetrating radar (GPR) is one of the common sensor system for underground inspection. GPR emits electromagnetic waves which can pass through objects. The reflecting waves are recorded and digitised, and then, the B-scan images are formed. According to the properties of scanning object, GPR creates higher or lower intensity values on the object regions. Thus, these changes in signal represent the properties of scanning object. This paper proposes a 3-step method to detect and discriminate landmines: n-row average-subtraction (NRAS); Min-max normalisation; and image scaling. Proposed method has been tested using 3 common algorithms from the literature. According to the results, it has increased object detection ratio and positive object discrimination (POD) significantly. For artificial neural networks (ANN), POD has increased from 77.4 per cent to 87.7 per cent. And, it has increased from 37.8 per cent to 80.2 per cent, for support vector machines (SVM)

    Semi autonomous mine detection system

    Full text link

    Investigating Key Techniques to Leverage the Functionality of Ground/Wall Penetrating Radar

    Get PDF
    Ground penetrating radar (GPR) has been extensively utilized as a highly efficient and non-destructive testing method for infrastructure evaluation, such as highway rebar detection, bridge decks inspection, asphalt pavement monitoring, underground pipe leakage detection, railroad ballast assessment, etc. The focus of this dissertation is to investigate the key techniques to tackle with GPR signal processing from three perspectives: (1) Removing or suppressing the radar clutter signal; (2) Detecting the underground target or the region of interest (RoI) in the GPR image; (3) Imaging the underground target to eliminate or alleviate the feature distortion and reconstructing the shape of the target with good fidelity. In the first part of this dissertation, a low-rank and sparse representation based approach is designed to remove the clutter produced by rough ground surface reflection for impulse radar. In the second part, Hilbert Transform and 2-D Renyi entropy based statistical analysis is explored to improve RoI detection efficiency and to reduce the computational cost for more sophisticated data post-processing. In the third part, a back-projection imaging algorithm is designed for both ground-coupled and air-coupled multistatic GPR configurations. Since the refraction phenomenon at the air-ground interface is considered and the spatial offsets between the transceiver antennas are compensated in this algorithm, the data points collected by receiver antennas in time domain can be accurately mapped back to the spatial domain and the targets can be imaged in the scene space under testing. Experimental results validate that the proposed three-stage cascade signal processing methodologies can improve the performance of GPR system

    Advances in Monitoring Dynamic Hydrologic Conditions in the Vadose Zone through Automated High-Resolution Ground-Penetrating Radar Images and Analysis

    Get PDF
    This body of research focuses on resolving physical and hydrological heterogeneities in the subsurface with ground-penetrating radar (GPR). Essentially, there are two facets of this research centered on the goal of improving the collective understanding of unsaturated flow processes: i) modifications to commercially available equipment to optimize hydrologic value of the data and ii) the development of novel methods for data interpretation and analysis in a hydrologic context given the increased hydrologic value of the data. Regarding modifications to equipment, automation of GPR data collection substantially enhances our ability to measure changes in the hydrologic state of the subsurface at high spatial and temporal resolution (Chapter 1). Additionally, automated collection shows promise for quick high-resolution mapping of dangerous subsurface targets, like unexploded ordinance, that may have alternate signals depending on the hydrologic environment (Chapter 5). Regarding novel methods for data inversion, dispersive GPR data collected during infiltration can constrain important information about the local 1D distribution of water in waveguide layers (Chapters 2 and 3), however, more data is required for reliably analyzing complicated patterns produced by the wetting of the soil. In this regard, data collected in 2D and 3D geometries can further illustrate evidence of heterogeneous flow, while maintaining the content for resolving wave velocities and therefore, water content. This enables the use of algorithms like reflection tomography, which show the ability of the GPR data to independently resolve water content distribution in homogeneous soils (Chapter 5). In conclusion, automation enables the non-invasive study of highly dynamic hydrologic processes by providing the high resolution data required to interpret and resolve spatial and temporal wetting patterns associated with heterogeneous flow. By automating the data collection, it also allows for the novel application of established GPR data algorithms to new hydrogeophysical problems. This allows us to collect and invert GPR data in a way that has the potential to separate the geophysical data inversion from our ideas about the subsurface; a way to remove ancillary information, e.g. prior information or parameter constraints, from the geophysical inversion process

    Generalized multi-stream hidden Markov models.

    Get PDF
    For complex classification systems, data is usually gathered from multiple sources of information that have varying degree of reliability. In fact, assuming that the different sources have the same relevance in describing all the data might lead to an erroneous behavior. The classification error accumulates and can be more severe for temporal data where each sample is represented by a sequence of observations. Thus, there is compelling evidence that learning algorithms should include a relevance weight for each source of information (stream) as a parameter that needs to be learned. In this dissertation, we assumed that the multi-stream temporal data is generated by independent and synchronous streams. Using this assumption, we develop, implement, and test multi- stream continuous and discrete hidden Markov model (HMM) algorithms. For the discrete case, we propose two new approaches to generalize the baseline discrete HMM. The first one combines unsupervised learning, feature discrimination, standard discrete HMMs and weighted distances to learn the codebook with feature-dependent weights for each symbol. The second approach consists of modifying the HMM structure to include stream relevance weights, generalizing the standard discrete Baum-Welch learning algorithm, and deriving the necessary conditions to optimize all model parameters simultaneously. We also generalize the minimum classification error (MCE) discriminative training algorithm to include stream relevance weights. For the continuous HMM, we introduce a. new approach that integrates the stream relevance weights in the objective function. Our approach is based on the linearization of the probability density function. Two variations are proposed: the mixture and state level variations. As in the discrete case, we generalize the continuous Baum-Welch learning algorithm to accommodate these changes, and we derive the necessary conditions for updating the model parameters. We also generalize the MCE learning algorithm to derive the necessary conditions for the model parameters\u27 update. The proposed discrete and continuous HMM are tested on synthetic data sets. They are also validated on various applications including Australian Sign Language, audio classification, face classification, and more extensively on the problem of landmine detection using ground penetrating radar data. For all applications, we show that considerable improvement can be achieved compared to the baseline HMM and the existing multi-stream HMM algorithms
    corecore