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ABSTRACT 

This body of research focuses on resolving physical and hydrological 

heterogeneities in the subsurface with ground-penetrating radar (GPR). Essentially, there 

are two facets of this research centered on the goal of improving the collective 

understanding of unsaturated flow processes: i) modifications to commercially available 

equipment to optimize hydrologic value of the data and ii) the development of novel 

methods for data interpretation and analysis in a hydrologic context given the increased 

hydrologic value of the data. 

Regarding modifications to equipment, automation of GPR data collection 

substantially enhances our ability to measure changes in the hydrologic state of the 

subsurface at high spatial and temporal resolution (Chapter 1). Additionally, automated 

collection shows promise for quick high-resolution mapping of dangerous subsurface 

targets, like unexploded ordinance, that may have alternate signals depending on the 

hydrologic environment (Chapter 5). Regarding novel methods for data inversion, 

dispersive GPR data collected during infiltration can constrain important information about 

the local 1D distribution of water in waveguide layers (Chapters 2 and 3), however, more 

data is required for reliably analyzing complicated patterns produced by the wetting of the 

soil. In this regard, data collected in 2D and 3D geometries can further illustrate evidence 

of heterogeneous flow, while maintaining the content for resolving wave velocities and 

therefore, water content. This enables the use of algorithms like reflection tomography, 
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which show the ability of the GPR data to independently resolve water content distribution 

in homogeneous soils (Chapter 5). 

In conclusion, automation enables the non-invasive study of highly dynamic 

hydrologic processes by providing the high resolution data required to interpret and resolve 

spatial and temporal wetting patterns associated with heterogeneous flow.  By automating 

the data collection, it also allows for the novel application of established GPR data 

algorithms to new hydrogeophysical problems.  This allows us to collect and invert GPR 

data in a way that has the potential to separate the geophysical data inversion from our 

ideas about the subsurface; a way to remove ancillary information, e.g. prior information 

or parameter constraints, from the geophysical inversion process. 
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CHAPTER 1 - AUTOMATED HIGH-RESOLUTION GPR DATA COLLECTION 

FOR MONITORING DYNAMIC HYDROLOGIC PROCESSES IN TWO AND 

THREE DIMENSIONS 

NOTICE: This chapter has been published in the February 2015 issue of the Society of 

Exploration Geophysicist’s journal, The Leading Edge: Special Issue on Near-Surface 

Geophysics.  The full citation is listed below. 

Mangel, A.R., B.A. Lytle & S.M.J. Moysey, 2015. Automated high-resolution GPR data 

collection for monitoring dynamic hydrologic processes in two and three 

dimensions. The Leading Edge, 34(2), pp.190–195. 

1.1 Abstract 

An automated GPR data collection system was constructed to monitor dynamic 

hydrologic processes with high spatiotemporal resolution.  The design of the system allows 

for fast acquisition of constant-offset profiles (COPs) and common-midpoint surveys 

(CMPs) to monitor unsaturated flow at multiple locations.  A fast and accurate motion 

control system allows us to study high-resolution spatial patterns of reflectors through time 

while preserving important information about the normal moveout of reflectors for velocity 

analysis.  Two examples where infiltration was monitored using time-lapse GPR 

measurements in two and three dimensions are discussed.  The data from both experiments 

provide substantial qualitative insight about the dynamics of hydrologic events and a path 

forward for quantitative analysis of surface based GPR monitoring data.  We show i) the 
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advantages of collecting high-resolution time-lapse data, ii) the complexities of patterns 

associated with the wetting of the soil, and iii) evidence of non-uniform propagation of a 

wetting front through the soil column. 
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1.2 Introduction 

Accurate positioning and rapid data collection are required for high resolution time-

lapse monitoring using ground-penetrating radar (GPR).  Given that sub-wavelength 

spacing is required for full 3D resolution during static imaging [Grasmueck et al. 2005], 

high-speed, time-lapse imaging introduces significant technical challenges for acquiring 

the data.  Compromises are often made when collecting time-lapse data sets by either 

increasing the time between repeated measurements or by decreasing the spatial data 

coverage.  The manual operation of commercially available systems makes it difficult to 

obtain the high resolution required in both space and time to monitor highly dynamic 

hydrologic events (e.g., infiltration) in real time.  Therefore, systems which are capable of 

quickly and accurately positioning GPR antennas are needed to enable time-lapse surveys. 

Over the past decade, many advances in the design of GPR systems have been 

made.  Increases in data acquisition speeds have made it possible to collect more data in a 

short amount of time while interfaces with global positioning systems provide high 

resolution information for spatial registration of the data.  However, practitioners are still 

responsible for positioning the GPR antennas. Some companies (e.g. Mala, 3D Radar, 

Niitek) have designed multi-channel antenna arrays which make it possible to cover swaths 

of an imaging area in a single pass and thus substantially reduce survey times.  However, 

large singular units comprised of an array of antennas are not ideal for fast, multi-offset 

data collection given their size and limited capabilities for obtaining data at large offsets.  
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Therefore it would be advantageous to incorporate the versatility to change the function 

and orientation of the antennas into the system design. 

GPR has recently received attention as a tool for monitoring near-surface hydrology 

as it has the potential to provide non-invasive hydrogeophysical data over a large area 

[Grasmueck et al. 2010; Grote et al. 2005; Haarder et al. 2011; Huisman et al. 2001; 

Mangel et al. 2012; Moysey 2010; Steelman and Endres 2010; Truss et al. 2007; Vellidis 

et al. 1990].  In these studies, the sampling time between traces and the spatial extent of 

the data are highly variable.  For example, the study of Moysey [2010] represents the 

extreme sacrifice of spatial data to minimize time between repeated measurements.  In this 

study, the author collected GPR data using a set of stationary bistatic antennas and showed 

that trajectories of specific arrivals on time-lapse GPR data are associated with hydrologic 

phenomena and can be used to estimate hydrologic parameters.  However, due to the spatial 

limitations of the GPR data, the author was forced to assume a one-dimensional flow 

system.  In contrast, the study of Grasmueck et al. [2010] represents a sacrifice of time to 

increase the spatial extent and resolution of the data.  In this study, the authors monitored 

infiltration into a fractured carbonate bedrock using 3D time-lapse GPR (200 MHz) data 

collected over a 20 m x 20 m area.  A laser positioning system coupled to the GPR provided 

feedback via a LED guidance system to ensure that high-resolution data were collected.  

The authors were able to create a 3D rendering of local time shifts in the data associated 

with a 4 m diameter zone of water propagating through the bedrock over a period of 5 days.  

While the data were very high resolution in space, i.e., 0.05 m line spacing, it took between 
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105-180 minutes to acquire a single data set.  While in any experiment the researchers must 

determine the best trade-off between spatial and temporal resolution, an ideal GPR system 

would automate the data collection process to provide both. 

In this paper we present an automated bistatic GPR data collection system that is 

coupled to a motion controller for accurate and independent, high-speed positioning of 

antennas.  Using two examples where we monitor infiltration in two and three dimensions 

in a sand tank, we illustrate the capabilities of the automated system.  Furthermore, we 

show that GPR, when coupled with automated data collection, is capable of collecting 

representative data of highly dynamic events, like infiltration, at high resolution in time 

and space. 

1.3 Methods 

To study unsaturated flow using GPR, a 4 m x 4 m wooden tank was constructed 

and filled to a depth of 0.60 m with river sand. The base of the tank is divided into 16 - 1 

m x 1 m drainage cells, each of which drains independently to the exterior of the tank.  In 

order to collect time-lapse GPR data over the tank in the most efficient way possible, we 

chose to automate the data collection process using a bistatic radar system which is 

mounted to a motorized gantry. 

1.3.1 System Design 

We use LabVIEW Software (National Instruments) to integrate the radar and 

positioning aspects of the data acquisition.  The positioning control system is equipped 
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with a motion control board (NI PCI-7334, National Instruments) which interfaces with a 

four axis motion controller (NI UMI-7774, National Instruments).  This interface controls 

three motor drivers and motors that allow independent positioning of the antennas along a 

1.6 m gantry, which can itself be moved in the perpendicular direction. This configuration 

allows us to position the antennas at any location in the tank at offsets up to 1.2 m (Figure 

1.1).  Positioning accuracy in the x and y-directions are 0.02 cm and 0.0004 cm, 

respectively. 

 

Figure 1.1:  Picture showing the setup of the automated gantry and the relative motion of all the 

components. 

For the GPR component, the system is equipped with the PulseEkko SPIDAR 

system (Sensors and Software, Mississauga, Ontario, Canada) which allows radar data 

collection to be controlled using a standard PC interfaced with a Network Interface 

Controller (NIC).  The NIC is a microprocessor based module that provides complete 

control of the GPR system.  Standard GPR acquisition parameters can therefore be set 
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through the LabVIEW interface, e.g. time window, sample interval, and trace frequency.  

For the majority of our work, we use 1000 MHz shielded antennas to obtain high resolution 

data with depth, although other frequencies are available.  Traces are typically acquired at 

a rate of 100 traces per second using 4 stacks to keep acquisition time per trace at a 

minimum.  At optimal operation, the system is able to continuously collect data at points 

spaced, on average, 0.05 cm apart, at a linear collection rate of 50 cm/sec and an area 

collection rate of 20 cm2/sec. 

1.4 Time Lapse imaging of a 2D Profile during Infiltration 

To demonstrate the high temporal resolution of the system, an infiltration event in 

a tank was monitored using the automated GPR system. An impermeable object was 

embedded in the sand at the xyz-coordinate [2.0 m, 2.0 m, 0.06 m] to induce preferential 

flow.  Time-lapse ground penetrating radar data consisting of common offset profiles 

(COPs) and common midpoint profiles (CMPs) were collected along a line bisecting the 

irrigated area at x = 2.0 m using the automated gantry system (Figure 1.2).  Three CMPs 

were collected sequentially along the line with source-receiver offsets ranging from 0.16 

to 1.03 m. The third CMP had a maximum offset of only 0.67 m due to the limited length 

of the gantry. The CMPs were followed by a COP with a source-receiver offset of 0.16 m, 

which profiled 0.65 m along the length of the antenna rail. This four profile cycle was 

repeated 100 times over 22 minutes, with approximately 13 seconds between replicate 

traces and collecting 137,377 traces in total. 



8 

 

 

Figure 1.2:  Experimental setup for 2D infiltration experiment. 

Irrigation was uniformly applied to the sand surface using two 1.5 m sprayer arrays 

consisting of micro-sprayers mounted along PVC pipes. Flow to the irrigation sprayers was 

held constant at 8 LPM and applied to an effective area of 2.25 m2, resulting in an average 

flux of 0.356 cm/min.  Irrigation began one minute after the start of data collection and 

terminated after 22 minutes. 

1.4.1 Results and Discussion 

Changes in the CMP profiles are clearly visible when comparing data collected 

during irrigation (Figure 1.3).  Before irrigation (Figure 1.3a, c, e), the CMPs show arrivals 

between 2 – 8 ns that have a moveout consistent with the electromagnetic velocity of air 

and that obscure the groundwave. The reflection from the base of the sand (B) is clearly 

visible at 9.5 ns traveltime at 0.16 m offset.  After 1.5 minutes of irrigation each CMP 
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shows the appearance of an arrival associated with the wetting of the soil (W) in addition 

to the base of the sand reflection (B) (Figure 1.3b, d, f).  There is also an increase in the 

traveltime and a reduction in the amplitude of the base of sand reflection (B) due to the 

wetting of the sand. While we suspect (W) to be a reflection caused by the wetting front 

moving through the soil column, the complicated moveout of this arrival makes it difficult 

to analyze.  However, the high spatial and temporal acquisition of the data allows us to 

consider the appearance of this arrival in alternative projections that facilitate our 

interpretation. 

 

Figure 1.3:  Common midpoint GPR profiles collected at three locations before irrigation (a, c ,e) and after 

1.5 minutes of irrigation (b, d, f) to illustrate the changes in arrivals present in the profile. The base of tank 

arrival (B) is visible in all profiles, while the wetting front arrivals (W) are only visible after irrigation 

begins. 
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Figure 1.4a and b show how the first traces of the CMPs (i.e., at 0.16 m offset) in 

Figure 1.3a and e evolve during the infiltration experiment.  Here, we can see a shift in the 

arrival time for the bottom of sand arrival (B) and wetting arrival (W) as the irrigation 

progresses.  The base of sand reflection, initially at 9.5 ns, displays a trajectory with an 

increasing arrival traveltime after the onset of irrigation.  At y = 1.89 m, (Figure 1.4a) the 

traveltime for the bottom of sand arrival has nearly doubled, arriving at the receiver at 

approximately 17 ns.  Similarly, at y = 2.29 m (Figure 1.4b), the same arrival has only 

shifted to a traveltime of 14 ns.  This difference indicates uneven wetting of the soil column 

as radar waves appear to be moving faster at y = 2.29 m than at y = 1.89 m. The arrival 

from the wetting front (W) follows a similar traveltime trajectory as (B) for the duration of 

the experiment; however, with a significantly greater slope.  Given the larger slope of (W) 

when compared to (B), the traveltime of this arrival must also be changing due to an 

increasing depth to the reflector if a uniform velocity behind the wetting front is assumed. 
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Figure 1.4:  Time and space projections of the 2D data set showing the movement of the bottom of sand 

reflection (B) and the wetting front reflection (W): a) constant offset traces collected at y = 1.89 m and b) 

y = 2.29 m over time, c) and d) are COPs collected at 10 min and 16.5 min, respectively. The variable 

wetting front arrivals in space are labeled (W1), (W2), and (W3) in (c) and (d). Vertical dashed red lines in 

(a) and (b) indicate the times of profiles (c) and (d); vertical dashed blue lines in (c) and (d) indicate the 

locations of time gathers in (a) and (b). The solid vertical line in (a) and (b) indicates the start of irrigation. 

Additionally, we can see that the changes in wetting front (W) and base of sand (B) 

arrivals are not consistent through space.  The wetting front arrival intersects the base of 

tank arrival at the edges of the profile area significantly earlier in the experiment than in 

the center of the tank.  From Figure 2.4a, we can see that at y = 1.89 m, the wetting front 

and base of tank arrival intersect 20 minutes into the experiment, however, the two arrivals 

do not intersect during the experiment at y = 2.29 m (Figure 1.4b).  The transport of water 

to the bottom of the tank at y = 1.89 m was verified as water was observed to drain from 
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this portion of the tank at 22 minutes into the experiment, whereas drainage was not 

observed elsewhere. 

In addition to observing arrival (W) in the time-lapse images, it is also easily seen 

in constant offset profiles.  If we interpret (W) as an arrival associated with the movement 

of a wetting front through the soil column, and we project the data along the profile, we 

can constrain the shape of the reflector in space for a given time.  The blue shaded area in 

Figures 2.4c and 2.4d indicate the interpreted shape of the wetted zone over the profile.  In 

the COP collected at 10 minutes, indicated by the vertical dashed red lines at 10 minutes 

on the trajectory gathers in Figures 2.4a and 2.4b, the wetting front reflection is visible at 

7 ns near the center of the profile (W2) and 9 ns at the margins (W1,W3) (Figure 1.4c).  

Later in the experiment at 16.5 minutes (Figure 1.4d), the spatial discontinuity of this 

reflector has increased as the wetting front arrival is observed at roughly 10.3 ns near the 

center of the profile (W2) and 13 ns traveltime at the margins of the profile (W1, W2). 

With this experiment, we conclude that GPR data with high temporal resolution are 

valuable for capturing variability in hydrologic processes.  Arrivals associated with the 

wetting of a soil can have complex shapes in time and space.  GPR systems designed to 

rapidly acquire data have the capability of monitoring highly dynamic hydrologic events 

and capturing heterogeneities in the wetting patterns of infiltrating wetting fronts.  Most 

importantly, the capability to view data from multiple perspectives enhances the 

recognition of specific arrivals and improves interpretation of the patterns present in the 

data.  
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1.5 3D Time Lapse imaging during Infiltration 

To demonstrate the high spatiotemporal resolution of the automated GPR system, 

an infiltration event in a tank was monitored in 3D.  Time-lapse GPR measurements were 

used to monitor changes in the arrivals of a system containing an embedded impermeable 

object at the xyz-coordinate [2.93 m, 2.0 m, 0.06 m] in homogenous river sand.  Drip 

irrigation was applied to the surface at a rate of 0.075 LPM for 30 minutes using a 1 cm 

diameter rubber hose located directly above the buried object.  The GPR data consisted of 

a 3D data set collected as 51 COPs followed by 2 CMPs collected over a 0.5 m x 0.6 m 

imaging area (Figure 1.5).  The 51 COPs were collected by profiling along the x-direction.  

The CMPs were collected directly over the buried object as well as at a location outside 

the irrigated area.  This data collection cycle was repeated at 5 minutes, 20 minutes, and 

30 minutes during the experiment, where each data set took roughly 2.5 minutes to collect 

resulting in 65,864 traces in total. 
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Figure 1.5: Experimental setup for 3D experiment 

1.5.1 Results and Discussion 

 Changes caused by the applied irrigation are evident in arrivals on the COPs 

collected over the buried object (Figure 1.6 and Figure 1.7).  Selected arrivals include the 

bottom of sand reflection (B), buried object diffraction (M) and anomalous arrivals (A1) 

and (A2).  Prior to irrigation, the buried object arrival (M) is difficult to identify due to the 

small contrast in the dielectric properties of the buried object relative to the dry sand 

background (Figure 1.6a, and Figure 1.7a).  After 5 minutes of irrigation, (M) is clearly 

identified given the increased contrast in dielectric permittivity.  Additionally, there is a 

significant amount of ringing present in the data that indicates the trapping of radar waves 

in the wetted zone around the buried object (Figure 1.6b, Figure 1.7b).  After 20 minutes 

of irrigation, (M) is easily identified in the y-profile (Figure 1.6c), but obscured on the x-
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profile by arrivals associated with the wetting of the sand (A1) (Figure 1.7c).  After the 

sand was irrigated for 30 minutes the buried object arrival remains clear in the y-profile 

(Figure 6d) but cannot be identified in the x-profile (Figure 1.7d).  This shows the 

advantage of collecting time-lapse data given the abrupt appearance of the buried object in 

the data after the onset of irrigation; however, interpretation becomes complicated when 

2D sections are considered alone.  Given that these complexities are also present in the 

CMPs over the buried object (not shown), 3D projections of the data can improve 

recognition of spatial patterns present in the arrivals and interpretation of their causes. 

 

Figure 1.6:  COPs collected in the y-direction at x = 2.93 m showing the bottom of sand reflection (B) at 

0.60 m depth, the buried object diffraction (M) at 0.06 m depth, and two anomalous arrivals associated 

with the wetting of the soil (A1, A2) at a) initial conditions, b) after 5 minutes of irrigation, c) after 20 

minutes of irrigation, and d) after 30 minutes of irrigation. 
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Figure 1.7:  COPs collected in the x-direction at y = 2.0 m showing the bottom of sand reflection (B) at 

0.60 m depth, the buried object diffraction (M) at 0.06 m depth, and two anomalous arrivals associated 

with the wetting of the soil (A1, A2) at a) initial conditions; b) after 5 minutes of irrigation; c) after 20 

minutes of irrigation; and d) after 30 minutes of irrigation. 

Figure 1.8 shows the common-offset data cubes collected for the given experiment 

times as 3D isosurface plots.  The smoothed envelope of the GPR data was used to produce 

these figures using a smoothing window of 5 data points in the x, y, and z-directions. A 

vertical black line indicates the center of the buried object in the 3D volume.  The bottom 

of tank arrival (B) is indicated by the green isosurface, arrivals associated with the buried 

object (M) are indicated as red, and arrivals associated with water moving through the soil 

column (A1, A2) are blue. 

The bottom of sand arrival is clearly identified in all data cubes as an arrival with 

relatively constant amplitude at 10 ns traveltime.  Regardless of the ability to project the 
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data as a 3D volume, the buried object arrival remains difficult to identify at initial 

conditions due to the low contrast with the sand and is not plotted (Figure 1.8a).  However, 

in Figure 1.8b and c, the buried object arrival (M) and the ringing event are clearly 

identified by high amplitude arrivals, as seen in Figure 1.6b and Figure 1.7b.  Projecting 

the data in 3D allows us to confirm the target identification given the shape of the arrival 

in the 3D space.  The buried object is also identified after 20 minutes of irrigation; however, 

it is worth noting here that identification of the buried object in Figure 1.8c may be difficult 

if the data in Figure 1.8b were absent.  Figure 1.8d shows the final data set, collected after 

30 minutes of irrigation.  While Figure 1.8d shows a red volume indicating the presence of 

the object, note that it was difficult to separate the buried object arrival from surrounding 

arrivals associated with water moving through the soil column. 
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Figure 1.8:  Volume plots of arrivals represented as isosurfaces within the data volumes for the bottom of 

sand arrival (green) at 0.60 m depth, buried object diffraction (red) at 0.06 m depth, and anomalous 

reflectors associated with water moving through the soil (blue).  Specific instances of the buried object 

and anomalous reflectors are indicated as (M), (A1) and (A2), respectively. 

In addition to (M) and (B), we see additional arrivals (A1 and A2) that appear to be 

associated with water moving around the impermeable object.  At 5 minutes after irrigation, 

the fact that (A1) is adjacent to the isosurface of the buried object indicates this arrival is 

associated with water moving laterally around the impermeable object (Figure 1.8b).  This 

arrival continues to grow in volume over time indicating more of this area is being wetted.  

A second arrival (A2) associated with water moving through the soil appears after 20 

minutes of irrigation (Figure 1.8c).  Given the increase in traveltime of (A2) from 20-30 

minutes of irrigation, we can expect a local increase in water content or downward 

movement of water in the soil column (Figure 1.8c and d).  Additionally, the growth of 
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(A2) in the x-direction from Figure 1.8c to 8d indicates lateral spreading of water in the soil 

at the scale of 0.20 m. 

Although arrivals in 2D profile sections can easily become convoluted by changes 

in the state of a system, projecting data using a 3D volume can facilitate interpretations by 

providing information regarding the shape of reflectors in space.  Additionally, time-lapse 

imaging can greatly improve interpretation by showing the hydrologic response of a system 

over time.  Objects which may be geophysically invisible for a given hydrologic state are 

easily identified when the system is altered.  With this experiment, we conclude that rapid, 

high-resolution GPR data collection used to monitor dynamic hydrologic events can reveal 

the time dependent response of arrivals and image reflectors in 3D space, greatly improving 

interpretation of the data and the subsurface. 

1.6 Conclusions 

A fully automated approach to collecting time-lapse surface based GPR data was 

evaluated using two examples of monitoring infiltration.  In our 2D study, we showed that 

high resolution GPR data collection is capable of simultaneously capturing spatial and 

temporal variability in the wetting of a soil while collecting valuable multi-offset data for 

velocity analysis.  Furthermore, in our 3D study, we showed that high resolution GPR data 

collection in time and space is extremely valuable to understanding spatial patterns created 

by the movement of water through the soil column.  Additionally, we showed the advantage 

of time-lapse data over static data sets when attempting to identify targets that may possess 

similar dielectric properties as the media in which they are embedded.  In conclusion, GPR 
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data collection systems used to monitor hydrologic events must be efficiently designed to 

capture highly dynamic patterns associated with underlying hydrologic processes that vary 

rapidly in space and time. 
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CHAPTER 2 - RESOLVING PRECIPITATION-INDUCED WATER CONTENT 

PROFILES BY INVERSION OF DISPERSIVE GPR DATA: A NUMERICAL 

STUDY 

NOTICE: This chapter has been published in the June 2015 issue of the Journal of 

Hydrology. The full citation is listed below. 

Mangel, A.R., S.M.J. Moysey & J. van der Kruk, 2015. Resolving precipitation induced 

water content profiles by inversion of dispersive GPR data: A numerical study. 

Journal of Hydrology, 525, pp.496–505. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S0022169415002607. 

2.1 Abstract 

Surface-based ground-penetrating radar (GPR) measurements have significant 

potential for monitoring dynamic hydrologic processes at multiple scales in time and space. 

At early times during infiltration into a soil, the zone above the wetting front may act as a 

low-velocity waveguide that traps GPR waves, thereby causing dispersion and making 

interpretation of the data using standard methods difficult.  In this work, we show that the 

dispersion is dependent upon the distribution of water within the waveguide, which is 

controlled by soil hydrologic properties.  Simulations of infiltration were performed by 

varying the n-parameter of the Mualem-van Genuchten equation using HYDRUS-1D; the 

associated GPR data were simulated to evaluate the influence of dispersion. We observed 

a notable decrease in wave dispersion as the sharpness of the wetting front profile 
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decreased. Given the sensitivity of the dispersion effect to the wetting front profile, we also 

evaluated whether the water content distribution can be determined through inversion of 

the dispersive GPR data.  We found that a global grid search combined with the simplex 

algorithm was able to estimate the average water content when the wetted zone is divided 

into 2 layers.  This approach was incapable, however, of representing the gradational nature 

of the water content distribution behind the wetting front.  In contrast, the shuffled complex 

evolution algorithm was able to constrain a piece-wise linear function to closely match the 

shallow gradational water content profile. In both the layered and piece-wise linear case, 

the sensitivity of the dispersive data dropped sharply below the wetting front, which in this 

case was around 20 cm, i.e., twice the average wavelength, for a 900 MHz GPR survey. 

This study demonstrates that dispersive GPR data has significant potential for capturing 

the early-time dynamics of infiltration that cannot be obtained with standard GPR analysis 

approaches. 
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2.2 Introduction 

Significant advances have recently been made using ground-penetrating radar 

(GPR) to study near-surface water content in both static [Greaves et al. 1996; Grote et al. 

2010; Huisman et al. 2001; Vellidis et al. 1990] and dynamic conditions [Haarder et al. 

2011; Mangel et al. 2012; Moysey 2010; Steelman and Endres 2010; Truss et al. 2007; van 

Overmeeren et al. 1997].  In time-lapse studies, it is common to see large increases in water 

content at the surface associated with infiltration events which create a high permittivity 

region of the soil column.  When the thickness of this zone is comparable to the wavelength 

of the GPR signal, electromagnetic (EM) wave dispersion can occur [Arcone 1984; van der 

Kruk et al. 2006].  Several experimental studies of this phenomenon have focused on 

scenarios with distinct wet and dry zones separated by a wetting front [Steelman et al. 2010; 

Strobbia and Cassiani 2007; van der Kruk et al. 2006; van der Kruk 2006; van der Kruk et 

al. 2009a; van der Kruk et al. 2009b; van der Kruk et al. 2010].  In reality, however, these 

waveguides in soils may have non-uniform distributions of water content associated with 

gradual changes between wet and dry soil.  Given that i) waveguide boundaries are derived 

from water content profiles and ii) wave dispersion is caused by interference between 

multiple shallow reflections, it is our hypothesis that hydrologic properties of a soil, e.g., 

capillarity, will affect the dispersion of GPR waves. 

Low-velocity dispersive waveguides occur when a high permittivity layer is 

bounded by relatively low permittivity layers, e.g., a thin wetted layer of soil at the surface 

that traps GPR waves by causing total reflection at both the upper and the lower interface 
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of the waveguide [van der Kruk et al. 2006].  During the infiltration process, for example, 

reflections can occur at the boundary between the wetted and non-wetted layers of the 

media [Mangel et al. 2012] as well as at the air-soil interface.  At shallow depths 

comparable to the wavelength of the GPR signal, this high permittivity wetted layer can 

act as a dispersive waveguide trapping GPR waves and causing the groundwave to appear 

as a package of dispersed waves [van der Kruk et al. 2009a]; the waveguide dispersion 

itself being caused by the interference of the multiple overlapping reflections trapped 

within the waveguide. 

Dispersion curves are picked from the maximum of the phase-velocity spectrum 

calculated from multi-offset GPR data (Figure 2.1); this spectrum shows the frequency-

dependent phase-velocity for a given waveguide.  Inversion of dispersion curves was found 

to be a reliable method for determining the average relative permittivity of both the 

waveguide layer (ε1) and underlying halfspace (ε2), as well as the thickness (h) of the 

single-layer waveguide [van der Kruk et al. 2006; van der Kruk 2006].  There is no 

literature available, however, documenting how the sharpness of the lower boundary of a 

hydrologically derived waveguide will affect dispersion of the GPR energy and the 

resulting inversion for waveguide properties.  While these studies [van der Kruk et al. 

2006; van der Kruk 2006] applied dispersion analysis to field data, and likely encountered 

a hydrologically induced boundary, the authors did not comment on any effects caused by 

the distribution of water at the reflection interface.  The authors do comment, however, on 
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the possibility of heterogeneities in the subsurface affecting the dispersion of the EM 

energy, and reserved further investigation for later studies. 

Partially addressing heterogeneities in the waveguide, van der Kruk et al. [2010] 

collected three sets of 200 MHz common mid-point GPR data over a region where 

successive amounts of water added via natural rainfall altered the properties of the 

waveguide.  van der Kruk et al. [2010] noted inconsistencies when inversion results were 

compared to measured permittivity from soil cores collected at the field site, which they 

attributed to the heterogeneous distribution of water within the waveguide compared to the 

dry soil beneath.  The study illustrates the importance of understanding how a vertically 

heterogeneous waveguide, e.g., water content profile, affects the dispersion of GPR waves 

and how this influences the average value of permittivity obtained through inversion of the 

data.  Additionally, van der Kruk et al. [2010] inverted dispersion curves using a two-layer 

model.  When compared to the results from the single-layer waveguide inversion, the 

authors noted that the weighted arithmetic mean of the two waveguide layers obtained from 

the two-layer waveguide inversion (ε1 & ε2) was very similar to the first layer permittivity 

(ε1) returned from the single-layer waveguide inversion.  Given these results, it is clear that 

the two-layer conceptual model can better explain the dispersion caused by more complex 

water content profiles that may arise from multiple wetting events. 

The work of van der Kruk, [2006], van der Kruk et al., [2006], and van der Kruk et 

al., [2010] illustrated how to utilize the dispersion to invert for properties of the waveguide, 

but little has been done to evaluate the effect of heterogeneity of the waveguide and its 
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effect on dispersion.  Recently, van der Kruk et al. [2012] investigated the effects of 

interface roughness, heterogeneities, and dipping layers on the inversion of dispersive GPR 

data.  To test their hypotheses, van der Kruk et al. [2012] numerically generated 

permittivity distributions using stochastic methods.  This allowed the authors to test the 

generalizability of the inversion scheme to heterogeneous systems and investigate how 

dispersion changes given these conditions.  The heterogeneities studied by these authors 

did not, however, account for spatial patterns typical of wetting events, which are the basis 

for precipitation-induced waveguides.  The relationship between dispersion and hydrology 

therefore needs to be further explored, e.g., using numerical simulations as an initial mode 

of investigation. 

In this paper we use dispersion analysis [van der Kruk et al., 2006] as a tool for 

evaluating the radar response of diffuse interfaces commonly encountered in the subsurface 

as a result of infiltration.  This will be done through the evaluation of results from inversion 

of the dispersion curves from simulated multi-offset 2D GPR simulations in a 1D 

hydrologic context.  This paper will apply the dispersion curve inversion method outlined 

by van der Kruk et al. [2006] and van der Kruk et al. [2010] in homogeneous soils with 

variable influence of capillarity during infiltration.  Specifically, we will use the phase-

velocity spectra from 2D GPR simulations to fit average permittivities of two layer models 

as outlined in van der Kruk et al. [2010].  We also use a multiple layer inversion, based on 

a piece-wise linear function, to represent the water content profile.  It is our hypothesis that 

as the lower boundary of the waveguide becomes more diffuse the dispersion will decrease, 
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i.e., as capillarity dominates the flow regime the number of dispersive modes observed will 

decrease.  We will also show that utilizing a conceptual model capable of representing the 

gradational nature of the water content profile produces a better representation of the 

dispersion curve data. 

2.3 Background Information 

While we provide a brief overview of the fundamentals of EM wave dispersion, a 

comprehensive overview of the modal theory equations and GPR pulse propagation in 

surface waveguides can be found in Arcone et al. [2003].  For more information about the 

waveguide model, the generation of theoretical dispersion curves, and inversion of 

dispersion curves, see van der Kruk et al. [2006], van der Kruk [2006] and van der Kruk et 

al. [2009a]. 

2.3.1 Dispersive Waveguide Theory 

Modal theory states that incident energy will form into several modes consisting of 

specific frequencies, related to waveguide properties, traveling at their own phase velocity 

within the dispersive waveguide [Arcone 1984].  For a single waveguide layer of thickness 

(h) the fundamental equation of modal theory [Budden 1961] is defined as: 

1 − 𝑅𝑅12(𝑓𝑓,𝜃𝜃)𝑅𝑅10(𝑓𝑓,𝜃𝜃) exp[−2𝛾𝛾1ℎ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃] = 0                                (2-1) 

where 𝛾𝛾1 = 𝑗𝑗𝑗𝑗 √𝜀𝜀1 𝑐𝑐0⁄  is the propagation constant for GPR waves, where c0 is the speed 

of light in a vacuum, ε1 is the relative permittivity of the waveguide, f is frequency, θ is the 

angle of incidence, ω is the angular frequency, and R12 and R10 are the reflection 
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coefficients for the lower and upper boundary of the waveguide, respectively.  In order to 

satisfy (Eq. 2-1) for guided waves, two constraints are required.  First, the reflection 

coefficients at each interface must have amplitude equal to one.  In order for this to happen, 

θ must exceed the critical angle (θc) which is dependent upon the permittivity of the 

waveguide (ε1) and lower (ε2) layer (Eq. 2-2a). 

𝜃𝜃𝑐𝑐 = sin−1 ��
𝜀𝜀2
𝜀𝜀1
�                                                            (2-2a) 

Thus, if the offset between the antennas does not allow for the measurement of the 

GPR wave beyond the critical angle, dispersion will not be observed in the data.  By 

analyzing the phase component from the Fourier transform of Eq. (2-1) and substituting 

the propagation constant we obtain  

𝜙𝜙(𝜃𝜃) − 4𝜋𝜋𝜋𝜋√𝜀𝜀1ℎ cos(𝜃𝜃)
𝑐𝑐0

= −2𝑚𝑚𝑚𝑚                                               (2-2b) 

which shows that the total phase change (𝜙𝜙) after upper and lower interface reflections 

including twice the propagation through the waveguide must equal 2𝑚𝑚𝑚𝑚 radians where m 

is an integer corresponding to the dispersive mode [van der Kruk 2006]. 

2.3.2 Empirical dispersion curves from CMP data  

To determine the phase-velocity spectra for empirical data, the GPR data must first 

be transformed from the time-domain to the frequency domain.  The method of Park et al. 

[1998] was employed by van der Kruk et al. [2006] in which the Fourier Transform of the 
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common mid-point GPR data, 𝐸𝐸(𝑥𝑥, 𝑡𝑡), are analyzed for each frequency 

component, 𝐸𝐸�(𝑥𝑥, 𝑓𝑓), by: 

𝐸𝐸�(𝑥𝑥,𝑓𝑓) = ∫𝐸𝐸(𝑥𝑥, 𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(−2𝑚𝑚𝑗𝑗𝑓𝑓𝑡𝑡)𝑑𝑑𝑡𝑡                                              (2-3) 

which has an amplitude, �𝐸𝐸��, and phase component, 𝜑𝜑.  For a frequency component, 𝑓𝑓𝑖𝑖, 

with phase velocity 𝑣𝑣𝑖𝑖, the phase change, ∆𝜑𝜑, as a function of the change in offset, ∆𝑥𝑥, is 

described as: 

Δ𝜑𝜑𝑖𝑖 =  −2𝜋𝜋𝜋𝜋𝑖𝑖
𝑣𝑣𝑖𝑖

Δ𝑥𝑥.                                                            (2-4) 

By correcting this phase change of the amplitude normalized electric field and 

summing over all offsets, the phase-velocity spectrum, 𝐷𝐷(𝑣𝑣, 𝑓𝑓), is obtained as: 

𝐷𝐷(𝑣𝑣,𝑓𝑓) = �∑ 𝐸𝐸�(𝑥𝑥,𝜋𝜋𝑖𝑖)
|𝐸𝐸�(𝑥𝑥,𝜋𝜋𝑖𝑖)| 𝑒𝑒𝑥𝑥𝑒𝑒 �𝑗𝑗

2𝜋𝜋𝜋𝜋𝑖𝑖
𝑣𝑣𝑖𝑖

𝑥𝑥�𝑥𝑥 �.                                           (2-5) 

The maximum spectral amplitude for a given frequency and dispersive mode defines the 

best estimate of phase velocity.  Picking these points in the spectra produces the observed 

dispersion curves which can then be inverted to determine the waveguide properties. 

Depending on waveguide properties, the phase-velocity spectrum likely contains multiple 

modes of dispersion where the lowest frequency contained in each mode (m) of dispersion 

is determined by the cutoff frequency (fc), which is a function of the thickness of the 

waveguide (h) and layer relative permittivities (ε1 & ε2): 

𝑓𝑓𝑐𝑐 = [2𝜋𝜋𝜋𝜋+𝜙𝜙(𝜃𝜃12𝑐𝑐 )]𝑐𝑐0
4𝜋𝜋ℎ√𝜀𝜀1−𝜀𝜀2

                                                             (2-6) 
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Below this cut-off frequency, there will be no solution for Eq. (2-1).  Cutoff frequencies 

are associated with a wave that has a critical incident angle at the lower boundary and are 

manifested as discontinuities between modes in the frequency spectra. 

2.3.3 Single Layer Approximations from Phase-Velocity Spectra 

Phase-velocity spectra of dispersive GPR data show the relationship between EM 

wave frequency and phase velocity for specific modes of dispersion.  As highlighted by 

van der Kruk [2006] and van der Kruk et al. [2006], specific parts of this data spectrum are 

sensitive to particular parameters of the dispersive waveguide.  Specifically, van der Kruk 

[2006] shows that for a multi-modal dispersive waveguide, individual cutoff frequencies 

and layer permittivities can be approximated from the behavior of the amplitudes 

(dispersion curves) in this spectrum. 

Figure 2.1a shows dispersive time domain data for the shock front case, which 

represents the extreme case of plug flow with no capillary influence. This model consists 

of an upper layer at a constant water content of 0.30 (vol. vol-1.) and lower layer at a 

constant value of 0.10 (vol. vol.-1), producing a sharp boundary similar to original 

simulations from van der Kruk et al. [2006]. It is important to note here that picking a 

single arrival at a given offset for the direct dispersed arrival would be difficult as there are 

multiple interfering reflections in the data. Note that the group velocity, i.e., the speed at 

which the envelope of the dispersed package of waves is moving through the waveguide 

(long solid black line), differs from the individual phase velocities (short dashed black 

lines), which indicates a frequency-dependent phase-velocity.  These overlapping arrivals 
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in the data are characteristic of a dispersive wave and are similar to what van der Kruk et 

al. [2006, 2009a] termed a “shingling effect”. 

 

Figure 2.1  a) An example of dispersive time-domain data (shock front case), solid line indicates the group 

velocity and dashed lines indicate individual phase velocities; b) Phase velocity spectrum for the data 

presented in Fig. 1a showing the behavior of the dispersion curves in regards to the properties of the 

waveguide. 

By applying the steps described in Section 3.3.2, we obtain the phase-velocity 

spectrum of the GPR data (Figure 2.1b). The upper and lower asymptotes of the dispersion 

curves represent the velocities of the lower halfspace and waveguide respectively.  

Furthermore, the beginning of these individual curves indicates the cutoff frequency of that 

specific mode.  By manually picking the velocities and cutoff frequency values and 

combining them with Eq. 2-6, which has been solved for layer thickness (h), we can 

roughly estimate the thickness of the wetted zone acting as a low-velocity waveguide. 
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ℎ =  𝑐𝑐0[2𝜋𝜋𝜋𝜋+ 𝜙𝜙(𝜃𝜃12𝑐𝑐 )]
4𝜋𝜋𝜋𝜋𝑐𝑐√𝜀𝜀1−𝜀𝜀2

                                                             (2-7) 

2.3.4 Forward Model for a Dispersive Waveguide  

Using the constraints from Eq. 2-2a and 2b to solve Eq. 2-1 for guided waves, a 

forward model can be generated that is suitable for inversion of dispersive data [van der 

Kruk 2006].  The model provides the phase velocity as a function of frequency (f), 

permittivity of the waveguide (ε1), permittivity of the lower space (ε2), and waveguide 

thickness (h): 

𝑣𝑣(𝑓𝑓, 𝜀𝜀1, 𝜀𝜀2,ℎ) = 𝑐𝑐0
√𝜀𝜀1 sin[𝜃𝜃(𝜋𝜋,𝜀𝜀1,𝜀𝜀2,ℎ)]                                              (2-8) 

2.3.5 Sensitivity of the Dispersion Curve 

To test the sensitivity of the dispersion curve to changes in permittivity with depth, 

the dispersion forward model was run using 60 uniform layers, each of 0.01 m thickness.  

Initial values for the permittivity of each layer were set to the actual profiles derived from 

HYDRUS-1D [Simunek and van Genuchten 2005] simulations of flow in a homogenous 

soil.  After the forward model was run to obtain a reference water content profile, each 

layer was perturbed successively by 10% of the mean of the profile and the dispersion 

curves were calculated.  The impact of each layer perturbation was quantified using the 

misfit (E) of the curves generated by the true reference (true) and perturbed permittivity 

profiles (pert): 

𝐸𝐸 =  
∑

�𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓𝑖𝑖)−𝑣𝑣𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡�𝑓𝑓𝑖𝑖��
𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝑓𝑓𝑖𝑖�

𝑛𝑛𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖=1

𝑛𝑛𝜋𝜋𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡
 �𝑛𝑛𝜋𝜋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛𝜋𝜋𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡

�                                            (2-9) 
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Here the phase velocities 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑣𝑣𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 are a function of frequency 𝑓𝑓𝑖𝑖 to define the 

true and perturbed dispersion curves, respectively.  The misfit is normalized by the number 

of frequencies (nf) simulated given that the dispersion forward model will only generate 

phase velocity estimates for frequencies when Eq. 2-1 is satisfied.  To generalize our 

findings to be independent of frequency, we chose to plot the results of this analysis using 

dimensionless depth, d*, which is defined as: 

𝑑𝑑∗ = 𝑑𝑑𝑡𝑡𝑝𝑝𝑡𝑡ℎ
𝑤𝑤𝑤𝑤𝑣𝑣𝑡𝑡𝑤𝑤𝑡𝑡𝑛𝑛𝑤𝑤𝑡𝑡ℎ

= 𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡ℎ 𝜋𝜋𝑡𝑡𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡𝑛𝑛𝑐𝑐𝑓𝑓
𝑣𝑣𝑡𝑡𝑤𝑤𝑣𝑣𝑐𝑐𝑖𝑖𝑡𝑡𝑓𝑓

                                              (2-10) 

While it may seem impossible to assume a single frequency and velocity in this 

study, it is reasonable to use the central frequency of the radar signal, 900 MHz, and an 

average velocity calculated from all the waveguides, which in this study is 0.0884 m ns-1.  

This calculation gives us an average wavelength of 0.0983 m (note that the fractional term 

in Eq. 2-10 equates to the reciprocal of the radar signal wavelength).  From Figure 2.2, we 

can see that there is no significant decrease in the misfit (Eq. 2-9) for permittivity 

perturbations beyond a dimensionless depth of 2, which correlates to an absolute depth of 

0.20 m, i.e. roughly twice the radar wavelength.  Therefore, we can assume that attempts 

to constrain the profile beyond this depth would be unrewarding given that the data will 

not sensitive to this part of the profile. Note that at the most sensitive depth, d* = 0.25, a 

perturbation of 10% from the mean equates to nearly 1% deviation in the misfit (Eq. 2-9) 

when compared to the actual profile.  This depth correlates well with what GPR 

practitioners would expect to be the resolution of the radar signal. 
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Figure 2.2  Results of sensitivity analysis that show the forward model is not sensitive to changes in 

permittivity beyond a depth of roughly twice the signal wavelength for all profiles considered.   

2.4 Methods 

To test our hypothesis that dispersion will decrease as capillarity increases, we ran 

multiple transient simulations, successively changing the n-parameter of the Mualem-van 

Genuchten soil model in the range of 1.5 – 4.0 for each simulation.  The Mualem-van 

Genuchten soil model is commonly used to describe the water retention curve (i.e., 

relationship between pressure and water content) and relative permeability curve (i.e., 

relationship between hydraulic conductivity and water content) for a soil (van Genuchten, 

1980). This relationship is described using five parameters: residual water content (θr), 
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saturated water content (θs), saturated hydraulic conductivity (Ks), and two shape 

parameters (α and n).  While the parameters of the Mualem-van Genuchten soil model are 

not independent, we chose to solely vary the n-parameter [Carsel and Parrish 1998], which 

is related to the pore size distribution, because it has the largest effect on the sharpness of 

the infiltrating wetting front.  However, we acknowledge that other parameters of the 

Mualem-van Genuchten soil model will likely have an effect on the dispersion of GPR 

waves in field settings. 

In addition to the shock front model shown in Figure 2.1, and the variable n 

simulation results from HYDRUS-1D, we also used a homogeneous model where the water 

content profile is constant at 0.20 (vol. vol-1) for the entire soil column.  For all HYDRUS-

1D simulation results, we chose to perform the dispersion analysis for a time during the 

infiltration event when the soil moisture profile produced a maximum reflection coefficient 

at 0.10 m depth.  Given our radar frequency of 900MHz, we expect this thickness to 

produce a dispersive waveguide as the wavelength is comparable to the waveguide 

thickness.  Two inversions were performed for each simulation: i) the waveguide 

represented as two constant permittivity layers, and ii) the waveguide represented by a 

piece-wise linear function. 

2.4.1 Hydrologic Modeling and Simulations 

The hydrologic simulations were performed using HYDRUS-1D [Simunek and van 

Genuchten 2005].  A depth of 0.6 m was chosen for the model domain, which was 

discretized into 601 uniformly sized cells (thickness=1x10-3 m).  A constant flux condition 
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was applied at the upper boundary of the soil column and a seepage face condition applied 

at the lower boundary.  Mualem-van Genuchten parameters used in the simulations, with 

the exception of the variable n-parameter, are given in Table 2-1.   To reduce the influence 

of initial conditions for each model, all simulations were run for a 20 year spin-up time 

period with the upper boundary flux set to zero and the initial conditions set to a uniform 

water content of 0.30.  After equilibrium conditions were reached, the models were run 

with the upper flux set to 0.0044 m min-1 for 20 minutes time. 

Table 2-1:  Mualem-van Genuchten parameters for the HYDRUS-1D forward model from Mangel et al. 

[2012]. 

Residual Water 
Content 

θr 

[vol vol-1] 

Saturated 
Water Content 

θs 

[vol vol-1] 

Air-entry 
parameter 

Α 

[cm-1] 

Shape 
Parameter 

[-] 

Saturated 
Hydraulic 

Conductivity 

[cm min-1] 

0.04 0.35 0.045 Varied 2.8 

2.4.2 Ground-Penetrating Radar Modeling and Simulations 

Given that we are focused here on how soil capillarity affects the trends of 

waveguide dispersion in 1D flow systems, we chose to use the 2D finite difference time 

domain GPR forward model authored by Irving and Knight [2006].  We acknowledge, 

however, that the absolute amplitudes of the GPR signal would differ from that in our 

simulations due to 3D effects.  The model domain (0.7 m x 4.0 m) for radar simulations 

was set up to collect data at large offsets so the critical angle for the waveguide would be 

reached.  The domain was discretized into cells with ∆x = 0.002 m and ∆z = 0.001 m.  
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Magnetic permeability (μ) was set to a constant value of μ0=1.256 x 10-6 H m-1 for the 

entire domain while electrical conductivity (σ) was set to constant values of 1 mS m-1 and 

0 mS m-1 for the media and air, respectively.  Note that the phase-velocity spectrum is 

obtained by only using the phase (see Eq. 2-2b) such that amplitude changes due to 

different conductivity values do not influence the results; simulations that used an order of 

magnitude increase in electrical conductivity of the waveguide showed no significant 

difference in dispersive behavior (results not shown).  Therefore, we chose to fix these 

properties (σ and μ) to focus on the dominant effect of the dielectric permittivity profiles.  

Water content profiles simulated using HYDRUS-1D were converted to dielectric 

permittivity (ε) values using the Topp Equation [Topp et al. 1980] and replicated laterally 

for the GPR simulation.  The 900 MHz source for the simulation was located at x = 0.5 m 

and z = 0 m with receivers placed every 0.025 m from x = 0.5-3.5 m.  Perfectly matched 

layer (PML) absorbing boundaries were placed around the perimeter of the model domain 

to eliminate reflections from the edges of the domain.  Simulations were run for a 60 ns 

time window. Note that the upper 0.1 m of the model domain is reserved for the air to 

generate the air/soil interface. 

2.4.3 Inversion of the Dispersion Curves for a Two-Layer Model 

To invert the dispersive GPR data and obtain properties of the low-velocity 

waveguide, a cost function was developed to compare the measured dispersion curves from 

simulations, vdata, to the modeled dispersion curve, vmod, from a two layer forward model 

that utilizes the fundamental (TE0) and first (TE1) modes of the dispersive GPR data.  We 
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investigate the two layer inversion approach here as it represents the current state of the art 

for resolving waveguide properties from dispersive GPR data (van der Kruk et al., 2010).  

The parameters for the forward model are the relative permittivity of each layer of the 

waveguide and the lower halfspace (ε1, ε2, ε3) as well as the thicknesses of the two layers 

describing the waveguide (h1, h2).  The cost function for the inversion is: 

𝐶𝐶(𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3,ℎ1,ℎ2) =  
∑ �𝑣𝑣𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑓𝑓𝑖𝑖)−𝑣𝑣𝑚𝑚𝑚𝑚𝑑𝑑�𝑓𝑓𝑖𝑖,𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑𝑚𝑚��

𝑣𝑣𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑓𝑓𝑖𝑖)

𝑛𝑛𝑓𝑓𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑
𝑖𝑖=1

𝑛𝑛𝜋𝜋𝑚𝑚𝑚𝑚𝑑𝑑
 �𝑛𝑛𝜋𝜋𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑
𝑛𝑛𝜋𝜋𝑚𝑚𝑚𝑚𝑑𝑑

�                       (2-11) 

Where fi are the individual frequencies used in the inversion, 𝑛𝑛𝑓𝑓𝜋𝜋𝑣𝑣𝑑𝑑 is the total number of 

frequencies considered in the inversion (i.e., dispersion forward model), and 𝑛𝑛𝑓𝑓𝑑𝑑𝑤𝑤𝑡𝑡𝑤𝑤  is the 

total number of frequencies available in the data (i.e., picked dispersion curves from 

simulations).  The cost function effectively uses a normalized L1 norm for the data misfit 

and a model norm that penalizes the inversion for generating models with fewer 

frequencies than the data. 

For the two layer inversions, we employ the method outlined in van der Kruk et al. 

(2010) which is a multiple starting model method that evaluates the cost function for 

multiple values of the independent variables in a global grid search. To limit the global 

search to feasible parameters, prior information extracted from the phase-velocity spectrum 

was used to bound the parameter space and increase the likelihood of finding a global 

minimum [van der Kruk 2006].  From the global search results, the top performing models, 

limited to a maximum of 30, are passed to a local simplex search [Lagarias et al. 1998], 
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obtaining multiple local minima.  From these local minima, the best fit model is chosen on 

the criteria of the lowest cost function value. 

2.4.4 Inversion of Dispersion Curves for Multi-Layer Piece-Wise Linear Model 

In order to better represent the distribution of water in the subsurface we also 

investigated the case where a piece-wise linear function is used to represent the permittivity 

profile. 

2.4.5 Parameterization of the Piece-Wise Model 

To determine how many linear segments of the piece-wise function are needed to 

represent the upper 0.2 m of the profile, we ran the dispersion curve forward model multiple 

times, successively adding a linear segment to the representation of this section.  Segment 

lengths were forced to be equal to avoid uneven weighting of specific sections of the 

profile.  We also compared the performance of the piece-wise linear model to a layer model 

for capturing the dispersion response of the non-uniform water content profiles. 



40 

 

 

Figure 2.3:  Parameterization tests show that if the upper 0.2 m is divided into 5 evenly spaced layers (dz 

= 0.04 m), the piece-wise linear function outperforms the two-layer model with the same layers in 

representing the dispersive data. 

Figure 2.3shows the misfit of both models (Eq. 2-9) as a function of the number of 

segments used to represent the waveguide.  For nearly all parameterizations of the 

waveguide, the dispersion curve generated using the piece-wise linear function matches 

the data significantly better.  We therefore suggesting that a piece-wise linear function can 

better represent dispersive data associated with waveguides generated from infiltration 

events.  Furthermore, given that using more than 5 linear segments does not lead to a 
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substantial reduction in the misfit, we use this geometry for the inversions performed in 

this study. 

It is worth noting here that adjustments to the location of the boundaries in the layer 

model showed a substantial improvement in the misfit of the dispersion curves, illustrating 

the sensitivity of the layer geometry.  For a given number of layers in the layer model or 

segments in the piece-wise linear forward model, however, the piece-wise linear model 

better represents the dispersion curve.  Note that while this parameterization assessment 

used fixed layer thicknesses, the two-layer inversion outlined in Section 3.4.3 searches for 

optimal values for individual layer thickness (ℎ1 and ℎ2). 

2.4.6 Inversion of the Data using Shuffled Complex Evolution 

Given the increased number of parameters for the piece-wise linear model, the 

global grid search used for the two-layer model is no longer feasible.  Shuffled complex 

evolution (SCE) [Duan et al. 1993] is a well-established optimization algorithm that has 

been used in multi-parameter hydrologic and geophysical problems [Yapo et al. 1998; 

Mertens et al. 2004; Busch et al. 2013; von Hebel et al. 2014] as well as other optimization 

research.  The SCE algorithm uses a combination of probabilistic and deterministic 

approaches to move clusters of points spanning the parameter space toward a global 

minimum using competitive evolution between the clusters (see Duan et al., [1993] for 

details).  The starting model for individual SCE searches was determined using the 

approximation method outlined in Section 3.3.3.  The range for each piece-wise linear 

model parameter was constrained by using the extreme values obtained by fitting all 
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simulated profiles, dispersive and non-dispersive, with the 5 layer piece-wise linear 

function (Section 3.4.1).  We chose to use 10 complexes to explore the 10 dimensional 

parameter space and set the convergence criteria to a change of less than 5% in the best 

cost function value in 20 consecutive evolution loops. 

In order to preserve the smooth nature of the water content profiles during the SCE 

search, we added a smoothness term to the cost function (Eq. 2-11).  The smoothness value, 

s, of all simulated permittivity profiles was calculated using the normalized sum of the 

squared second derivative of the permittivity profile (ε). 

𝑐𝑐 =  
∑�𝑑𝑑

2(𝜀𝜀)
𝑑𝑑𝑑𝑑2

�
2

𝑁𝑁
                                                                     (2-12) 

Where z is the depth coordinate and N is the number of points making up the profile.  These 

profiles are from simulation times that were not used in the dispersion analysis, i.e., the 

same hydrologic parameters and fluxes at different simulation times.  The average value of 

the smoothness parameter from all simulated profiles was calculated to be 0.0142 and used 

as a representative smoothness for the profiles. 

𝐶𝐶 =  
∑ �𝑣𝑣𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑−𝑣𝑣𝑚𝑚𝑚𝑚𝑑𝑑𝑣𝑣�𝑓𝑓𝑖𝑖,𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑𝑚𝑚��

𝑣𝑣𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑

𝑛𝑛𝑓𝑓𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑
𝑖𝑖=1

𝑛𝑛𝜋𝜋𝑚𝑚𝑚𝑚𝑑𝑑𝑡𝑡𝑚𝑚
 � 𝑛𝑛𝜋𝜋𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑
𝑛𝑛𝜋𝜋𝑚𝑚𝑚𝑚𝑑𝑑𝑡𝑡𝑚𝑚

� + ∑(𝑐𝑐 − 0.0142)2                     (2-13) 

2.5 Results 

Selected results from hydrologic simulations were used in a ground-penetrating 

radar simulation to generate dispersive data.  These simulated data were then analyzed 

using the dispersion analysis outlined by van der Kruk et al. [2006] to obtain dispersion 
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curves for the simulated data.  These dispersion curves were inverted using the methods 

outlined in Sections 3.4.3 and 3.4.4. 

2.5.1 Hydrologic Simulation Results 

Figure 2.4a shows the selected water content profiles from simulations in 

HYDRUS-1D where the n-parameter of the Mualem-van Genuchten soil model was varied.  

The maximum first derivative of the water content profile (Figure 2.4b) was found to 

correlate well with the maximum GPR reflection coefficient, however, the profiles are 

displayed using water content to emphasize the hydrology as the controlling factor.  

Furthermore, we can also expect dispersion to occur as this reflector at 0.10 m depth, i.e., 

the inferred thickness of the induced waveguide (h), is comparable to the wavelength of 

the incident GPR signal. 
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Figure 2.4:  Effects on the water content profile by changing the n-parameter of the Mualem-van 

Genuchten soil model: a) Water content profiles for each simulation showing how the profile changes with 

capillarity.  Note that high values of the Mualem-van Genuchten parameter ‘n’ correspond with low values 

of capillarity; b) First derivative of water content profiles from Fig 4a as a percent gradient.  Note how the 

sharpness of the water content profiles decreases significantly with increasing capillarity. 

Visible in the hydrologic simulation results (n = 1.5 – 4) is the presence of an upper 

wetted region caused by the infiltrating water above 0.1 m depth (Figure 2.4a).  Below this 

depth, the water content profiles resemble equilibrium conditions for their respective 

Mualem-van Genuchten parameters, ultimately reaching the saturated water content of 

0.35 vol. vol.-1.  As n increases, i.e., the capillarity of the soil decreases, there is a significant 

decrease in the water content of the upper 0.10 m.  Furthermore, as n increases, the 
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sharpness of the boundary between the wetted and background regions increases, raising 

the maximum first derivative, and therefore the reflection coefficient, at this depth (Figure 

2.4b).  As this contrast in the water content profile decreases, the conceptual model of a 

two-layer geometry, i.e., waveguide and lower halfspace, is increasingly less applicable. 

2.5.2 GPR Simulation Results 

Figure 2.5 shows the trace-normalized GPR simulation results for a range of 

capillarity values.  Visible in all simulations are the airwave (A) and the groundwave (B) 

arrivals associated with the direct arrival of the GPR energy through the air and ground, 

respectively.  In addition to these arrivals, Figure 2.5a–c show a unique characteristic 

described as ‘shingling’ (C) by van der Kruk et al. [2006], which is indicative of dispersion.  

Figure 2.5a shows the GPR simulation for the shock front case which has the largest 

amount of visible dispersion in the multi-offset section with the dispersion beginning to 

appear around 0.30 m offset.  This shingling begins as a reflection observed at roughly 3 

ns traveltime, followed by a series of multiples that interleave with each other.  As the 

original reflection fades, the first multiple appears at 6 ns and becomes the dominant 

arrival.  This continues as the energy bounces between the upper and lower interfaces of 

the waveguide creating the dispersion. 
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Figure 2.5:  Trace normalized GPR simulation outputs for a) shock front case; b) n = 4.0; c) n = 2.8; d) n 

= 1.5; and e) no guide case.  Arrivals are shown as follows: A – airwave, B – groundwave, C – shingled 

appearance indicative of dispersive waveguide. 

A soil with minimal capillarity (i.e., n = 4.0) shows a similar pattern of dispersion 

(Figure 2.5b). However, the shingling is less prominent than the case of Figure 2.5a and 

does not begin to appear until an antenna offset of about 0.50 m.  This illustrates that the 

contrast between the two layers is decreasing and a larger offset must be attained before 

the reflection coefficients in Eq. 2-1 reach unity, i.e., the critical distance must be attained 

between source/receiver pairs.  Unprocessed simulated radar data (not shown) indicates the 

amplitude of the dispersed wave decreasing as the lower interface becomes more diffuse 

until no dispersion is visible when the waveguide is removed.  This loss of amplitude of 

the dispersed wave is likely caused by the decrease in reflection coefficient as capillarity 

increases.  While the shingling effect is a good visual indicator for the occurrence of 
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dispersion in raw multi-offset sections, dispersion analysis can provide a considerable 

amount of additional information. 

2.5.3 Dispersion Modes vs. Capillarity 

The GPR simulation results shown in Figure 2.5, as well as additional cases, were 

analyzed for dispersion as described in Section 3.3.2 to obtain phase-velocity spectra.  

Figure 2.6a shows the normalized phase-velocity spectrum for the shock front case.  The 

red areas of the plot indicate the dominant phase velocity of a given frequency, i.e., the 

modal dispersion curve.  Multiple dispersive modes (curves) are visible in the spectra with 

a new mode appearing for every 500 MHz increase in frequency.  The discontinuity 

between curves is associated with the cutoff frequency for each mode of dispersion (Eq. 2-

3 to 2-6).  For the shock front case, velocity values range from 0.07 – 0.14 m ns-1 while the 

frequency ranges from 0 – 3000 MHz for the entire spectrum.  The high number of 

dispersive modes indicates that there is a significant amount of energy being trapped in the 

waveguide by the upper and lower boundaries and that the critical angle is relatively small.  

These results show a similar pattern to those observed by van der Kruk et al. [2006] for 

idealized numerical simulations of layered media. 

The spectra for the hydrologic simulations (Figure 2.6b-d) still show multiple 

modes of dispersion resulting from the precipitation induced waveguide.  The number of 

dispersive modes present in each frequency spectra, however, decreases while each mode 

covers a larger range of frequencies as the lower wetted zone boundary becomes more 

diffuse (Figure 2.6c, d).  Furthermore, the range of phase velocities decreases as soil 
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capillarity increases providing evidence of less dispersion as the phase velocities and group 

velocity converge to the same value.  This is illustrated well in Figure 2.6e where no 

waveguide is present and the velocity range has collapsed to a singular value of 0.092 m 

ns-1 which is identical to the velocity input into the GPR model. Given that the thickness 

of the waveguide is constant, these observations are consistent with Eq. 2-6 which shows 

that for a given frequency bandwidth, the number of higher order modes increases with 

fixed waveguide thickness and increasing contrast between the waveguide and lower half-

space permittivities [van der Kruk 2006].
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Figure 2.6:  Normalized frequency spectra of the GPR simulation results for a) shock front; b) n = 4.0; c) n = 2.8; d) n = 1.5; and e) no waveguide. 
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The decrease in dispersive modes with increasing capillarity, i.e. decreasing n-

value, is illustrated by the average frequency spectrum of selected simulations (Figure 2.7).  

The source wavelet of the GPR simulations has a clearly defined central frequency of 900 

MHz.  Transitioning from the most diffuse lower boundary of the waveguide, i.e., n = 1.5, 

to the extreme shock case there is a shift from a uni-modal frequency distribution to a multi-

modal frequency distribution.  The peaks of the multi-modal shock frequency distribution 

reflect the central frequency of each mode, while the troughs indicate the cutoff frequencies 

between modes (indicated with vertical lines for each n).  This clearly demonstrates how 

the different modes present in the dispersed GPR data vary depending on the distribution 

of water within the dispersive waveguide. 

 

Figure 2.7:  Average frequency spectra for selected GPR simulations illustrating the transition from a uni-

modal frequency distribution (source wavelet) to multi-modal frequency distribution (shock front case).  

Vertical lines indicate interpreted cutoff frequencies for individual modes. 
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2.5.4 Inversion Results and Discussion 

Dispersion curves were picked from the phase-velocity spectra (Figure 2.6) and 

inverted as discussed in section 3.4.3 and 3.4.4 to resolve water content profiles.  Though 

inversions of single and multiple modes can be used [van der Kruk 2006; van der Kruk et 

al. 2010], we choose to focus on the joint inversion of the fundamental (TE0) and first 

order (TE1) dispersive modes (Figure 2.1) as these are present in all phase-velocity spectra 

(Figure 2.6) and higher order modes are not commonly available.   

The data fit of the two parameterization methods along with the corresponding final 

cost function values are shown in Figure 2.8.  To allow direct comparison of the data misfit, 

the smoothness term in the cost function for the piece-wise linear inversion (Eq. 2-13) was 

omitted.  For all values of the soil’s n-parameter, a very small misfit to the data is achieved, 

regardless of the choice of the model, i.e., piece-wise linear versus two-layer.  Note that 

the cost function value is smallest, however, when using the piece-wise linear model, 

indicating that we are capturing more information that is relevant to the dispersion with 

this parameterization. 
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Figure 2.8:  Data and inversion results for both inversion methods for a) n = 4.0; b) n = 3.2; c) n = 2.8; and 

d) n = 1.5.  Cost function units are dimensionless. 

The actual water content profiles from HYDRUS-1D are compared to the two-layer 

and piece-wise linear inversion results for selected values of the soil n-parameter in Figure 

2.9.  The profiles returned from the piece-wise linear inversion closely follow the actual 

water content depth profiles to 0.2 m.  Below a depth of 0.2 m the piece-wise linear profile 

reflects the initial water content profile entered into the SCE algorithm.  In contrast, the 

two-layer model’s inherently blocky structure prevents it from capturing the detailed 

gradational nature of the water content change, though it does show net shifts in water 

content that are representative of the actual profile.  The root mean squared error (RMSE) 

was calculated from 0-0.20 m depth to quantify the misfit of the water content profiles 

returned from both inversion approaches (Figure 2.9).  Using a point by point assessment 
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of the misfit based on the node locations from the HYDRUS-1D model, the piece-wise 

linear model RMSE (PwLallpoints) is substantially smaller than the two-layer model RMSE 

(2Layerallpoints).  In this case, we see a 50% reduction, on average, of the RMSE when using 

the piece-wise linear model.  This illustrates that more information about the distribution 

of water within the waveguide is captured by utilizing a continuous piece-wise linear 

function compared to the blocky two-layer model. 

 

Figure 2.9:  Results of two-layer and piece-wise inversions compared to actual and average water content 

profile from HYDRUS for a) n = 4.0; b) n = 3.2; c) n = 2.8; and d) n = 1.5. RMSE values are in water 

content, i.e. vol. vol-1. 

It is important to note, however, that interpretation of the two-layer model results 

should not, in general, be used to infer the water content at a specific point in the soil 

column, but rather represents an average or effective value over a discrete depth interval.  

For example, van der Kruk et al. [2010] previously demonstrated that the volumetric 
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average of the permittivities obtained from the two-layer inversion of dispersion data 

produces a similar result as that obtained from a single layer inversion. 

In addition to the inversion results, we have therefore also plotted the average water 

content profile (HYDRUS Average in Figure 2.9), calculated by upscaling the actual water 

content profile obtained from HYDRUS-1D using the volumetric average over each depth 

interval returned by the two-layer inversion.  From this we see that the two-layer model 

result is representative of the actual average water content for a given section of the profiles 

to a depth of 0.2 m.  The fit is best for the first layer of the two-layer model and it degrades 

for deeper layers.  The volume-weighted RMSEs between the two-layer inversion results 

and the up-scaled actual water content obtained from HYDRUS-1D are indicated by the 

2LayerRMSE in Figure 2.9.  Note that these RMSE values should not be directly compared 

to the other RMSE values, as they were not calculated in a similar manner. The relatively 

small values obtained indicate, however, that the two-layer model closely describes the 

volumetric average of the water content over the specific depth interval of each layer, as 

noted by van der Kruk et al., [2010]. 

The piece-wise linear model has shown the ability to capture significant 

information about the water content profile while maintaining versatility that would require 

substantially more parameters if a multi-layer model were used.  While the two-layer 

models may be able to explain dispersion of GPR energy nearly as well, the geometry of 

the layers has a significant impact on the interpretation of the results as average properties.  

Perhaps more important, however, is that the ‘blocky’ profile of water content produced 
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by the layered medium model is far from what a hydrologist would expect to observe in 

the subsurface in response to infiltration, whereas the piece-wise linear parameterization 

results in physically-reasonable profiles.  While there are many applications where average 

water content estimates are appropriate, there are also applications where it is important to 

accurately represent the depth distribution of water content.  Significant value therefore 

rests in both of the model parameterizations, however, practitioners should be aware that 

they should select an appropriate model that suits the application. 

2.6 Conclusions 

Combined hydrologic and GPR forward modeling was used to test the hypothesis 

that dispersion would increase as the influence of capillarity in a porous media decreased.  

Capillarity of the porous media was controlled using the n-parameter of the Mualem-van 

Genuchten soil model. We observed that the dispersion of GPR waves varies with capillary 

effects given a precipitation induced dispersive waveguide controlled by hydrologic 

properties of the soil.  We found that as the sharpness of the lower boundary of the 

dispersive waveguide decreases the number of dispersive modes in the GPR data decreases.  

Specifically, there is a clear difference in the dispersion of GPR waves when they encounter 

diffuse boundaries with a gradient of water content. 

Given the sensitivity of dispersion data to the hydrologic characteristics of 

precipitation-induced dispersive waveguides, a revised parameterization of the forward 

model for the dispersion of GPR waves in a porous media was generated.  Rather than 

represent the subsurface using layers, we utilized a piece-wise linear function which better 
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represents the gradational nature of the distribution of water within a waveguide.  With this 

revised model, we were able to decrease the misfit between the dispersion data and the 

dispersion simulation which indicates that the piece-wise linear model incorporates more 

information about the distribution of water within a precipitation-induced waveguide. The 

misfit in the estimated water content distribution over the depth of the waveguide showed 

a 50% decrease, confirming that the piece-wise linear function outperforms the two-layer 

approach for fitting the full water content profile. We again stress, however, that the layered 

model is able to accurately capture depth-averaged water content values.  Specifically the 

inversion results in this work: i) stress the importance of selecting a representative model 

for heterogeneity (e.g., layer versus piece-wise linear), ii) illuminate the implications of 

those models in a hydrologic context, and iii) show that dispersive GPR data contains 

substantial information regarding the distribution of water in dispersive waveguides. 

Given these findings, we expect to have a reasonable amount of success in resolving 

hydrologic properties by coupling the dispersive forward model to a hydrologic forward 

model.  Given that this was a strictly numerical study, further research is warranted to 

explore the effects of factors encountered when field data is considered, e.g. noise, 

heterogeneities, and signal attenuation.  In conclusion, this study demonstrates that 

dispersive GPR data holds valuable information regarding the distribution of water in 

dispersive waveguides and shows promise for capturing the early-time dynamics of 

infiltration in homogeneous soils. 
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CHAPTER 3 - RESOLVING PRECIPITATION-INDUCED WATER CONTENT 

PROFILES BY INVERSION OF DISPERSIVE GPR DATA 

3.1 Abstract 

Automatically collected high-resolution GPR data were collected in common 

midpoint and common offset profile geometries before, during, and after a 24 minute 

forced infiltration event in a large sand tank.  Data showed evidence of dispersion during 

early infiltration times (5-10 minutes), indicated by a shingled appearance of arrivals on 

trace-normalized common midpoint projections and a dependence between phase-velocity 

and frequency of the GPR signal.  Dispersion curves were picked from selected profiles 

and inverted using a piece-wise linear function and a blocky layer model to resolve water 

content profiles of the infiltrating wetting front.  Results from the inversions show good 

agreement with in-situ soil moisture measurements and a calibrated hydrological model.  

The piece-wise linear model, however, is able to honor the gradational nature of 

hydrologically induced waveguide phenomena and is in better agreement with observed 

soil moisture data.  More work is needed, however, to quantify the effect of waveguide 

heterogeneity on the dispersion of the energy given that evidence of non-uniform water 

flow was observed in soil moisture probe data and interpreted common offset profiles.  In 

conclusion, dispersive data holds substantial information about the distribution of water 

within the waveguide which may prove to be valuable for resolving important soil 

hydraulic properties through non-invasive automated time-lapse GPR imaging of 

infiltration processes. 
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3.2 Introduction 

The strong relationship between electromagnetic wave velocity and volumetric 

water content in soils has allowed ground-penetrating radar (GPR) to become a valuable 

tool for studying subsurface variability [Huisman et al. 2003; Topp et al. 1980].  The 

fundamental dependence of GPR signals on water content makes this imaging tool 

particularly promising for non-invasive monitoring of hydrologic processes over multiple 

scales in time and space [Busch et al. 2013; Grote et al. 2005; Lunt et al. 2005; Mangel et 

al. 2012; Mangel et al. 2015a; Moysey 2010; Steelman et al. 2012; Vellidis et al. 1990].  

Most surface-based imaging studies focus on using wave traveltime information to infer 

electromagnetic velocities, such as the normal moveout behavior illustrated for central 

mid-point (CMP) surveys in Figure 3.1a-c.  Standard traveltime analyses are not possible 

early in an infiltration event, however, when the wetting front is near the ground surface 

and neither the direct groundwave nor reflected waves from a shallow wetting front can be 

readily identified in the data.  Regardless, van der Kruk et al., [2010] showed that the 

shallow wetted zone produced by a rainfall event may act as a waveguide that causes 

dispersion within the GPR data.   

 Electromagnetic wave dispersion occurs when individual frequency components, 

i.e., phases, within the GPR signal travel at different velocities [Arcone 1984; van der Kruk 

2006; van der Kruk et al. 2006].  This phenomenon can be produced by a shallow, low-

velocity waveguide that is less than the GPR wavelength in thickness such that reflection 

multiples interfere with each other and the direct groundwave to create a shingled 
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appearance in the data (Figure 3.1d-e).  The frequency dependence of the wave velocity is 

readily described by dispersion curves in the phase-velocity spectrum (Figure 3.1f).  The 

shape and number of dispersion curves, i.e. dispersive modes, that occurs is dependent 

upon the permittivity and thickness of the waveguide layer as well as the distribution of 

water within these layers [Bakker et al. 2011; Mangel et al. 2015b; van der Kruk et al. 

2010].
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Figure 3.1:  Differences between non-dispersive and dispersive behavior: a) conceptual model of non-dispersive behavior showing the separation of the 

groundwave (black solid line) and reflected raypaths (red solid line); b) simulated CMP data from (a) showing the moveout of the groundwave at a constant 

velocity (black dashed arrow); c) phase-velocity spectrum from data in (b); d) conceptual model of dispersive behavior showing interference between the 

reflected (red) and groundwave (black) raypaths; e) simulated CMP data from (d) showing group moveout (dashed black arrow) and individual phase moveouts 

(solid arrows); f) phase-velocity spectrum from data in (e). 

 



 

62 

 

van der Kruk et al. [2010] showed that the information captured within GPR 

dispersion curves can be used to estimate water content within a layered model of the 

subsurface, where the waveguide represents a zone of infiltrating water overlying an 

initially dry soil.  A layer model is not necessarily the best representation of a wetting front, 

however, as the water content at the wetting front will vary with depth due to capillary 

effects [Mangel et al. 2015b].  Mangel et al. [2015b] used a numerical study to show that 

analysis of GPR dispersion data results in an estimate of water content that averages over 

the variability within each layer.  Furthermore, these authors showed that dispersive GPR 

data contain sufficient information to constrain a piece-wise linear model for velocity 

variations with depth.  This model was able to better reproduce the variability in water 

content associated with the wetting front compared to a two-layer model.  The authors, 

however, only applied the analysis to idealized numerical simulation results.  This work 

therefore extends the analysis to assess whether the method can be applied to real empirical 

data. 

The objectives of this work are i) to evaluate the feasibility of a newly 

parameterized model that represents the waveguide layer using a piece-wise linear equation 

with empirical data, ii) to advance the understanding of the infiltration process, and iii) 

provide a non-invasive method for determining volumetric soil moisture content profiles. 

3.3 Methods 

 In this manuscript we present the experimental methods and overview of the 

analysis techniques relevant to the specific experiment performed.  The fundamentals of 
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waveguide dispersion and modal theory are given by Arcone et al. [2003] and Mangel et 

al. [2015b] provides details of the blocky layer and piece-wise linear models used in the 

inversions for this paper.  Additional information regarding the application of dispersive 

GPR data in hydrogeophysical applications can be found in van der Kruk [2006], van der 

Kruk et al. [2006], and van der Kruk et al. [2010]. 

3.3.1 Data Collection 

Infiltration experiments were performed in a large lysimeter (4 m x 4 m x 2m) 

constructed from wood and lined with a rubber mat for waterproofing that is partially filled 

with sand to a depth of 0.6 m (Figure 3.2).  Irrigation sprayers were used to apply water at 

a constant, though not necessarily completely uniform, rate across the soil sand.  Soil 

moisture probes were installed at multiple locations and depths in the irrigated area to log 

volumetric water content at 10 second intervals.  Moisture probes were placed at the 

perimeter of the wetted area to minimize reflections from these objects in the GPR data. 

GPR data were collected using a 1000 MHz bistatic radar coupled to an automated 

data collection system [Mangel et al. 2015a].  Data collection consisted of two common 

midpoint profiles (CMPs) along the y-direction followed by two constant offset profiles 

(COPs) collected in both the x and y directions.  CMPs were collected at x = 2.0 m, y = 2.0 

with offsets ranging from 0.17 – 2.17 m and trace spacing at 0.006 m; two CMPs were 

collected in each survey cycle as the antennas were spread apart with increasing offset 

(CMP1) and subsequently brought back together again (CMP2).  Perpendicular COPs were 

collected in the y-direction at x = 2.0 and in the x-direction at y = 2.0.  Offset was set to a 



64 

 

constant value of 0.17 m with trace spacing at 0.006 m.  This data collection cycle [CMP, 

CMP COPx, COPy] took 30 seconds to complete, and was repeated 50 times during the 27 

minute experiment for a total of 164,000 traces.  Two cycles of data collection were 

completed prior to initiating irrigation of the surface of the sand at a constant flux rate of 

0.003 m/min.  The surface was irrigated for a total of 24 minutes during the experiment 

and ceased just before GPR data collection completed. 

 

Figure 3.2:  Experimental setup for the experiment. 

3.3.2 HYDRUS Inversion 

Data available from the soil moisture probes was used to invert for parameters of 

the Mualem-van Genuchten soil model, which is commonly used to describe the soil water 

retention curve [Mualem 1976; van Genuchten 1980], using HYDRUS-1D[Simunek and 

van Genuchten 2005].  Key parameters estimated include saturated water content, 𝜃𝜃𝑠𝑠, 
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saturated hydraulic conductivity, 𝐾𝐾𝑠𝑠, and the two shape parameters, α, and n.  Starting and 

final parameters from this inversion are listed in Table 3-1.  Starting parameters were 

determined from lab-scale core experiments using a hanging column and constant head 

permeameter.  Final parameters were used to forward model the hydrologic response, 

producing a 1D profile of the water content over time to compare with inversion results. 

Table 3-1:  Mualem-van Genuchten soil model parameters from inversion of the soil moisture data. 

 θs 
[vol./vol.] 

Ks 
[m/min] 

α 
[1/m] 

n 
[-] 

Starting Value 0.38 0.046 5.8 4.6 
Final Value 0.365 0.0123 6.8 3.72 

 

3.3.3 Data Processing and Inversion Methods 

 Dispersive GPR data sets were selected for further analysis after plotting the trace 

normalized CMP data and evaluating the presence of dispersion, e.g. shingled arrivals.  

Given that these data likely occur near the beginning of the experiment, CMPs collected 

during the first 10 minutes were evaluated and processed using the Fourier transform to 

determine if there was a dependency between frequency and phase-velocity [van der Kruk 

2006].  Dispersion curves were picked from the phase-velocity spectrum for CMPs that 

exhibit this behavior and used as data in the inversions for waveguide properties, i.e., the 

full GPR signal is not used in the inversion.  In total, this provided 18 dispersive CMPs 

collected between 5-10 minutes after the start of the experiment.  Inversions of the 

dispersion curves are performed using a single blocky layer and a piece-wise linear 

function to represent the waveguide layer. 
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For the single layer inversion, a global grid search followed by a simplex search of 

the top performing models is used to return a single effective layer value for the waveguide 

layer and lower halfspace. 

𝐶𝐶(𝜀𝜀1, 𝜀𝜀2, 𝑧𝑧) =
∑ �𝑣𝑣𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑�𝑓𝑓𝑖𝑖�−𝑣𝑣𝑚𝑚𝑚𝑚𝑑𝑑(𝑓𝑓𝑖𝑖,𝜀𝜀1,𝜀𝜀2,𝑑𝑑)�

𝑣𝑣𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑓𝑓𝑖𝑖)
𝑛𝑛𝑓𝑓𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑
𝑖𝑖=1

𝑛𝑛𝜋𝜋𝑚𝑚𝑚𝑚𝑑𝑑
�𝑛𝑛𝜋𝜋𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑
𝑛𝑛𝜋𝜋𝑚𝑚𝑚𝑚𝑑𝑑

�                         (3-1) 

Where 𝑓𝑓 is the frequency, 𝜀𝜀1and 𝜀𝜀2 are the permittivity for the waveguide and lower 

halfspace, respectively, 𝑧𝑧 is the waveguide thickness, 𝑣𝑣𝑑𝑑𝑤𝑤𝑡𝑡𝑤𝑤and 𝑣𝑣𝜋𝜋𝑣𝑣𝑑𝑑 are the picked and 

modeled dispersion curves, and 𝑛𝑛𝑓𝑓𝑑𝑑𝑤𝑤𝑡𝑡𝑤𝑤  and 𝑛𝑛𝑓𝑓𝜋𝜋𝑣𝑣𝑑𝑑 are the number of frequencies available 

in the data and the modeled dispersion curves. 

For the piece-wise linear inversion, the shuffled complex evolution (SCE) 

algorithm [Duan et al. 1993] is used to return parameters of a five-layer piece-wise linear 

function,  as well as a regularization parameter, β, which controls the influence of the data 

fit versus the model fit.  The piece-wise linear function is defined as: 

𝑓𝑓(𝑧𝑧) =  

⎩
⎪
⎨

⎪
⎧
𝑚𝑚1𝑧𝑧 + 𝑏𝑏1 0 ≤ 𝑧𝑧 < 0.04
𝑚𝑚2𝑧𝑧 + 𝑏𝑏2 0.04 ≤ 𝑧𝑧 < 0.08
𝑚𝑚3𝑧𝑧 + 𝑏𝑏3 0.08 ≤ 𝑧𝑧 < 0.12
𝑚𝑚4𝑧𝑧 + 𝑏𝑏4 0.12 ≤ 𝑧𝑧 < 0.16
𝑚𝑚5𝑧𝑧 + 𝑏𝑏5 0.16 ≤ 𝑧𝑧 < 0.20⎭

⎪
⎬

⎪
⎫

                                          (3-2) 

This inversion uses the following cost function which utilizes an extra term to impose 

smoothness of the water content distribution in space: 

𝐶𝐶(𝑓𝑓(𝑧𝑧),𝛽𝛽) =  
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The smoothness constraint on the solution is defined as the squared error between the 

smoothness of the profile and an average smoothness value, 0.0142, calculated from 

multiple simulation results as the capillarity of the soil was varied [Mangel et al. 2015b].  

Smoothness, s, is defined as the average squared second derivative taken over all the points, 

N, of the profile. 

 The workflow for these inversions attempts to minimize the amount of prior 

information used to determine waveguide properties.  First, the single layer inversion is 

performed with the only constraint being that the waveguide layer have a higher 

permittivity than the lower halfspace.  This is reasonable considering this is a fundamental 

physical feature that is required for dispersion to occur.  Once the single layer inversion 

completes, the estimated parameters are used as a starting model to fit the piece-wise linear 

function.  The SCE algorithm needs bounds for all parameters, which is not straightforward 

to obtain for the parameters of the piecewise linear function.  The bounds for the piecewise 

linear function for water content in each layer were therefore determined from an ensemble 

of water content profiles generated by varying the n-parameter of the Mualem-van 

Genuchten soil model for multiple values in the range of 1.5-4.0 within HYDRUS1D.  We 

solely varied this parameter due to the fact that it controls the capillarity of the soil, which 

effects the gradient of the water content profile between the wetted and non-wetted zones.  

Bounds for the regularization parameter were set at 1 and 1000, with the starting parameter 

set to 10. 



68 

 

3.4 Results 

 Although there is a wealth of hydrogeophysical information available in the data 

for this experiment, the focus of this paper revolves around analysis of the dispersive data 

sets, which were collected between 5-10 minutes after imaging began.  We will 

quantitatively compare results from the inversion of dispersion curves derived from these 

data to measurements from in-situ soil moisture probes. Results obtained from the 

calibrated HYDRUS-1D model will be used to determine if our assumptions of a 1D profile 

are correct by qualitatively comparing the shape of dispersion curves generated by the 

HYDRUS model profiles to those from the data. 

3.4.1 Soil Moisture Data 

 Data from the embedded soil moisture probes show changes in volumetric water 

content of the soil in response to a forced irrigation flux at the sand surface (Figure 3.3).  

As expected, the first response from a probe to the infiltrating water occurs at a depth of 

0.02 m (lateral position: x=2.5m and y=2.0m).  Two additional probes were buried at the 

same position, but 5 and 10 cm below the shallow probe (i.e., at depths of 0.07 and 0.12m 

from the surface).  These probes respond sequentially in time as would be expected with a 

vertically migrating wetting front.  If the infiltration front were spatially uniform, we would 

also expect the first response from other probes to respond sequentially with depth, 

regardless of their position.  We observe, however, that the arrival of the wetting front 

occurs in the following depth sequence: 0.10, 0.04, 0.07, 0.08, 0.06, 0.12, and 0.20 m.  The 

probes at a depth of 0.10 and 0.06 m are clearly out of sequence and indicate spatial 



69 

 

variability in the wetting front depth and, therefore, the thickness of the GPR waveguide.  

Both of these probes are located along one edge of the irrigated region (y=1.6m) and show 

opposite behaviors, i.e., the probe at 0.10m depths shows an early response, whereas the 

probe at 0.06m depth shows a late arrival of the wetting front (Figure 3.3c).  This behavior 

may be related to application of a non-uniform flux at the edge of the wetted zone by the 

irrigation system, which has been observed during testing of the irrigation system. 
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Figure 3.3:  Volumetric water content measured at the in-situ moisture probe locations: a) probes located 

at y = 2.4 m; b) probes located at the CMP location, y = 2.0 m; c) probes located at y = 1.6 m.  The legend 

reflects the [x, y, z] location of each moisture probe in meters.  Vertical solid blue lines indicate the start 

and stop of irrigation. The grey area indicates the time when dispersion was detected in the CMP gathers. 

  



71 

 

3.4.2 GPR Data 

Of the 100 CMPs collected during this experiment, 18 exhibited evidence of 

dispersive behavior.  These data were selected knowing the general time when dispersion 

would occur, and by inspecting the CMPs for evidence of dispersion.  All CMP data is de-

wowed, time-zero corrected, and trace normalized before being analyzed for frequency 

content. 

As water moves through the soil column, the GPR data change dramatically, 

showing evidence of dispersion between 5-10 minutes experiment time, i.e. about 4 

minutes after irrigation begins (Figure 3.4).  Prior to irrigation, the airwave (A), 

groundwave (G), and reflection (R) caused by the bottom of the sand layer at 0.60 m depth 

appear in the data (Figure 3.4a).  After irrigation begins, evidence of dispersion is observed 

(high amplitude arrivals outlined by the thick dashed lines), making it difficult to identify 

the groundwave and bottom of sand reflection (Figure 3.4b).  Controlling the overall 

moveout of the package of dispersed waves is the group velocity (thick black arrows), with 

individual arrivals moving out at different apparent phase velocities (thin dashed arrows) 

(Figure 3.4c-d).  Once the waveguide layer is thicker than the wavelength of the GPR 

signal, evidence of dispersion is no longer present, however, arrivals other than the 

groundwave and airwave are still difficult to resolve (Figure 3.4e) 
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Figure 3.4:  CMP data collected during the experiment: a) pre-irrigation initial conditions showing the (A) airwave, (G) groundwave, and (R) reflection 

arrivals; b – d) data collected during irrigation showing evidence of dispersion encased by dashed lines, the apparent group velocity moveout (solid 

arrow) and phase velocity moveouts (dashed arrows); e) return to non-dispersive conditions during irrigation. 
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3.4.3 Dispersion Analysis and Inversion Results 

The phase-velocity spectrum was calculated for each of the dispersive CMPs by 

correcting the data for normal moveout and summing amplitudes over all offsets in the 

frequency domain for a range of velocity values.  This analysis produces the phase-velocity 

spectrum that illustrates the dependence between phase velocity and frequency, allowing 

us to pick the dispersion curves for inversion (Figure 3.5). 

The first, or fundamental, mode of dispersion was visible in all data sets, with 

higher order modes appearing as broken or discontinuous energy (Figure 3.5c).  This 

indicates that the signal to noise ratio at large offsets was relatively low, also indicated by 

substantial noise in the data at large offsets (Figure 3.4).  Forward modeling of the 

dispersion curves using profiles from HYDRUS-1D indicated that higher order curves 

should be present, however, they were not picked due to inconsistencies in the dispersion 

spectra.  In an attempt to resolve the higher order modes, a limited offset range was used, 

but produced similar results for all curves.  Additionally, inversion results from the multiple 

fundamental curves obtained by altering the offset range showed identical results for 

waveguide properties. 
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Figure 3.5:  Phase velocity spectra and data fit of inversion results for dispersive data at a) 5.0 minutes; b) 7.2 minutes; and c) 9.4 mintues. Data misfit 

values for the inversions are plotted. 
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The first dispersion curve was picked for all phase velocity spectra and used to 

invert for waveguide properties in the single layer and piece-wise linear inversions.  

Calculating the data norm for both the single-layer and piece-wise linear methods (Eq. 3-

3) shows that the data fit is comparable, as indicated by the similar cost function values 

given in Figure 3.5.  The dispersion curve generated from forward modeling in HYDRUS-

1D typically follows the trend of the dispersion curve, but is off in magnitude in some 

cases.  While shifts in the dispersion curves likely related to the HYDRUS-1D model 

failing to accurately replicate the water content of the waveguide and the lower halfspace 

(Figure 3.5c), deviations in the shape of the data dispersion curves compared to the 

idealized HYDRUS-1D curves indicate increased noise in the data, possibly caused by a 

non-uniform waveguide (Figure 3.5a).  Although both the HYDRUS-1D simulations and 

the dispersion analysis assume a 1D flow regime, water content profiles produced in the 

experiment do not necessarily honor those assumptions. 
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Figure 3.6:  Results from dispersion curve inversion compared to probed data and HYDRUS inversion results at a) 5.0 minutes; b) 7.2 minutes; and c) 

9.4 minutes experiment time; d) RMS error between probes and inversion results for all dispersive data.  Readings from moisture probes are plotted 

using depth of the probe and Pythagorean distance (l) from the CMP location. 
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 Posterior models for the waveguide layer from both inversion methods are in fair 

agreement with measurements from in-situ soil moisture probes and show a thicker and 

wetter waveguide layer over time, which is consistent with time-dependent spatial patterns 

of 1D infiltration, even though the inversions were not constrained in time (Figure 3.6).  In 

general, the response from the soil moisture probes is relatively heterogeneous when 

compared to the dispersion inversion results, especially considering the probe at 0.10 m 

depth, which responded out of sequence to the infiltrating water (Figure 3.3c).  Noisy probe 

measurements should be expected when compared to the dispersion inversions, however, 

considering the small sample volume of the probes (< 1L) compared to the GPR. 

From root mean squared error (RMSE) calculations, the piece-wise linear inversion 

returns a consistently better fit to the probe data (Figure 3.6d). To calculate the RMSE 

between the dispersion inversion results and the probes, the soil moisture probe at 0.10 m 

depth was ignored.  For the single layer inversion, probe measurements above and below 

the waveguide depth returned by the inversion were averaged together.  This enables the 

point measurements from the probes to be compared to the average soil moisture values 

returned by the single layer inversion.  Soil moisture probes were compared directly to the 

piece-wise linear function, considering that it is a continuous function.  The results of the 

layer inversion, however, are in excellent agreement with average soil moisture from the 

HYDRUS-1D model taken over the same interval, indicating that the single layer model is 

performing as expected and returning a reliable effective layer value and potentially less 

susceptible to noise in the data.  The misfit between the piece-wise linear model and the 
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HYDRUS1D results, however, indicates that this method may be more susceptible to noise 

in the data potentially caused by non-uniform flow. 

If all results from the 18 CMPs analyzed are considered, however, we can see that 

the layer inversion seems less stable in time, with fluctuating thicknesses of the waveguide 

layer that are inconsistent with time-dependent spatial patterns expected during infiltration 

(Figure 3.7a).  Although the layer inversion results reflect an overall trend of an increasing 

waveguide thickness, the piece-wise linear inversion results appear to be more stable in 

time, with the exception of three profiles at 8, 8.5, and 9 minutes (Figure 3.7b).  

Additionally, the piece-wise linear inversion results return consistent profiles for CMPs 

collected at short time intervals; a pattern that arises from the data collection pattern [CMP, 

CMP, COPx, COPy] with short time gaps between two CMPs, followed by a longer period 

in which the common-offset data were collected. (Figure 3.7b-c).  Most importantly, the 

piece-wise linear results reflect a much more diffuse boundary between the wetted and 

non-wetted layers, which is in good agreement with the HYDRUS-1D results (Figure 3.7c).  

Both inversion methods return a few erratic profiles after 8 minutes, however, no spikes in 

the data norms for these inversions are observed.  This may indicate that dispersive 

conditions are waning, considering that the probes at 0.07 and 0.10 m depth show increases 

in water content at this time.  Note that for 1000 MHz antenna, dispersion will not occur 

once the waveguide reaches 0.10m depth.
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Figure 3.7: Results from inversion of all dispersive CMP data using: a) the single layer inversion and b) the piece-wise linear inversion.  The results 

from c) the HYDRUS 1D simulation are included for comparison. 



 

80 

 

3.5 Discussion 

 Data quality for the inversion may be impacted by heterogeneities in the waveguide 

layer caused by non-uniform flow of water through the soil column.  This was evident in 

the soil moisture probe data with deeper probes measuring increases in water content prior 

to shallower probes.  Additionally, evidence of heterogeneity is observed in GPR reflection 

images (i.e., COPs) by interpreting the data through time as the only changes are caused 

by the infiltration of water (Figure 3.8). 

Prior to irrigation, the data show that the groundwave (G) and bottom of sand 

reflection (R) are relatively flat, indicating homogenous water content across the profile 

(Figure 3.8a).  During irrigation of the sand surface at 5.4 minutes into the experiment, 

however, the data show a substantially heterogeneous response with undulations in the 

groundwave (G) and wetting front reflection (W) (Figure 3.8b).  Given that the data are not 

migrated, this could potentially be explained by lateral variations in velocity. Legs of 

diffraction hyperbolas (D) are also visible in the data indicating the existence of small scale 

heterogeneities at the interface between the wetted and non-wetted layers which are 

scattering the GPR energy (Figure 3.8b).  The non-uniform flow is evident in a later COP 

as well (Figure 3.8c), where a large shift in the traveltime of the wetting front reflection 

(W) is observed.  This may be a contributing factor to noise in the data and therefore erratic 

results observed in the dispersion inversion results beyond 8 minutes (Figure 3.7).
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Figure 3.8:  Common offset profiles from the GPR data showing evidence of non-uniform water flow through time at a) 0.44 minutes; b) 5.39 minutes; 

and c) 9.24 minutes.  Arrivals annotated are the airwave (A), groundwave (G), bottom of sand reflection (R), wetting front reflection (W), and diffraction 

hyperbola legs (D). 
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Noise in the data likely effects the two methods for dispersion curve inversion in 

different ways.  For example, the single layer inversion results are in excellent agreement 

with average profiles extracted from the results of the HYDRUS-1D profile.  This indicates 

that the single layer inversion is less susceptible to the noise in the data and returns a profile 

representative of a 1D flow regime.  However, the single layer inversion has substantially 

less flexibility in fitting realistic water content profiles that may not be 1D, evidenced by 

the increased RMSE for the single layer inversion in replicating the noisy probe 

measurements when compared to the piece-wise linear inversion (Figure 3.6d).  

Lateral heterogeneity in waveguide layers is expected given the poorly understood 

mechanisms of preferential flow and general instability of unsaturated flow.  Some work 

has been done to investigate the effect of waveguide heterogeneity on the inversion of 

dispersion curves, however, the study did not consider hydrologically derived waveguide 

layers [van der Kruk et al. 2012].  Although the study concluded that the effect of 

waveguide heterogeneity is relatively small, more work is required to validate this 

conclusion in a hydrologic framework.  Regardless, both methods, when coupled with 

automated GPR data collection, show promise for revealing the early time dynamics of 

water content profiles associated with an infiltration event. 

3.6 Conclusions 

 Electromagnetic waveguide dispersion of GPR energy is caused by shallow low-

velocity layers which may arise from an infiltrating wetting front.  Dispersive GPR data 

collected during an infiltration event into a homogeneous soil was inverted to obtain 
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waveguide properties using a blocky layer model and a piece-wise linear model, which had 

only been previously tested on idealized numerical data.  Both inversion approaches 

returned good data fits, indicating that both methods can describe the dispersive behavior. 

However, given that these waveguides are hydrologically derived, the piece-wise 

linear model is more representative of the underlying infiltration process, and showed 

improved agreement with data from in-situ soil moisture probes when compared to a single 

layer model.  Additionally, the gradational nature of the water content distribution was well 

preserved when compared to the calibrated HYRDUS-1D model results.  Notably, without 

the application of temporal constraints, the piece-wise linear inversion results were more 

consistent with the results of the calibrated HYDRUS-1D model through time, indicating 

a progressively thicker waveguide layer.  The blocky layer inversion was also relatively 

successful in replicating measurements from soil moisture probes, although to a lesser 

degree.  Single layer inversion results were generally in excellent agreement with average 

water content values derived from a calibrated HYDRUS-1D forward model, indicating 

that this method is less sensitive to noise in the data that may be generated by non-uniform 

flow.  

In conclusion, the piece-wise linear inversion was successfully applied to empirical 

data, and shows promise in honoring characteristics of hydrologically derived dispersive 

waveguides.  Further work is necessary to determine the impact of waveguide 

heterogeneity on dispersion curve inversion, however, both inversion methods remain as 

unique approaches for revealing the early time dynamics of infiltration events.  Also worth 
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noting is that the temporal resolution of the data could not be obtained without the 

automation of the GPR data collection, which enabled the ability to study the highly 

dynamic infiltration process. 
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CHAPTER 4 - RESOLVING SPATIOTEMPORAL WETTING PATTERNS 

FROM DYNAMIC HYDROLOGIC EVENTS WITH GPR REFLECTION 

TOMOGRAPHY IN HOMOGENEOUS SOIL 

4.1 Abstract 

GPR is evaluated as a tool for providing information regarding transient soil 

moisture measurements in 2D using reflection tomography in the post-migrated domain.  

GPR data, as well as numerical simulation results are evaluated using the reflection 

tomography algorithm and compared to true water content values.  Tomography results 

from the simulated data set are in good agreement with true water content distributions 

from simulations with errors typically falling between 5-10% vol./vol.  Water content 

distributions produced by the tomography of the empirical data sets are in good agreement 

with in-situ soil measurements, with similar errors observed to those in the numerical study.  

Additionally, water content distributions from tomography of the data reveal a 

heterogeneous flow pattern which allowed for the re-conceptualization of the wetting front 

geometry.  Overall, the automation of GPR data collection is paramount to monitoring 

dynamic hydrologic events and enables higher-order data analysis algorithms, like 

reflection tomography, that show promise in estimating unprecedented information 

regarding the 2D spatial distribution of water content through time independent of ancillary 

information typically considered in geophysical data inversion. 
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4.2 Introduction 

Surface-based hydrologic monitoring with ground-penetrating radar (GPR) is 

capable of producing rich hydrogeophysical data sets at multiple scales in time and space 

[Buchner et al. 2011; Busch et al. 2013; Haarder et al. 2011; Lunt et al. 2005; Mangel et 

al. 2012; Moysey 2010; Steelman and Endres 2010; Vellidis et al. 1990], largely due to the 

dependence of electromagnetic (EM) wave velocities on soil volumetric water content 

[Topp et al. 1980].  In particular, when deployed in a time-lapse fashion, studies have 

shown that GPR data can provide valuable information regarding dynamics, i.e. 

heterogeneities, of subsurface hydrologic processes [Guo et al. 2014; Haarder et al. 2011; 

Mangel et al. 2012; Mangel et al. 2015a; Moysey 2010; Saintenoy et al. 2007; Steelman et 

al. 2012].  Given the importance of infiltration in the critical zone to recharging important 

groundwater supplies [Brantley et al. 2006], time-lapse GPR is especially attractive, given 

that this process can be largely heterogeneous in time and space [Flury et al. 1994]. 

Often, analysis of GPR data for soil moisture estimation in these studies relies on a 

priori or ancillary information to resolve water content images as a function of space or 

time.  This may include extra information such as depth to a reflector [Lunt et al. 2005] or 

the coupling of the analysis to a hydrologic model [Busch et al. 2013; Rossi et al. 2015].  

This can be avoided in time-lapse studies, however, results are typically limited to only 

illustrating differential soil moisture shifts in space and time [Truss et al. 2007].  While 

these studies have profoundly advanced the field of hydrogeophysics and the use of GPR 

in monitoring soil moisture dynamics, they are susceptible to conceptual errors, hard 
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constraints imposed by the coupled model, and suffer from limitations introduced by 

assumptions. 

Limitations introduced to time-lapse GPR studies, however, are commonly a result 

of operational limitations of commercially available equipment.  This is why multi-offset 

data, which contains information about subsurface velocity structure, is typically collected 

at sparse locations and applied to high-resolution data collected using common-offset 

geometry, i.e. where the transmitting and receiving antennas are at a fixed distance apart 

and used to profile across the surface [Neal 2004].  The common-offset surveys are 

substantially easier to collect since the triggering can typically be controlled with an 

odometer wheel or GPS link and generally suffice for most GPR studies.  Studying 

infiltration with time-lapse approaches, however, requires that the velocity be resolved at 

a much higher resolution to provide information about water content distributions using 

petrophysical relationships. 

Bradford [2006], introduced reflection tomography in the post-migrated domain to 

GPR and showed the power of the algorithm in resolving highly heterogeneous velocity 

distributions at two field sites.  Bradford [2008] further expanded on the application of the 

reflection tomography algorithm to GPR data, highlighting how it could be used to measure 

subsurface water content distributions.  For infiltration, however, the time required to 

collect the data for the reflection tomography algorithm can be problematic considering the 

inherently dynamic and spatially heterogeneous nature of unsaturated flow [Flury et al. 

1994; Hendrickx and Flury 2001; Ritsema et al. 1993].  Using automated data collection 
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approaches, however, the data required for reflection tomography can be collected on the 

order of minutes, and subsequently repeated immediately after at exactly the same points 

from the previous survey [Mangel et al. 2015a].  This enables the use of algorithms like 

reflection tomography for studying infiltration and has potential to expand geophysical 

monitoring of hydrologic processes to new horizons. 

The authors are not aware of any previous applications of the reflection tomography 

algorithm in surface-based time-lapse GPR studies, and expect that this is largely due to 

the data that is required for the algorithm.  Methods such as reflection tomography should 

be explored for these applications, however, considering that the algorithm solely relies on 

adjusting the velocity model to match the traveltime vs. offset relationship, i.e. the 

moveout, of arrivals on multi-offset GPR data [Bradford 2006; Bradford 2008; Stork 

1992].  This separates the GPR data inversion from ancillary information or assumptions 

about how the velocity field is changing, giving the algorithm potential to inform important 

choices about how conceptual models are formulated. 

Given that the novel approach to data acquisition presented by Mangel et al., [2015] 

is enabling the application of the reflection tomography algorithm to an entirely new 

problem, the objective of this study is to evaluate reflection tomography of high-resolution 

GPR data as a tool for observing and characterizing unsaturated flow patterns during 

infiltration into a homogeneous soil.  To evaluate the efficacy of the algorithm in resolving 

dynamic soil water content in 2D, we first test the algorithm using numerical simulations 

and compare the results to true water content distributions.  The algorithm is also applied 
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to time-lapse GPR data collected during an infiltration and recovery event in a 

homogeneous soil and compared to measurements from in-situ soil moisture probes. 

4.3 The Reflection Tomography Algorithm 

Reflection tomography was originally developed to provide an analytical method 

for resolving velocity fields from seismic data, of which there are many approaches [Bishop 

et al. 1985; Gardner et al. 1974; Yilmaz and Chambers 1984].  Although the tomography 

algorithm was originally developed for use with seismic data sets, it can also be directly 

applied to GPR data if absolute amplitude reconstruction is not desired [Bradford 2006].  

For brevity, we will discuss the key ideas and methods of the tomography algorithm, 

however, for a full description of the original tomography algorithm we refer the reader to 

Stork [1984] for the original development and Bradford [2006] for application to GPR data. 
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Figure 4.1:  a) Data collection geometry required for the reflection tomography; b) CMP gather from the 

model in (a); c) CDP gather with the velocity 10% too slow; d) CDP gather with the correct velocity; and 

e) CDP gather with the velocity 10% too fast. 

The data required for this algorithm is an ensemble of multi-offset data collected at 

multiple points along a line (Figure 4.1a).  Given that GPR data is a time record of 

electromagnetic energy arriving at a point in space, we must know the proper velocity 

structure to migrate the data and produce a depth registered image of the GPR energy, i.e. 
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the stack.  To solve for the velocity structure and properly migrate the data, the reflection 

tomography algorithm proceeds as follows [Bradford 2006; Stork 1992]: 

1. Generate a starting depth vs. velocity model. 

2. Migrate the data with the starting velocity model and stack the data. 

3. Pick horizons on the stacked image. 

4. Perform ray-tracing to the picked horizons with the velocity model. 

5. Evaluate horizons for residual moveout. 

6. Adjust velocity model using reflection tomography. 

7. Apply revised velocity model using migration and quality check RMO. 

8. Iterate at step three if necessary. 

To begin the tomography algorithm a starting velocity model is required, which can 

be derived from any sort of prior information or analysis of the data, e.g. 1D velocity 

analysis.  The starting velocity model is used to migrate and stack the data in the CMP 

ensemble.  After migration using the Kirchhoff algorithm [Yilmaz and Doherty 2001], the 

CMPs are referred to as common-depth profiles (CDPs) and are essentially redundant depth 

registered images of the subsurface at one location.  The traces within each CDP are then 

averaged to form one trace and placed adjacent to other migrated CDPs, i.e. stacked, to 

form a single depth registered 2D image of the data.  Spatially coherent energy on the stack 

indicates a potential subsurface reflector, or horizon, that can be used for residual moveout 

analysis. 
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The goal of sequential iterations of the tomographic inversion is to minimzed the 

residual moveout (RMO) metric which globally optimizes the velocity structure for the 

entire ensemble.  Figure 4.1b shows an example of CMP data acquired from the model in 

Figure 4.1a.  If this data is migrated with the correct velocity, reflections from layers in the 

subsurface become flattened as a function of offset (Figure 4.1d).  If the velocity estimate 

is incorrect, e.g. 10% too slow (Figure 4.1c) or 10% too fast (Figure 4.1e), the arrival is not 

flat, or exhibiting residual moveout.  By globally minimizing RMO across all CMPs 

through correction of the velocity model, the tomography algorithm is extremely sensitive 

to resolving the appropriate 2D velocity structure to correctly migrate the data.  

Adjustments to the velocity model are made using the RMO metric and a ray-tracing 

algorithm which traces the paths of the GPR energy through the velocity model. 

For this work, the reflection tomography was performed using the ProMax software 

suite which incorporates the Kirchhoff migration algorithm and the pre-stack depth 

migration algorithm outlined by Stork [1984]. 

4.4 Experimental Setup and Conceptual Model 

A large tank (4 m x 4 m x 2 m) was constructed to facilitate the controlled study of 

unsaturated flow phenomenon with GPR (Figure 4.1a).  The tank is constructed of wood 

and lined with an impermeable rubber liner.  The tank is filled to a depth of 0.60 m with a 

medium-grained sand; hydrologic properties of the sand are listed in Table 4-1.  Below the 

sand is a 0.30 m layer of gravel that acts as backfill for 16 individual drain cells that are 

pitched toward individual central drains.  The drains are plumbed to individual outlets on 
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the outside of the tank using PVC pipes through the gravel layer.  An automated data 

collection system was constructed to allow for the high-resolution collection of GPR data.  

The systems enables the rapid collection of data in the tank using three motors to control 

the position of the two GPR antennas [Mangel et al. 2015a]. 

 

Figure 4.2:  a) Schematic drawing and b) conceptual model of the experimental setup showing relative 

location of the irrigation sprayers, soil moisture probes and GPR data collection line. The plot in c) shows 

the expected ray coverage, in % of ray coverage, given the collection geometry in (a) and conceptual model 

in (b). 

For this study, infiltration of water into the sand layer will be monitored with in-

situ soil moisture probes and time-lapse multi-offset GPR surveys (Figure 4.2b).  The 

reflection tomography algorithm will be used to estimate the velocity model by minimizing 

the RMO at horizons created by a static reflector at depth, i.e. the bottom of the sand layer, 
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and a transient wetting front reflector. The expected ray coverage, in percent of average ra 

y coverage, using these horizons is shown in Figure 4.2c. 

Table 4-1 Mualem-van Genuchten parameters for the sand. 

 Residual Water 
Content 

θr 

[vol vol-1] 

Saturated 
Water 

Content 
θs 

[vol vol-1] 

Air-entry 
parameter 

Α 
[cm-1] 

Shape 
Parameter 

[-] 

Saturated 
Hydraulic 
Conductivi

ty 
[cm min-1] 

Equilibrium 
Initial 

Conditions 
0.06 0.38 0.058 4.09 4.6 

Dry Initial 
Conditions 0.06 0.38 0.058 4.09 1.0 

 

4.5 Reflection tomography of Numerical Simulations  

In this section we investigate reflection tomography of simulated GPR data and 

evaluate the ability of the algorithm to reproduce patterns associated with an infiltrating 

wetting front.  The objectives of this section are to 1) evaluate the efficacy of the reflection 

tomography algorithm in reproducing the known 2D water content distributions, and 2) to 

gain knowledge in performing the inversions using the numerical simulations so the same 

protocols can later be applied to empirical data.  Note that the airwave and groundwave are 

visible in the data, but are not analyzed, or further discussed in this work. 

4.5.1 Numerical Simulations 

 Soil parameters from Table 4-1 were used in HYDRUS-2D to simulate the 

hydrologic response to an infiltration event.  Two separate models were utilized to illustrate 
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the impact of spatial variability in water content on resolving the water content distribution.  

For one set of simulations, initial conditions for the model were set to equilibrium 

conditions, i.e. the water retention curve.  The second set of simulations used uniformly 

dry initial conditions and a reduced hydraulic conductivity to increase the magnitude of the 

infiltrating wetting front relative to the background.  For both simulations, the upper 

boundary condition was set to a constant flux of 0.125 cm/min from y = 1.6 - 2.4 m to 

reflect the average rate of irrigation flux used in the lab experiment.  Remaining nodes at 

the surface were set to no flow boundaries and lower nodes were set to a seepage face with 

the pressure head equal to zero.  For both simulations, the model domain had a depth of 

0.6 m and a length of 4.0 m.  Cell size was targeted as 0.04 m, however, some refinement 

was used at the top of the model to stabilize the solution in highly dynamic sections of the 

domain.   

 A subset of the HYDRUS-2D simulation results from both simulations were 

selected for GPR simulation using a MATLAB based 2D finite-difference time-domain 

code [Irving and Knight 2006].  The GPR model domain was set as a rectangle with a 

length of 4.0 m and a height of 1.1 m.  Cell size for the simulations was set to 0.002 m in 

the x and z-direction.  Simulations were run to obtain CMPs at locations spaced at 0.02 m 

intervals from y = 1.0 - 3.0 m at offsets at 0.01 m intervals from 0.16-1.0 m.  The lower 

0.3 m of the domain was set to gravel to resemble the lower layer of the tank with dielectric 

permittivity (ε) set to 2.25, electrical conductivity (σ) set to 0 mS/m, and magnetic 

permeability (µ) set to 0 H/m.  The upper 0.2 m of the domain was set to air to simulate 
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the air-soil interface (ε = 1, σ = 0 mS/m, µ = 0 H/m).  Magnetic permeability and electrical 

conductivity of the soil were set to constant values of 1.25 µH/m and 1 mS/m, respectively.  

Although the conductivity would likely change as a function of the water content, we 

decided to keep it constant considering our focus on wave kinematics and the inability of 

the reflection tomography algorithm to produce absolute amplitudes [Bradford 2006].  

Dielectric permittivity of the model domain was set using the water content values from 

the selected HYDRUS-2D results and the Topp equation, which relates soil moisture to 

dielectric permittivity for low-loss soils [Topp et al. 1980].  For quick computation, 

simulations were deployed on the Palmetto supercomputer cluster at Clemson University.  

Using compute nodes with 8 CPUs and 32 GB of RAM a single source simulation with a 

35 ns time window finishes in about 20 minutes. 

4.5.2 Results from HYDRUS and GPR Simulations 

 Figure 4.3 shows the representative results from numerical simulations.  The 

HYDRUS-2D output shows the development of an infiltrating wetting front in variable 

background conditions.  The wetted volume extends from 1.5-2.5 m in the y-direction 

extending slightly beyond the region of applied flux, indicated by the vertical dashed lines.   

 For conditions prior to irrigation, the bottom of sand reflection is horizontal on the 

common-offset gather, indicating a constant velocity across the model domain (Figure 

4.3b).  Additionally, the CMPs show identical moveout, i.e. the offset vs. traveltime 

relationship, of the arrivals independent of location indicating a homogeneous velocity 

across the model domain (Figure 4.3c, d, e).  Simulations from dry initial conditions show 
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Figure 4.3:  Results from numerical simulations: a, f, k) results from HYDRUS-2D simulations; b, g, l) simulated common-offset GPR data for 

HYDRUS-2D output at a fixed antenna offset of 0.16 m; c, d, e, h, i, j, m, n, o) simulated common-midpoint multi-offset GPR data for HYDRUS-2D 

output at Y = 1.0, 1.5, and 2.0 m. Vertical lines indicate the extent of the wetted surface.  Arrivals annotated in the figures are the bottom of the sand 

layer reflection (B), the wetting front reflection (W), and a refracted arrival (R). 
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a nearly identical response, with the bottom of sand reflection arriving at an earlier 

traveltime, due to the lower water content. 

For infiltration conditions with equilibrium initial conditions the common-offset 

simulated GPR response shows a reflection from the base of the sand layer (B) as well as 

the infiltrating wetting front (W).  Here, the base of sand reflection is distorted at the center 

of the domain due to the decreased velocity caused by the infiltrating water (Figure 4.3g).  

Notice that the wetting front reflection (W) is incredible faint due to a lack of contrast in 

the water content above and below the wetting front.  For the GPR, this means that the 

dielectric permittivity of the materials above and below the wetting front are similar and 

therefore, a small amount of GPR energy is reflected at this interface.  The CMPs collected 

at y = 1.0 m show little difference than those collected at initial conditions while the CMPs 

collected at y = 1.5 and 2.0 m indicate changes in the velocity field (Figure 4.3h-j).  

Although the wetting front reflection is not observed at y = 1.5 m, the non-hyperbolic 

moveout of (B) indicates lateral heterogeneity in the velocity field.  The CMPs at y = 2.0 

m illustrate the wetting front reflection (W) well, however, some interference at large 

offsets is observed with a refracted wave and the base of sand reflection.  Again, a reduced 

amplitude is observed for the wetting front reflection here, due to the small differences in 

water content above and below the wetting front. 

A similar response is observed for a wetting front with a higher water content in a 

homogeneous dry background (Figure 4.3k-o).  Here we see a similar amount of distortion 

in the bottom of sand arrival (B) on the common-offset profiles (Figure 4.3l), however, the 
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wetting front reflection is much stronger here when compared with Figure 4.3g.  This is 

due to the increase contrast between the wetted volume and the background, essentially 

causing a larger amount of the GPR energy to be reflected back to the surface.  The CMPs 

also reflect a similar response with the CMP at y = 1.0 m indicating no changes from initial 

conditions, a slight distortion in the hyperbolic moveout of the bottom of sand reflection at 

y = 1.5 m, and a wetting front reflection occurring at y = 2.0 m with slight interference at 

large offsets (Figure 4.3 m-o). 

4.5.3 Reflection Tomography of Numerical Simulation Results 

 The reflection tomography algorithm outlined in Section 2.0 is used to resolve 

water content distributions from selected numerical simulations.  Starting velocity models 

for the algorithm are determined using a 1D semblance velocity analysis [Neidell and 

Taner 1971].  At each CMP location, a single velocity is picked to flatten the bottom of 

sand layer reflection.  The 2D velocity model is constructed by concatenating and 

smoothing the 1D velocities derived from individual CMPs.  Data is migrated with the 

starting velocity model and stacked to pick the bottom of sand and wetting front horizons 

for RMO analysis.  Results from the reflection tomography of the GPR simulation results 

are compared to the respective true water content distributions in Figure 4.4.  For 

comparison, horizontal dashed lines indicate the depth of the wetting front while vertical 

dashed lines indicate the extent of the irrigated zone at the surface.
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Figure 4.4:  Tomography results from simulated GPR data for multiple scenarios: a, e, i, m) true water content distributions from HYDRUS-2D; b, f, 

j, n) water content distribution from semblance velocity analysis; c, g, k, o) water content distribution from tomography of the simulated GPR data; d, 

h, l, p) difference plots between the tomography results and true water content. 
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Prior to irrigation, the reflection tomography algorithm performs as well as the 

semblance analysis in resolving the distribution of water when equilibrium conditions are 

considered (Figure 4.4a-d).  Essentially, both of these algorithms are unable to resolve the 

vertical distribution in water content due to the data coverage, i.e. there is simply not 

enough information present in the data to resolve the capillary rise at the base of the model.  

Therefore, the inversions produce averaged water contents and generally large errors when 

compared to true values (Figure 4.4d).   

During infiltration conditions, however, the wetting front horizon introduces more 

information into the tomography inversion.  With this additional horizon, reflection 

tomography is able to better resolve the wetter layer near the base of the domain.  

Additionally, although considerable errors in the tomography results persist, the 

tomography is able to resolve the shape and magnitude of the infiltrating wetting front 

when compared to the true model (Figure 4.4e-h). 

When the wetted area created by the wetting front is surrounded by a homogeneous 

and relatively dry background, the tomographic inversions are much better at resolving the 

water content distribution (Figure 4.4 i-p).  Water content distribution determined from the 

tomography of the GPR data is in good agreement with the true model produced by 

HYDRUS2D with the majority of errors falling below 5% water content.  Overall, the 

vertical and horizontal trends in water content are reproduced well in both cases, however, 

the inversion struggles with matching the true model near the surface and has a propensity 
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to place the maximum depth of the wetting front around 0.40 m, despite the difference in 

the depth of about 0.20 m between the two cases. 

In general, the magnitudes of the water content from the tomography results are in 

good agreement with those from the true model, however, details in the internal structure 

are missed by the tomography.  Additionally, the tomography algorithm struggles to 

reproduce water content distributions consistent with capillary rise phenomenon, however, 

this appears to be a result of a lack of information in the GPR data.  The same procedures 

will now be applied to the empirical data sets. 

4.6 Reflection tomography of GPR data 

To evaluate the performance of the tomography algorithm for field applications, we 

also collected empirical data in our large sand tank.  Here, we monitor an infiltration and 

recovery period using multi-offset automated GPR data collection and in-situ soil moisture 

probes in a controlled study. 

4.6.1 Empirical Data Collection 

The GPR data were collected to optimize available multi-offset data for reflection 

tomography while retaining important information about the spatial geometry of reflectors.  

One-hundred and one CMPs were collected in a continuous fashion at 0.02 m spacing along 

a line located at x = 2.0 m from y = 1.0 – 3.0 m (Figure 4.2).  The step size for the CMPs 

was set to 1 cm and the minimum and maximum offset values for the CMP were set to 

0.165 m and 1.0 m, respectively.  In addition to the 101 CMPs, a COP at an offset of 0.165 
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m was collected in the y-direction at x = 2.0 m at a 1 cm step size.  With this configuration, 

a CMP is collected in 1.8 seconds with repeat traces collected at 3.9 minute intervals. 

Irrigation is controlled using an analog flow meter and a gate valve.  The water was 

distributed over an approximately 1.5 m x 0.80 m area on the surface at the center of the 

tank using a sprayer hose assembly mounted to PVC pipes.  Fifteen soil moisture probes 

are installed at multiple locations in the tank and logged at 10 second intervals during the 

experiment (Figure 4.2a, b). 

A GPR data set was collected prior to the start of irrigation to evaluate background 

conditions of the tank.  Data collection continued as water was applied to the surface of the 

sand at a flux rate of 0.125 cm min-1 for a duration of 2.13 hrs.  GPR data was also collected 

for a recovery period of 40 min. after the irrigation was terminated.  In total, the experiment 

ran for 3 hours wherein the data collection repeated 45 times for a total of more than 

500,000 traces.  Selected data sets from initial, irrigation, and recovery conditions were 

analyzed using reflection tomography to resolve spatiotemporal patterns in water content 

of the soil column. 

4.6.2 Ground-Penetrating Radar Results 

Radar data collected in the sand tank during the infiltration experiment shows the 

effect of the changes in water content of the soil on the GPR data over time (Figure 4.5).  

At initial conditions, the bottom of the sand layer reflection (B) is visible at 10 ns traveltime 

in the common-offset profile collected over the imaging area (Figure 4.5a).  The relatively 

flat appearance of this reflector indicates lateral homogeneity in the water content across 
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the tank.  Looking at the moveout of this reflection as a function of offset at y = 1.0, 1.5, 

and 2.0 m, we can see that the arrival follows a hyperbolic pattern that is consistent with a 

normal moveout, again indicating lateral homogeneity of the water content in the sand layer 

(Figure 4.5b, c, d).  These results are similar to observations from numerical simulation 

results shown in Figure 4.3. 

At the onset of irrigation, the water content of the sand layer increase substantially 

as increases in the traveltimes of arrivals are observed (Figure 4.5e-h).  Similar to observed 

changes in the simulated GPR response, the traveltime of the bottom of sand reflection (B) 

has increased by roughly 5 ns and remains at the original traveltime of 10 ns at the 

periphery (Figure 4.5e).  Contrary to the numerical simulations, however, the appearance 

of a coherent reflection for the wetting front is not observed.  Instead, there seem to be 

multiple discrete reflectors (W) that appear after the irrigation begins, indicating 

heterogeneity in the water flow through the sand layer.  Furthermore, while the CMPs at y 

= 1.0 m and y = 1.5 m show a hyperbolic moveout of the base of sand reflection similar to 

Figure 4.5b-d, the CMP at y = 2.0 m shows a non-hyperbolic moveout pattern, indicating 

substantial heterogeneity in soil moisture content (Figure 4.5h).  The GPR response from 

95 min. shows a similar response to the previous data set, with slight differences in 

traveltime and amplitude of the selected arrivals (Figure 4.5i-l).Finally, after irrigation is 

terminated, the GPR data collected at 173 min. shows a similar response with a slight 

rebound in the traveltime of the bottom of sand reflection due to the now decreasing water 

content of the sand layer (Figure 4.5m-p). 
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Figure 4.5:  GPR data collected during the sand tank experiment in common and multi-offset projections, 

a-d) data collected prior to irrigation; e-h) data collected during irrigation at 37 min.; f-l) data collected 

during irrigation at 95 min.; m-p) data collected during recovery, after irrigation terminus at 173 min. 

Vertical lines indicate the extent of the wetted surface.  Arrivals annotated in the figures are the bottom of 

the sand layer reflection (B) and the wetting front reflection (W). 
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Overall, the GPR data confirm a bulk increase in water content at the center of the 

tank and little to no changes in water content on the periphery.  Additionally, the GPR data 

indicate that the wetting process is occurring in a relatively heterogeneous manner when 

compared to the idealized numerical simulation results.  While this may pose an issue in 

picking a coherent wetting front horizon for RMO analysis, the multiple discrete reflectors 

associated with the wetting of the soil will suffice for the horizon analysis. 

4.6.3 Reflection Tomography Results 

The reflection tomography algorithm was applied to the GPR data sets presented in 

the previous section.  Results from the tomography of the GPR data are seen in 6 and show 

the progression on an infiltrating wetting front over time followed by drainage of the soil 

during the recovery phase.  Vertical lines indicate the extent of the wetted area at the 

surface where the irrigation was applied.  Shapes on the tomography results indicate the 

location of points used for comparison to soil moisture probes.
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Figure 4.6:  Tomography results for the GPR data: water content distributions at a) initial conditions; b) 37 min. during infiltration; c) 95 min. during 

infiltration; d) 173 min. during recovery, after irrigation terminus.  Vertical lines indicate the extent of the wetted surface.  Shapes indicate the 

locations used to compare to soil moisture probes in Figure 4.7. 
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From the initial GPR data set collected prior to irrigation, the tomography results 

show a generally homogeneous water content distribution for the sand layer with only 

slight variability, e.g. < 1% vol. / vol (Figure 4.6a).  Although a distribution resembling a 

water retention curve should be expected, i.e. increased water content near the base 

consistent with a capillary rise.  While the soil could potentially reach these extremely dry 

conditions, the homogeneous appearance is likely due to a lack of information in the data 

to constrain the wetter soil near the base of the sand layer, as observed in the tomography 

results from numerical simulations. 

After the onset of irrigation, the tomography results at 37 min. reveal a considerably 

wetter section at the center of the tank that has propagated to an average depth of roughly 

0.30 m (Figure 4.6b).  The edges of the sand layer remain relatively dry with the bulk of 

the increased soil moisture occurring near the top of the soil in a symmetric hemisphere 

similar to observed patterns in the simulation results.  There is a considerable increase in 

water content, however, around the substantially wetter bulb, which may be due to 

smoothing of the velocity field during the inversion.  In general, given hydrologic 

simulation results, a sharper wetting front should be expected during infiltration.  

Additionally the water seems to have reached the bottom of the sand layer and spread 

laterally, although this is not likely.  This apparent increase in water content is most likely 

a result of wetter soil at the base of the sand layer from capillary forces, which is appearing 

now in the tomography results due to the added information from analyzing the wetting 

front horizon, as observed in the numerical simulations. 
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Tomography results of the radar data collected at 95 min. show an interesting 

wetting pattern in response to the infiltrating water with a slightly deeper wetted area on 

the left of the wetted zone (Figure 4.6c).  Compared to the previous time, the wetting front 

is significantly deeper and wider, although a small area of relatively dry soil exists at depth.  

At 173 min. experiment time, 36 min. after irrigation ended, the tomography results show 

a vertically homogeneous wetted zone that grades into drier sections toward the periphery.  

Again, with the absence of a wetting front reflection, the tomography is lacking information 

available to constrain an expected increase in soil moisture near the base of the layer.  

Comparing the results of the tomography to the in-situ probe measurements shows 

that the tomography reflects the overall spatial and temporal trends observed in the soil 

moisture readings (Figure 4.7).  For the probes located at multiple depths along  y = 1.6 m 

the tomography results slightly overestimate the water content during infiltration, but are 

in excellent agreement with the soil moisture probe data at initial conditions and during 

recovery (Figure 4.7a).  While the tomography overestimates the water content during 

infiltration, the results are still within about 5% vol. / vol. of the measured values.  The 

tomography results substantially overestimate the water content at y = 2.4 m, however, 

although the tomography results are in good agreement with soil moisture probes prior to 

irrigation (Figure 4.7c). 
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Figure 4.7a:  Volumetric water content from probes located at y = 1.6 m.  Vertical dashed lines indicate the start and stop of irrigation.  Vertical solid 

lines indicate the time at which water was observed at the outflows from a specific cell (see Figure 4.2).  The width of the gray bars where the tomography 

results are plotted are representative of the time required to collect the GPR data. 
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Figure 5.7b:  Volumetric water content from probes located at y = 2.0 m.  Vertical dashed lines indicate the start and stop of irrigation.  Vertical solid 

lines indicate the time at which water was observed at the outflows from a specific cell (see Figure 4.2).  The width of the gray bars where the tomography 

results are plotted are representative of the time required to collect the GPR data. 
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Figure 5.7c:  Volumetric water content from probes located at y = 2.4 m.  Vertical dashed lines indicate the start and stop of irrigation.  Vertical solid 

lines indicate the time at which water was observed at the outflows from a specific cell (see Figure 4.2).  The width of the gray bars where the tomography 

results are plotted are representative of the time required to collect the GPR data. 
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In general, the inversion results are in excellent agreement with the soil moisture 

probe data collected at y = 2.0 m (Figure 4.7b), given that all inversion results fall within 

the measured soil moisture responses, with the exception of two points at 95 minutes.  

Additionally, with the exception of a few points at 37 minutes, all tomography results are 

within 5% volumetric water content values measured by the in-situ moisture probes. 

4.7 Discussion 

 Overall, our approach to imaging dynamic water content values provides 

unprecedented data-derived information regarding the 2D distribution of water at time 

scales on the order of a few minutes.  In general, the reflection tomography algorithm was 

able to produce images of the water content distribution that were within 5% vol. / vol. of 

true water content values from the numerical simulations and the in-situ measurements 

from the soil moisture probes. 

Our novel approach to monitoring near-surface hydrologic processes could 

potentially change the way ancillary information is used to invert GPR data.  For example, 

the infiltration for this study was conceptualized in HYDRUS2D with a homogeneous layer 

and a constant flux across a discrete length at the top of the model domain.  Evidence from 

tomography of the data and the soil moisture probes, however, indicated that the water flow 

was considerably heterogeneous compared to the idealized numerical simulations.  Re-

conceptualizing our model, a heterogeneous wetting front can be produced (Figure 4.8a).  

The radar data appear similar to previous simulation results, however, the asymmetry of 

the wetting front is clear in the common-offset data as the base of sand arrival (B) is 
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distorted in a way that reflects the asymmetry of the wetting volume (Figure 4.8b).  

Additionally, the wetting front reflection (W) is considerably different from previous 

simulations, and illustrates the dipping nature of the wetted volume.  The tomography 

results are similar to previous simulations, where it generally resolves the shape of the 

wetting front but misses the fine details associated with the heterogeneous distribution of 

water (Figure 4.8g, h).  In general, it is difficult to recognize similar patterns in the GPR 

data where this heterogeneity is observed (Figure 4.5i), however, there is no evidence 

indicating the heterogeneous distribution of water is unlikely.  

More work is required, however, to investigate the sources of errors in 

reconstructing true water content distributions from the numerical simulations.  Primarily, 

the utilization of a more robust migration algorithm, like reverse-time migration, should be 

investigated.  For example, using Kirchhoff migration with the true velocity field to migrate 

the simulation results in Figure 4.3f-j should theoretically produce a perfect migration.  

However, the bottom of sand (B) and wetting front (W) horizons are not flat-lying on the 

multi-offset gathers (Figure 4.9a-e), which translates to migration artifacts on the stack 

(Figure 4.9f). This indicates that the Kirchhoff migration algorithm may not be well-suited 

to handle complex wave phenomena of GPR data collected during infiltration.  Reverse-

time migration, however, offers a solution to migrating data in the presence of complex 

wave phenomena and has been shown to improve stacked images in the presence of steeply 

dipping layers or large velocity contrasts [Baysal et al. 1983]. 
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Figure 4.8:  Numerical simulation results of the re-conceptualized heterogeneous wetting of the soil: a) HYDRUS 2D output; b) common-offset GPR 

results; c) multi-offset CMP results; d) water content from semblance analysis; e) water content from tomography; f) difference plot between tomography 

results and true water content.  Vertical lines indicate the extent of the wetted surface.  Arrivals annotated in the figures are the bottom of the sand layer 

reflection (B) and the wetting front reflection (W). 
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Figure 4.9:  Stacks produced by migrating the simulation results and empirical GPR data: a) GPR 

simulation results from 35 min. stacked with the true velocity; b) GPR simulation results from 35 min. 

stacked with the velocity from tomography; c) GPR data from 37 min. stacked with the velocity from 

tomography; d) GPR simulation results from 60 min. stacked with the true velocity; e) GPR simulation 

results from 60 min. stacked with the velocity from tomography; f) GPR data from 95 min. stacked with 

the velocity from tomography. 

Regardless of potential improvements to the algorithm that will be made over the 

coming years, the method as it stands provides a wealth of information regarding 2D 

distributions of water content through time.  Furthermore, the method acts independently 

of ancillary information typically needed for inverting geophysical data and avoids making 

assumptions regarding subsurface reflector geometry.  Additionally, the velocity models 

from the reflection tomography algorithm could be used as starting models for higher-order 
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inversion techniques, like full-waveform inversion [Klotzshe 2014], in a similar way that 

the 1D normal-moveout semblance analysis was used to generate starting models for this 

approach.  Overall, coupling automated GPR data collection with reflection tomography 

provides a new method for informing conceptualization of subsurface hydrologic processes 

and a new method for determining transient 2D soil moisture distributions. 

4.8 Conclusions 

 Reflection tomography in the post-migrated domain was introduced as a viable 

method for resolving transient soil moisture content in 2D associated with an infiltration 

and recovery event in a homogeneous soil.  The tomography algorithm was first tested on 

idealized numerical simulations which produced water content distributions that were in 

good agreement with true water content values from the simulations, however, lacked 

details regarding the distinct shape of the wetted region.  For most cases, the tomography 

was able to match the true water content values within 5-10% vol. /vol.  Analysis of the 

data collected in the sand tank proved to be more difficult, however, the tomography was 

able to produce hydrologically realistic distributions of water content in space and time 

that were in good agreement with measurements from in-situ soil moisture probes. 

More work is required, however, given errors in the migration of the simulation 

results using the true velocity distributions.  Advance migration algorithms, like reverse-

time migration, may prove to benefit this algorithm, however, when the reflection 

tomography algorithm is coupled with automated data collection it provides unprecedented 

images of dynamic soil moisture.  Additionally, results from the tomography algorithm 
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may prove to be beneficial to higher-order inversion techniques, like full-waveform 

inversion, which requires accurate starting models for convergence.  Overall, the 

automation of the GPR data collection proves to be a priceless asset in hydrogeophysical 

applications, which enables the usage of the reflection tomography algorithm for 

determining the spatiotemporal patterns in soil moisture associated with highly dynamic 

hydrologic events. 
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CHAPTER 5 - INCORPORATING CONTEXTUAL ENVIRONMENTAL 

INFORMATION INTO ARTIFICIAL NEURAL NETWORK TOPLOGY FOR 

IMPROVED TARGET CLASSIFICATION IN VARIABLE ENVIRONMENTAL 

SETTINGS 

5.1 Abstract 

Artificial neural networks (ANNs) are used to classify unexploded ordnance (UXO) 

and inert target signatures in simulated and empirical ground-penetrating radar (GPR) data 

by utilizing common offset GPR data and contextual environmental information.  

Minimally processed GPR data were used as stimuli for a feed-forward classification 

network in two different approaches.  The first approach involved decoupling the signal 

variability from the classification by training a network to transform an arbitrary pattern 

back to a reference state prior to classification.  The second approach involved ignoring 

variability in the pattern and allowing the classifier to compensate during training.  Both 

approaches were also tested to quantify how the incorporation of the volumetric water 

content data would affect the classification.  Classification results show significant 

improvement in classifier performance when contextual information is included and also 

show that including this information in preprocessing helps to stabilize target classification.  

Additionally, classification results show that utilizing the GPR data as a network stimulus 

can provide good network validation and generalization to other simulated data patterns, 

however, networks trained on simulated data are not directly applicable to field data.  

Finally, we suggest that while there is substantial value in first removing environmental 
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variability in target patterns prior to classification, more information regarding target 

properties should be incorporated using signal attributes derived from 3D and multi-fold 

GPR data. 
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5.2 Introduction 

Artificial neural networks (ANNs) have shown significant potential for the efficient 

and robust classification of unexploded ordnance (UXO) signatures in ground-penetrating 

radar (GPR) data [1]-[6].  For example, the authors of [Al-Nuaimy et al. 2000] used 

statistical feature extraction algorithms and ANN classifiers to create an automated 

workflow to identify buried pipes and land mines in near real-time.  Similarly, the authors 

of [Kobashigawa et al. 2011] used ANNs to classify the geophysical signatures of UXOs, 

steel plates, and horseshoes in multiple orientations.  However, many of these studies fail 

to address the influence of environmental variability on the target signatures, which is an 

important issue in dealing with real world conditions [Hong et al. 2001]. 

GPR is sensitive to dielectric properties of the subsurface, giving it the capability 

to see non-metallic targets; a distinct advantage over other electromagnetic induction tools 

used for UXO identification.  As a result, however, physical soil heterogeneities as well as 

spatial and temporal variability in the water content of the soil can have a significant impact 

on the geophysical signature of subsurface targets.  Figure 5.1a illustrates that GPR 

reflections produced by moving antennas with a fixed spacing across a buried object (i.e., 

a downtrack or B scan) produces a characteristic hyperbolic signature.  These signatures 

are not unique to UXOs and may change dramatically based on the electrical properties, 

shape, and orientation of the object (Figure 5.1a-e).  These signatures may also vary due to 

soil moisture conditions (Figure 5.1f-j) given the strong relationship between soil moisture 

and dielectric permittivity [Huisman et al. 2003].
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Figure 5.1:  Examples of the GPR simulation outputs showing the variability in the GPR response as a function of the object shape and dielectric 

permittivity and the soil volumetric water content. 
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Few examples exist, however, which discuss the effect of soil moisture variability 

on target classification [Caorsi and Cevini 2005; Hong et al. 2001; Ratto et al. 2011; Yang 

and Bose 2005]. The authors of [Ratto et al. 2011], for instance, devised a context 

identification phase in their classification algorithm to account for changes in surface 

roughness and soil moisture.  However, the contextual identification and target 

classification phases were performed independently and integrated using a relevance vector 

machine during the final step of the algorithm. 

We hypothesize that contextual information about soil water content incorporated 

within the ANN topology will affect the accuracy of UXO classification.  We compare the 

performance of five different network topologies that integrate information in different 

ways (Table 5-1).  In all cases, the networks have a common classification network 

consisting of a sigmoidal data reduction layer followed by a softmax decision layer.  The 

alternative approach we explore uses an additional sigmoidal layer as a preprocessing step 

to adjust the observed context-dependent GPR signals to a corrected reference state that is 

independent of soil moisture content.  The motivation for this approach is that the extra 

“signal correction” layer captures contextual dependencies in the GPR data, so that the 

classification network itself can be trained only for only the reference state. 
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Table 5-1:  Network topology for all ANNs considered. 

Network Contextual 
Information 

HypTan 
Layer 

Contextual 
Information 

Sigmoidal 
Layer 

Contextual 
Information 

Softmax 
Layer 

Cls N/A 0 No 20 nodes No 2 nodes 

ConClsI N/A 0 
Weighted 

Water 
Content 

20 nodes No 2 nodes 

ConClsII N/A 0 No 20 nodes 
Water 

Content 
Bias 

2 nodes 

PrpCls No 20 
nodes No 10 nodes No 2 nodes 

ConPrpCls 
Weighted 

Water 
Content 

20 
nodes No 10 nodes No 2 nodes 

 

5.3 Methods 

Five distinct objects were selected as targets for this research: i) an anti-personnel 

non-metallic cylindrical (APNMC) mine surrogate [Chant et al. 2005], ii) a metallic pipe, 

iii) a rock the size of an APNMC mine, iv) a cluster of small rocks, and v) a metallic object 

the size of an APNMC mine.  The main focus of our study considers GPR responses 

generated by numerical simulation, thus allowing us to investigate neural network 

performance for a wide variety of target responses.  We also collected experimental data 

in the lab for these targets, however, to evaluate whether it might be feasible to utilize 

numerical simulations as an approach to train contextual-classification networks that could 
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then be applied to field data.  For both the numerical and experimental study, all targets 

were buried at a depth of 0.05 m. 

5.3.1 Numerical Simulations 

The simulated common-offset GPR responses of the targets were calculated for 

both homogeneous and heterogeneous background soil moisture conditions using a two-

dimensional finite-difference, time-domain GPR forward model [Irving and Knight 2006].  

The signal was simulated for each target object at homogeneous background water content 

values ranging from 1-40% volumetric water content, thus generating a homogeneous 

reference data set for each target.  Heterogeneous soil moisture distributions were obtained 

by randomly selecting water contents at each pixel from a Gaussian distribution with the 

mean of the noise set to the desired background water content value and the standard 

deviation set to 5% of the mean.  Dielectric permittivity for the domain was determined 

using the Topp equation, which relates soil moisture and dielectric permittivity for low-

conductivity, lossless soils [Topp et al. 1980].  The electrical conductivity and magnetic 

permeability of the soil were set to constant values of 1 mS/m and 1.26 µH/m.  Target 

properties were set using values from the literature for rocks, paraffin wax, and steel. 

The results of the GPR simulations were pre-processed with mean background 

subtraction to remove the ground wave.  The data were also manually clipped to remove 

data that did not contain the diffraction hyperbola from the target, which is similar to 

automated detection approaches reported by Al-Nuaimy et al. [2000] and Yang and Bose 

[2005] and is akin to assuming that a successful target detection has been achieved prior to 
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proceeding with target classification.  The homogeneous water content simulations are 

used to train and validate the networks, whereas the heterogeneous water content 

simulations and adjacent object simulations are used to test the generalization of the 

networks. 

5.3.2 Empirical Data Collection 

 The empirical GPR data were collected in three separate experiments in a large tank 

[4m x 4m x 0.60m] where the APNMC mine, metallic pipe, and rock embedded in 

homogeneous sand.  The data were collected with an automated collection system [Mangel 

et al. 2015a] allowing fast and precise imaging, i.e., each target section could be collected 

in about 4 seconds .  This high speed radar acquisition ensured that instantaneous snapshots 

of the target signal could be acquired under different environmental conditions, which were 

created by irrigating the surface of the sand for one hour at a constant flux rate of 0.53 

cm/min followed by drying under ambient conditions.  GPR data were collected at discrete 

intervals during drying of the sand, starting immediately after irrigation ceased. We used 

data from the drying phase of the experiment rather than the wetting phase so that water 

contents around the target would be more likely to be uniform and non-uniform 

distributions of water content associated with the infiltrating wetting front would be 

avoided. Water content was measured by taking the average of multiple measurements 

obtained with probes buried near the target objects. 
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5.3.3 Network Topology and Training 

The topology of the five networks evaluated in this study is shown Table 5-1 and 

described in more detail below.  All network weights were initialized using random 

Gaussian numbers from a normal distribution.  The simulation results for the homogeneous 

water content conditions were split randomly in to training and validation data sets used to 

train each of the networks.  Generalization of the networks was tested using results from 

the heterogeneous soil moisture simulations the empirical data sets collected in the tank.  

Network performance during generalization tests was determined using the area under the 

curve (AUC) metric of the receiver operating characteristic (ROC) curves, which compares 

the true positive (TP) and false positive (FP) rates for different classifier operating 

thresholds [Fawcett 2006]. 

The classifier network used for all approaches consists of a data reducing sigmoidal 

node layer followed by a softmax decision layer to produce a probability of the target being 

a UXO.  This network is trained using context-dependent GPR patterns as input and the 

corresponding target response as output; hazardous landmines [1, 0] or inert targets [0, 1].  

This classifier incorporates contextual information in different ways: 1) non-contextual 

classification (Cls), 2) contextual classification utilizing water content as a weighted input 

on the sigmoidal layer (ConClsI), and 3) contextual classification utilizing water content 

as a bias on the softmax layer (ConClsII). To train the network, pattern error (𝑒𝑒𝑝𝑝) was 

defined using the cross-entropy performance function which compares the network output 

(𝑐𝑐𝑝𝑝) and the desired response (𝑡𝑡𝑝𝑝) [Bishop 1995; Dunne and Campbell 1997]. 



128 

 

𝑒𝑒𝑝𝑝 =  ∑ 𝑡𝑡𝑝𝑝log (𝑐𝑐𝑝𝑝)𝑛𝑛
𝑝𝑝=1                                                        (5-1a) 

We also take an alternative approach to the previous topology by using an 

additional sigmoidal layer as a preprocessing step to adjust the observed context-dependent 

GPR signals to a corrected reference state that is independent of soil moisture content.  

Once the data is corrected by this layer, it is fed to the previous non-contextual 

classification network (Cls).  Two approaches were used for the preprocessing network 

where contextual information was not used (PrpCls) and also included as a weighted input 

on the sigmoidal layer (ConPrpCls).  This network is trained using the context-dependent 

GPR data as input and a reference state of the same data at a specific background water 

content as output. For this contextual standardization network, pattern error was defined as 

the L1 norm of the network output and the desired response. 

𝑒𝑒𝑝𝑝 =  ∑ |𝑡𝑡𝑝𝑝 −𝑛𝑛
𝑝𝑝=1 𝑐𝑐𝑝𝑝|                                                        (5-1b) 

Note that epoch error was used for all network error evaluation and is the sum of all pattern 

errors for one training iteration. 

5.4 Network Performance Results 

 All networks were trained with results from idealized GPR simulations with a target 

buried in a soil with homogeneous water content.  Given that homogeneity is rarely the 

case in field applications, we also discuss the performance of each network using ROC 

curves obtained for two additional data sets: i) simulation results with heterogeneous water 

content and ii) empirical data collected in homogeneous soil.  Optimal operating thresholds 
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were also determined for all networks with the cost of a false negative set as three times 

the cost of a false positive.  A summary of performance measures from all networks can be 

seen in Table 5-2. 
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Table 5-2:  Network Performance Results Summary: AUC = Area under the ROC curve, Opt = Optimal operating threshold, TP = True positive rate, FP 

= False positive rate. 

 Homogeneous Training Homogeneous Validation Heterogeneous 
Generalization Empirical Generalization 

Network AUC Opt TP FP AUC Opt TP FP AUC Opt TP FP AUC Opt TP FP 

Cls 0.999 0.59 0.97 0 1.0 0.56 1 0 0.771 0.99 0.41 0.04 0.518 1.0 0 0 

ConClsI 0.999 0.66 0.95 0 1.0 0.53 1 0 0.840 0.56 0.81 0.11 0.468 1.0 0.29 0.08 

ConClsII 0.999 0.61 0.97 0 1.0 0.58 1 0 0.838 0.99 0.49 0.06 0.550 1.0 0.13 0 

PrpCls 0.996 0.57 0.98 0.02 0.999 0.58 0.97 0 0.773 0.99 0.49 0.06 0.543 1.0 0 0 

ConPrpCls 0.958 0.74 0.73 0.01 0.993 0.57 0.97 0.03 0.849 0.89 0.74 0.10 0.548 1.0 0 0 
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5.4.1 Network Training and Validation Results 

All networks were trained using the back-propagation algorithm with epoch error 

misfit functions until less than 5% improvement was seen in the validation or the epoch 

error decreased below 10.  A maximum epoch error of 10 was chosen based on validation 

performance with the homogeneous validation set, i.e. values lower than this resulted in an 

over-trained network. 

Training and validation using the homogeneous simulations return ROC curves 

with AUC approaching one for all networks (Figure 5.2).  When the preprocessing layer is 

brought into the classification algorithm, the AUC decreases slightly to 0.996 and even 

more in the training of the contextual preprocessing network where it drops to 0.958.  There 

is a significant decrease in the TP rate for the ConPrpCls network, although FP rates remain 

very low. 

 

Figure 5.2: ROC curves for all networks using homogeneous training and generalization data sets. 
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Similar results from the validation set are observed as well, where large AUC 

metrics are present for all networks and small FP rates occur with the addition of the 

preprocessing layer.  However, a reduction in the TP rates was not observed for the 

ConPrpCls network as observed in the training, indicating larger pattern variability in the 

training set.  In general, training and generalization results from the homogeneous data set 

indicate that the classifiers are capturing important differences in the signal to discriminate 

between UXO and clutter. 

5.4.2 Network Performance with Heterogeneous Simulation Results 

The contextual preprocessing classifier network (ConPrpCls), which used 

contextual data to correct GPR signals prior to a non-contextual classification, had the best 

performance according to ROC metrics with the heterogeneous data set.  This is followed 

closely by the contextual classifier network (ConClsI), which utilized a contextual 

approach to the standard classification network.  In both of these cases, the ROC curves 

show a typical concave shape with high values for the AUC metric (Figure 5.3), i.e., 0.840 

for the ConCls network and 0.849 for the ConPrpCls network.  The optimal operating point 

on the ConCls ROC curve, indicated by the asterisk on the line, occurs at FP = 0.11 and 

TP = 0.81 using a detection threshold of 0.56.  The optimal operating point on the 

ConPrpCls ROC curve occurs at FP = 0.10 and TP = 0.74 using a detection threshold of 

0.89. 
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Figure 5.3:  ROC curves for generalization of the networks to simulation results that used a heterogeneous 

background water content. 

The ConClsII network also performed well by the AUC metric (0.838) however, 

has a low TP rate (0.49) at the optimal point.  In general, the other networks perform very 

poorly for classifying the targets in a heterogeneous environment, indicated by relatively 

low AUC values and low TP rates at their optimal operating points.  Additionally, all 

networks, except for the ConClsI network, have extremely high optimal operating 

thresholds, indicating that these networks are having difficulty in distinguishing key 

features between the clutter and UXO signals in parameter space for some patterns. 
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5.4.3 Network Performance with Empirical Data 

 Network generalization to patterns from empirical data sets was largely 

unsuccessful as all of the networks showed classification nearly similar to that of a random 

classifier (Figure 5.4), i.e. all networks show AUC values approaching 0.50.  Given the 

poor performance of this classifier on these empirical data patterns, further steps must be 

taken to improve the applicability of simulation-trained classifiers for field deployment.  

This may be accomplished through more representative simulations, i.e. more accurate 

models, or by evolving the classifier to interrogate features of the data, e.g. spectral 

information, rather than the data itself. 

 

Figure 5.4:  ROC curves for generalization of the networks empirical data patterns. 
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5.5 Discussion 

Classification results from simulated data patterns indicate that the inclusion of 

contextual information and changes in network topology can alter the performance of 

neural network classifiers.  The non-contextual networks are being largely outperformed 

by the contextual networks as indicated by the separation of these networks in the ROC 

space, i.e. a significant increase in classifier performance occurs when contextual 

information is included (Figure 5.3).  This indicates that the utilization of contextual 

information in context-dependent data classification algorithms carries value in 

discriminating between clutter and UXO targets. 

In order to clarify how these networks are handling the data, the heterogeneous data 

set was fed through the trained ConClsI, ConPrpCls, and PrpCls networks (Figure 5.5).  

Figure 5.5a shows the true class for each pattern, note that water content increases from 

the lowest to highest pattern number for a given target.  This variability in the target signal 

as a function of water content can be seen in the classification output from the ConClsI and 

PrpCls networks (Figure 5.5b, d).  However, the contextual preprocessing network was 

able to eliminate the variability in target classification due to changes in water content 

(Figure 5.5c).  This is less prevalent in the non-contextual preprocessing network for the 

pipe and rock clutter targets, however, the network generally struggles in classifying these 

objects as clutter, i.e. high values compared to the true class.
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Figure 5.5:  Classification results from the heterogeneous data set. 
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Overall, it seems that all classifiers struggle with objects buried in very dry 

conditions and have some range of water content that optimizes classification.  All 

networks have difficulty in classifying the UXO and buried rock at low water content.  This 

is less true for the pipe, rock cluster, and metal clutter targets due to greater differences in 

target signatures when compared to UXO signatures.  However, this indicates that there 

may be some optimal range for each target that the preprocessing step could be optimized 

to mimic, effectively increasing the performance of the classifier. 

Given the ROC performance measures in Table 5-2, and a visual inspection of 

network outputs from Figure 5.5, the contextual preprocessing classifier successfully 

classifies the majority of targets while eliminating target variability due to environmental 

conditions.  This indicates that volumetric water content may be better applied in 

regularizing signal patterns in classification algorithms rather than in the decision layer. 

More information can also be derived, however, regarding target properties from a 

more complete data set.  It has been established that these objects are very clearly visible 

on 3D GPR data and that the amount of information from these high-resolution images is 

clearly valuable to UXO classification [Sato et al. 2012], however, no studies to date have 

investigated the use of this information in UXO classification. Additionally, several studies 

have shown success in utilizing signal attributes from standard 2D common offset GPR 

data [Gader et al. 2004; Ho et al. 2004; Kleinmann et al. n.d.; Zyada et al. 2011] which 

motivates the usage of multi-offset data given that it holds important information about 
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target electrical properties, which can be derived using amplitude versus offset (AVO) 

relationships [Baker 1998]. 

5.6 Conclusions 

Artificial neural networks (ANNs) were used to classify unexploded ordnance 

(UXO) and inert target signatures in simulated and empirical ground-penetrating radar 

(GPR) data by utilizing common offset GPR data and contextual environmental 

information.  Results show that classifiers that incorporate contextual information, e.g. 

average water content, are best at discriminating between UXO and clutter on context-

dependent GPR data.  Additionally, contextual information may be more effectively used 

in signal processing steps prior to classification of the target as it is able to help correct 

patterns to a reference state and stabilize target classification.  While there is value in 

including environmental information in signal processing steps prior to classification, 3D 

and multi-fold GPR data have the potential to provide more information about target 

properties and features, which could substantially improve classifier performance.  Finally, 

we conclude that additional steps must be taken to classify targets on field data using 

algorithms trained on idealized simulations. 
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