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Abstract—In this paper, we address the problem of using
inertial measurements to position a smartphone with respect to
a vehicle-fixed accelerometer. Using rigid body kinematics, this
is cast as a nonlinear filtering problem. Unlike previous publi-
cations, we consider the complete three-dimensional kinematics,
and do not approximate the angular acceleration to be zero. The
accuracy of an estimator based on the unscented Kalman filter
is compared with the Cramér-Rao bound. As is illustrated, the
estimates can be expected to be better in the horizontal plane
than in the vertical direction of the vehicle frame. Moreover,
implementation issues are discussed and the system model is
motivated by observability arguments. The efficiency of the
method is demonstrated in a field study which shows that the
horizontal RMSE is in the order of 0.5 [m]. Last, the proposed
estimator is benchmarked against the state-of-the-art in left/right
classification. The framework can be expected to find use in both
insurance telematics and distracted driving solutions.

Index Terms—Insurance telematics, driver distraction, inertial
sensors, centripetal acceleration, nonlinear filtering.

I. INTRODUCTION

There is a steadily growing interest in smartphone-based
traffic data collection. Today, smartphones are used for pur-
poses of for example navigation [1], traffic state estimation
[2], vehicle condition monitoring [3], and driver assistance
[4]. Smartphone-based measurement systems benefit not only
from their versatile set of sensors, typically including both
a global navigation satellite systems (GNSS) receiver and an
inertial measurement unit (IMU), but also from their low cost,
transparency, and ease of use [5]. The need to estimate the
position of a smartphone with respect to a vehicle (see Fig. 1)
can arise for two reasons. First, the position of the smartphone
can be used as one of many possible features that provide
information about a driving trip. An accurate point estimate of
the smartphone’s position could for example help answer ques-
tions such as ”Who is most likely to have driven the vehicle?”.
This is particularly relevant for the industry of smartphone-
based insurance telematics where vehicle data, collected us-
ing smartphones, is used to adjust premiums and provide
driver feedback [6]. In insurance telematics, the insurer can
for example use GNSS measurements to infer the vehicle’s
position, or use IMU measurements to detect harsh braking.
Typically, a substantial amount of statistical signal processing
is required to enhance and monitor the quality of the data
[7]. Second, the position of the smartphone can be used to
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Fig. 1. Illustration of the problem of smartphone-to-vehicle positioning.

minimize driver distraction by enabling location-dependent
limitations of smartphone functionality while driving. This
idea is utilized in apps such as DriveID, which uses patented
Bluetooth technology to infer which side (right or left) of
the car that the smartphone is placed in, and then locks the
smartphone whenever it is on the driver’s side during vehicle
movement. While the classification of the smartphone’s side
in the vehicle is rather accurate, the cost of the required
Bluetooth-equipped device is almost $100, thereby limiting
the possibilities for large-scale deployment.

A. Smartphone-to-vehicle Positioning - State-of-the-art

Many modern cars can perform smartphone-to-vehicle posi-
tioning (or the closely related task of driver identification) by
utilizing original equipment manufacturer (OEM)-technology
based on e.g., Bluetooth and audio ranging [8], [9], voice
recognition [10], or near-field communication [11]. Although
these systems typically work very well, full market penetra-
tion is not expected within the near future, and aftermarket
installations are often expensive. As a consequence, several
low-cost methods for smartphone-to-vehicle positioning have
been proposed. One alternative is to detect human motions
using the smartphone’s IMU and thereby try to infer the
owner’s seat in the vehicle. Studied motions have included
vehicle entries [12], seat-belt fastening, and pedal press [11].
The exact patterns of the two former motions will typically
differ depending on which side of the vehicle that the user
entered from. Similarly, the detection of pedal press always
indicates that the user sat in the driver’s seat. While these
features possess some predictive power, they are susceptible
to variations in the motion behavior of each individual. In
addition, they are constrained by the assumption that the user
carries the smartphone in his pocket. Another option is to
estimate the relative position of two spatially separated devices
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from their GNSS measurements. However, since the errors
normally are heavily correlated in time and often exceed the
typical device distance, convergence can be expected to be
slow [13]. It is also possible to perform driver identification
by studying individual driving styles and travel behaviors [14].

In this study, our focus will be on using that the specific
force, measured by smartphone-embedded accelerometers,
varies with smartphone’s position in the vehicle. The effect is
most clearly seen during high-dynamic events. For example,
in [12] and [15] the relative longitudinal placement of two
smartphones was inferred by comparing their accelerometer
measurements when the vehicle passed a pothole. Similarly, in
[15] and [16], the lateral placement of two smartphones was
inferred from their centripetal acceleration. The acceleration
was computed under the assumption that the vehicle’s angular
velocity was constant (i.e., that the angular acceleration was
zero) and only nonzero along the yaw axis of the vehicle
frame. In the following section, we will generalize this method
by considering the complete three-dimensional kinematic re-
lation between the specific forces. Thereby, the previously
employed assumptions on the angular velocity are avoided.
Obviously, the proposed method may be used in conjunction
with any of the previously mentioned methods utilizing e.g.,
human motions, GNSS measurements, driving styles, etc.

B. Implementation Challenges

The presented estimation framework requires access to
measurements from at least one gyroscope triad and at least
two spatially separated accelerometer triads. Hence, if each
smartphone is equipped with a 6-degrees of freedom IMU,
we either need measurements from at least two smartphones,
or from at least one smartphone and one external vehicle-
fixed accelerometer triad. Since we are estimating the relative
positions of the accelerometer triads, absolute positioning
within the vehicle is typically only possible in the latter
case and under the assumption that the absolute position of
the external accelerometer triad is known. However, accurate
estimates of relative positions are often sufficient input for
reliable driver classifications, i.e., determining which of the
smartphones that belongs to the driver (assuming that such
a smartphone exists). Technical solutions where smartphone
sensors are enhanced with external accelerometer triads [17],
embedded into tags or on-board-diagnostics (OBD)-dongles, is
currently utilized by telematics providers such as Cambridge
Mobile Telematics and Mojio. The cost of a mass-produced
accelerometer triad can be expected to be less than half a
dollar [18], and hence, the cost of producing and installing an
accelerometer tag is typically negligible.

C. Insurance Telematics

Now, we go into more detail on the practical use of
smartphone-to-vehicle positioning within insurance telematics.
While most automotive insurances follow the vehicle, data
collected using a smartphone normally follows the user. (Since
most insurance telematics apps are implemented with an
autostart feature, data will be sent to the insurer whenever
the smartphone is situated in a motor vehicle [19].) Generally,

this will cause issues of data association. For example, we
can imagine scenarios where you lend your car to someone
who is not a registered driver within your telematics policy
(data will be lost), or where you take a cab or ride along in
a friend’s car (data can be mistaken as having emerged from
a trip with your car). In the latter case, smartphone-to-vehicle
positioning might be used to detect which trips that were made
with a third party vehicle. More specifically, one would use
that the probability that the trip was made with the insured
car is higher conditioned on that the data was recorded from
the driver’s seat and vice versa.

One practical issue is that of data sharing, i.e., even if
there are multiple smartphones in a vehicle they might not
be configured to neither share data in real-time nor send data
to the same server [20]. Moreover, problems could arise due
to the implicit assumption that the smartphone is placed in
the vicinity of its user. Installing an accelerometer tag solves
the issues of data association (data from the tag immediately
reveals whether the insured vehicle was driven) and of data
sharing (the insurer will have access to data from both the tag
and the smartphone-embedded accelerometer). Even though
the problem of data association would be solved by the use of
tags, there would still be reasons to be interested in identifying
the driver in each trip. For example, this information could be
used to confirm accident reports where the insurance coverage
differs depending on who was driving during the accident
(liability insurance often follows the driver). For discussions
on privacy in mobile sensing applications, refer to [21].

D. Outline

In this article, we examine the possibilities of using IMU
measurements to position a smartphone with respect to a
vehicle. The achievable accuracy is evaluated with both sim-
ulations and experimental data. The basis of the proposed
estimation framework is presented in Section II. Section III
studies parametric Cramér-Rao bounds (CRBs) using both
numerical and analytical methods. Subsequently, Section IV
presents the results of the conducted field study. Last, Section
V summarizes the study.

Reproducible research: The experimental data used in this
paper is available at www.kth.se/profile/jwahlst/ together with
a Matlab implementation of the proposed method.

II. MODEL AND ESTIMATION FRAMEWORK

Consider a moving vehicle with one gyroscope triad and N
accelerometer triads. All sensors are assumed to be fixed to
the vehicle. Our aim will be to fuse the measurements from
the gyroscopes and the accelerometers to estimate the relative
positions of the accelerometer triads in the vehicle frame. We
begin by presenting kinematic and dynamic models for the
vehicle, and then describe the sensor model. Following this,
the estimation problem is formulated as a nonlinear filtering
problem where the vehicle dynamics and the sensor biases are
treated as nuisance parameters. Last, relevant filtering methods
are reviewed and the observability properties of the presented
system are analyzed.
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A. Kinematic Model

Let us, without loss of generality, order the accelerometer
triads from 1 to N and define the origin of the vehicle frame
to be at the position of the first accelerometer triad. It then
holds that [22]

a(n) = a(1) + ([ω]×[ω]× + [α]×)r(n) (1)

where a(n) and r(n) denote the specific force and the position
in the vehicle frame of the nth accelerometer triad, respec-
tively. Further, ω and α denote the vehicle’s angular velocity
and acceleration with respect to inertial space, respectively.
The skew symmetric matrix [c]× is defined such that [c1]×c2
is equal to the cross product of c1 and c2.

B. Dynamic Model

The dynamics of the vehicle are modeled according to

ωk+1 = ωk + ∆tαk, (2a)
αk+1 = αk + wα,k. (2b)

Here, ∆t denotes the sampling interval and we are using the
subindex k to denote quantities at sampling instance k. Further,
the noise term wα,k is assumed to be normally distributed and
white with covariance ∆t σ2

α I3, where I` denotes the identity
matrix of dimension `.

C. Sensor Model

The measurements from the gyroscope triad and the nth
accelerometer triad are modeled as

ω̃k = ωk + bω,k + εω,k, (3a)

ã
(n)
k = a

(n)
k + b

(n)
a,k + ε

(n)
a,k, (3b)

where εω,k and ε(n)a,k are normally distributed white noise pro-
cesses with covariances σ2

ω I3 and σ2
a I3, respectively. Further,

(3) includes gyroscope and accelerometer biases which are
assumed to develop according to the random walk models

bω,k+1 = bω,k + wω,k, (4a)

b
(n)
a,k+1 = b

(n)
a,k + w

(n)
a,k. (4b)

Here, wω,k and w
(n)
a,k are assumed to be normally dis-

tributed white noise processes with covariances ∆t σ2
b,ω I3 and

∆t σ2
b,a I3, respectively.

D. State-space Model

Using (1) – (4), the vehicle dynamics and the measurements
can be described by the state-space model

xk+1 = f(xk) + wk, (5a)
yk = h(xk) + εk. (5b)

The state vector is defined as1

x ∆=
[
rᵀ ωᵀ αᵀ bᵀ

ω δbᵀ
a

]ᵀ (6)

1The choice of variables to include in x is motivated by the observability
properties of the corresponding system. This is discussed in more detail in
Section II-H.

where it has been used that r ∆=
[
(r(2))

ᵀ
. . . (r(N))

ᵀ]ᵀ,
δba

∆=
[
(δb(2)

a )
ᵀ
. . . (δb(N)

a )
ᵀ]ᵀ, and δb(n)

a
∆= b(n)

a − b(1)
a .

It can be noted that r defines the relative position of any two
accelerometer triads. Using (2) and (4), the state transition
model can be shown to be linear, i.e., f(xk) ∆= Fxk, where F
is defined as

F ∆= I6N+3 +

03(N−1),3N 03(N−1),3 03(N−1),3N
03,3N ∆t I3 03,3N

03(N+1),3N 03(N+1),3 03(N+1),3N

. (7)

We have here used 0` and 0`1,`2 to denote zero matrices
of dimensions ` × ` and `1 × `2, respectively. Similarly, it
can be shown that wk is normally distributed and white with
covariance GQGᵀ where

Q ∆= ∆t · blkdiag(σ2
α I3, σ

2
b,ω I3, σ

2
b,a IN,3), (8a)

G ∆=
[
03(N+1),3N I3(N+1)

]ᵀ
, (8b)

and In,m
∆= (In−1 + 1n−1) ⊗ Im. Here, blkdiag(·, . . . , ·)

denotes the block diagonal matrix with block matrices given
by the arguments, 1` denotes the matrix of dimension ` × `
with all elements equal to one, and ⊗ denotes the Kronecker
product. Now, defining δã(n) ∆= ã(n) − ã(1) and h(n)(x) ∆=
δb(n)

a + ([ω]×[ω]× + [α]×)r(n), equations (1) and (3) yield
the measurement vector and the measurement function

y ∆=
[
ω̃ᵀ (δã(2))

ᵀ
. . . (δã(N))

ᵀ]ᵀ
, (9a)

h(x) ∆=
[
ωᵀ (h(2)(x))

ᵀ
. . . (h(N)(x))

ᵀ]ᵀ
, (9b)

respectively. Moreover, it follows that εk will be a nor-
mally distributed white noise process with covariance R ∆=
blkdiag(σ2

ω I3, σ
2
a IN,3). It can be noted that the measure-

ment vector (9a) includes the difference in the measurements
from N − 1 specific pairs of accelerometer triads. The same
information can be provided to the system by including the
measurement difference of any N − 1 pairs of accelerometer
triads, as long as all accelerometer triads appear at least once
in the total set of pairs. Any measurement defined by an
additional N th pair of accelerometer triads can be obtained
as a linear combination of the measurements defined by the
original N − 1 pairs, and is therefore redundant.

E. Filters for Nonlinear Systems
Due to the nonlinearity of the system (5), no optimal

(in mean-square sense) and finite-dimensional estimator of
x is available, and we will have to resort to suboptimal
implementations. A large number of suitable estimators have
been described in the literature. If the nonlinearities are not
too severe, we may linearize the system around the current
estimate and then apply the optimal estimator of the resulting
approximate linear model. This defines the extended Kalman
filter (EKF) [23]. A popular alternative to the EKF is the
unscented Kalman filter (UKF). As shown in [24], the UKF
outperforms the EKF in most circumstances. In this study, we
will be confined to UKF-based implementations.

Typically, an UKF has a computational cost in the same
order as that of the corresponding EKF. In the most straight-
forward implementation, this computational cost is dominated
by a term in the order of 6d3 per iteration, where d = 6N + 3
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denotes the dimension of the state vector [25]. Hence, running
the algorithm with e.g., N = 3 at 20 [Hz] would require
20 · 6 · 213 [flops] ≈ 1.1 [Mflops], which is several orders
of magnitude smaller than the maximum number of flops
performed by standard smartphones [26].

If particle-based implementations are considered, it can
be noted that the system is conditionally linear in both the
positions r and the bias terms bω and δba. Hence, it suffices
to employ a marginalized particle filter (MPF) where only
the posteriors of the vehicle dynamics ω and α need to
represented by particles [27].

F. Classification

Once a position estimate have been obtained, it is easy
to e.g., make left/right or front/back classifications, perform
hypothesis tests, or compute uncertainty ellipses by employ-
ing a Gaussian approximation. Here, a left/right (front/back)
classification refers to the process of determining which of
two devices that is the closest to the left/right (front/back)
side of the vehicle. As an example, assume that we have
processed all available measurements with N = 2 and that
the final position estimate is r̂ with the associated filter
covariance Σr. We will then consider the first accelerometer
to be placed on the right side of the second accelerometer
if and only if r̂lat, i.e., the element of r̂ indicating position
in the lateral direction of the vehicle frame (with the lateral
axis pointing to the right in the vehicle), is negative. Similarly,
the generalized likelihood ratio for testing the hypothesis that
the first accelerometer is on the right side of the second ac-
celerometer is Λ = pN (max(r̂lat, 0), σ2

lat)/pN (0, σ2
lat) [28],

where pN ( · , σ2) denotes the probability density function of
a normal distribution with zero mean and variance σ2, while
σ2
lat denotes the diagonal element of Σr associated with the

lateral direction.

G. Distributed Filtering

If the estimation is to be performed in real-time with no
dependence on OEM infrastructure, the computations must
be done directly on the relevant smartphones or on vehicle-
installed devices (e.g., tags). This calls for implementations
utilizing distributed filtering. However, since the length of the
state vector exceeds the number of the measurements obtained
per filter iteration, less communications are generally required
when transmitting measurements than when transmitting es-
timation statistics. Hence, a feasible alternative is to employ
a centralized leader-agent solution, where all measurements
are sent to a single processing node (the leader-agent), which
then performs the filter iterations [29]. Obviously, the choice
of leader-agent may vary with time.

H. Observability

We will address issues related to the observability of (5)
by studying the observability properties of the corresponding
linear system. (This is a common approach for systems which
are not subject to e.g., multimodal or discontinuous error
distributions [30].) The linearized system is said to be ob-
servable over the interval [t1, tk ] if and only if the rank of the

observability matrix O1,k
∆=
[
Hᵀ

1 (H2F)ᵀ . . . (HkF
k−1)ᵀ

]ᵀ
is equal to the dimension of x [31]. Here, H ∆= ∂h(x)/∂x
denotes the linearized measurement matrix. Normally, observ-
ability is attained already for small k in all but degenerate
cases where e.g., the angular velocities and accelerations only
are nonzero in one spatial dimension.

Several additional remarks can be made regarding the ob-
servability of the system and the chosen system model. For
example, we note that the presented framework easily can be
extended to include measurements from multiple gyroscope
triads. A straightforward observability analysis shows that each
separate gyroscope bias can be made observable. However,
if the measurement noises of different gyroscope triads are
assumed to be independent and identically distributed, it is
usually more convenient to average the measurements before
they are fed to the filter, and then only estimate the average
bias. Moreover, notice that neither the vehicle’s specific force
nor any absolute accelerometer bias has been included in the
state vector. To investigate this further, imagine that we extend
the state vector with the specific force and the accelerometer
bias at the first the accelerometer triad, and model both
quantities to develop according to a random walk. (Obviously,
it suffices to extend the state vector with the specific force
and the accelerometer bias at the first the accelerometer triad
to implicitly estimate the corresponding quantities at any
accelerometer triad.) It is then easily confirmed that these
quantities are mutually unobservable, even if (3b) is included
in the measurement equation for n = 1. (Both quantities only
enter the observability matrix through this measurement, and
do so linearly.) However, if the bias or the specific force is
known at an arbitrary accelerometer triad, this will make both
quantities observable.

III. THE CRAMÉR-RAO BOUND

Given some statistical estimation problem, the CRB pro-
vides a lower limit on the mean square estimation error of
any unbiased estimator. There are two primary reasons to study
this bound. First, it can be used to evaluate the performance of
suboptimal estimators. If the mean-square error of an estimator
is in the vicinity of the bound, the estimator is typically
considered to be adequate. Second, it may help to discover
inherent limitations of the problem at hand, or give hints on
how to design experiments to increase estimator performance.
In this section, we will make use of both these traits.

A. Definitions and Setup for Studies of the Parametric CRB

For a system model such as (5), both parametric and
posterior CRBs are available. To make sure that we are able to
capture all the characteristics of real-world vehicle dynamics,
our focus will be on the parametric CRB, using dynamics
from real-world data. (The same approach has previously been
taken in e.g., [32].) This bound considers the classical frame-
work with deterministic and unknown parameters, and must
therefore be given with respect to some specified realization
of the relevant state elements. Since the parametric CRB for
the system model (5) is given by the Riccati recursion for
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Fig. 2. The angular velocity along the x-axis (roll), y-axis (pitch), and z-axis
(yaw) in a subset of the employed data set.

the covariance in the extended Kalman filter (where the state-
space model is linearized around the true realization), it will
suffice to specify realizations of r, ω, and α (the linearized
filter matrices only depend on these state elements).

For ease of illustration, we will reduce the Cramér-Rao
inequality to scalar form, and compare the empirical scalar
root-mean-square error (RMSE) of the position errors with
the trace of the corresponding submatrix of the inverse Fisher
information matrix (FIM). The inequality can be written as
[33] √√√√ 1

M

M∑
i=1

‖r̂i − r‖2 &
√

tr(Pr) (10)

and holds for each sampling instance (the time dependence
has been suppressed for brevity). Here, M denotes the total
number of simulations over the complete realization, ‖ · ‖
denotes the Euclidean norm, r̂i denotes the estimated relative
positions during simulation i, Pr denotes the submatrix of the
inverse FIM providing the lower bound on mean-square error
of r̂, tr(A) denotes the trace of some matrix A, and & denotes
inequality in the limit of M → ∞. For ease of notation, we
define

RMSE(r̂) ∆=
1√

dim(r)

√√√√ 1

M

M∑
i=1

‖r̂i − r‖2 (11a)

and
CRB(r) ∆=

1√
dim(r)

√
tr(Pr). (11b)

Here, dim(r) ∆= 3(N − 1) is the length of the vector r. The
factor 1/

√
dim(r) has been included to facilitate a comparison

between scenarios with a different number of accelerometers.

B. Simulation-based Evaluation of the UKF

Inertial data was collected from a Microstrain 3DM-GX3-
35 placed in a vehicle performing harsh cornering maneuvers.
It should be intuitively clear already from equation (1) that a
certain level of angular rotation (e.g., cornering) is required to
estimate the relative positions. This is discussed in more detail
in Section III-C. The data included 32 cornering maneuvers
collected over approximately 6 minutes on an empty parking
lot. The sampling rate was 20 [Hz]. Fig. 2 serves to illustrate
the studied dynamics (the true dynamics provided by the
reference system) by showing a 30-second snippet of the
vehicle’s angular velocity.

TABLE I
SIMULATION PARAMETERS.

Parameter Value
Positions† r(2) [0 1 0.5] [m]

r(3) [1 0 0.5] [m]
r(4) [1 1 1] [m]

Sensor noise σω 1 [◦/s]
σa 0.035 [m/s2 ]

Bias drift σb,ω 0.0015 [◦/s2/
√
Hz ]

σb,a 5 · 10−5 [m/s3/
√
Hz ]

Dynamics σα 8 [◦/s3/
√
Hz ]

† The positions are given along the vehicle’s longitudinal, lateral, and up
direction, respectively.
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(a) Estimator performance in horizontal plane
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(b) Estimator performance in vertical direction
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Fig. 3. The (a) horizontal and (b) vertical RMSE of the UKF evaluated against
the CRB.

The simulation parameters are given in Table I. As can
be seen, the simulated measurements were assumed to be
gathered from four 6-degrees of freedom IMUs, placed in the
corners of a rhombus. Further, the RMSEs were computed
from M = 100 simulations using a standard UKF imple-
mentation [23]. In each simulation run, we generated constant
accelerometer and gyro biases from uniform distributions in
the intervals of (−0.5, 0.5) [m/s2] and (−0.25, 0.25) [◦/s],
respectively. See [22], [34], [35] for typical bias values. The
angular velocity and acceleration were initialized from the
measurements, and the relative positions and the bias terms
were initialized as zero.

As the larger part of the angular velocity and the angular
acceleration was along the yaw axis of the vehicle frame (as
is typical for vehicle dynamics), the errors of the estimated
relative position will also be larger in this direction. (Note
that r(n) is locally unobservable in the direction of ω as
long as ω and α are parallel and constant.) To illustrate the
resulting effect on the estimates, we study the horizontal (along
the longitudinal and lateral dimensions of the vehicle frame)
and vertical (in the up direction of the vehicle frame) con-
tributions to RMSE(r̂) and CRB(r) separately. For example,
when studying the horizontal RMSE(r̂), only the lateral and
longitudinal elements of r were considered in (11a).



6

Fig. 3 (a) and (b) show the CRB together with the RMSE
for the horizontal position estimates r̂hor and vertical position
estimates r̂vert, respectively. As can be seen in Fig. 3 (a), the
estimates of relative position reach decimeter-level accuracy in
the horizontal plane after about twelve seconds (corresponding
to one cornering maneuver). The CRB is attained after about
six minutes. By contrast, Fig. 3 (b) shows that the estimates
do not converge in the vertical direction. However, it should
be noted that it is unclear whether the CRB is attainable at all.
Either way, the vertical distance between the accelerometers
will typically be of secondary importance.

C. Analytical CRBs

To gain some insight into how the estimation accuracy
depends on the vehicle dynamics, let us consider the case
where the vehicle’s angular velocity and angular acceleration
can be assumed to be known. Since all gyroscopes measure the
same angular velocity, this is usually a feasible approximation
for sensor setups with a large number of IMUs [36]. In
addition, it is assumed that the estimation procedure has been
preceded by a bias calibration. Hence, we may disregard
all bias terms. Under these assumptions, the measurement
equation providing information about r at a given sampling
instance can be written as

ya = Har + εa. (12)

Here, we have defined ya
∆=
[
(δã(2))

ᵀ
. . . (δã(N))

ᵀ]ᵀ and
Ha

∆= IN−1 ⊗ Ωa, where the angular acceleration tensor is
Ωa

∆= [ω]×[ω]× + [α]×. Moreover, the covariance of εa is
given by Ra

∆= σ2
a IN,3. Now, assuming that [ω]×α 6= 03,1,

the parametric CRB for r given one observation of ya is

Cov(r̂) � Pr,a (13)

where we have used A � B to denote that A−B is positive
semidefinite. The inverse FIM is given by

Pr,a = σ2
a(IN−1 + 1N−1)⊗ (Ωa

ᵀΩa)−1. (14)

As expected, the bound will typically decrease as the angular
velocities and accelerations increase. A derivation of (14) is
provided in Appendix A.

Several conclusions can be drawn from the CRB bound
presented in (13). First, we note that the estimator performance
is independent of the number of accelerometers. This is a con-
sequence of assuming perfect knowledge of angular velocity
and acceleration. Under this assumption, each accelerometer
only provides information about its own position (relative to
the first accelerometer), and so, increasing the total number of
accelerometers will not improve the estimates, only increase
the dimension of the state vector. Second, we note that the
correlation function of the estimated relative positions of two
accelerometers in some given direction always is equal to
σ2
α/
√

2σ2
α · 2σ2

α = 1/2, independent of the vehicle dynam-
ics. In other words, the estimates will always be heavily
correlated, and this cannot be mitigated by any choice of
vehicle dynamics. Third, we study the variance in the direction
that is perpendicular to the angular velocity and angular
acceleration. That is, we look at the CRB for the estimates of

3
1 2

4
5

6 7

1.55 [m]0.1 [m]

0.15 [m]

1 [m]

0.1 [m]
0.15 [m]

Fig. 4. The placement of the smartphones in the longitudinal and lateral
directions of the vehicle frame.
For clarity, the figure is not shown in consistent scale.

rω⊥
∆= (ω⊥)ᵀr, where ω⊥

∆= [ω]×α/‖[ω]×α‖. In Appendix
B, it is shown that the corresponding Cramér-Rao inequality
can be written as

Var(r̂ω⊥) ≥ 2σ2
a

(sin(θ)‖α‖)2 (15)

where θ ∆= cos−1(ωᵀα/‖ω‖‖α‖) is the angle between ω
and α. As may be realized, (15) indicates that the position
estimates, in the direction that is perpendicular to ω and α,
get worse as the angular rotations are concentrated to one
direction, i.e., when θ tend to zero. This illustrates that the
horizontal position estimates benefit from rotations along the
roll and pitch axes.

IV. FIELD STUDY

The field study used data from the same event as in Section
III-B. In addition, the same filter parameters were used. How-
ever, instead of using simulations, real-world measurements
were employed. As a result, the estimates were affected by
several errors that were not modeled in Section II. These
include scale factor, cross-coupling, inter-misalignment, and
time synchronization errors [22]. Although these error contri-
butions can be expected to degrade the estimation accuracy,
the presented framework is still shown to be useful in practical
applications.

A. Setup

Data was collected from seven smartphones rigidly attached
to the vehicle. The placement of the smartphones is illus-
trated by Fig. 4. The employed smartphone models where
(1) Samsung S3, (2) iPhone 4, (3) Samsung S3, (4) Samsung
S3, (5) iPhone 5, (6) Samsung S4, and (7) Samsung S3. The
three smartphones in the front seat were placed 0.1 [m] higher
up (in the up direction of the vehicle frame) than the four
smartphones in the back seat. The relative positions were
measured by hand with an uncertainty in the order of 5 [cm]
in any given direction. The measurements from different
smartphones were time synchronized by the use of GNSS time.
In the synchronization, the processing delays for the GNSS
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Fig. 5. The estimated and true smartphone positions. All smartphone
measurements were processed simultaneously.

receiver and the IMU were assumed to be approximately
equal in any single given smartphone. Moreover, all IMU
measurements were aligned to the vehicle frame by estimating
the smartphone-to-vehicle orientation as described in [37].

B. Results

We now present the results of three experiments. In the first
experiment, we attempt to simultaneously estimate the relative
positions of the seven smartphones using all available data.
The second experiment considers the same problem but with
the measurements processed from two smartphones at a time.
Last, we study the accuracy of left/right classification by using
measurements from two smartphones at a time, and processing
the measurements from each cornering maneuver separately.

Defining the origin of the vehicle frame to be at the position
of the Samsung S3 denoted by (1) in Fig. 4, Fig. 5 shows
the true and estimated relative positions in the horizontal
plane after processing all available measurements in the same
filter. The true and estimated positions associated with a given
smartphone are for visibility connected by a straight black line.
Although we are not able to reach the sub-centimeter accuracy
that was indicated in Fig. 3 (a), the results are still promising as
they show that the overall smartphone geometry is preserved.
The horizontal RMSE was 0.46 [m]. However, in accordance
with what could be expected from the results in Section III-B,
the estimates in the up direction (not illustrated by any figure)
were worse and had a RMSE of 2.40 [m].

In practice, it is often more relevant to study the accu-
racy that can be obtained by processing measurements from
two smartphones at a time, i.e., when N = 2. Fig. 6
shows the relative errors (r̂ − r)/r of estimated distances
in a given direction (longitudinal or lateral) as dependent
on the true distance. Only the cases where the true dis-
tance exceeded 0.3 [m] are considered. The measurements
were processed from two smartphones at a time, and all
21 possible smartphone combinations were studied (i.e.,
{(1, 2), (1, 3), . . . , (1, 7), (2, 3), (2, 4), . . . , (6, 7)}). As can be
seen, correct left/right or front/back classifications were made
in all of the 22 considered cases, i.e., the relative error
always exceeded −1. In one case, attributed to the longitudinal
distance between the two iPhones, the relative error exceeded

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

-2

0

2

4

|r| [m]

(r̂
−

r)
/r

Distance estimates

longitudinal
lateral

Fig. 6. The relative errors as dependent on the true longitudinal and lateral
distance. The measurements were processed from two smartphones at a time.

TABLE II
ACCURACY IN LEFT/RIGHT CLASSIFICATION.

UKF [%] Benchmark [16] [%]

r > 0.3 [m] 91.1 88.5

r < 0.3 [m] 50.5 50.5

1. For the cases (not illustrated by any figure) when the
true distance was below 0.3 [m], the RMSE was 0.51 [m].
Moreover, correct left/right or front/back classifications were
made in 7 out of 11 instances (not counting the instances
where the true distance was equal to zero).

Last, the proposed framework was benchmarked against
the method for left/right classification presented in [16] (the
method is detailed in Appendix C). To obtain a sufficient
sample size, each of the 32 recorded cornering maneuvers
was handled separately. A cornering maneuver was registered
whenever the absolute value of the vehicle’s angular velocity
along the yaw axis exceeded 30 [◦/s] and was considered to
have ended when then angular velocity fell below 10 [◦/s]
for at least 0.5 [s]. Table II shows the classification accuracy
obtained when aggregating the results from all possible smart-
phone pairs. The results are shown separately for the two cases
when the true lateral distance exceeded or fell short of 0.3 [m].
In the latter case, neither of the methods perform better than
random guessing. However, for larger lateral distances, both
methods reach a classification accuracy of about 90 %, with
the UKF performing marginally better.

V. SUMMARY

We have presented an IMU-based method for positioning
a smartphone with respect to a vehicle. The problem was
formulated as a nonlinear filtering problem, where the vehicle
dynamics and the sensor biases where treated as nuisance
parameters. While previous studies on smartphone-to-vehicle
positioning always have estimated the lateral and longitudinal
distances separately, this study employed three-dimensional
kinematics, thereby enabling the smartphone’s position to be
estimated jointly in all directions. Moreover, analytical CRBs
were derived, and the system model was motivated by ob-
servability arguments. As was confirmed by both simulations
and real-world experiments, the estimates in the horizontal
directions of the vehicle frame will typically be better than in
the up direction.

Real-world measurements were employed in three experi-
ments. Simultaneously processing measurements from seven
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different smartphones gave a horizontal RMSE in the order
of 0.5 [m]. When processing measurements from two smart-
phones at a time, correct left/right or front/back classifications
were made in all of the 22 considered cases. Studying each
cornering maneuver independently, correct left/right classi-
fications were made in about 90% of the cases when the
lateral distance between the devices exceeded 0.3 [m]. To sum-
marize, the proposed method enables accurate smartphone-
to-vehicle positioning with minimal requirements on vehicle
infrastructure. As such, it can be expected to find use in both
smartphone-based insurance telematics and distracted driving
solutions. Future work should focus on how to incorporate
information from human motions and GNSS measurements
in a robust manner, and how to handle situations when the
smartphones’ positions change with time.

APPENDIX A

This appendix derives the CRB in (13). Equation (12) de-
scribes a standard linear measurement equation with normally
distributed errors and an invertible measurement matrix Ha.
Under these conditions, the inverse FIM can be expressed as
[38]

Pr,a = Ha
−1Ra(Ha

ᵀ)−1

= σ2
a(IN−1 ⊗Ωa)−1((IN−1 + 1N−1)⊗ I3)

· ((IN−1 ⊗Ωa)ᵀ)−1

= σ2
a(IN−1 ⊗Ωa

−1)((IN−1 + 1N−1)⊗ I3) (16)

· (IN−1 ⊗ (Ωa
ᵀ)−1)

= σ2
a((IN−1 + 1N−1)⊗Ωa

−1)(IN−1 ⊗ (Ωa
ᵀ)−1)

= σ2
a(IN−1 + 1N−1)⊗ (Ωa

ᵀΩa)−1

and we are done. Here, it has been used that (A⊗B)ᵀ = Aᵀ⊗
Bᵀ, (A⊗B)⊗ (A′ ⊗B′) = (AA′)⊗ (BB′), and assuming
that A and B are nonsingular, (A ⊗ B)−1 = A−1 ⊗ B−1,
for any matrices A,B,A′, and B′ of appropriate dimensions
[39].

APPENDIX B

In the following, we derive the CRB in (15). Using that [40]

Ωa
−1 ∆=

(ωωᵀ)2 +ααᵀ −
[
[ω]×[ω]×α

]×
αᵀ[ω]×[ω]×α

(17)

it can from (13) be seen that

Var(r̂ω⊥) ≥ 2σ2
a(ω⊥)ᵀ(Ωa

ᵀΩa)−1ω⊥

= −2σ2
a(ω⊥)ᵀ

([
[ω]×[ω]×α

]×
αᵀ[ω]×[ω]×α

)2

ω⊥

= 2σ2
a

(sin(θ)‖ω‖2‖α‖)2
(sin(θ)‖ω‖‖α‖)4

=
2σ2

a

(sin(θ)‖α‖)2

(18)

where we have used that (ω⊥)ᵀω⊥ = 1 and that ‖[ω]×α‖ =
sin(θ)‖ω‖‖α‖.

APPENDIX C

Here, we outline the method for left/right classification
[16] of two smartphones that was used as a benchmark in
Section IV-A. Making the approximation that the angular
velocity is constant and only nonzero along the yaw axis of
the vehicle frame, we may, without loss of generality, use that
ω ≈ ω [0 0 1]ᵀ and α ≈ 03,1. Inserting this into (1) then
yields the scalar equation

a
(n)
lat ≈ a

(1)
lat − ω2r

(n)
lat (19)

where (·)lat denotes quantities in the lateral direction of the
vehicle frame. Now, using (19) in the limit of ω → 0, we first
estimate the relative accelerometer bias as the constant

δb̂
(n)
a,lat =

∑
|ω̃k|<γ

ã
(n)
lat,k − ã

(1)
lat,k (20)

where γ is some chosen threshold. Finally, the classification
is made based on the sign of the test statistic

r̂
(n)
lat =

Nω+N ′∑
k=Nω−N ′

ã
(n)
lat,k − ã

(1)
lat,k − δb̂

(n)
a,lat. (21)

Here, Nω is the sampling index where |ω̃k| reaches it maxi-
mum, and N ′ is some chosen integer. In section IV-A we used
γ = 10 [◦/s] and choose N ′ so that the sum in (21) was taken
over samples from an interval of length 1 [s].
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