1,706 research outputs found

    Sensing vehicle dynamics for determining driver phone use

    Full text link
    This paper utilizes smartphone sensing of vehicle dynamics to de-termine driver phone use, which can facilitate many traffic safety applications. Our system uses embedded sensors in smartphones, i.e., accelerometers and gyroscopes, to capture differences in cen-tripetal acceleration due to vehicle dynamics. These differences combined with angular speed can determine whether the phone is on the left or right side of the vehicle. Our low infrastructure ap-proach is flexible with different turn sizes and driving speeds. Ex-tensive experiments conducted with two vehicles in two different cities demonstrate that our system is robust to real driving envi-ronments. Despite noisy sensor readings from smartphones, our approach can achieve a classification accuracy of over 90 % with a false positive rate of a few percent. We also find that by combining sensing results in a few turns, we can achieve better accuracy (e.g., 95%) with a lower false positive rate

    Analysis and development of a novel algorithm for the in-vehicle hand-usage of a smartphone

    Full text link
    Smartphone usage while driving is unanimously considered to be a really dangerous habit due to strong correlation with road accidents. In this paper, the problem of detecting whether the driver is using the phone during a trip is addressed. To do this, high-frequency data from the triaxial inertial measurement unit (IMU) integrated in almost all modern phone is processed without relying on external inputs so as to provide a self-contained approach. By resorting to a frequency-domain analysis, it is possible to extract from the raw signals the useful information needed to detect when the driver is using the phone, without being affected by the effects that vehicle motion has on the same signals. The selected features are used to train a Support Vector Machine (SVM) algorithm. The performance of the proposed approach are analyzed and tested on experimental data collected during mixed naturalistic driving scenarios, proving the effectiveness of the proposed approach

    DroidSense - Micro Environment Sensing for Smartphones

    Get PDF
    Smartphones with embedded sensors have provided a new platform for activity monitoring. These sensors are not only used for smartphone feature enhancement but now are being used for various other applications. This approach takes into consideration the Micro environment of the smartphone and the possibilities of enhancing the use of the embedded sensors in order to reduce human interaction with the smartphone. Micro environment of a smartphone can be referred to attributes from several inches around the smartphone such as light, sound, touch, etc. In this work, we created a smartphone application which records sensor hints from the smartphone’s sensor array and provide feedback without requiring any human interaction. We have implemented various classifiers in the app performing at an average true positive rates of greater than 85%. We have taken into consideration smartphone energy consumption and user friendliness. DOI: 10.17762/ijritcc2321-8169.15059

    IMU-based smartphone-to-vehicle positioning

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordIn this paper, we address the problem of using inertial measurements to position a smartphone with respect to a vehicle-fixed accelerometer. Using rigid body kinematics, this is cast as a nonlinear filtering problem. Unlike previous publications, we consider the complete three-dimensional kinematics, and do not approximate the angular acceleration to be zero. The accuracy of an estimator based on the unscented Kalman filter is compared with the Cramer-Rao bound. As is illustrated, the estimates can be expected to be better in the horizontal plane than in the vertical direction of the vehicle frame. Moreover, implementation issues are discussed and the system model is motivated by observability arguments. The efficiency of the method is demonstrated in a field study which shows that the horizontal RMSE is in the order of 0.5 [m]. Last, the proposed estimator is benchmarked against the state-of-the-art in left/right classification. The framework can be expected to find use in both insurance telematics and distracted driving solutions

    Smartphone-based vehicle telematics: a ten-year anniversary

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordJust as it has irrevocably reshaped social life, the fast growth of smartphone ownership is now beginning to revolutionize the driving experience and change how we think about automotive insurance, vehicle safety systems, and traffic research. This paper summarizes the first ten years of research in smartphone-based vehicle telematics, with a focus on user-friendly implementations and the challenges that arise due to the mobility of the smartphone. Notable academic and industrial projects are reviewed, and system aspects related to sensors, energy consumption, and human-machine interfaces are examined. Moreover, we highlight the differences between traditional and smartphone-based automotive navigation, and survey the state of the art in smartphone-based transportation mode classification, vehicular ad hoc networks, cloud computing, driver classification, and road condition monitoring. Future advances are expected to be driven by improvements in sensor technology, evidence of the societal benefits of current implementations, and the establishment of industry standards for sensor fusion and driver assessment

    Towards Secure, Power-Efficient and Location-Aware Mobile Computing

    Get PDF
    In the post-PC era, mobile devices will replace desktops and become the main personal computer for many people. People rely on mobile devices such as smartphones and tablets for everything in their daily lives. A common requirement for mobile computing is wireless communication. It allows mobile devices to fetch remote resources easily. Unfortunately, the increasing demand of the mobility brings many new wireless management challenges such as security, energy-saving and location-awareness. These challenges have already impeded the advancement of mobile systems. In this dissertation we attempt to discover the guidelines of how to mitigate these problems through three general communication patterns in 802.11 wireless networks. We propose a cross-section of a few interesting and important enhancements to manage wireless connectivity. These enhancements provide useful primitives for the design of next-generation mobile systems in the future.;Specifically, we improve the association mechanism for wireless clients to defend against rogue wireless Access Points (APs) in Wireless LANs (WLANs) and vehicular networks. Real-world prototype systems confirm that our scheme can achieve high accuracy to detect even sophisticated rogue APs under various network conditions. We also develop a power-efficient system to reduce the energy consumption for mobile devices working as software-defined APs. Experimental results show that our system allows the Wi-Fi interface to sleep for up to 88% of the total time in several different applications and reduce the system energy by up to 33%. We achieve this while retaining comparable user experiences. Finally, we design a fine-grained scalable group localization algorithm to enable location-aware wireless communication. Our prototype implemented on commercial smartphones proves that our algorithm can quickly locate a group of mobile devices with centimeter-level accuracy
    • …
    corecore