380 research outputs found

    The Use of Ground Penetrating Radar and Microwave Tomography for the Detection of Decay and Cavities in Tree Trunks

    Get PDF
    Acknowledgements This paper is dedicated to the memory of Jonathan West; a friend, a colleague, a forester, a conservationist and an environmentalist, who died following an accident in the woodland that he loved.Peer reviewedPublisher PD

    Reverse-Time Migration for Evaluating the Internal Structure of Tree-Trunks Using Ground-Penetrating Radar

    Get PDF
    The authors would like to express their sincere thanks and gratitude to the following trusts, charities, organizations and individuals for their generosity in supporting this project: Lord Faringdon Charitable Trust, The Schroder Foundation, Cazenove Charitable Trust, Ernest Cook, Sir Henry Keswick, Ian Bond, P. F. Charitable Trust, Prospect Investment Management Limited, The Adrian Swire Charitable Trust, The John Swire 1989 Charitable Trust, The Sackler Trust, The Tanlaw Foundation and The Wyfold Charitable Trust. This paper is dedicated to the memory of Jonathon West, a friend, a colleague, a forester, a conservationist and an environmentalist who died following an accident in the woodland that he loved.Peer reviewedPostprin

    Assessing the internal structure of hollow trees using GPR and microwave tomography

    Get PDF
    Trees and woodlands are nowadays threatened by variety of aggressive diseases and fungal infections. As a result, internal decays in trees, can lead to the creation of cavities and large holes inside the trunks, which in turn can seriously undermine the stability and the integrity of the tree. In this regard, ground-penetrating radar (GPR) has recently proven to be an effective non-destructive testing (NDT) method, with the potential of providing information about the internal structure of trees. However, the particular shape of tree trunks prevents the use of traditional data processing techniques, and only limited information can be collected for tree health assessment purposes. This study shows the potential of GPR enhanced by a microwave tomography inversion approach in detecting tree cavities and hollows. A hollow tree was investigated by performing a set of circular GPR scans, and the internal structure of the trunk was reconstructed via tomographic imaging. The achieved results were validated by way of comparison with real sections cut from the tree and prove the validity of the proposed methodology in identifying the dimension and shape of cavities and hollows in tree trunks

    Construction of street tree risk assessment system and empirical analysis based on non-destructive testing technologies

    Get PDF
    The traditional visual tree assessment method is subjective in evaluating tree risks and therefore not effective in precisely detecting internal decay in tree trunk and root systems. To improve the accuracy of street tree risk assessment, a new nondestructive testing method was proposed. This new tree risk assessment method combines different non-destructive testing technologies, such as sonic tomography and ground-penetrating radar, which could significantly increase the accuracy of risk assessment in tree trunks and roots. The method was applied to evaluate the risk of 1,001 street trees in Shanghai’s historical feature protection area. The results revealed that despite most street trees having low branch and trunk risk levels, more than one-third had high root risk levels. The risk factors of street trees were mainly in the trunk and root system, with a significant correlation between the street tree risk level and tree cavities, diseases, and insect pests, as well as the depth and range of the root distribution, leaning, and internal decay in trunks. With the help of non-destructive testing and risk assessment analysis, as well as targeted prevention measures, the possibility of street risk damage was largely reduced, including street trees tilting and collapsing during typhoons, etc

    Health monitoring of trees and investigation of tree root systems using ground penetrating radar (GPR)

    Get PDF
    Evidence suggests that trees and forests around the world are constantly being threatened by disease and environmental pressures. Over the last decade, new pathogens spread rapidly in European forests, and quarantine measures have mostly been unable to contain outbreaks. As a result, millions of trees were infected, and many of these have already died. It is therefore vital to identify infected trees in order to track, control and prevent disease spread. In addressing these challenges, the available methods often include cutting of branches and trees or incremental coring of trees. However, not only do the tree itself and its surrounding environment suffer from these methods, but they also are costly, laborious and time-consuming. In recent years the application of non-invasive testing techniques has been accepted and valued in this particular area. Given its flexibility, rapidity of data collection and cost-efficiency, Ground Penetrating Radar (GPR) has been increasingly used in this specific area of research. Consequently, this PhD Thesis aims at addressing a major challenge within the context of early identification of tree decay and tree disease control using GPR. In more detail, two main topics are addressed, namely the characterisation of the internal structure of tree trunks, and the assessment of tree root systems’ architecture. As a result, a comprehensive methodology for the assessment of both tree trunks and roots using GPR is presented, which includes the implementation of novel algorithms and GPR signal processing approaches for the characterisation of tree trunks’ internal structure and the three-dimensional mapping of tree root systems. Results of this research project were promising and will contribute towards the establishment of novel tree evaluation approaches

    Sensors Application in Agriculture

    Get PDF
    Novel technologies are playing an important role in the development of crop and livestock farming and have the potential to be the key drivers of sustainable intensification of agricultural systems. In particular, new sensors are now available with reduced dimensions, reduced costs, and increased performances, which can be implemented and integrated in production systems, providing more data and eventually an increase in information. It is of great importance to support the digital transformation, precision agriculture, and smart farming, and to eventually allow a revolution in the way food is produced. In order to exploit these results, authoritative studies from the research world are still needed to support the development and implementation of new solutions and best practices. This Special Issue is aimed at bringing together recent developments related to novel sensors and their proved or potential applications in agriculture

    Earth resources: A continuing bibliography with indexes (issue 51)

    Get PDF
    This bibliography lists 382 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Proceedings of the Third Spaceborne Imaging Radar Symposium

    Get PDF
    This publication contains summaries of the papers presented at the Third Spaceborne Imaging Radar Symposium held at the Jet Propulsion Laboratory (JPL), California Institute of Technology, in Pasadena, California, on 18-21 Jan. 1993. The purpose of the symposium was to present an overview of recent developments in the different scientific and technological fields related to spaceborne imaging radars and to present future international plans. This symposium is the third in a series of 'Spaceborne Imaging Radar' symposia held at JPL. The first symposium was held in Jan. 1983 and the second in 1986
    corecore