13 research outputs found

    Machine Learning-Based Android Malware Detection Using Manifest Permissions

    Get PDF
    The Android operating system is currently the most prevalent mobile device operating system holding roughly 54 percent of the total global market share. Due to Android’s substantial presence, it has gained the attention of those with malicious intent, namely, malware authors. As such, there exists a need for validating and improving current malware detection techniques. Automated detection methods such as anti-virus programs are critical in protecting the wide variety of Android-powered mobile devices on the market. This research investigates effectiveness of four different machine learning algorithms in conjunction with features selected from Android manifest file permissions to classify applications as malicious or benign. Case study results, on a test set consisting of 5,243 samples, produce accuracy, recall, and precision rates above 80%. Of the considered algorithms (Random Forest, Support Vector Machine, Gaussian Naïve Bayes, and K-Means), Random Forest performed the best with 82.5% precision and 81.5% accuracy

    PIndroid: A novel Android malware detection system using ensemble learning

    Get PDF
    The extensive usage of smartphones has been the major driving force behind a drastic increase of new security threats. The stealthy techniques used by malware make them hard to detect with signature based intrusion detection and anti-malware methods. In this paper, we present PIndroid|a novel Permissions and Intents based framework for identifying Android malware apps. To the best of our knowledge, PIndroid is the first solution that uses a combination of permissions and intents supplemented with multiple stages of classifiers for malware detection. Ensemble techniques are applied for optimization of detection results. We apply the proposed approach on 1,745 real world applications and obtain 99.8% accuracy which is the best reported to date. Empirical results suggest that our proposed framework built on permissions and intents is effective in detecting malware applications

    SafeDroid: A Distributed Malware Detection Service for Android

    Get PDF
    Android platform has become a primary target for malware. In this paper we present SafeDroid, an open source distributed service to detect malicious apps on Android by combining static analysis and machine learning techniques. It is composed by three micro-services, working together, combining static analysis and machine learning techniques. SafeDroid has been designed as a user friendly service, providing detailed feedback in case of malware detection. The detection service is optimized to be lightweight and easily updated. The feature set on which the micro-service of detection relies on on has been selected and optimized in order to focus only on the most distinguishing characteristics of the Android apps. We present a prototype to show the effectiveness of the detection mechanism service and the feasibility of the approach

    Detecting and Classifying Android Malware Using Static Analysis along with Creator Information

    No full text
    Thousands of malicious applications targeting mobile devices, including the popular Android platform, are created every day. A large number of those applications are created by a small number of professional under-ground actors, however previous studies overlooked such information as a feature in detecting and classifying malware, and in attributing malware to creators. Guided by this insight, we propose a method to improve on the performance of Android malware detection by incorporating the creator's information as a feature and classify malicious applications into similar groups. We developed a system that implements this method in practice. Our system enables fast detection of malware by using creator information such as serial number of certificate. Additionally, it analyzes malicious be-haviors and permissions to increase detection accuracy. The system also can classify malware based on similarity scoring. Finally, we showed detection and classification performance with 98% and 90% accuracy respectively.Comment: International Journal of Distributed Sensor Network

    Feature Selection on Permissions, Intents and APIs for Android Malware Detection

    Get PDF
    Malicious applications pose an enormous security threat to mobile computing devices. Currently 85% of all smartphones run Android, Google’s open-source operating system, making that platform the primary threat vector for malware attacks. Android is a platform that hosts roughly 99% of known malware to date, and is the focus of most research efforts in mobile malware detection due to its open source nature. One of the main tools used in this effort is supervised machine learning. While a decade of work has made a lot of progress in detection accuracy, there is an obstacle that each stream of research is forced to overcome, feature selection, i.e., determining which attributes of Android are most effective as inputs into machine learning models. This dissertation aims to address that problem by providing the community with an exhaustive analysis of the three primary types of Android features used by researchers: Permissions, Intents and API Calls. The intent of the report is not to describe a best performing feature set or a best performing machine learning model, nor to explain why certain Permissions, Intents or API Calls get selected above others, but rather to provide a holistic methodology to help guide feature selection for Android malware detection. The experiments used eleven different feature selection techniques covering filter methods, wrapper methods and embedded methods. Each feature selection technique was applied to seven different datasets based on the seven combinations available of Permissions, Intents and API Calls. Each of those seven datasets are from a base set of 119k Android apps. All of the result sets were then validated against three different machine learning models, Random Forest, SVM and a Neural Net, to test applicability across algorithm type. The experiments show that using a combination of Permissions, Intents and API Calls produced higher accuracy than using any of those alone or in any other combination and that feature selection should be performed on the combined dataset, not by feature type and then combined. The data also shows that, in general, a feature set size of 200 or more attributes is required for optimal results. Finally, the feature selection methods Relief, Correlation-based Feature Selection (CFS) and Recursive Feature Elimination (RFE) using a Neural Net are not satisfactory approaches for Android malware detection work. Based on the proposed methodology and experiments, this research provided insights into feature selection – a significant but often overlooked issue in Android malware detection. We believe the results reported herein is an important step for effective feature evaluation and selection in assisting malware detection especially for datasets with a large number of features. The methodology also has the potential to be applied to similar malware detection tasks or even in broader domains such as pattern recognition
    corecore