
Nova Southeastern University Nova Southeastern University

NSUWorks NSUWorks

CCE Theses and Dissertations College of Computing and Engineering

2021

Feature Selection on Permissions, Intents and APIs for Android Feature Selection on Permissions, Intents and APIs for Android

Malware Detection Malware Detection

Fred Guyton

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

 Part of the Computer Sciences Commons

Share Feedback About This Item
This Dissertation is brought to you by the College of Computing and Engineering at NSUWorks. It has been
accepted for inclusion in CCE Theses and Dissertations by an authorized administrator of NSUWorks. For more
information, please contact nsuworks@nova.edu.

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/gscis_etd
https://nsuworks.nova.edu/cec
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Feature Selection on Permissions, Intents and APIs

for Android Malware Detection

by

Fred Guyton

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

in

Information Assurance

College of Computing and Engineering

Nova Southeastern University

2021

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Feature Selection on Permissions, Intents and APIs

for Android Malware Detection

by

Fred Guyton

April 2021

Malicious applications pose an enormous security threat to mobile computing devices.

Currently 85% of all smartphones run Android, Google’s open-source operating system,

making that platform the primary threat vector for malware attacks. Android is a

platform that hosts roughly 99% of known malware to date, and is the focus of most

research efforts in mobile malware detection due to its open source nature. One of the

main tools used in this effort is supervised machine learning. While a decade of work has

made a lot of progress in detection accuracy, there is an obstacle that each stream of

research is forced to overcome, feature selection, i.e., determining which attributes of

Android are most effective as inputs into machine learning models.

This dissertation aims to address that problem by providing the community with an

exhaustive analysis of the three primary types of Android features used by researchers:

Permissions, Intents and API Calls. The intent of the report is not to describe a best

performing feature set or a best performing machine learning model, nor to explain why

certain Permissions, Intents or API Calls get selected above others, but rather to provide a

holistic methodology to help guide feature selection for Android malware detection.

The experiments used eleven different feature selection techniques covering filter

methods, wrapper methods and embedded methods. Each feature selection technique

was applied to seven different datasets based on the seven combinations available of

Permissions, Intents and API Calls. Each of those seven datasets are from a base set of

119k Android apps. All of the result sets were then validated against three different

machine learning models, Random Forest, SVM and a Neural Net, to test applicability

across algorithm type.

The experiments show that using a combination of Permissions, Intents and API Calls

produced higher accuracy than using any of those alone or in any other combination and

that feature selection should be performed on the combined dataset, not by feature type

and then combined. The data also shows that, in general, a feature set size of 200 or

more attributes is required for optimal results. Finally, the feature selection methods

Relief, Correlation-based Feature Selection (CFS) and Recursive Feature Elimination

(RFE) using a Neural Net are not satisfactory approaches for Android malware detection

work.

Fred Guyton

Based on the proposed methodology and experiments, this research provided insights into

feature selection – a significant but often overlooked issue in Android malware detection.

We believe the results reported herein is an important step for effective feature evaluation

and selection in assisting malware detection especially for datasets with a large number

of features. The methodology also has the potential to be applied to similar malware

detection tasks or even in broader domains such as pattern recognition.

Acknowledgements

The journey to getting a Ph.D. is never done alone and I would like to acknowledge those

people that were key to getting me through the process at NSU.

First, I would like to extend my thanks to Dr. Wei Li for serving as my dissertation

committee chair. He challenged me in my coverage of the topic and provided excellent

guidance as the document took shape, always finding the next spot that needed clarity

and pushing me to make this dissertation the best it could be. I would also like to thank

the other two members of my committee, Dr. Ling Wang and Dr. Ajoy Kumar. Their

advice and guidance through this process were invaluable.

I would like to thank my loving wife Kristin for her encouragement and support, and for

her patience with my obsessive focus and constant work on this over the past few years.

Finally, I would like to thank my parents, my mother Ernestine Guyton, and my father

Clyde Guyton who passed away in 2018. The example they set with their work ethic is

something I strive to match each day.

v

Table of Contents

Abstract ii

List of Tables vii

List of Figures ix

Chapters

1. Introduction 1

Background 1

Problem Statement 19

Dissertation Goal 20

Research Questions 22

Relevance and Significance 22

Assumptions, Limitations and Delimitations 23

Definition of Terms 23

List of Acronyms 29

Summary 31

2. Review of the Literature 33

Android as a Target 33

A Maturing Research Stream 37

A Static Analysis Survey 47

Survey Analysis 51

Survey Summary 54

3. Methodology 55

Notations 55

Feature Scope 56

Feature Selection Algorithms 57

Machine Learning Algorithm Selection 62

Experiment Design 63

Validation Analysis 79

vi

Resources 82

4. Results 85

Data Description 85

Feature Subset Selection Process 86

Ranking Features 92

Data Repeatability 110

Validating Feature Subsets 113

Feature Summary 126

5. Conclusions, Implications and Recommendations 129

Conclusions 129

Implications 131

Recommendations 132

Summary 133

Data and Code Repositories 138

Appendices

A. References for Table 4 139

B. Experiment Feature List 142

C. Heatmap Data of Feature Ranking by Dataset 149

D. Heatmap Data of Feature Ranking by Algorithm 156

E. Dataset Evaluation by Feature Selection Method and Classifier 163

F. Top 200 Permissions, Intents and API Calls 166

References 171

vii

List of Tables

Tables

1. Caruana and Niculescu-Mizil Performance Study 13

2. Kotsiantis, Zaharakis and Pintelas Comparison 14

3. Summary of Android Features Used by Publication 19

4. Machine Learning Technique by Publication 49

5. Summary of ML Technique by Publication 51

6. Dataset Malware Sources 52

7. Dataset Sizes 53

8. Dataset Percentage Malware 53

9. Symbols 55

10. Feature Selection Algorithms Text Matrix 57

11. ML Classifiers Test Matrix 63

12. Datasets Test Matrix 66

13. Experiment Measurements 80

14. Summary of Measurement Criteria 82

15. Dataset Options 84

16. Datasets Test Matrix - Observed Feature Count 86

17. Phase 2 - Feature Count by Dataset and Feature Category. 87

viii

18. Phase 3 - Feature Count by Dataset and Feature Category. 88

19. Feature Selection Algorithm Effectiveness 89

20. Overall Algorithm Effectiveness 90

21. Effectiveness by Feature Selection Type. 91

22. Compute Time per Feature Selection Method. 91

23. Compute Time per Feature Selection Type. 92

24. Top 10 Selected Features by Feature Selection Method 105

25. Selected Repeatability Data 111

26. Average Repeatability (Standard Deviation) 113

27. Classifier Test Matrix: Feature Subset Size by Feature Selection Method. 114

28. Maximum Accuracy Across Test Matrix 121

ix

List of Figures

Figures

1. Android Architecture 3

2. Feature Set Evaluation Framework 20

3. Preprocessing 64

4. Binary Encoded Dataset Fragment 66

5. Feature Subset Selection Phases 67

6. Feature Subset Selection Process 68

7. Algorithmic Selection Results Example 69

8. Performance Selection Results Example 73

9. K-based Selection and Validation 79

10. Experiment Confusion Matrix. 80

11. Heatmap of Feature Ranking by Dataset 94

12. Heatmap of Feature Ranking by Feature Selection Algorithm 96

13. Combined to Single Set Membership Example - Exact Match 98

14. Combined to Single Set Membership Example - Union 99

15. Combined to Single Set Membership Example – Euclidean Distance 100

16. Similarity of Permissions: Combined Dataset vs Permissions Only Dataset 102

17. Similarity of Feature Types: Combined Dataset vs Singular Only Datasets 103

x

18. Similarity of Univariate Filter Methods 106

19. Similarity of Multivariate Filter Methods 107

20. Similarity of Wrapper Methods 108

21. Similarity of Embedded Methods 109

22. Similarity of All Eleven Feature Selection Methods 110

23. Data Repeatability for Feature Selection Methods 112

24. Dataset Comparison of Accuracy with Chi-Square and Random Forest 115

25. Dataset Comparison of Accuracy with RFE–NN and Random Forest 116

26. Dataset Comparison of Accuracy with Ridge Regression and Random Forest 116

27. Dataset Comparison of Accuracy with Chi-Square and SVM 117

28. Dataset Comparison of Accuracy with Chi-Square and Neural Network 117

29. Dataset Comparison of TPR with Chi-Square and Random Forest 119

30. Dataset Comparison of FPR with Chi-Square and Random Forest 119

31. Dataset Comparison of Precision with Chi-Square and Random Forest 120

32. Dataset Comparison of F-measure with Chi-Square and Random Forest 120

33. Variation in Accuracy Across Classifier Algorithm 122

34. Variation in Accuracy Across Feature Selection Methods 123

35. Percentage Decrease in Accuracy Compared to Random Forest 123

36. Curve Fit Example for Convergence Analysis 125

xi

37. Convergence Data for All Feature Sets Using Dataset PIA 127

38. Convergence Versus Feature Set Size 128

1

Chapter 1

Introduction

Background

Smartphones have become ubiquitous during this past decade and have come to

store more and more of their owner’s personal data, going well beyond simple contact

and social media data but including much more sensitive and private information such as

usernames and passwords for access to financial sites as well as payment information

itself such as credit card and bank account numbers. During this time the predominant

mobile platforms have resolved down to two systems: Android and Apple (iOS).

Android, owned by Google, now has 85% of the world market share according to IDC, an

industry leading technology research firm (Scarsella, Reith, Chau, & Shirer, 2018)

Apple’s iOS has the remaining 15% market share with all other platforms being

negligible.

Android

Google’s mobile operating system was originally developed by a company of the

same name, Android, started by Andy Rubin, a former engineer at Apple (Welcome to

the definitive Android Central take on the history of Google's OS, 2015). It was built

based on the Linux kernel for convenience of getting device drivers, memory

management, process management, networking and security with minimal effort. Google

purchased Android (the company) in 2005 and later released the first commercial device

running Android in 2008, the T-Mobile G1 built by HTC, just over a year after the debut

2

of the first iPhone. In a step that turned out to be extremely important, Google also open-

sourced it as the Android Open Source Project (AOSP).

At the time, the dominant mobile phone operating system was Symbian at almost

50% market share, used by Samsung, Motorola, Sony Ericsson, Nokia and other smaller

players (Global mobile OS market share in sales to end users from 1st quarter 2009 to

2nd quarter 2017, 2018). In second place was Blackberry OS by RIM at 20% and third

place was a tie between Windows Phone by Microsoft and iOS on Apple’s iPhone, both

at 10%. With Android being open source, it was adopted by several manufacturers and

started to experience phenomenal growth. By mid-2010 it overtook iOS and today is the

dominant player at 85% share of the mobile market.

Applications are the essence of what makes smartphones “smart”. Google, Apple

and other third-party developers use “app stores” as convenient online sources for free

and paid apps, easily accessible by users who can download and install apps on their

device with no outside assistance. The official Google app store is Google Play. As of

the end of the first quarter of 2020, there were over 2.9 million apps available on Google

Play (Number of Android applications, 2020).

As mentioned earlier, Android is built on top of a modified Linux kernel. As

shown in Figure 1 there are three additional architectural layers, Native Libraries and

Runtime environment, the App Framework, and Applications.

The Linux kernel acts as the hardware abstraction layer and provides the basic

computing infrastructure. The next layer up has two segments. The Native Libraries

which provide key services with examples being media, audio and database management.

The Runtime environment contains the ART VM (Android Runtime Virtual Machine)

3

which is the equivalent of a JVM (Java Virtual Machine) except written specifically for

Android. It runs Dex files, which are the byte code files that come from compiling Java

classes and JAR files for Android. ART replaced the Dalvic VM from earlier versions of

Android. Also in the Runtime environment are the core libraries which provide the basic

Java package and associated utilities.

The next level up is the App Framework which provides all the service

“managers” for applications, such as the Telephony Manager and Location Manager.

These are built around four major components: activities, services, broadcast receivers

and content providers.

Activities are essentially a user interface (UI). It represents a single screen, so an

app may have many different activities with each being independent from the others.

Activities are launched using Intents, a concept covered in a later section.

Figure 1

Android Architecture

4

Services are for keeping an app running in the background to perform long-

running operations such as playing music while the user does something else on the

device. Services do not have UIs (activities) and as with activities, services are launched

using Intents.

Broadcast Receivers are used to broadcast messages to the system or other apps

allowing them to react to events such as a text message being received, or the screen

being turned off. Like services they have no UI and are launched using Intents.

Content Providers manage a shared set of app data (or data-store) for situations

where apps want to share their data with other apps, such as Contacts being available to

the email app or phone app. UIs are handled by the app making use of the content

provider (Faruki, et al., 2015; Application Fundamentals, 2020).

The top layer in the Android stack (Figure 1) is that of Applications. Apps are

written in the programming languages Java and/or Kotlin. To access the lower layers of

the stack, apps use Intents, as discussed above, as well as Permissions, with all being

programmed using the exposed Android APIs.

Permissions are a key part of Android often playing a significant role in malware

detection. The purpose of a Permission is to protect the privacy and data of the user.

Apps must request permission to access certain sensitive user data such as text messages

and contacts, as well as various system components such as the camera, microphone, and

network. Depending on the Permission level, Android might grant the permission

automatically or might prompt the user to approve or disapprove the request.

Android categorizes all Permissions into four categories: normal, dangerous,

signature and special.

5

Normal - Permissions that have minimal risk to the user, system or device and are

granted by default at install time. They protect access to APIs that can cause no harm

such as installing a shortcut.

Dangerous - Permissions considered as high risk given their capability of

accessing private data and important sensors on the device. Users must accept or decline

an app’s ability to use a dangerous Permission as the app is being installed. These

Permissions protect access to APIs that could cause harm, like those related to spending

money or collecting private data. Examples would include the ability to read text

messages or record audio.

Signature - Permissions that are granted only if the requesting app is signed by the

same certificate authority as the app that defined the permission. Given that security

check, they are granted automatically at the install time and are available with the system

apps. APIs that require such permission level include accessing voicemail, NFC and

VPN, among others.

Special - Permissions are system level and labeled “Not for use by 3rd party

apps.” Examples include the APIs granting access to system alerts and writing settings

(Felt, Chin, Hanna, Song, & Wagner, 2011; Tam, Feizollah, Anuar, Salleh, & Cavallaro,

2017; Permissions Overview, 2019).

Intents are another important piece of the Android OS. An Intent is a messaging

component for requesting an action from another app component. Three fundamental use

cases are: starting an activity, starting a service and initiating a broadcast. They are used

extensively for inter-application and intra-application communication. Android restricts

6

who may send certain intents to prevent apps from mimicking them (Felt, Chin, Hanna,

Song, & Wagner, 2011).

There are two types of Intents: explicit and implicit.

Explicit – Intents that specify precisely which app will be used. Known as early

binding, this type is typically used to start a component within the same app such as

starting a new activity in response to a user action, or start a service.

Implicit – Known as late binding, it does not name a specific component but

rather declares an action to perform for which a component from another app can

manage. An example is an app that wants to display a location on a map might use an

implicit Intent to request that some other app capable of performing that function show

the specified location on a map (Intents and Intent Filters, 2019).

Android’s tremendous marketshare and open architecture make it a popular target

for malicious apps. Security firm AV-Test reports that over the last three years there was

an average of 5.9 million new malicious apps per year specifically targeting Android

(AV-Test Malware Statistics, 2019). The malware covers a large range of nefarious

processes aimed at mobile devices, from stealing users’ most sensitive information to one

of the most popular today - running botnets for crypto-currency mining (Samani & Davis,

2019).

The popularity also means that Google Play, the app store, is a key threat vector.

Google took steps to address the problem in 2012 by deploying to Google Play a

scanning tool called Bouncer to help detect malware, but according to Hou (2012) there

was minimal impact due to the limited scope of the scan. Five years later in 2017,

Google rebranded Bouncer under the name “Play Protect” and included on-device

7

protection (Amadeo, 2017) but according to an analysis by Computerworld, all the

services announced as part of Play Protect were already part of Play Store and Android

for some time past (Raphael, 2017), so once again there was minimal impact. A recent

comparison of different antivirus products on Android by an independent test lab rated

Play Protect last among twenty products tested (The best antivirus software for Android,

2018).

Threat Detection

In classic intrusion detection as well as mobile malware detection, approaches are

classified as either signature-based or anomaly-based. As described by Garcia-Teodoro,

Diaz-Verdejo, Maciá-Fernández and Vázquez (2009), signature-based systems look for

defined patterns, or signatures within the app and compare to a signature database of

known attacks. Anomaly-based systems attempt to model the “normal” behavior of a

system and generate an anomaly alert whenever the difference between an observation

and the normal behavior exceeds some predefined threshold.

Within the world of anomaly-based detection, another stratification of techniques

relates to how the analysis is accomplished. Detection of malware happens by either

examining its code or by executing it in a safe environment (Gandotra, Bansal, & Sofat,

2014). The former is known as static analysis. With static analysis, the executable app

(in Android referred to as an APK file) first has to be decompiled into source code and

that code is analyzed for patterns that indicate malware or not. The latter is known as

dynamic analysis. Dynamic analysis occurs with the app running and monitors things

like information flow, function calls, etc., with the goal of observing what the app does

and detecting if it is malware or not based on its actions.

8

Garcia-Teodoro, et al., further categorize anomaly-based systems as either: 1)

statistical-based, which is focused on stochastic behavior, 2) knowledge-based, which

requires availability of prior knowledge and/or data, or 3) machine learning-based, which

is essentially a categorization of patterns. The third one is of interest here and is explored

in more detail in the next section.

Machine Learning

Machine learning techniques can be mapped to three primary scenarios: 1)

situations where examples of data are available that provide the input and the output, 2)

situations where only the input data is available and 3) situations where only the input

data is available but there is a feedback loop indicating the quality of the prediction

(Lison, 2015). The three cases are generally referred to as: supervised learning,

unsupervised learning and reinforcement learning, respectively.

Considering the problem of malware detection with respect to these three,

reinforcement learning has yet to be shown as an effective tool given the nature of the life

cycle of malware. “Reinforcement” would require someone identifying that they had

installed malware and feeding that back into the detection engine, which implies the

event to be prevented, installing malware, had already occurred and that the user would

know that and report it. Interestingly it is being used to attack malware detection as

described by Anderson, Kharkar, Filar, Evans and Roth (2018), and Fang, Wang, Li, Wu,

Zhou and Huang (2019), where they demonstrate the use of reinforcement learning

against dynamic analysis and static analysis respectively.

Unsupervised learning has low applicability as a stand-alone approach to malware

detection due to the need for positive identification of malware as well as the need for

9

low false positives. However, it is often used in feature engineering where the goal is to

understand the structure of various features in an application (Machine Learning for

Malware Detection, 2019). This understanding is then applied to feature selection to be

used in supervised models such as demonstrated by Verma and Muttoo (2016) who used

the unsupervised technique of K-means clustering to limit the number of features to be

analyzed by a supervised approach using Decision Trees.

Supervised learning as described by Shalev-Shwartz and Ben-David (2014) is

"using experience to gain expertise," by having a training example that has key

information that is missing from other test data, or data of interest in the wild. This key

information, typically referred to as labels on the data, is used to teach or supervise the

learner by providing the answers to how the model should predict based on input. The

model is then applied to unlabeled data to make predictions without having the answers a

priori.

In supervised learning, target predictions can be characterized as either

quantitative or qualitative, where the quantitative variables have numerical values and

qualitative variables have values in one of n different classes, or categories (James,

Witten, Hastie, & Tibshirani, 2017). These two approaches are generally referred to as

regression versus classification respectively. Regression approaches aim to predict

values along a continuous output variable. Examples include a stock price, the value of a

house, and a person’s income. Classification approaches aim to predict values of discreet

output variables. Examples of classification variables include email type (spam or not

spam), whether a person will default on a loan (yes or no), whether a patient has cancer

(yes or no), and of most importance here, whether an application is malware or benign.

10

There are a number of approaches, or algorithms, for supervised machine

learning. Following is a list and brief description of the supervised machine learning

classifiers that are most widely used today. (James, Witten, Hastie, & Tibshirani, 2017;

Shalev-Shwartz & Ben-David, 2014)

Support Vector Machine (SVM): A linear method of classification in which data

is defined as points in an n-dimensional space (where n is the number of features).

The model defines a hyperplane that optimally separates (classifies) all of the data

points onto one side or the other of the hyperplane.

Bayesian Networks: An algorithmic applications of Bayes theorem resulting in a

probabilistic graphical model representing the relationships between several

random variables, or features.

Naïve Bayes: Another probabilistic classifier based on Bayes theorem but with a

significant restriction. The “naïve” moniker is due to the fact that it assumes that

the presence of a particular feature in a class is unrelated to the presence of any

other feature.

Decision Trees: Classification models in the form of a tree structure where data

points are broken down into smaller and smaller subsets as an associated decision

tree is incrementally developed as an “if-then” rule set. The resulting structure

has branches and leaves where branches represent a decision node and leaves

represent a classification node.

K-nearest Neighbor: An instance-based algorithm in which data is defined as

points in an n-dimensional space. When a new data point arrives, the closest k

11

number of instances (nearest neighbors) to that point are analyzed and the most

common class of those are the prediction or classification of the new data point.

Logistic Regression: Regardless of the regression term in the name, it is a

classification algorithm. It transforms n features using the logistic function, most

often using a sigmoid curve, to a probability output from 0 to 1 which can then be

interpolated into binary results.

Artificial Neural Networks (ANN): Models that are inspired by the structure of

biological neural networks. They consist of a set of connected input/output units

in two or more layers where each connection has a weight associated with it that

gets tuned in the training phase to adapt the network to the particular problem at

hand.

Ensemble methods are machine learning techniques that combines several models

such as just described in order to produce an even better predictive model. The following

four techniques are ensemble methods used in conjunction with one or more of the

previously described algorithms.

Random Forest: An ensemble technique for supervised learning classification

that works by constructing a multitude of decision trees. The final classification

is the mode of the classes (classification) of the individual trees.

Adaptive Boosting: Also known as AdaBoost, it is used with many different

machine learning algorithms but typically with only one type per model. It is a

sequential ensemble method where the output of those algorithms, referred to as

weak learners, are combined into a weighted sum that represents the final output

of the boosted classifier.

12

Bootstrap Aggregation: Also known as Bagging, this technique can also be used

with many different machine learning algorithms but typically with only one type

per model. It is a parallel ensemble method that uses bootstrap sampling of the

dataset to construct many independent models using the weak learners and

aggregating those results into a final classification.

Stacking: An ensemble method that uses multiple different machine learning

algorithms in a single model. The various algorithms use the same dataset, and

their output is fed into yet another machine learning algorithm as a meta-model.

This meta-model will take the outputs of the weak learners as inputs and develop

a final classification.

When trying to decide between machine learning approaches (algorithms) one

obvious candidate for including in the selection criteria is performance. Caruana and

Niculescu-Mizil (2006) performed a large-scale empirical comparison of several

supervised learning algorithms using eight performance criteria. Comparing machine

learning techniques in general can be problematic given the tendency for some techniques

to perform better in certain problem domains, so this study used eleven different

classification problems and associated datasets. The datasets were diverse including

census data, medical imaging, particle physics, text recognition and biological data.

The machine learning techniques under study were Decision Trees, SVMs,

Logistic regression, Naïve Bayes, ANN and K-nearest Neighbor along with three

ensemble methods on Decision Trees: Random Forests, Bagged Decision Trees and

Boosted Decision Trees. The performance criteria included threshold metrics,

ordering/rank metrics and probability metrics. The first group included accuracy, F-score

13

and lift. The second included area under the ROC curve (Receiver operating

characteristic), average precision, and precision/recall breakeven point. The probability

metrics were squared error (Root Mean Square) and cross-entropy.

A summary of the results of their testing is presented in Table 1. It is interesting

to note that for all performance metrics, which includes all the problem domains under

study, the three ensemble methods dominated the top three positions. Considering non-

ensemble techniques, SVMs and Neural Nets performed best, again across all

performance metrics. Conversely, the lowest performers were consistently Logistic

Regression and Naïve Bayes.

Kotsiantis, Zaharakis and Pintelas (2007) analyzed a number of supervised

learning techniques that also included Decision Trees, SVMs, Naïve Bayes, ANN and K-

nearest Neighbor, but no ensemble methods. A normalized summary of their data is

presented in Table 2. This study has more qualitative commentary and performance

criteria related to speed compared to the prior study, but the first column does address

accuracy. In that metric, SVMs and Neural Nets are cited as the top performers, which

directly coincides with the results of the Caruana and Niculescu-Mizil work when not

Table 1

Caruana and Niculescu-Mizil Performance Study

14

considering ensemble techniques. Both studies also have Naïve Bayes as the lowest

performer.

Feature Selection

In machine learning, features are individual independent measurable properties or

characteristics that act as input into the model. For example, a machine learning model

used to predict the probability of rain might have features such as the outside

temperature, wind speed and humidity. Complex models can contain large numbers of

input features, hundreds and even thousands.

Feature selection is the process of selecting a subset of relevant features for use in

construction of machine learning models. In their seminal work on the subject, Guyon

and Elisseeff (2003) described three reasons to focus on improving feature selection: 1)

higher model accuracy, 2) faster model performance and 3) better understanding of the

model itself. They went on to suggest that researchers with sufficient time and

computational resources should “compare several feature selection methods, including

[…] new idea[s]” and approaches.

According to Liu, et al. (2005), the goals of feature selection in machine learning

are:

• Reducing dimensionality,

Table 2

Kotsiantis, Zaharakis and Pintelas Comparison

15

• Removing irrelevant and redundant features,

• Reducing the amount of data needed for learning,

• Improving algorithms’ predictive accuracy, and

• Increasing the constructed models’ comprehensibility

There are a number of approaches to feature selection. One that can be best

described as exhaustive search is exemplified by the work of Sung and Mukkamala

(2003) in which to select the most effective features of the classic KDD dataset

(Lippmann, Haines, Fried, Korba, & Das, 2000) they removed variables one-by-one and

reran their models each time determining the accuracy based on all features minus the

one removed. This technique inherently assumes complete independence of attributes.

Another approach is to use heuristics, such as that by Li, Ge and Dai (2015)

where they relied on the Android categorization of Permissions, using only the ones

labeled as “Dangerous Permissions” (Permissions Overview, 2019). Using heuristics

requires domain knowledge. In this instance, the authors understand how Google labels

groups of permissions and decided that based on their domain knowledge the use of that

subgroup of Permissions was appropriate.

A third, and the most common approach to feature selection, is called filter

methods, which use a statistical measure to assign a score to each feature and who’s

ranking ultimately determines if they are used or not. The methods are often univariate

and consider the features independently. As examples, Chan and Song (2014) used

information gain theory in their feature selection of Android Permissions and API calls.

Tsang, Kwong and Wang (2007) performed a comparison of analysis techniques

including information gain theory, gain ratio, Chi-square and Relief-F.

16

A fourth technique is called wrapper methods which treat feature selection as a

search problem. Some predictive model is used to evaluate a combination of features and

assign a score based on model accuracy. Various search techniques can be employed.

As an example, Wang, Wang, Feng, Liu, Han and Zhang (2014) used forward selection

which is an iterative approach with each iteration adding the feature which best improves

the model.

A feature selection approach referred to as embedded methods attempts to learn

which features best contribute to the accuracy of the model while the model is being

created. Of these approaches, the most common are regularization methods that introduce

additional constraints into the optimization of a predictive algorithm in order to bias the

model towards lower complexity. Nezhadkamali, Soltani and Seno (2017) used one of

the more popular regularization algorithms, LASSO or L1 regularization, in their

comparison with various filter methods.

A variation on feature selection is often referred to as feature learning. The goal

with this approach is to allow a system to automatically discover what feature

representations are needed for accurate classification and more specifically some number

of representations that is significantly less than the original number of features in the raw

data. One of the more popular techniques for this dimensionality reduction approach is

Principle Component Analysis (PCA). PCA is an unsupervised algorithm that creates

linear combinations of the original features ranked in order of variance allowing a subset,

amounting to the most important, to be selected thereby reducing the number of features.

With respect to malware detection, Zhao, Fang and Wang (2014) used PCA with a

17

feature set of Android Permissions to define the attributes for input into a Support Vector

Machine as the primary classifier.

K-means clustering is another popular approach for dimensionality reduction.

This unsupervised technique tries to find k-clusters of the data by minimizing the square

error function. The new attributes are then represented by the centroids of the clusters.

K-means can be computationally expensive, so in an interesting variation, Napoleon and

Pavalakodi (2011) used PCA on their high-dimensional dataset first and then applied K-

means clustering for further reductions.

An approach that has gained significantly in popularity of late is the use of Neural

Networks. This is often referred to as deep learning, but some use the term deep learning

simply to imply the use of multi-layer, deep, Neural Networks.

There are a number of variations in the use of Neural Networks for dimensionality

reduction. In one such, with respect to Android malware detection, Su, Zhang, Li and

Zhao (2016) used a Neural Network based on a Deep Belief Network (DBN) for feature

learning against Permissions and API calls with the selected features then used for input

into a Support Vector Machine for classification. They reported improved results to other

published ML techniques but had no direct comparison. Nix and Zhang (2017) also used

a Neural Net, specifically a Deep Neural Network (DNN) to automatically learn features

on Android APKs. They restricted their feature types to API calls only and on sequences

thereof as opposed to existence. Results were compared to the use of SVM and Naïve

Bayes on the same dataset and showed a higher accuracy.

Duc and Giang (2018) used a Neural Network model based on a Multilayer

Perceptron (MLP) to learn features from Permissions, Intents (Intents and Intent Filters,

18

2019), API calls, app components, hardware used and URLs. The results, compared to

prior published results on the same dataset using an SVM, were mixed showing a higher

precision but a lower recall. In a similar study Wang, Zhao and Wang (2018) used

variations of a Convolution Neural Network (CNN) for feature learning also including

the feature types: Permissions, Intents, API calls and hardware used. Their results were

compared to the same dataset run on an SVM, Decision Tree, Random Forest and K-

nearest Neighbor and showed an increase in accuracy.

Android Features

Feature selection starts by defining what set or type of features will be used in the

model. For example, with respect to Android malware detection using static analysis, the

input could be limited to just Android Permissions with the idea being that the selection

process will determine, of all the Permissions available in the Android OS, which ones

should be used in the machine learning classifier.

A survey was conducted by this author on research related to Android malware

detection using static analysis and machine learning. Over the 71 publications reviewed,

there was a total of eleven different Android features used, some using just a single

feature type, others using multiple. Table 3 shows a metadata analysis of features used.

By far, the most common attribute type used are Permissions, with 82% of the

publications describing their use. Second is API calls with just over 50% including that

feature, and third are Intents at 24%. The remaining eight features are used much more

sparsely as shown in the table.

 It is also interesting to note that most researchers do not detail the features used.

There are currently a total of 158 Permissions in the Android OS so it would be of value

19

to know precisely which ones are important. The same can be said for other features

such as Intents of which there are 295 Intents defined in Android, and there are hundreds

of variations on API calls given the hierarchical nature of API definitions.

Problem Statement

This variety in approaches to static analysis points to a problem in the academic

and commercial arena of Android malware detection; there is a lack of agreement

regarding what Android feature set is most effective for detecting zero-day attacks with

machine learning techniques. Not only is there significant disagreement on the categories

of Android features that are effective (Permissions, API Calls, etc.) but there are

hundreds of discrete attributes in those categories and there is no consistency in which

discrete attributes of the categories are effective. Using Permissions as an example, there

are 158 different Permissions defined in Android. Some researchers just use the subset

that Google classifies as "dangerous". In other cases, the Permissions subset was hand

Table 3

Summary of Android Features Used by Publication

20

selected based on the researchers' domain knowledge. And often, the dataset in question

is simply run through some selection method such as Information Gain, and results are

blindly accepted as the most important subset to apply. In large part this inconsistency in

approach is due to the fact that there is no definitive study to provide guidance to

researchers who desire to get past the task of feature selection and work on innovative

next-step approaches in detection.

Dissertation Goal

The goal of this research is to advance the state of the industry’s knowledge on

feature sets used for Android static analysis malware detection. Figure 2 presents the

evaluation framework of the approach. The column on the left labeled as Original

Figure 2

Feature Set Evaluation Framework

21

Feature Sets represents all possible combinations of the three groups of features under

evaluation: Permissions, Intents and APIs. Given that the research community uses

various combinations of these, as demonstrated earlier, then using each combination as a

starting feature provides the broadest possible domain coverage.

 The second column, labeled Feature Subset Selection, depicts the categories of

feature selection techniques used: two filter method approaches, univariate and

multivariate, wrapper methods and embedded methods. Each category represents one or

more algorithms employed to create a feature subset for each of the original feature sets

from the first column.

This provides a broad set of top-level feature subsets representing every possible

combination of the original feature sets and the feature selection techniques. In terms of

concrete numbers, there are seven original feature sets and eleven feature selection

algorithms across the four defined categories which equals 77 different feature subsets.

Within these top-level subsets, feature importance is determined by the weights assigned

by each algorithm in addition to comparison to random columns of data included in each

dataset. The point of this latter aspect is that regardless of a feature's reported weight, if

it cannot predict better than features consisting of random data, it should be discarded.

Finally, subsets of the important features (top five, top ten, etc.) are created to look at the

effect of feature count. As detailed later, this resulted in 615 unique feature subsets.

The third column, Feature Set Validation, is where each of the 615 feature subsets

are used as input into three different different machine learning algorithms. Thus, there

are 1,845 total test cases evaluated and analyzed.

22

This approach significantly adds to a very limited amount of feature selection

knowledge in the Android space by providing a robust analysis of the key feature types

and providing detailed result sets naming the specific attributes that prove to be most

relevant for the various machine learning algorithms.

Note that it was not a goal of the research to find a best performing feature set or a

best performing machine learning model, nor to explain why certain Permissions, Intents

or API Calls get selected above others.

Research Questions

1. How does feature ranking vary when Permissions, Intents and API Calls are selected

separately versus combined?

2. How does feature ranking vary across feature selection algorithms?

3. How does machine learning model accuracy vary across machine learning algorithms

and feature selection algorithms?

4. How does feature set size affect model accuracy across feature selection methods?

5. Among Permissions, Intents and API Calls, what are the important features?

Relevance and Significance

As discussed in the section Feature Selection, the importance of selecting the

most appropriate features for machine learning algorithms cannot be overstated. To date,

no one has taken a systematic approach to evaluation of features in the Android malware

detection arena. This research is the first.

The shear variation in approach by the research community as documented

previously in Android Features and more specifically Table 3 shows the depth of the

23

problem. In addition, most feature selection studies publish the results strictly in terms of

malware detection capability, not the actual list of features, just the category used. This

research not only publishes the performance results, but the details of which features

were selected by the various methods providing a significant reference to future

researchers.

Assumptions, Limitations and Delimitations

1. The scope of the investigation is limited to Android Permissions, Intents and API

Calls.

2. The scope of the investigation is limited to eleven feature selection methods (detailed

in the Methodology section).

3. The scope of the investigation is limited to three machine learning algorithms

(detailed in the Methodology section).

Definition of Terms

Accuracy: The fraction of predictions a machine learning model predicts correctly.

Android application package (APK): The package file format used by the Android

operating system for distribution and installation of applications.

Application Programming Interface (API): A set of definitions and protocols for

integrating software components or applications.

Area Under the Curve (AUC): Measures the quality of a machine learning model's

predictions irrespective of the classification threshold, with the curve being the

Receiver Operator Curve (ROC).

24

Artificial Neural Network (ANN): Models that are inspired by the structure of

biological neural networks consisting of a set of connected input/output units in

two or more layers where each connection has a weight associated with it that gets

tuned in the training phase to adapt the network to the particular problem at hand.

Classification and Regression Tree (CART): A decision tree that can perform

classification and regression.

Classifier: A machine learning model that is trained to classify its input into n number of

distinct classes.

Control Flow Graph (CFG): A graphical representation of all execution paths possible

for a running software application.

Convolutional Neural Network (CNN): A Neural Network algorithm which can input

an image, assign importance to various aspects in the image and be able to

differentiate one from another.

Correlation-based Feature Selection (CFS): A feature selection algorithm that takes a

basis set of feature correlations and compares inter-feature correlation and each

features’ correlation with the class label vector to select a feature subset.

Crossover: An operator in evolutionary computing, inspired by the concept of sexual

reproduction in which two genomes combine traits to produce children containing

a mixture of both sets of traits.

Dataset: For supervised learning, it is a collection of input values (X) and the labeled

output values (y). The dataset is typically divided into training and validation

subsets.

25

Decision Tree (DT): A machine learning model in the form of a tree structure where data

points are broken down into smaller and smaller subsets as an associated decision

tree is incrementally developed as an “if-then” rule set. The resulting structure

has branches and leaves where branches represent a decision node and leaves

represent a classification node.

Deep Belief Network (DBN): An unsupervised Neural Network that uses probabilities

to produce outputs. They consist of multiple layers of latent variables, with

connections between the layers but not between components within each layer.

Deep Learning: Neural network architectures that uses multiple layers (three or more) to

extract higher level features from the initial input data.

Deep Neural Network (DNN): A neural network with three or more layers.

Evolving Clustering Method (ECM): A machine learning distance-based clustering

method for dynamic clustering of an input stream of data in a single pass.

F-measure: Also known as F1 score or F-score is the harmonic mean of Recall and

Precision.

False Negative (FN): In the case of malware detection, an outcome where a malicious

app (positive) is classified as benign (negative).

False Positive (FP): In the case of malware detection, an outcome where a benign app

(negative) is classified as malicious (positive).

False Positive Rate (FPR): The proportion of actual negative outcomes that a machine

learning model predicts incorrectly.

Feature Engineering: The technique of creating new features from the original features

by applying one or more mathematical transformations.

26

Feature Importance: A mathematical representation of the importance of an individual

feature in a machine learning model relative to the other features.

Feature Selection: The process of choosing the most important features of a machine

learning model and creating a feature subset.

Feature Vector: The set of inputs to a machine learning model expressed as a vector.

Feature: An individual value from the feature vector.

Fuzzy C-means Method (FCM): A machine learning clustering algorithm that allows

one piece of data to belong to two or more clusters.

Genetic Algorithm (GA): An evolutionary computing model inspired by biological

systems, specifically evolution. It develops a group of possible solutions to a

classification problem and evolves them using a fitness function until an

optimized solution resolves.

KDD dataset: A network intrusion dataset from the 1999 KDD Cup annual competition

hosted by the Association for Computing Machinery (ACM).

K-nearest Neighbor (KNN): An instance-based algorithm in which data is defined as

points in an n-dimensional space. When a new data point arrives, the closest k

number of instances (nearest neighbors) to that point are analyzed and the most

common class of those are the prediction or classification of the new data point.

Latent Semantic Indexing (LSI): A technique in Natural Language Processing (NLP)

analyzing relationships between documents and the strings they contain.

Layer: A collection of related neurons in a neural network such as the input layer or

output layer, or some layer in between.

27

Least Absolute Shrinkage and Selection Operator (LASSO): A regression technique

that performs L1 regularization, meaning it penalizes the L1 norm of the feature

weights which ultimately will force some of the weights to zero.

Multilayer Perceptron (MLP): An Artificial Neural Network (ANN) that has an input

layer, an output layer, and one or more hidden layers between.

Mutation: An operator in evolutionary computing, where during the crossover process

some random mutation of the traits from the parents occurs in the child,

mimicking what happens in human reproduction.

Natural Language Processing (NLP): Machine learning algorithms designed to

understand human language.

Nearfield Communication (NFC): A set of networking standards used to establish

communication between mobile devices in very close proximity.

Partial Decision Trees (PART): A Decision Tree that contains branches to undefined

sub trees.

Particle Swarm Optimization (PSO): A population-based stochastic optimization

technique inspired by intelligent collective behavior of animals such as flocks of

birds or schools of fish.

Precision: The proportion of positive predictions from a machine learning model that

were actually correct.

Preprocessing: The process that prepares a dataset to be ready as input for a machine

learning model.

Principal Component Analysis (PCA): An unsupervised algorithm that creates linear

combinations of the original features ranked in order of variance allowing a

28

subset, amounting to the most important, to be selected thereby reducing the

number of features.

Random Forest (RF): An ensemble technique for supervised learning classification that

works by constructing a multitude of Decision Trees. The final classification is

the mode of the classes (classification) of the individual trees.

Recall: Also known as True Positive Rate (TPR) is the proportion of actual positive

outcomes that a machine learning model predicts correctly.

Recursive Feature Elimination (RFE): An iterative procedure using backward feature

elimination incorporating a classifier for ranking the features in each iteration.

Receiver Operating Curve (ROC): A curve plotting Recall against False Positive Rate

(FPR) for various thresholds.

Regression: A machine learning model that predicts values along a continuous output

variable.

Selection: In evolutionary computing, the process that chooses fit individuals for creating

the next generation through evolutionary operations such as crossover and

mutation.

Singular Value Decomposition (SVD): A matrix decomposition method used for feature

dimensionality reduction.

Support Vector Machine (SVM): A linear method of classification in which data is

defined as points in an n-dimensional space (where n is the number of features).

The model defines a hyperplane that optimally separates (classifies) all of the data

points onto one side or the other of the hyperplane.

29

True Negative (TN): In the case of malware detection, an outcome where a benign app

(negative) is correctly predicted as benign (negative).

True Positive (TP): In the case of malware detection, an outcome where a malicious app

(positive) is correctly predicted as malicious (positive).

Virtual Machine (VM): A software emulation of a physical computer on an actual

physical computer.

Virtual Private Network (VPN): A networking technology that encrypts

communication over an unsecured public network so that it can be used as if it

were a secure private network.

List of Acronyms

ANN: Artificial Neural Network

API: Application Programming Interface

APK: Android application package

ART: Android Runtime

AUC: Area Under the Curve

CART: Classification and Regression Tree

CFG: Control Flow Graph

CFS: Correlation-based Feature Selection

CNN: Convolutional Neural Network

DBN: Deep Belief Network

30

DNN: Deep Neural Network

DT: Decision Tree

ECM: Evolving Clustering Method

FCM: Fuzzy C-means Method

FN: False Negative

FP: False Positive

FPR: False Positive Rate

GA: Genetic Algorithm

GUI: Graphical User Interface

KNN: K-nearest Neighbor

LASSO: Least Absolute Shrinkage and Selection Operator

LSI: Latent Semantic Indexing

ML: Machine learning

MLP: Multilayer Perceptron

NFC: Nearfield Communication

PART: Partial Decision Trees

PCA: Principle Component Analysis

PSO: Particle Swarm Optimization

RAM: Random Access Memory

31

RF: Random Forest

RFE: Recursive Feature Elimination

ROC: Receiver Operating Curve

OS: Operating System

SVD: Singular Value Decomposition

SVM: Support Vector Machine

TB: Terabyte

TN: True Negative

TP: True Positive

TPR: True Positive Rate

UI: User Interface

VM: Virtual Machine

VPN: Virtual Private Network

Summary

As smartphones become more and more integral to peoples’ daily lives, both

personal and business, the need to secure those systems grows. With 85% of the worlds’

mobile phones running Google’s Android operating system, that OS has become the key

threat vector for bad actors trying to compromise those systems. There is a rich history

of research in threat detection on computers dating back into the 1970s, but smartphones

are a relatively new phenomena and Android itself was only released in late 2008, so

32

there has only been a decade of research on Android protection. In addition to the

relative newness of Android, Google continues to modify it, ostensibly for improvements

in user experience and security, and threat actors continue to improve their methods of

defeating its security. It is an arms race.

The ultimate goal in threat detection is identifying and stopping zero-day attacks.

There are a number of research streams towards that end in the Android community, and

one such approach is using static analysis and machine learning. The concept is to

analyze the source code of an Android app and using some machine learning algorithm,

make the prediction as to if that app is benign or malicious. Those predictions need to be

highly accurate, not giving off too many false alarms; otherwise in a real-life situation it

would tend to get ignored by the user.

A key aspect of any machine learning model is the input data, or features. In the

decade of work in Android security, many different feature types and specific features

have been used by researchers, and the variation in feature use continues today. The

most used feature types are components of the OS known as Permissions, Intents, and

API calls, used individually or in various combinations. But those are feature types.

There are actually 158 different Permissions, 295 different Intents and several hundred

API calls depending on how they are grouped.

This study focuses on providing insight into feature importance for those three

feature types and hundreds of specific features. It was accomplished by testing all

combinations of Permissions, Intents and API calls, using various feature ranking and

subset selection techniques to determine the most important ones, and then validating

which of those result sets work best using various machine learning models.

33

Chapter 2

Review of the Literature

Android as a Target

Android first appeared on the market in September 2008. Early on there was little

interest from threat actors due to the minimal volume of targets. The first reported

malware came two years later in August 2010 when Kaspersky Labs reported the

discovery of the first SMS Trojan for Android, called “FakePlayer” and Symantec

reported finding location spyware consisting of a modified version of the classic “snake”

video game. (Castillo, 2011)

Even though the first threats in the wild were not detected until the third quarter

of 2010, security researchers started investigating Android as soon as it was released. In

one early work Enck, et al. (2010) reported on a dynamic analysis tool they created

called TaintDroid. It used a variation of information flow analysis called taint analysis

where “tainted data” is injected into specified data flows in the running app, such as GPS

location and contacts, then traced and analyzed it to determine if the app exposed private

user information.

Burguera, Zurutuza, and Nadjm-Tehrani (2011) reported on their crowd-source-

based malware detection app and system named Crowdroid. This was an app that users

ran on their phone and fed non-personal but app behavior data (system calls) over the

Internet to central servers. The servers would perform the malware analysis using a K-

means clustering algorithm and report results back to the user(s). While the authors did

have the system running and reported some success in malware detection, the main

34

contribution was this early demonstration of using machine learning in Android threat

detection.

Zhao, Zhang, Ge and Yuan (2012) created another tool using dynamic analysis

they referred to as RobotDroid which incorporated a Support Vector Machine (SVM) for

detection using system calls as the feature vector. There was limited testing performed

but for those tests a detection rate of 90% to 93% was reported with a false positive rate

of 3% to 5%.

In an assessment approach by Sahs and Khan (2012), their goal was to determine

the effectiveness of using control flow graphs (CFGs) and Permissions via static analysis

based on a Support Vector Machine as the classifier. The system was tested on a dataset

of 2,272 apps of which 4% were malicious. The authors’ determination was that

Permissions and CFGs appeared to be a correct approach in terms of input features for

the SVM, but that the CFGs needed to be more detailed in order to improve the systems’

accuracy.

In one early use of a large dataset consisting of over 200,000 apps, Zhou, Wang,

Zhou and Jiang (2012) created a dual detection engine where in one side, they defined

known malware signatures based on Permissions, and in the other used dynamic analysis

looking for behaviors they considered likely to be used by malware, such as downloading

code from the Internet to run. The accuracy based on testing was high but the percentage

of malware in the dataset was very small, less than one percent, so the results are unclear.

Wu, Mao, Wei, Lee and Wu (2012) developed a host-based tool they named

Droidmat to perform static analysis using Permissions, Intents, API calls and component

(Activity, Service, Broadcast Receiver). It used K-means clustering as well as

35

Expectation Maximization (EM) clustering for feature selection and then K-nearest-

neighbor for classification. An accuracy of 98% was reported on a test database of just

over 1,700 apps with 13% malware.

Xu, Zhang and Zhu (2013) created an assessment tool they referred to as

Permlyzer to be a general-purpose Permission analysis framework. The system used

dynamic analysis to create a map, or call stack, that provided fine-grained information on

Permissions use at runtime. Permlyzer would actually takes control of the app (requiring

modification to the base Android operating system) and execute all possible code paths.

Their statistical findings based on analyzing over 100K apps showed significant overlap

between Permission requests from malicious apps versus many non-malicious apps that

use common third-party libraries indicating that using Permission only as features for

malware detection could be problematic.

Peiravian and Zhu (2013) investigated the using Permissions and API calls for

Android malware detection. Of those features, the authors created custom selection lists

for attribute input to the classifiers. They used three different machine learning

approaches using the Weka library suite (Weka 3: Data Mining Software in Java, 2018).

The three classifiers were Support Vector Machines, Decision Trees and Bagging

Predictor. The dataset contained 2,510 apps of which about 50% were malicious.

Comparing the three approaches across multiple scenarios, Bagging was the top

performer followed by Support Vector Machines and then Decision Trees with accuracy

averaging around 95%.

In research similar to above described, Huang, Tsai and Hsu (2013) investigated

the effectiveness of multiple machine learning algorithms also using the Weka library.

36

The key differences were: 1) Huang, et al., only used Permissions (all Permissions) and

did not include API calls, 2) a Support Vector Machine was one of the algorithms but the

other techniques were Decision Trees, Naïve Bayes and AdaBoost, and 3) their dataset

was much larger at over 100K apps. The results showed an average accuracy of 81%

with the top performer being the Support Vector Machine, followed by Naïve Bayes and

AdaBoost. While the authors indicated satisfaction with the accuracy, clearly their

research indicated detection using only Permissions was not likely to be successful.

Yerima, Sezer, McWilliams and Muttik (2013) created a tool to scan Android app

stores such as Google Play to help expunge them of malware. They used Permissions

and API calls as the features, Information Gain for feature selection and a Bayesian

classifier. Experiments were run against a dataset of 2,000 apps with 50% malware using

various sets of the features selected ranging from 5 – 20 attributes. Their results were

that with 15 – 20 of the selected features, a predictive capability at a 90% to 92% could

be achieved.

Aung and Zaw (2013) also used Information Gain theory for feature selection

based on Permissions only. The selected features were evaluated using K-means

clustering for segmentation and classification used Decision Tree and Random Forests

algorithms. Testing was conducted on two datasets of 200 and 500 apps. The top

performer was Random Forests with accuracy just under 92%. The lowest was one of the

Decision Tree algorithms at 85% accuracy.

Glodek and Harang (2013) used a novel approach of feature engineering when

they created a system starting with Permissions, Intents, Broadcast Receivers and the

presence of embedded applications in the native code (yes/no). The occurrence

37

frequency of these in a set of malware apps were determined and a set of rules were

created based on combinations observed, and these rules then became the real feature

vector. These were applied to a Random Forest algorithm from the Scikit-learn library

(scikit-learn - Machine Learning in Python, 2010) using a custom dataset of benign apps

combined with an existing malware dataset from the Malware Genome Project of Zhou

and Jiang (2012). The results of the experiments were an average accuracy of 81%.

A Maturing Research Stream

In a well-known study by Arp, et al. (2014) they created a system they referred to

as DREBIN. It used a broad feature set consisting of Permissions, Intents, API calls, app

components, hardware components and URLs providing a feature vector of 545,000

attributes. These were the input into a Support Vector Machine for classification. A

dataset was created of 129,013 apps that also incorporated the Malware Genome Project

malware dataset, ending up with 4% malware content. Their results showed an accuracy

of 94%, which was high for the time. Interestingly, DREBIN also output information

related to the input features detailing why it classified a specific app as malicious or

benign.

In an approach reminiscent of Enck, et al. (2010), Arzt, et al. (2014) used taint

analysis for classification, but in their research used static instead of dynamic analysis.

The system builds a model based on control flow graphs extracted from an app and uses

tainted variables inserted into the flow to follow throughout all possible flow paths.

Custom rules then determine if data is being leaked, indicating malware. The number of

apps tested was small but they did compare results to two commercially available

systems from the time and out-performed them with a 93% accuracy.

38

In an interesting study of Permission usage in Android apps, Moonsamy, Rong,

and Liu (2014) looked at what they termed “required” Permissions versus “used”

Permissions. In every Android app there is an xml file named, AndroidManifest.xml,

that contains information about what the package uses and specifically Permissions that

are requested. Often researchers just use this list of Permissions (defined as “required”

in this work) because they are easily attainable. However, app developers can use other

Permissions that are not in the manifest file. To extract these the byte code has to be

decompiled and the source code parsed to find which Permissions were “used.”

Moonsamy, et al., extracted both for a dataset that contained over 1,200 benign apps plus

the malware apps from the Genome Project and performed a statistical analysis looking at

required Permissions for benign apps, required Permissions for malicious apps, used

Permissions for benign apps and used Permissions for malicious apps. Their results

indicated there was enough difference between required and used, that used Permissions

should be considered in malware detection as opposed to only required ones.

Chan and Song (2014) investigated the detection accuracy of using Permissions

and API calls compared to using Permissions only. Information Gain theory was used for

feature subset selection. The test dataset consisted of 800 apps with 21% malicious.

They tested Permissions only versus Permissions and API calls using seven different

machine learning algorithms from the Weka library: Naïve Bayes, Support Vector

Machine, two Neural Nets (RBF and MLP), Liblinear, Decision Tree and Random Forest.

The average accuracy for Permissions only was 88.8% versus 89.3% with API calls

indicating no difference. The highest performer was Random Forest at 92%.

Interestingly, adding the API calls caused Naïve Bayes and RBF Network to decrease in

39

accuracy. While the results indicated there was no reason to add API calls as a feature,

this is inconsistent with other published research. The small dataset and feature subset

selection could have had adverse effects on the answers.

Sharma and Dash (2014) investigated feature selection approaches using

Permissions and API calls. The two feature selection methods were Correlation-based

Feature Selection (CFS) using Pearson’s correlation and Information Gain theory. They

started with 35 features (19 Permissions and 16 API calls) that were preselected as

important. Based on the feature ranking of the two algorithms, various numbers of the

features, top 5, top 10, etc. up to the full 35, were fed into both a Naïve Bayes algorithm

and a K-nearest Neighbor (KNN) algorithm using a dataset of 2,000 apps at 50%

malware. Overall, there was minimal difference in the results coming through CFS

versus Information Gain. Interestingly, smaller numbers of features improved Naïve

Bayes while more features improved KNN, and in general KNN performed better with up

to 96% accuracy versus 94% with Naïve Bayes.

Another feature selection investigation was performed by Zhao, Fang and Wang

(2014) in which using only Permissions as the feature, they incorporated Principal

Component Analysis (PCA) for dimensionality reduction. Initially, variations in PCA

settings were used with a Support Vector Machine (SVM) to determine the optimum

PCA configuration, which in their case resulted in a reduction down to 41 attributes.

These features were then used with the a dataset of 454 apps of which 220 were malware

for validation with seven machine learning algorithms: Bayesian Networks, Naïve Bayes,

NB Tree, CART (Classification and Regression Tree), Random Tree, Decision Tree and

an SVM. Overall, the SVM provided the highest accuracy at 90% will all others being

40

below 87%, however, this result could be because the PCA parameters were tuned using

the SVM. No other combinations were reported.

Seo, Gupta, Sallam, Bertino and Yim (2014) created a static analysis tool that

looked at “suspicious” Permissions and API calls and performed keyword searches of the

source code looking for strings that the authors identified as often being used in malware.

The Permissions, API calls and keyword lists were developed based on a statistical

analysis of the Malware Genome Project dataset. The tool would then compare what it

found in the app source code to the lists and provide a risk ranking. Testing was

performed on 76 apps that were selected because they fit the model, but accuracy results

were not reported.

In a similar vein, in research by Kang, Jang, Mohaisen and Kim (2015), they

identified certain malicious behaviors like command usage with root privilege, hiding

SMS notification, and collecting sensitive information as possibly indicating malware.

Their system collected data from app source code as to if the app contained any of those

behaviors. In the next level their system looked for a usage of what they defined as

“critical” Permissions. These features were fed into a Naïve Bayes classifier and tested

on a dataset of over 55,000 apps with 8% malware. The accuracy was reported at 98%

but given the hand-tooled nature of the features it is uncertain how generalizable this

technique might be.

Sun, Li, Yan, Srisa-an, and Pan (2016) created a three tiered feature selection

method for reducing the dimensionality of a Permissions feature vector. In the first level

they used a forward selection custom ranking system to create the first feature subset.

The second level used a filter method based on support to create yet another feature

41

subset. In the final tier they removed highly correlated features, ending up at a final

subset of just 22 Permissions out of the starting 135 Permissions. Validation used a

dataset of approximately 5,500 apps with 18% malware and six different machine

learning algorithms from the Weka library: Random Committee, Rotation Forest,

Functional Tree, Decision Tree (PART), Random Forest and SVM. The top performer

was Functional Tree with 96% accuracy.

Two methods of feature selection were investigated by Qiao, Sung and Liu (2016)

as means of reducing dimensionality across the set of all Permissions and API calls. The

first was a filter method, ANOVA, and the second was a wrapper method, Recursive

Feature Elimination (RFE) using an SVM. Validation was performed using three

machine learning algorithms: Random Forest, Artificial Neural Network and Support

Vector Machine on a dataset of 5,000 custom collected benign apps and malware from

the Genome Project. Experiments were run with all features versus the selected features,

and then with only Permissions, only API calls, and with both. The results showed that

using API calls or API calls and Permissions performed a little better than just

Permissions (95% vs 93% on Random Forest). The results also showed there was no

appreciable difference between the two feature selection methods or in using all features

versus incorporating feature selection. The biggest factor in difference in accuracy was

which machine learning algorithm was used with Random Forest and Neural Net

performing about the same with 94% accuracy and SVM coming in at 82%.

Another investigation of Permissions requested versus Permissions used was

undertaken by Wang, Wang and Zhu (2016) but also included API calls. Feature

selection was employed using both Information Gain theory and Correlation-based

42

Feature Selection using Pearson’s correlation (CFS). A number of combinations were

run with each feature selection technique including just with used Permissions, just with

requested Permissions, only API calls and then used Permissions with API calls. The

dataset involved had 2,375 apps with 50% malware. Five machine learning algorithms

from the Weka suite were used for validation: Decision Tree, Random Forest, K-nearest-

neighbor, Support Vector Machine and AdaBoost. Results showed minimal difference in

accuracy from feature selection using Information Gain versus CFS, except when using

only API calls in which case Information Gain in general was about 2% better. Across

the full test matrix, the top performer was AdaBoost with a reported accuracy of 99.8%,

which seems high compared to other published results using the same features.

Verma and Muttoo (2016) used Intents in addition to Permissions in their

detection scheme incorporating Information Gain for feature selection. Interestingly, the

methodology treated the two features vectors separately, analyzing each app using Intents

and then using Permissions. Apps were labeled as malicious or benign if both processes

agreed, otherwise it was labeled “suspicious.” A dataset of 1,470 apps of with 42%

malware was used with three classifiers from the Weka library: K-means clustering and

two different Decision Trees, ID3 and J48. Results showed that J48 performed best with

an accuracy of 94% compared to 92% for ID3 and 74% for the K-means algorithm.

Using a dynamic analysis approach, Yang, Wang, Ling, Liu and Ni (2017) built a

customized version of Android as a "behavior inspection platform.” It ran a taint tracking

program on apps recording their API calls and Permissions use. Experiments were run

against a dataset of 3,934 apps with 27% malware. Two classifiers were employed: a

Support Vector Machine (SVM) and Naïve Bayes. The SVM was marginally better in

43

accuracy 98% versus 97% for Naïve Bayes, but false negative rate for Naïve Bayes was

very high at 44%.

In an interesting use of dynamic analysis, Mahindru and Singh (2017) ran apps

through an emulator to extract Permissions used, which were then vectorized for use by

static analysis. They used a dataset of 11,000 apps with five different classifiers from the

Weka suite: Naïve Bayes, Decision Tree, Random Forest, Simple Logistic and Lazy

Instance-based learner (K*). Reported results show an accuracy of 99% for Decision

Tree, Random Forest and Simple Logistic which seems to be an outlier for using only

Permissions as a feature set.

In a novel approach to Permissions analysis for malware detection Shahriar, Islam

and Clincy (2017) investigated using natural language processing, specifically Latent

Semantic Indexing (LSI) to map the association of related Permissions to malicious apps

based on the text in the Permission name or description. The map was created using a

custom malware dataset in one dimension and Dangerous Permissions in the other

dimension. Dimensionality reduction is then accomplished using Singular Value

Decomposition (SVD). Results from various tests showed successful identification of

malware ranging from 76% to 89% but there could be an overfitting problem given the

overlap of training and test apps.

Nezhadkamali, Soltani and Seno (2017) reported on their research using

Permissions, Intents and API calls that also used a concept they referred to as Feature

Pockets, when two or more features from the three separate feature sets overlap with each

other, i.e., have the same resource. A feature refinement process was performed to

reduce the dimensionality of the model inputs followed by three different feature

44

selection methods, tested separately: Information Gain, Gini Impurity and LASSO (L1).

The dataset used consisted of the 1,260 malicious apps from the Genome Project plus an

additional 498 benign apps. Classification was performed with three machine learning

algorithms: Decision Tree, Support Vector Machine and Random Forest. The test matrix

included all combinations of feature selection methods and classification methods plus

using Permissions only, Permissions and API calls, and Permissions, API calls and

Intents. The results showed that using all three features, Permissions, API calls and

Intents was more accurate than using just Permissions or Permissions and API calls. In

terms of feature selection methods, Information Gain proved more accurate across all

classifiers, and lastly, Random Forest, was the highest performing classifier with 99%

accuracy. As with the prior study by Shahriar, et al., the small size of the dataset makes

the relevance of the high accuracy results somewhat suspect.

Research performed by Altaher (2017) used just Permissions as the feature input

with feature selection based on Information Gain theory. For classification, a neuro-

fuzzy system was created by modifying an evolving cluster method (ECM) system for

generating the fuzzy rules, which then feed into a neural network. A dataset of 500 apps

were used, half being malware. Results showed an accuracy of 90% which is comparable

to other works using Permissions only. Follow-up work was performed by Altaher and

BaRukab (2017) again using Permissions and Information Gain for feature selection.

Instead of using ECM to generate the fuzzy rules, they used a Fuzzy c-means (FCM)

clustering algorithm. The testing dataset consisted of the 1,260 apps of the Malware

Genome Project. Results were marginally better than the prior work reporting 91%

accuracy.

45

Wang, Li, Wang, Liu and Zhang (2018) used a set of features for their study that

included Permissions, Intents, API calls and hardware used. A feature selection wrapper

method based on a Support Vector Machine (SVM) was used for dimensionality

reduction. A dataset of over 116,000 apps with 7% malware was used for testing. Five

different machine learning algorithms were used in addition to an ensemble method. The

five were: SVM, Random Forest, Naïve Bayes, K-nearest Neighbor (KNN) and

Classification and Regression Tree (CART). The ensemble approach was a simple

voting scheme among the five. Interestingly the accuracy of all but Naïve Bayes was

98% to 99%, and it was significantly lower with 76% accuracy.

Shang, Li, Deng and He (2018) used a two-phase feature selection approach in

their Permissions only research. The first step was to use Pearson’s correlation and

create the first feature subset by eliminating Permissions below a specified p-value. In

the second phase Information Gain theory is used to create a second subset and provide

weighting input for the Naïve Bayes classifier used. Tests were run on a dataset of 2,670

apps with 65% malware. Results showed the Naïve Bayes accuracy at 86% which is on

par for Permissions only detection methods.

In research by Alswaina and Elleithy (2018), Permissions were the sole feature

vector under consideration. Feature selection was performed by a wrapper method using

Extremely Randomized Trees for creating a feature subset. The dataset used was that of

the Malware Genome Project which was tested using five machine learning classifiers

plus one ensemble method: Support Vector Machine, Neural Network, Decision Tree, K-

nearest-neighbor (KNN) and Random Forest. The ensemble method was Bagging with

an unspecified base classifier. Results showed the top performers were Random Forest

46

(itself an ensemble method) and Neural Network at 96% accuracy followed closely by

KNN at 95%. The numbers appear a bit high for Permissions only, which possibly points

back to the small size of the dataset.

Firdaus, Anuar, Karim and Ab (2018) used directories accessed, and system

commands in addition to Permissions and API calls as their features. Next they used a

wrapper method for feature selection incorporating a Genetic Algorithm from the Weka

library. Interestingly, the resulting feature set consisted of only six attributes: three

Permissions, two services and one directory, but no system commands. The dataset used

consisted of 6,105 apps of which 5,555 were malicious. Validation was performed with

five classifiers: Naïve Bayes, Neural Net, Functional Tree, Random Forest and Decision

Tree. Testing showed an accuracy of roughly 95% for all five classifiers. This odd result

may indicate the GA culled the feature set too far, not providing a broad enough feature

vector.

In an interesting study of feature selection techniques for Permissions-based

malware detection, Bhattacharya, Goswami and Mukherjee (2019) proposed Particle

Swarm Optimization (PSO) using rough set theory and compared results against nine

other feature selection techniques, including six filter methods and three wrapper

methods. The filter methods were: Pearson correlation, Information Gain, Gain Ratio,

Chi-squared, One Rule and Relief. The wrapper methods were: Forward Selection, PSO

(not incorporating rough set theory) and Genetic Algorithm. Testing was done with two

different datasets and a Decision Tree classifier. Their proposed PSO method improved

over the second best methods by 1%, with those second best being Gain Ratio and Relief.

47

The results also showed all the filter methods being better than any of the wrapper

methods.

A Static Analysis Survey

Android security and privacy research has grown tremendously during its ten

years of existence. Acar, et al. (2016) surveyed the state of research and categorized it

into five major categories: 1) Permission-based access control, 2) app webification issues

(the integration of web content into mobile apps), 3) programmer-induced leakage, i.e.,

poor programming practices, 4) software distribution channels (trust worthiness of app

markets), and 5) vendor customization leading to OS fragmentation. Of the publications

cited, over 50% were in the Permission-based access control grouping.

A more recent survey by Talal, et al. (2019) took a different approach in research

categorization. They presented four broad categories: 1) survey and review, 2) security

solutions, subdivided into malware protection techniques and malware detection

techniques, 3) malware studies, ranging from data collections to social science models,

and 4) ranking and classification, i.e., classifying malware according to their families or

security risk level. The majority of research reported on was in the second grouping,

security solutions. Of those, approximately 75% were focused on detection versus 25%

on protection.

Tam, Feizollah, Anuar, Salleh and Cavallaro (2017) describe malware detection

techniques as falling into one of three categories: 1) static analysis which evaluates an

app without executing any code, 2) dynamic analysis which executes the app and

observes the results, and 3) hybrid analysis which combines techniques of static and

dynamic approaches. Within their surveyed work 56% used static analysis only, with the

48

remaining split between dynamic and hybrid analysis. These numbers align with another

review by Sufatrio, Tan, Chua and Thing (2015) in which the publications they cited

represented 63% static analysis with again, the remaining split evenly between dynamic

and hybrid analysis.

A significant amount of static analysis research uses machine learning (ML). In

their survey, Talal, et al. (2019), describe fifteen different ML techniques in use among

the work cited. Approximately two-thirds make use of multiple techniques with the rest

using a single ML technique. The most common ones in use, and all about the same level

were, Naïve Bayes, Decision Tree, Random Forest and Support Vector Machine.

Table 4 presents the results of a survey conducted by this author cataloging 71

publications in which machine learning techniques were used for Android malware

detection.

49

T

a
b

le 4

M
a
ch

in
e L

ea
rn

in
g
 T

ech
n

iq
u
e b

y P
u
b
lica

tio
n

50

T
a
b

le 4

C
o
n
tin

u
ed

.

51

In the collection of research, there were 31 different machine learning techniques

used across all of the works, shown along the top row of the table. The columns

representing which technique each effort used are ordered by most used on the left with

lesser used techniques going to the right.

Survey Analysis

A metadata analysis is presented in Table 5. In this cataloging, the five most used

techniques were Support Vector Machine first at 31% of the publications incorporating it,

Table 5

Summary of ML Technique by Publication

52

second was Random Forest, followed by Neural Networks, Decision Tree and Naïve

Bayes. Each of the other techniques are below 10% going from a count of five down to

one. The most techniques evaluated by a single source was seven while 34 publications,

almost half, cited using a single technique.

In the community of Android malware detection research there are two datasets

that are often cited and or used either in whole or in part. Those datasets are the Android

Malware Genome Project (Zhou & Jiang, 2012) which contain 1,260 malware samples,

and the Drebin dataset (Arp, et al., 2014) which contains 129,013 total samples of which

5,560 are malware and the rest benign. Interestingly, the 5,560 malware samples in

Drebin include the 1,260 samples from the Genome Project. For creating custom

datasets, there are various places to get benign apps, the main one being Google Play;

however, the availability of verified malware samples is much more limited, and rightly

so. Two major sources of malware samples are VirusShare (VirusShare, 2020) and

Contagio Malware Dump (Contagio Malware Dump, 2020).

Of the work presented above, only three confined themselves to solely using one

of these two referenced datasets. All others create a custom dataset but often using

samples from one or both of the two referenced datasets. Of the 71 citations, 51

provided information on the source of their dataset’s malware samples. Table 6 is a

metadata analysis of those sources. Given that the Drebin dataset includes the Genome

Table 6

Dataset Malware Sources

53

Project samples, those two represent 66% of the source with VirusShare and Contagio

providing the rest at 14% and 20% respectively.

Also of interest is dataset size. In machine learning, more data for testing and

training is always better, but assembling a custom dataset can require a lot of work. So it

is not surprising to see a wide range of dataset sizes, i.e., the number of APK files used,

within the referenced work. The range goes from a low of 106 samples up to a maximum

of 206,264 samples. As shown in the metadata analysis in Table 7 around 65% of the

research was conducted with datasets of 10,000 or less and only 15% used 100,000 or

more.

A final point of interest related to the datasets used is the percentage of APKs in

the dataset that is malware. Table 8 presents a metadata analysis of that metric. Note

that there are two modalities in evidence: 20% and below being the first and 41 – 60 %

being the second. None of the work reported testing with various percentages of malware

using the same dataset, so the impact of this distribution is to be determined.

Table 7

Dataset Sizes

Table 8

Dataset Percentage Malware

54

Survey Summary

Compared to the computer industry overall, mobile operating systems are a

relatively new component of the technology landscape. The convergence to only two

major players, Android and iOS, is just over a decade old. New operating systems are

always followed by new threat vectors and Android was no different. With just over ten

years of research in Android malware detection, there has been significant progress, but

there remain gaps that need to be addressed.

One major void is an exhaustive analysis of what Android features are most

indicative for malware detection. While there has been significant work in the industry

on feature selection for machine learning in general, there is a definite lack of such a

focus with respect to Android, with ample evidence shown in the above survey.

55

Chapter 3

Methodology

Notations

Table 9 lists the notations to be used for the remainder of this text. The format

uses bold uppercase characters for matrices (e.g. X), bold lowercase characters for

vectors (e.g., y) and italicized, uppercase fonts for sets (e.g. F).

The first step in designing the experiments is to select the library to be employed.

Table 9

Symbols

This notation closely follows that used by Li, et al., (2017).

Notations Description

E Expected values

O Observed values

n Number of instances in the dataset

d Number of all features in the dataset

k Number of selected features

X Binary data matrix with n instance and d or k features

x i j Feature values for ith instance and jth feature

Y Binary class label vector for all n instances

y i Class value for ith instance

W Feature weight vector for k features

w j Feature weight value for jth feature

F Original feature set with d features

S Selected feature set with k selected features

V Contrast variables matrix, n instances with 3 features

T Set of feature selection methods

56

Scikit-Learn (scikit-learn - Machine Learning in Python, 2010) was selected as the library

to use due to it being open source, written in Python and having a broad list of available

algorithms.

Feature Scope

The breadth of feature types used in static analysis for Android malware detection

is presented in Table 3. For this research, the feature types under test were the top three

of interest in the community: Permissions, API calls and Intents. The next two in the list,

hardware and app components, are essentially redundant to the first three since to use

either, an API call is required and possibly even a Permission. The remaining features,

such as CFGs, URLs, etc., may be important in some domains but are believed to be less

important in this research given that every Android app, malware and benign, will make

use of a variety of Permissions, API calls and Intents providing a broad detection surface.

Adding other feature sets is unlikely to increase that detection surface area enough to

justify the increase in computational time and therefore in detection time.

Given the diversity of the combinations of the three in use, all seven combinations

are used as starting feature sets in the experiment as shown in Figure 2. This includes

using the three individually as well as all together as a single feature set in addition to the

other various combinations. Each combination occurs prior to any subset selection.

Given that there are 158 Permissions, 295 Intents and 581 significant API calls, the

starting feature sets range from as low as 158 attributes (Permissions only) to 1,034

attributes (Permissions, Intents and API calls).

57

Feature Selection Algorithms

 As described in the section Feature Selection, there are three main objective

approaches to feature selection:

1. Filter methods

2. Wrapper methods

3. Embedded methods

Given that the focus of this research work is to provide an expansive view of

feature importance, multiple feature selection techniques were used from each of the

above categories in order to compare and contrast the selected features with

representative approaches across the spectrum. Table 10 lists the eleven selected

techniques: three univariate filter methods, three multivariate, three wrapper methods and

two embedded methods. Univariate filter methods assume independence of the features

from one another and only select based on the correlation with the class. These three

univariate algorithms were selected due to the popularity of those methods in feature

Table 10

Feature Selection Algorithms Text Matrix

58

selection and therefore it would be informative to see the results they produce compared

directly.

Univariate Filter Methods

Chi-Square

The Chi-Square test is used in statistics to test the independence of two events, or

in the case of feature selection to test whether the occurrence of a specific feature value

and the occurrence of a specific class are independent. It can be expressed as:

𝜒2(𝑿| 𝒚) = ∑ ∑
(𝑶𝑖𝑗 − 𝑬𝑖𝑗)2

𝑬𝑖𝑗

𝑑

𝑗=1

𝑟

𝑖=1

 (1)

where r is the number of different values in a given feature vector, d is the number of

features in the dataset, O is the count of observed values and E is the expected frequency

(Li, et al., 2017).

Information Gain

Information Gain (also known as Mutual Information) is a statistical method that

measures the amount of information shared between a feature and its class labels. It is

based on the concept of information entropy from information theory. Information Gain

is defined as:

𝐼(𝑿| 𝒚) = ∑ ∑ 𝑃(𝑥𝑖, 𝑦𝑖)

𝑦𝑖 ∈ 𝑌

log
𝑃(𝑥𝑖, 𝑦𝑖)

𝑃(𝑥𝑖)𝑃(𝑦𝑖)
 𝑥𝑖 ∈ 𝑋

 (2)

where P(xi) is the probability of xi over X, P(yi) is the probability of yi over Y, and P(xi, yi)

is the joint probability of xi and yi (Li, et al., 2017).

59

Relief

The Relief algorithm (Kononenko, 1994) estimates the quality of attributes

according to how well their values distinguish between instances that are near to one

another. Given a randomly selected instance vector xi, it searches for the two nearest

neighbors: one from the same class, and the other from a different class, and then updates

the quality estimate for all the features, depending on the values for xi.

Relief can be expressed as:

𝑅(𝑿|𝒚) =
𝐺𝑖𝑛𝑖′ × ∑ 𝑃(𝑥)2

𝑥∈𝑋

(1 − ∑ 𝑃(𝑌)2
𝑦𝑖 ∈ 𝑌) ∑ 𝑃(𝑌)2

𝑦𝑖 ∈ 𝑌

 (3)

where Gini′ is a modified version of the Gini-index which is highly correlated with

Information Gain covered earlier, P(x) is the probability of the values of vector x, and

P(y) is the probability of the classes in the labeled set.

Multivariate Filter Methods

Multivariate methods select feature importance based on higher correlation with

the class, just like univariate methods, but then look for low correlation between features.

CFS (Correlation-based Feature Selection) will be used to take the same three sets of

correlations and consider the interaction among features

Correlation-based Feature Selection (CFS)

Correlation-based Feature Selection (CFS) is based on the thesis that “A good

feature subset is one that contains features highly correlated with (predictive of) the class,

yet uncorrelated with (not predictive of) each other” (Hall, 1999). It requires an initial

correlation analysis on which to base the selection algorithm. While this initial technique

is required it is not subscribed and any approach can be used. For this research, the three

60

previously discussed univariate methods were used: Chi-Square, Information Gain and

Relief.

CFS uses a concept of “Merit” as a heuristic by which to compare inter-feature

correlation. It is given by:

𝑀𝑆 =
𝑘 𝑟𝑐𝑓̅̅ ̅̅

√𝑘 + 𝑘(𝑘 − 1) 𝑟𝑓𝑓̅̅ ̅̅
 (4)

where S is the feature subset with k number of selected features, 𝑟𝑐𝑓̅̅ ̅̅ is the mean feature-

class correlation and 𝑟𝑓𝑓̅̅ ̅̅ is the mean feature-feature correlation (Hall, 1999).

Wrapper Methods

Recursive Feature Elimination (RFE)

Recursive Feature Elimination (RFE) is an iterative procedure using backward

feature elimination. However, as opposed to eliminating just one feature at a time, it

allows for evaluating and eliminating (or keeping) feature subsets (Guyon, Weston,

Barnhill, & Vapnik, 2002). RFE incorporates a classifier for ranking the features in each

iteration. RFE can be described by:

 (5)

where F d is the original feature set with d features, S k is a selected feature set with k

selected features and n is the subset reduction value. Guyon and collaborators originally

developed RFE using an SVM as the classifier, but it has since been used with different

models among researchers, most notably Random Forest, as exemplified by Ustebay,

Turgut, and Aydin (2018) as well as a Neural Network as demonstrated by Peterson and

Coleman (2005).

61

Embedded Methods

Ridge regression

Ridge regression, also known as Tikhonov regularization, is a multiple regression

technique using a cost function based on the residual sum of squares. It adds a

regularization (or penalty) function that is an L2 norm, i.e., based on Euclidean distance.

Optimization is based on minimizing the cost function, which is defined as:

∑(𝑦𝑖 − ∑ 𝑥𝑖𝑗

𝑑

𝑗 = 1

𝑤𝑗)2

𝑛

𝑖 = 1

 + 𝜆 ∑ 𝑤𝑗
2

𝑑

𝑗 = 1

 (6)

 ├─ regression model ─┤ ├─ penalty function ─┤

where y is a vector of the class observations for n number of instances in the dataset, x is

a matrix of the model predictor variables for n instances by d number of features, and w is

the vector of weights (or model coefficients) corresponding to each feature.

To control the regularization function, λ is used as a tuning parameter that

increases or decreases the size of the penalty, which for Ridge, is the sum of the squares

of the weight coefficients. This implies that for λ = 0 the coefficients are the same as

simple linear regression and as λ → ∞ all coefficients are driven towards zero, but never

actually reach zero (James, Witten, Hastie, & Tibshirani, 2017).

LASSO regression

LASSO, which stands for Least Absolute Shrinkage and Selection Operator, was

developed to improve on Ridge regression by performing L1 regularization using

Manhattan distance instead of using L2. The cost function is similar to Ridge except for

the penalty term and is defined as:

62

∑(𝑦𝑖 − ∑ 𝑥𝑖𝑗

𝑑

𝑗 = 1

𝑤𝑗)2

𝑛

𝑖 = 1

 + 𝜆 ∑ |𝑤𝑗|

𝑑

𝑗 = 1

 (7)

 ├─ regression model ─┤ ├─ penalty function ─┤

where y is a vector of the class observations for n number of instances in the dataset, x is

a matrix of the model predictor variables for n instances by d number of features, and w is

the vector of weights (or model coefficients) corresponding to each feature.

As with Ridge, λ is a tuning parameter that controls the size of the penalty, but for

LASSO, the penalty is the sum of the absolute value of the weight coefficients. This

implies that for λ = 0 the coefficients are the same as simple linear regression and as λ →

∞ all coefficients approach zero and some actually equal zero implicitly selecting features

to be eliminated, which is the desired improvement of LASSO over Ridge

(Tibshirani, 1996).

Machine Learning Algorithm Selection

The goal of this research was to show the variation in feature selection inputs and

indicate how that variation reflects in different machine learning models. It was not a

goal to find a best performing feature set, nor to find a best performing machine learning

model.

The classifier selection was based on common usage among other researchers so

as to make replication and comparison easy. In the same vein, with the exception of

Random Forest, ensemble techniques were eliminated, such as boosting and stacking.

The final consideration was performance. It was desired to have models that have

consistently exhibited high accuracy in various domains.

63

Based on the data presented earlier in Tables 1, 2 and 5, the three classifiers

selected were Random Forest, Support Vector Machine and Neural Network.

Specifically, the Neural Network classifier was a Perceptron, chosen because the problem

at hand is one of binary classification and with a single layer would be expected to have

high performance in terms of speed to convergence. The list of selected algorithms is

presented in Table 11.

Experiment Design

Preprocessing

A high-level view of the preprocessing procedure is presented in Figure 3. The

malware dataset used is a custom collection of over 119,000 Android apps with an eight

percent malware component. See the section Datasets for more details.

There are many tools available for reverse engineering Android apps. Four

requirements were identified for tool selection for this project. First, it needs to be open

source in order to provide a level of transparency as well as be affordable. Second, the

open source project needs to be actively maintained. Given that Android itself changes

from time to time and is customized by different vendors, it is critical to use a tool that

stays up to date with those changes. Third, the tool needs to have a command line

interface to support automation. A good test database of APKs consists of thousands of

Table 11

ML Classifiers Text Matrix

64

files, too many to use a GUI one file at a time. And finally, the decompiled files need to

be in Java simply due to the author's expertise in that language versus Android assembly

language.

Jadx (Dex to Java decompiler, 2019) was selected. It meets all the stated

requirements and is a popular tool among Android researchers. Firdaus, Anuar, Karim

and Ab (2018) used Jadx in their research on Android feature selection. Pauck, Bodden

and Wehrheim (2018) presented a new approach for comparing taint analysis tools and

used Jadx to prep the data. It was also used as part of the development of a new classifier

approach to get around obfuscation by Martin, Menendez and Camacho (2017). And

Chen, Fan, Chen, Su, Li, Liu and Xu (2019) actually incorporated Jadx as part of their

Storydroid tool for use in app development.

Figure 3

Preprocessing

65

Jadx has a graphical user interface as well as a command line interface, the latter

making it convenient for integrating with other tools. Its main function is decompressing

APK’s resulting in .xml files and .dex files. It then decompiles the .dex files into Java

source code.

From the resulting .xml and .java source files, the features of interest are then

parsed using custom Python code. For this experiment, those features are Permissions,

Intents and API Calls. To simplify data management each feature is assigned a unique

identifier consisting of the first letter of the type, P for Permissions, I for Intents and A

for API Calls, followed by the concatenation of an integer value ranging from 1 to the

maximum number of features available. As an example, Permission IDs went from P001

to P158 and the Permission READ_EXTERNAL_STORAGE was assigned an ID of

P100.

A separate module of the code then performs binary encoding of the extracted

features to account for the existence (1) or non-existence (0) of each feature in each APK

file, an example of which is depicted in Figure 4 as a dataset fragment of the Permissions

file. The encoding creates three datasets, one for each feature type as well as a dataset

containing just the target variable indicating malware (1) or benign (0). Keeping each of

the four datasets in separate files makes the mechanics of concatenating them for the test

dataset of interest a simple exercise. Each of these four files contains 119,183 rows of

data, one row per APK.

66

These feature vector datasets segmented as Permissions, Intents and API Calls can

then be used individually or combined into larger feature vectors by concatenating the

segments. Table 12 shows the seven combinations of the three feature types and

associated feature counts possible for each combination.

Feature Subset Selection

Feature subset selection is the process of selecting a subset of relevant features for

use in model construction. The goal is to remove features that are either redundant or

Table 12

Datasets Test Matrix

Figure 4

Binary Encoded Dataset Fragment

67

irrelevant. For this experiment, there are four phases (as depicted in Figure 5)

encompassed in an 8-step process (shown in Figure 6). Phase 1 starts with all

Permissions, Intents and API calls. The next three phases, Algorithmic Selection,

Performance Selection and K-based Selection are descibed in the following sections.

Algorithmic Selection

Algorithmic selection refers to the feature selection method actually eliminating

non-relevant features as part of its process. Of the eleven feature selection algorithms

used, eight perform this type of subset selection. The three that do not are Information

Gain, Chi-squared and Ridge Regression. For example, if 100 features are submitted to

the Information Gain algorithm, it will return the weights for all 100 features. However

if 100 features are submitted to the LASSO Regression algorithm, it will return weights

only for the features the algorithm deems significant, so that would be some number less

than 100 most likely. In other words, in this case, LASSO Regression has

algorithmically selected a subset of features.

Figure 5

Feature Subset Selection Phases

68

In many library implementations the operator can specify the number of features

to return, so in this example, one could submit 100 features to Information Gain and

request some arbitrary number of features in return, say the top 10. In that case, the

algorithm would return only the top 10 weights, but that is arbitrary subset selection

based on the operator’s experience, domain knowledge or simple guess, but having

nothing to do with the calculations of the algorithm.

Figure 6

Feature Subset Selection Process

69

Algorithmic selection steps are 3 - 7 in Figure 6. They include randomizing the

rows of the dataset, then dividing it into k-fold datasets, specifically five, resulting in five

datasets of approximately 24k rows, and each is then submitted to one of the eleven

feature selection algorithms. The five results are then aggregated and the mean is

calculated. These results are then normalized so that all weights are in the range of zero

to one.

Figure 7 is an example using dummy data of what a resulting subset of 25

features, P01 – P25, might look like, with each feature having a weight assigned by the

feature selection algorithm.

At this point in the process there are two distinct types of results, one where all

features fed into the feature selection algorithm are returned with weights, and a second

where the only features and weights returned are those deemed significant by the

selection algorithm. These two cohorts will be referred to as C1 and C2 respectively.

For C1, no features have been eliminated. Put conversely, no features have been

selected. A process is needed to select the significant features. For the C2 cohort, there

are feature subsets as selected by the respective algorithms, but there has been no process

to evaluate the quality of those subsets. The performance selection process is used to

address these two issues.

Figure 7

Algorithmic Selection Results Example

70

Performance Selection

Performance selection refers to analyzing the performance of the feature selection

algorithm and further subsetting by elimination of features deemed irrelevant based on an

independent measure of the feature selection algorithm’s output. From the weights

assigned by algorithmic selection, rank order of importance can be determined, however,

from this ranking of features, it is not evident how to threshold the ranking to incorporate

only important attributes and to exclude others as noise. As an example, assume a feature

selection algorithm returns a subset of 400 features, each having an associated real

number weight. One could consider the attribute with the highest weight value as the

most important feature and the attribute with the smallest weight value as the least

important feature, but how does one determine if all 400 features are relevant? Rather, is

it the top ranked 25, or 50, or 100 that are relevant?

That is the question addressed by Tuv, Borisov and Torkkols (2006) when they

introduced the use of “artificial contrast variables.” To quote their introduction of the

concept:

In order to determine a cut-off point for the importance scores, there

needs to be a contrast variable that is known to be truly independent of the

target. By comparing variable importance to this contrast (or several),

one can then use a statistical test to determine which variables are truly

important.

In their experiments using contrast variables ensembled with a Random Forest classifier,

Tuv, Borisov and Torkkols (2006) show that the technique outperformed RFE and CFS

for feature selection.

71

In a work on determining causality, Guyon, Janzing and Scholkopf (2010) refers

to these contrast variables as “probes” similar to those used in statistics for ranking by

comparing the index of ranked variables to the index of hypothetical variables from a null

distribution set of irrelevant variables. They further describe the use of probes as

“…relatively straightforward for regular feature selection” and even reference their use in

a previous work by Guyon, et al. (2008).

Kursa and Rudnicki (2011) used a Random Forest classifier for setting feature

importance in their gene expression dataset and contrast variables combined with a

Borata algorithm for feature subset development. Lin, et al. (2012) used contrast

variables combined with RFE wrapping an SVM for feature selection in order to subset a

high dimension database from chromatography–mass spectrometry systems. In another

medical application, Paja and Pancerz (2017) used Information Gain for weighting and

then contrast variables for thresholding to develop their final feature subset.

In using contrast variables, one has to consider the possible impact of the added

columns on feature ranking and on performance. This could range from zero (no contrast

variables) to some number greater than the number of real features. In terms of a

percentage of the total number of real features, in practice researchers report successful

results with ranges from 0.5% to 2.5%. Considering an example dataset with 400

features this would equate to adding from 2 to 10 artificial attributes.

For this work, thresholding was also accomplished using artificial contrast

variables. They are treated as additional features, just as the Permissions, Intents and API

Calls. The major difference is that instead of consisting of data extracted from actual

Android apps, the contrast features are populated with data from a random number

72

generation algorithm, in this case, 0 or 1 due to the binary nature of the datasets. To the

feature selection algorithm, these contrast features are just additional features, no

different than the Permissions, Intents or API Calls, and the algorithm assigns weights to

the contrast features just like all other real features.

In that these experiments evaluate all features in each set and run time was not

important, the number of contrast variables used was not significant. The number

ultimately selected and incorporated into each set was three. Early prototypes were run

with a single contrast variable and it was observed that some algorithms provided

inconsistent results (weights) when repeated, so three were tested and using the average

of the weights made the observed variation much smaller. No runs were made with more

than three since it was judged there would be diminishing return.

The process then is to contrast the weights (or more precisely the mean of the

weights) of these features of random data to the weights of the features from algorithmic

selection and determine if further feature reduction if indicated.

For this step, let F represent the original matrix of feature vectors:

F m = {Permissions, Intents … } (see Table 12)

where m = 7 (the number of instances).

 𝑭 𝑉 = 𝑭 𝑚 + 𝑽

where V is the matrix of contrast variables added to the original matrix of attributes for

each dataset. A matrix of candidate feature sets, F T is created by applying each feature

selection technique T where:

 T r = {Chi-Square, Information Gain, … } (See Table 10)

and r = 11 (the number of techniques to be employed) onto each original feature set F V :

73

 F T = Tr (F
V)

The size n of each candidate feature set will vary based on the results of the selection

algorithm. For each feature set in F T , the values of the weights vector, w, are

determined by T which equates to a feature importance measure. Let 𝒘 𝐹 be the weights

matrix for the orignial features F
m , and let 𝒘 𝑉 be the weights matrix for the contrast

variable features V. Then the preliminary subset S ′ of signficant features is built from the

features of F whose weights are greater than the mean of the weights of the features of V

(𝒘𝑉̅̅ ̅̅), such that:

𝑺′ ⊆ 𝑭 𝑚

Getting back to the previous example, Figure 8 shows the weights of the contrast

variables to the right of the weights of the original features, labeled as R01, R02 and R03,

where the label ‘R’ stands for random. They are separate in the figure to help visualize

the process, but the feature selection algorithm just sees them as features no different than

P01 - P25 and assigns weights similarly. (See also step 2 in Figure 6.) In this example,

the mean of the weights of the contrast variables is 0.408. The weight of each feature,

P01 - P25, is then compared to that mean, and if the weight of that feature is less than

0.408, it is eliminated. In the figure this is represented in the second row which shows 9

Figure 8

Performance Selection Results Example

74

of the 25 features removed. Then, as shown on the third row of the figure, an importance

order is inferred based on the weights, resulting in a feature significance order for this

instance with the range 1 - 16.

With respect to the C1 cohort where all features have a weight value, the

population of S ′ is trivial. However, for C2, there are three variations possible. The first

is where none of the feature weights are greater than 𝒘 𝑉̅̅ ̅̅̅:

𝒘 𝑚𝑎𝑥
 𝐹 ≤ 𝒘 𝑉̅̅ ̅̅̅

 meaning the algorithm that selected those features could not distinguish between real

features that are truly significant and random data. The second scenario is the opposite,

where all of the feature weights from the algorithmic selection process are greater than

𝒘 𝑉̅̅ ̅̅̅:

𝒘 𝑚𝑖𝑛
 𝐹 > 𝒘 𝑉̅̅ ̅̅̅

This result has the performance selection process in complete agreement as to the

significance of all the features selected. The third scenario is a mix of these two extremes

where some of the feature weights are greater than 𝒘𝑉̅̅ ̅̅ and some are not:

𝒘 𝑚𝑖𝑛
 𝐹 < 𝒘 𝑉̅̅ ̅̅̅ ≥ 𝒘 𝑚𝑎𝑥

 𝐹

 For comparing this effect, let the number of features returned from a given

algorithmic selection process be 𝑛𝐴𝑆 and the number of features returned from the

performance selection process as 𝑛𝑃𝑆, then we can define the effectiveness of that

algorithm for feature selection as:

eff𝑖 =
𝑛𝑃𝑆

𝑛𝐴𝑆
 (8)

75

where i is the feature selection method in Table 10. In such a rating, 100% effectiveness

would be the case in which performance selection was in full agreement with the

algorithmic selection results and 0% effectiveness is the case where the feature selection

algorithm could not distinguish between significant features and random data.

Feature Ranking

As described by Bolon-Canedo, Sanchez-Marono and Alonso-Betanzos (2013),

there are two main approaches to evaluating feature selections, individual evaluation,

which provides an ordered ranking of features, and subset evaluation, which provides a

candidate feature subset. In that the goal of this research was to analyze the importance

of all Android features within the three categories of Permissions, Intents and API Calls,

as opposed to selecting a single, best performing feature set, the individual evaluation

approach was selected which provides an ordered ranking of features.

In order to evaluate performance of specific features across a range of subset

creation methods an ensemble voting scheme was chosen based on quartile membership

of the ordered set and across two data stratifications: dataset combination and feature

selection method. There is a long history of quartile analysis as an evaluative technique

going as far back as Tukey (1977) in his seminal work Exploratory Data Analysis

although he used the term hinges. As defined by Langford (2006), the simplest way to

delineate a quartile is to find the median of a dataset, the number which puts at least half

of the data values at that number or below and at least half of the data values at that

number or above, and then to define the first quartile (Q1) to be the median of the bottom

half, and the third quartile (Q3) to be the median of the top half. Data below the Q1 point

is in the first quartile and data above the Q3 point is in the fourth quartile.

76

Quartiles are often used in statistical outlier identification (Rousseeuw & Hubert,

2011) where the aim is to minimize the impact of outliers. While that was not the goal

desired here, the identification task is the same. The approach is generic in that it spans

many research streams. As examples, Shih and Liu (2016) used quartile analysis for

threshold determination in their work in image processing, and Lee and Sumiya (2010)

employed it to geo-locate social event occurrence based on Twitter data.

Final determination to use quartiles came after data statistics were computed

using half deciles, deciles, the selected quartile, second quartile and percentiles. The goal

of the analysis is to provide a meaningful representation of importance. It was

determined based on the range of statistical calculations that half deciles and deciles

filtered too much of the results. Conversely, second quartile did not adequately bring

higher performers to the top and percentiles simply did not provide a clear demarcation

point.

Cluster analysis was another alternative considered but rejected. While it could

show the groups, theoretically some being significant and others not, but there is no

inherit ranking such as

Q1 < Q2 < Q3 < Q4

as naturally available in quartile analysis.

Ranking by dataset combination

Define 𝜌𝑑𝑖 to be the number of times the order of feature 𝒇𝑖 is in the first quartile

for the d th combination among the m dataset combinations used. Then the range of 𝜌𝑑𝑖

can be given as:

 0 ≤ 𝜌𝑑𝑖 ≤ |T |

77

where T is the set of feature selection methods used with |T | = 11, and

 1 ≤ 𝑖 ≤ |F |

where F are the original feature sets based on m combinations. To be more concrete, if

𝜌𝑑𝑖 = 11 then the ith feature of F was ranked in the top 25% by each feature selection

method, i.e., it is selected as an important feature. Conversely if 𝜌𝑑𝑖 = 0 then none of the

feature selection methods ranked that feature as important. (Note that F does not contain

the contrast variables as their usefulness was for performance selection and are not to be

treated as real features for the ranking process.)

For comparison of 𝜌𝑑𝑖 across the data stratifications, a permutation (reordering) of

features can be defined by:

〈 𝜋(𝑑1), 𝜋(𝑑2), . . . , 𝜋(𝑑, |𝐹|) 〉

with

𝜌𝜋(𝑑1) ≥ 𝜌𝜋(𝑑2) ≥ . . . ≥ 𝜌𝜋(𝑑,|𝐹|)

so that sequences can be mapped.

Ranking by feature selection method

Define 𝜌𝜏𝑖 to be the number of times the order of feature 𝒇𝑖 was in the first

quartile of the 𝜏th algorithm among the n feature selection methods used. Then the range

of 𝜌𝜏𝑖 can be given as:

 0 ≤ 𝜌𝜏𝑖 ≤ |F |

Note that while there are seven feature set combinations, referring back to Table 12 one

can see that any given feature type can only be in four of the seven combinations so that

the actual range of 𝜌𝜏𝑖 is:

 0 ≤ 𝜌𝜏𝑖 ≤ 4

78

Similar to the prior concrete example, if 𝜌𝜏𝑖 = 4 then the ith feature of F was ranked in

the top 25% by each combination in which that feature type existed, i.e., it is selected as

an important feature. Conversely if 𝜌𝜏𝑖 = 0 then none of the combinations had it ranked

as an important feature.

As with dataset variation, for comparison of 𝜌𝜏𝑖 across selection methods, a

permutation can be defined by:

〈 𝜋(𝜏1), 𝜋(𝜏2), . . . , 𝜋(𝜏, |𝐹|) 〉

with

𝜌𝜋(𝜏1) ≥ 𝜌𝜋(𝜏2) ≥ . . . ≥ 𝜌𝜋(𝜏,|𝐹|)

so that sequences can be mapped.

K-based Selection

The final feature subset S is then built by varying the number of features selected,

k, where

𝑘𝑖 ∈ { 5, 10, 15, 20, 30, 40, 50, 75, 100 … 𝑑𝑠′}, 1 ≤ 𝑖 ≤ 𝑛

a set arbitrarily selected to provide robust coverage of the span of possible selected

subsets, and 𝑑𝑆′ represents the largest number of features in the subset vector which can

vary based on the prior subset selection processes and will be less than or equal to the

original number of features in the dataset, i.e., 𝑑𝑆′ ≤ 𝑑.

Then

𝑺𝒊 ∈ {𝑺1, 𝑺2, 𝑺3 ⋯ 𝑺𝑛}, 1 ≤ 𝑖 ≤ 𝑛

where 𝑺𝒊 is the ith feature set with ki features.

For an understanding of how S is built, let us refer back to the example where

after performance selection there are twelve features ranked in order of importance. As

79

shown in Figure 9, the first k-based subset in the example is five, labeled as FS1 for

feature subset one. The five top ranked features, P17, P02 , P19, P01 and P15 make up

the feature subset. That subset is then validated using n machine learning classifiers.

Next, for FS2, the top 10 ranked features are used as a subset and that subset is run

through the same n classifiers. This is followed by FS3 and the top 15 features.

However, at FS4 (20 features), based on the number of features down-selected as part of

the algorithmic selection and performance selection processes, there are not enough

features left to create a k-based subset of 20 features, so the process ends with FS4 and all

following k-based subsets, i.e., where k >= 20 is undefined.

Each combination of dataset and feature selection method (e.g. Permissions only and

Information Gain) can have a different number of features available going into the k-

based selection phase which implies that each combination can have a different number

of feature subsets used in the validation phase.

Validation Analysis

Experiments were run with the various machine learning techniques described

above using the previously described malware database. The key measurements coming

Figure 9

K-based Selection and Validation

n ML classifiers (3)

80

from the experiments were number of true positives, number of true negatives, number of

false negatives and number of false positives as shown in the confusion matrix of Figure

10 and defined in Table 13.

From this raw data, calculations are made for: true positive rate (TPR), false

positive rate (FPR), accuracy, precision and F-measure.

True Positive Rate is defined as: 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

False Positive Rate is defined as: 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁

Accuracy is defined as: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁

Table 13

Experiment Measurements

Measure Description

TP True Positive # malicious apps classified as malicious apps

TN True Negative # benign apps classified as benign apps

FN False Negative # malicious apps classified as benign apps

FP False Positive # benign apps classified as malicious apps

Figure 10

Experiment Confusion Matrix.

81

Two parameters that go into the calculation of F-measure are precision (p) and

recall (r).

Recall, or sensitivity, is defined the same as TPR in this context: 𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

Precision, also known as the positive predictor value, is described in the following

formula.

Precision is defined as: 𝑝 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

F-measure or F1 score is then the harmonic mean of precision and recall.

F-measure is defined as: 𝐹 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∙
𝑝 ∙𝑟

𝑝+𝑟

 These five measurements are all standard metrics used in evaluation of machine

learning tools for Android malware detection. In a survey of measurements in use, by

Talal, et al. (2019), the proposed measurements align with five of the top seven as shown

in Table 14. Also of note are the two time-based metrics: Detection time and Training

time. Given the current experiments execute training and detection as part of the same

process, elapsed time is the metric of interest.

Somewhat related in terms of system level performance, but not included in the

table, is memory, both internal (system RAM) and external (drive space). These were not

included in the observations since the size of available RAM is going to affect overall

processing time due to the operating system paging and swapping to the disk drive when

more memory is needed than is available, so in that sense it is already part of the metric.

Drive space was not considered simply because it is very inexpensive and should not be

allowed to be a bottleneck in performance.

The other three items, unchecked in the table, AOC, FNR and TNR, are all

calculations from the same raw data so can easily be calculated if desired.

82

The results covered in the next chapter will incorporate all six metrics to provide

consistency with other published works thus providing ample opportunity for

comparison.

Resources

Systems

The system used in the research was a Windows 10 system running on an Intel i7

(8 core, 1.8 GHz) with 16 GB of RAM and 8 TB of external storage.

Libraries

As discussed in the previous section, the machine learning library used was

Scikit-learn (scikit-learn - Machine Learning in Python, 2010).

Datasets

There is a maxim in machine learning that more data is always better. When

dealing in the arena of malware detection, the problem is that data is not easily attained.

Table 14

Summary of Measurement Criteria.

83

The first step in the process is gathering labeled applications, i.e., labeled "malware" or

"benign". The next step is decompiling the apps and extracting the desired features. This

can be very computationally intensive with durations in terms of days or weeks

depending on the number of apps. Finally, the extracted data needs to be cleaned,

encoded, and formed into datasets appropriate for input into machine learning libraries.

Such required level of effort results in much malware research having smaller rather than

larger datasets. Of the literature survey conducted herein, over 70% of the papers used

datasets containing on the order of 10,000 instances or less, and 15% of the papers

described using 1,000 samples or less. A major goal of this research was to use an

exceptionally large dataset, large at least with respect to comparative research.

In their survey on the availability of forensic datasets, Grajeda, Breitingerr and

Baggili (2017) listed only two Android malware datasets that meet the above criteria:

Drebin (Arp, et al., 2014) and Andro-AutoPsy Lab (Jang, Kang, Woo, Mohaisen, &

Kim, 2015) as shown in Table 15. The Drebin dataset is older and even contains some

malware samples from an older set, that of the Genome project (Zhou & Jiang, 2012).

Andro-AutoPsy, compiled as part of the Andro-Autopsy project at the University

of Korea Hacking and Countermeasure Research is newer and contains almost twice as

many malware samples, all of which came from the two most respected malware

repositories in the community, Contagio Malware Dump (Contagio Malware Dump,

2020) and VirusShare (VirusShare, 2020). As another level of quality check, in order to

be included in the Andro-AutoPsy dataset, the malware had to have been diagnosed by at

least ten different antivirus vendors. The final collection of almost 10,000 samples span a

range of 30 different malware families. With respect to the 100K+ benign samples, all

84

were downloaded from Google Play. Many comparisons have been made to their base

research with some such as Park, Seo, Han, Oh and Lee (2018) using some or all of the

dataset.

Additional goals of this research related to datasets include using one based on

real apps, as opposed to contrived or synthetic datasets, plus using a dataset that is

available to other researchers for download. Both of the datasets in Table 15 meet those

requirements. Given all of the above, Andro-AutoPsy was selected as the dataset for this

research, mainly due to the quality and sample size of malware.

Table 15

Dataset Options

85

Chapter 4

Results

Data Description

As described in the section Datasets, the raw dataset consisted of 119,183

Android applications in the form of APK files. Of those, 9,990 were malware leaving

109,193 as benign, or 8.4% malware overall (Table 15). Each APK was decompiled and

Android Permissions, Intents and API Calls were extracted from the Java source code and

the manifest XML file. The collection totaled over 500K Permissions, 800K Intents and

3.7M API calls.

At the time the experiments were run in January 2020, there were 158

Permissions defined in Android, 295 Intents and innumerable Java API calls available.

When those three feature groups were extracted from all the APKs, only 66 distinct

Permissions of the 158 defined were found used. Likewise, 139 distinct Intents of 295

were found, and a total of 203 Android Java API calls were identified. Thus, the

resulting list of attributes consisted of 408 distinct Android features across the 119K

Android apps. Table 16 presents an updated version of Table 12 with the observed

feature counts. These numbers do not include the three features of contrast variables

added as part of the performance selection phase.

As described earlier, in order to simplify data management, all features were

given unique identifiers. These IDs and the feature names are presented in Appendix B.

86

Feature Subset Selection Process

The feature selection process was described previously in the section Feature

Subset Selection as consisting of four phases as shown in Figure 5. After obtaining all

features, as listed in Table 16, the second step, algorithmic selection, consisted of

running each of the eleven different feature selection methods against the seven feature

type combinations. As defined in the earlier referenced section, the maximum possible

feature subsets at this stage was: F
T m×r where m = 7 (dataset combinations) and r = 11

(feature selection techniques), or 77 feature subsets. The inclusion of the term maximum

in the definition was due to the possible circumstance of some feature subsets being the

same. Upon completion of the experiments creating the feature subsets, it was observed

that there were no duplicates, thus, phase two in the process did result in 77 distinct

feature subsets.

Also note that all algorithms were set to provide the maximum number of feature

weights. For methods such as Information Gain that implies that if 408 features go into

the process, one will get 408 feature weights out. However, other algorithms eliminate

Table 16

Datasets Test Matrix - Observed Feature Count

87

features as part of their internal calculations and return only the features the algorithm

calculated to be significant. As an example, CFS has a stepwise process calculating a

metric defined as merit per feature. Each feature with a merit value equal to or greater

than the previous is assumed significant. The first time a feature’s merit value is less

than the previous, the algorithm assumes it has determined all the significant features and

the process stops. So if one were to use 408 features as input to CFS, it might return 10,

50 or 100 as significant, but most likely some number less than 408.

The feature counts for each algorithm-dataset combination from the experiments

are presented in Table 17 by rows and columns respectively. Comparing the counts to

the count of all features in Table 16 one can see that of the eleven feature selection

algorithms, seven actually eliminated features, while four (Information Gain, Chi-Square,

RFE - Support Vector Machine and Ridge Regression) provided feature weights for all

features. As an example, the dataset of all three attribute types (PIA) contained a feature

count of 408, as described in row one of Table 16. After algorithmic selection only the

Table 17

Phase 2 - Feature Count by Dataset and

Feature Category.

88

subsets from Information Gain, Chi-Square, RFE-SVM and Ridge Regression still

contain 408 features (first data column of Table 17).

The next phase of subset selection, performance selection, eliminated attributes

based on feature significance. Table 18 presents the feature counts after phase three. In

the table, each dataset combination now has two columns, one showing the feature counts

after algorithmic selection (𝑛𝐴𝑆) as reported in Table 17, and a second column showing

feature count after performance selection (𝑛𝑃𝑆).

With respect to the C1 cohort defined earlier, significant features are features with

weight values greater than 𝒘𝒱̅̅ ̅̅ . Using Information Gain and the PIA dataset as an

example, of the 408 features weighted by the Information Gain algorithm, 29 features had

weights less than or equal to 𝒘𝒱̅̅ ̅̅ and thus were eliminated. Or in other words, 379

features were selected by the performance selection process as significant.

For the C2 cohort and the three variations in outcomes, the first is where none of

Table 18

Phase 3 - Feature Count by Dataset and Feature Category.

89

the feature weights are greater than 𝒘𝒱̅̅ ̅̅ . An example of that outcome is Relief and the

PIA dataset where Relief determined 282 features to be significant, but also rated the

random data (𝒘𝒱̅̅ ̅̅) at the same level.

The second scenario is the opposite, where all of the feature weights from the

algorithmic selection process are greater than 𝒘𝒱̅̅ ̅̅ . An example of this outcome is CFS -

Information Gain and the PIA dataset. The CFS process selected 14 features as

significant and all of those were greater than 𝒘𝒱̅̅ ̅̅ .

The third outcome is a mix of these two extremes where some of the feature

weights are greater than 𝒘𝒱̅̅ ̅̅ and some are not. An example of that situation is RFE -

Random Forest where the RFE process selected 382 features as significant, but only 146

of those had weights greater than 𝒘𝒱̅̅ ̅̅ .

Based on all the feature counts presented in Table 18, we can now calculate the

algorithm effectiveness as defined earlier in equation (8). For the eleven feature selection

methods and seven database combinations, the algorithm effectiveness is presented in

Table 19. It is easy to notice that with two of the filter-multivariate methods, CFS –

Table 19

Feature Selection Algorithm Effectiveness.

90

Information Gain and CFS – Chi-Square, are rated at the top performers at 100%. Also

notice the poor performance of the filter-univariate method, Relief, where all or very

nearly all features it selected were deemed not significant.

Table 20 removes the dataset segregation and shows the effectiveness for each

feature selection algorithm for the total of all datasets, sorted best to worst. As expected

from the previous table, CFS – Information Gain and CFS – Chi-Square are rated as the

most effective algorithms and Relief was the poorest.

The same data aggregated by feature selection type is presented in Table 21,

unsorted. Due to the extremely poor performance of Relief, the third column provides

the data without inclusion of the Relief performance numbers. First notice that the worst

performers are the wrapper methods. However, the best performers change in ranking

based on the inclusion or exclusion of Relief. Given the few representative methods

(three of each filter method and two embedded methods) one would have to consider this

data inconclusive in terms of performance ranking by these group types.

Table 20

Overall Algorithm

Effectiveness.

91

A secondary measure that should be considered when comparing various

algorithms is the time it takes to compute the results. Table 22 presents the

computational time required for each feature selection algorithm for the total of all

datasets, sorted fastest to slowest. The time is shown in minutes, but the third column is a

normalized version which abstracts the time results from the performance of the specific

computer system used in the experiments, which did not vary throughout the process.

One could view this as three groupings: seven of the methods are 1% each, then there is

Table 21

Effectiveness by Feature Selection Type.

 * Excluding Relief

Table 22

Compute Time per Feature

Selection Method.

92

both versions of Relief accounting for roughly 20% each, and then the outliers of RFE –

Support Vector Machine and CFS – Information Gain. Considering the effectiveness and

speed together (Table 20 and Table 22 respectively) one would be tempted to label CFS -

Chi-Square as the best performing feature selection method. However, another point to

consider is the number or attributes selected by each method. In Table 18 it is obvious

that the three CFS methods select considerably fewer features than most of the others.

And while most if not all of the CFS algorithmic selections did pass the performance

selection step, it does indicate that in situations where more features would improve

classifier accuracy, CFS could be insufficient.

For completeness, Table 23 presents the compute time aggregated by feature

selection type. It is a bit surprising that Wrapper methods were not the slowest, given

they are well-known for being so given the nature of the designed, i.e., a selection

algorithm wrapped around a machine learning classifier.

Ranking Features

In terms of results from the experiments, a visual representation of 𝜌𝑑𝑖 is shown in

Figure 11 as a heatmap of the top feature rankings, segmented by feature groups, i.e.,

dataset combinations. The shading is based on the value of 𝜌𝑑𝑖 for the specific feature.

Table 23

Compute Time per Feature

Selection Type.

93

In the presentation that means a lighter shade indicates lower importance and darker is

higher importance. The columns represent the seven different combinations of feature

types: Permissions, Intents and API Calls.

94

 Figure 11

Heatmap of Feature Ranking by Dataset

95

The blank cells are datapoints where that feature was not available for ranking. For

example, the top item, Permission P079, INSTALL_SHORTCUT, was not in the datasets

of IA (Intents and API calls), I (Intents only) or A (API calls only) because there were no

Permissions in those datasets by definition. Appendix C contains the numerical data for

all features.

Figure 12 is a similar heatmap but of 𝜌𝜏𝑖 which shows the top feature rankings

segmented by feature selection algorithm. The columns represent the eleven different

selection methods used. In this representation, the blank cells are datapoints where the

feature selection algorithm eliminated that feature and therefore did not assign a weight.

For example, the top item, Permission P079, INSTALL_SHORTCUT, was not in the

features selected by the CFS-Relief method for any of the dataset combinations.

Appendix D contains the numerical data for all features.

96

Figure 12

Heatmap of Feature Ranking by Feature Selection Algorithm

97

With feature ranking complete, the information is now available to address the

first two research questions.

Research Question 1

How does feature ranking vary when Permissions, Intents and API Calls are selected

separately versus combined?

To conduct this analysis, ranking of the features based on singular datasets

(Permissions only, Intents only and API Calls only, datasets #5, #6 and #7 respectively in

Table 12) is compared to rankings based on the combination of all datasets (dataset #1).

By definition the combination set contains Permissions, Intents and API Calls, so in order

to make the comparison, for each feature type, the other two features are removed from

the combination set and it is contracted. As an example, P008 is the 18th most significant

feature, as shown in Figure 11, but becomes the 10th most significant feature when

Intents and API Calls are removed from the combination set.

 If a null hypothesis were true, there is no effect on ranking when comparing

sequences, then the two ranking vectors would be equal. Looking at simply the top ten

for Permissions in each from the experimental results we can observe that:

〈𝜋11, 𝜋12, . . . , 𝜋1,10〉 = 〈 P079, P112, P139, P105, P104 , P100, P153, P005, P010, P008 〉

〈𝜋51, 𝜋52, . . . , 𝜋5,10〉 = 〈 P105, P079, P139, P113, P153 , P112, P104, P005, P004, P100 〉

so that clearly

〈𝜋11, 𝜋12, . . . , 𝜋1,10〉 ≠ 〈𝜋51, 𝜋52, . . . , 𝜋5,10〉

and thus, more generally

〈𝜋11, 𝜋12, . . . , 𝜋1,𝑘𝐹〉 ≠ 〈𝜋51, 𝜋52, . . . , 𝜋5,𝑘𝐹〉

and expanding to the other two feature types we can show

98

〈𝜋11, 𝜋12, . . . , 𝜋1,𝑘𝐹〉 ≠ 〈𝜋61, 𝜋62, . . . , 𝜋6,𝑘𝐹〉

and

〈𝜋11, 𝜋12, . . . , 𝜋1,𝑘𝐹〉 ≠ 〈𝜋71, 𝜋72, . . . , 𝜋7,𝑘𝐹〉

The null hypothesis is false.

To quantify the effect, a similarity scoring function is required that can show

similarity as a sequence. One approach would be a binary scoring referred to as the

Hamming distance in information theory. It involves comparing the ith elements of each

vector, but such a naïve comparison would lead to a conclusion that the two are mostly

dissimilar, which is not the case.

Consider again 〈𝜋11, 𝜋12, . . . , 𝜋1,10〉 and 〈𝜋51, 𝜋52, . . . , 𝜋5,10〉. As shown in Figure 13,

a binary ith-based comparison would indicate only two of the ten to be a match, P139 in

position three and P005 in position eight. This would yield a similarity score of 20%

considering the top 10 set. Yet when looking at the union of the set, 8 of the 10 elements

of each are in common. Figure 14 shows the example with the original two matches plus

the additional six. This would yield a similarity score of 80%. In a set of size 66, such as

Permissions, one would conclude that if 8 of the top 10 are the same, then there is

certainly some similarity.

Figure 13

Combined to Single Set Membership Example - Exact Match

0 0 1 0 0 0 0 1 0 0
binary

scoring

99

However, there are limits to a strict set union analysis given that the two overall

sets are actually equal, it is only the sequence that varies. What is needed is a string

comparison technique that goes beyond evaluating similarity of elements contained in the

sets, but that applies a penalty if the like elements are not in the same position. The

Euclidean distance method provides just such a function, allowing the assumption that

the sets are equal and calculating a similarity score based on how close the same elements

are in position. For comparing 𝜋(𝑑1𝑖) to 𝜋(𝑑5𝑖), 𝜋(𝑑6𝑖) and 𝜋(𝑑7𝑖), the Euclidean

distance, σ, is defined as:

𝜎1,5 = |𝜋(𝑑1𝑖) − 𝜋(𝑑5𝑖)| ,

𝜎1,6 = |𝜋(𝑑1𝑖) − 𝜋(𝑑6𝑖)| 𝑎𝑛𝑑

𝜎1,7 = |𝜋(𝑑1𝑖) − 𝜋(𝑑7𝑖)| .

The reverse, for comparing to 𝜋(𝑑5𝑖), 𝜋(𝑑6𝑖) and 𝜋(𝑑7𝑖) to 𝜋(𝑑1𝑖) is defined as:

𝜎5,1 = |𝜋(𝑑5𝑖) − 𝜋(𝑑1𝑖)| ,

𝜎6,1 = |𝜋(𝑑6𝑖) − 𝜋(𝑑1𝑖) 𝑎𝑛𝑑|

𝜎7,1 = |𝜋(𝑑7𝑖) − 𝜋(𝑑1𝑖)| ,

In order to achieve a cross-comparison for understanding the overall difference between

two result sets, we take an average of the two distances per comparison. The final

Euclidean distance is then: :

Figure 14

Combined to Single Set Membership Example - Union

100

𝜎5 =
𝜎1,5 + 𝜎5,1

2
 ,

𝜎6 =
𝜎1,6 + 𝜎6,1

2
 𝑎𝑛𝑑

𝜎7 =
𝜎1,7 + 𝜎7,1

2
 .

Figure 15 shows the example sets with the Euclidean distance added (rounded for brevity

on the image) and illustrates the calculation for the first element. For P079, the distance

between the combination ranking and the singular ranking is one. For P105, the distance

between the combination ranking and the singular ranking is three. Then the Euclidean

distance for the first rank is the average, which is two.

Noted that the two sets shown in Figure 15 are subsets (top 10 specifically) of

features being selected and the calculations are for illustration purpose only. All

calculations of Euclidean distances are based on the complete selected feature sets. For

example, features such as P004, P008, P010, P113 are included in both complete feature

sets but not in one or the other subsets.

When using Euclidean distance to measure similarity, low numbers imply higher

similarity and high numbers imply lower similarity. But in similarity measures it is

typical for larger values to indicate similar objects and smaller values to indicate

Figure 15

Combined to Single Set Membership Example – Euclidean Distance

2* 2 0 7 2 4 2 0 2 4
Euclidean

distance

1

3

1 + 3

2
= 2*

101

dissimilar objects, usually accomplished by taking the inverse of the distance measures.

In addition, for the overall similarity score, being normalized would abstract the number

of features per type from the scoring vector and make comparison among feature types

more meaningful. We thus define the similarity score, γ, describing the feature by

element as:

𝛾(𝜋𝑓) = 1 −
𝜎(𝝅𝑓)

𝑛𝑓

where 𝑛𝑓 is the number of attributes in each feature type. The similarity score for the

features set overall is then:

𝛾𝑓 = 𝛾(𝜋𝑓)̅̅ ̅̅ ̅̅ ̅

For the above concrete example 𝛾𝑃 is undefined due to the distance

measurements extending beyond the top 10, such as P010 which is in the top 10 of the

combined sequence, but not in the top 10 of the individual sequence.

Moving beyond the first ten elements of the example and applying to the entire

Permissions attribute set leads to a 𝛾𝑃 = 92% with an element-wise distribution

presented in Figure 16. In the chart, the element-by-element score is the dotted line.

Given the noise evident in the score line, a smoothing function (the dark line) is applied

in order to provide a better visualization of the result. The smoothing function is simply

the average of the surrounding cells, in this case the average encompasses 5% of the cells

on each side of a point.

102

Figure 17 combines the same analysis with that of Intents and API Calls, plus a

Random function to show as contrast. The chart indicates that there is minimal effect of

getting feature ranking from the combined dataset versus the singular datasets when

considering the top 10 – 15 percent for all three attribute types. This means that if one

wants a feature set of Permissions, Intents and API Calls, and the desired feature count is

small, then it does not matter if the feature selection process is performed with all three

feature groups combined, or if selection is performed separately and then combined.

However, from around 15 – 25 percent there is a sharp divergence in the

similarity. Intents go from mid-90s to around 80% and eventually below, operating in the

same range as the random function. Both Permissions and API Calls oscillate in the

Figure 16

Similarity of Permissions: Combined Dataset vs Permissions Only Dataset

103

upper 80s to lower 90s range with no obvious pattern. The overall similarity of the three

vectors, combined datasets to singular datasets, are shown in the legend of the figure, and

are: Permissions = 92%, Intents = 83% and API Calls = 90%.

The implication of this data is that during the feature selection phase on the

Android platform, researchers must be cognizant of the effect of layering multiple feature

types in their dataset, with the detrimental effects getting worse the larger the feature set

employed. As an example, suppose someone wants to have a dataset of Permissions and

Intents with an attribute count of around 100. If feature selection is performed separately

to get the most important Permissions to use and then to get the most important Intents,

Figure 17

Similarity of Feature Types: Combined Dataset vs Singular Only Datasets

104

the feature set could be significantly different than if the Permissions and Intents were

combined and then feature selection performed.

Given the plethora of small sample sizes used in this research stream for

convenience, a poor selection of the features could dramatically change the end results of

classification.

Research Question 2

How does feature ranking vary across feature selection algorithms?

Similar to the prior question, this analysis compares the feature rankings from

each of the 11 feature selection algorithms, to the ranking from the combination of all

features. If there were no effect of feature selection method on feature ranking (the null

hypothesis) then all permutations would be equal. Table 24 presents the top ten features

for each of the eleven feature selection methods. Through simple observation one can

see the null hypothesis is false. The closest in similarity are the first two methods,

Information Gain and Chi-Square, where the sequences of the first five elements are the

same, but other than those two segments, the table indicates a lot of diversity.

105

In order to evaluate how the methods vary, the ranking based on the combination

of all methods, 𝝅𝐶, will be used be used as a standard for comparison. As with dataset

evaluation, a similarity score based on Euclidean distance will be the base measurement.

The first comparison of methods is with the three univariate filter methods:

Information Gain, Chi-Square and Relief. Figure 18 shows the similarity among the

three. Notice the remarkable consistency between Information Gain and Chi-Square

implying that these methods are essentially interchangeable for any researchers

considering choosing one of the two. Also note that because they are strictly

correlational, they provide rankings for the entire feature set whereas Relief only

provides rankings for those features deemed significant by the algorithm, in this case,

completing execution around 72% of Feature Count (x-axis).

Table 24

 Top10 Selected Features by Feature Selection Method

106

Figure 19 looks at the three multivariate filter methods: CFS – Information Gain,

CFS – Chi-Square and CFS – Relief. The base chart presents the data at the same scale

as all the other charts in this sequence, however, due to the limited coverage over the x-

axis, an overlay is included in the figure that magnifies the area of interest.

Recall that the CFS algorithm starts with a correlation input and the three CFS

methods employed here are using the same three univariate methods presented as stand-

alone methods in the prior section. Therefore, one would expect some level of

consistency between the stand-alone results and the CFS results.

As easily observed on the figure overlay, the consistency of CFS – Information

Gain and CFS – Chi-Square is high. Also notice that both methods complete execution at

Figure 18

Similarity of Univariate Filter Methods

107

just over 5% of feature count. In other words, out of 408 attributes, these two CFS

methods returned 22 attributes as important. CFS – Relief diverges from the other two as

with the univariate analysis, but returns 50 attributes as important, more than double the

other two CFS methods.

Similarity of the three wrapper methods, RFE – Neural Net, RFE – Random

Forest and RFE – Support Vector Machine, is presented in Figure 20. While there is

some consistency between the first two in the first half of the feature set, overall, all three

vary significantly. Because these wrapper methods use classifiers as their search engine,

the classifiers may perform differently based on the domain. In a following section,

Figure 19

Similarity of Multivariate Filter Methods

108

validating the feature sets with classifiers will shed light on this variation and its effect on

accuracy.

Finally, the last grouping, embedded methods, consisting of LASSO Regression

and Ridge Regression, are shown in Figure 21. We see that as expected, LASSO does

select features, i.e., it does not provide a weighting for all features but only the ones the

algorithm selects as significant. As shown in the chart, it completes execution at around

85% of feature count. Prior to that point, up to around 60% there is a lot of consistency

between the two methods. Referring back to compute time in Table 22, the difference in

that respect is minimal between the two, as well as with several other methods.

Figure 20

Similarity of Wrapper Methods

109

Researchers trying to choose between L1 and L2 regression should see little impact

between the two unless aiming for the maximum size attribute count.

The similarity of all eleven feature selection methods is presented in Figure 22.

This chart is comprised of the same data presented in the previous four charts, all at the

same scale. The volume of data makes it somewhat challenging to discern individual

lines but notice the shading in the upper left quadrant. Ten out of eleven of the methods

show a remarkable consistency given the variety of algorithms. This area shows that

compared to the baseline measurement, they all start at 90% similar ±5% trending down

to 80% similar ±5% approaching one third of the attribute set count. This shows that the

larger the feature set size, the greater the impact based on the feature selection method.

Figure 21

Similarity of Embedded Methods

110

Data Repeatability

When basing conclusions on experimental data, it is useful to understand the

repeatability of the numbers, especially when there are outliers as RFE-SVM is in the

previous figure. Such outliers always beg the question as to if the data is bad or if it is a

valid phenomenon.

Repeatability was investigated for the eleven feature selection methods discussed

in the previous section. In that it is the method to be proven, and not the effect of the data

on the method, only one of the seven dataset combinations was chosen for the

investigation, the Permissions only version. The assumption is that any variances in

repeatability for one dataset would manifest itself in all seven datasets.

Figure 22

Similarity of All Eleven Feature Selection Methods

111

For each feature selection method, using the Permissions only dataset, the

experiment was run ten times and the feature rankings compared. In a perfect scenario,

the same method would provide the same feature ranking ten times in a row. For

example, if Information Gain ranked P010 (ACCESS_WIFI_STATE) as the fifth most

important Permission, the question is, would it rank it fifth every time, or could some

variation in the process cause it to get ranked fourth or sixth, or some other ranking,

during certain runs?

The answer is that it varies depending on the feature selection method. To

analyze the effect, the standard deviation is calculated for each method for each

significant feature, i.e., post-Performance Selection. Table 25 offers three examples of

the calculations. The first column shows that Information Gain ranked feature P010 as

fifth most important all ten iterations, thus the standard deviation is zero. The second

column shows that the Relief method ranked P104 either first or second for all iterations

resulting in a standard deviation of 0.52. The third column shows a much less desirable

outcome with RFE – Neural Network ranking P043 in a range from 25 to 43 with a

standard deviation of 6.72.

Table 25

Selected Repeatability Data

112

Figure 23 is a graph of all standard deviations for all eleven feature selection

methods. Note that not all lines cover the full feature rank range. This is because the

standard deviation is only relevant for features that were selected by the process. Refer

back to Table 18 for the counts associated with each. As easily determined from the

figure, RFE – Neural Network is the poorest performer in terms of data repeatability.

Likewise, Relief and CFS – Relief shows relatively high standard deviations especially

considering the few number of features selected by each.

Table 26 provides the average standard deviation for all methods. Note that the

top four include Information Gain, Chi-Square and then the CFS version of each. Of

those four, only Information Gain was not perfect repeatability, although it was perfect

Figure 23

Data Repeatability for Feature Selection Methods

RFE-NN

CFS-Relief

Relief

RFE-RF

113

for rankings 1 – 60. Only the last four rankings showed any variation of between one to

three ranks.

Validating Feature Subsets

After ranking all the features, the next step was to test the efficacy of the various

feature subsets across the three machine learning classifiers, Random Forest, Support

Vector Machine and Neural Network. In many feature selection algorithms, the user

specifies the number of features they want returned, for example, top 10 or top 20. In

these experiments, the number of features used with the classifiers was varied so as to

determine the effect of feature set size on classifier accuracy. In cases where the number

of features to test exceeded the number provided by the performance selection step, then

that test sequence ended.

Table 27 presents the test matrix used, a total of 128 feature subsets. As

described in Performance Selection, the subset sizes were selected arbitrarily to provide

robust coverage of the span of possible selected subsets. Each of these were then

Table 26

Average Repeatability

(Standard Deviation)

114

validated using each of the three machine learning methods, creating 384 unique result

sets.

Before comparing the various feature selection methods, the data to be analyzed

can be reduced by making the final determination on the best dataset to use. Recall from

our earlier discussion that seven datasets, as listed in Table 16, have been used

throughout the experiments. Each of these were used separately as the dataset for each

feature selection method (Table 10) and each machine learning algorithm (Table 11).

Figure 24 shows a comparison in classifier accuracy of the seven datasets using

Chi-Square as the feature selection method and Random Forest as the machine learning

classifier. This is but one instance of the 33 variations (11 feature selection methods x 3

machine learning algorithms). It is clear from the chart that the dataset PIA (Permissions,

Intents and API Calls) performs best, although not significantly. Notice that five of the

seven variations achieve over 99% accuracy, with the lowest being API Calls alone. The

two between 98% and 99% are Permissions alone and Intents alone.

Table 27

Classifier Test Matrix: Feature Subset Size by Feature Selection Method.

115

The horizonal axis in this chart is feature set count. Recall that it was also a

variable in the test matrix. The effects of feature count will be discussed later. The task

at hand is to identify the dataset to carry forward into further analysis.

Considering all the data, with respect to the dataset analysis, Chi-Square is

representative of the majority of the results. Figure 25 shows RFE – Neural Net with a

Random Forest classifier and Figure 26 shows the same with Ridge Regression.

Notice that the dataset performance order is exactly the same in all three charts.

There were a couple of instances where PIA was not the top performer, but those were

cases with sparse data and no convergence on feature count.

To determine if there is an effect on ordering based on the classifier, Figure 27

shows the dataset comparison of accuracy using Chi-Square as the feature selection

methods and Support Vector Machine (SVM) as the classifier and Figure 28 shows the

same but with a Neural Network as the classifier.

Figure 24

Dataset Comparison of Accuracy with Chi-Square and Random Forest

0.95

0.96

0.97

0.98

0.99

1.00

0 50 100 150 200 250 300 350 400

A
cc

u
ra

cy

Feature Count

Chi2 - RF

PIA

PI

PA

IA

P

I

A

116

Figure 26

Dataset Comparison of Accuracy with RFE–NN and Random Forest

0.95

0.96

0.97

0.98

0.99

1.00

0 50 100 150 200 250 300 350 400

A
cc

u
ra

cy

Feature Count

RFE-NN - RF

PIA

PI

PA

IA

P

I

A

Figure 25

Dataset Comparison of Accuracy with Ridge Regression and Random Forest

0.95

0.96

0.97

0.98

0.99

1.00

0 50 100 150 200 250 300 350 400

A
cc

u
ra

cy

Feature Count

Ridge - RF

PIA

PI

PA

IA

P

I

A

117

Figure 27

Dataset Comparison of Accuracy with Chi-Square and SVM

0.95

0.96

0.97

0.98

0.99

1.00

0 50 100 150 200 250 300 350 400

A
cc

u
ra

cy

Feature Count

Chi2 - SVM

PIA

PI

PA

IA

P

I

A

Figure 28

Dataset Comparison of Accuracy with Chi-Square and Neural Network

0.95

0.96

0.97

0.98

0.99

1.00

0 50 100 150 200 250 300 350 400

A
cc

u
ra

cy

Feature Count

Chi2 - NN

PIA

PI

PA

IA

P

I

A

118

Note that there is a difference in accuracy among the three classifiers, to be

discussed later, but with regard to the selection of the optimal dataset, the consensus for

all three classifiers is that PIA performs best.

Charts for all dataset accuracy comparisons for the various feature selection

methods and the three machine learning classifiers are presented in Appendix E. Certain

variations, such as CFS – Chi-Square with Random Forest are not charted there due to a

lack of data points that resulted from the three-phase selection process as shown in Table

27.

The final data stratification to look at is the metric. To this point the metric

discussed has been accuracy. The actual raw data for the experiments are TP, TN, FN

and FP (Table 12) which all go into the calculation of accuracy. All of the other metrics

of interest, true positive rate (TPR), false positive rate (FPR), precision and F-measure

(F1), defined in the Analysis section, use the same raw data so it is no surprise that the

trends are the same.

For completeness, these metrics for Chi-Square and Random Forest are presented

next. First, Figure 29 shows true positive rate and Figure 30 shows false positive rate.

As one would expect, the two have an inverse relationship. The dataset PIA has

the highest TPR and lowest FPR, respectively.

Finally, Figure 31 shows precision in this same context and Figure 32 shows F-

measure.

119

Figure 29

Dataset Comparison of TPR with Chi-Square and Random Forest

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 50 100 150 200 250 300 350 400

Tr
u

e
P

o
si

ti
ve

 R
at

e
(T

P
R

)

Feature Count

Chi2 - RF

PIA

PI

PA

IA

P

I

A

Figure 30

Dataset Comparison of FPR with Chi-Square and Random Forest

0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0 50 100 150 200 250 300 350 400

Fa
ls

e
P

o
si

ti
ve

 R
at

e
(F

P
R

)

Feature Count

Chi2 - RF

PIA

PI

PA

IA

P

I

A

120

Figure 31

Dataset Comparison of Precision with Chi-Square and Random Forest

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200 250 300 350 400

P
re

ci
si

o
n

Feature Count

Chi2 - RF

PIA

PI

PA

IA

P

I

A

Figure 32

Dataset Comparison of F-measure with Chi-Square and Random Forest

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200 250 300 350 400

F-
m

ea
su

re

Feature Count

Chi2 - RF

PIA

PI

PA

IA

P

I

A

121

With this comparison complete, it has been shown that when evaluating the three

machine learning classifiers against the eleven feature selection methods, of the seven

dataset combinations, the best performance is achieved using PIA (Permissions, Intents

and API Calls) together as opposed to any other available combination and accuracy is a

representative metric.

Research Question 3

How does machine learning model accuracy vary across machine learning algorithms

and feature selection algorithms?

The variation in model accuracy across machine learning algorithms for each

feature selection method is presented in Table 28. These data are for the highest accuracy

achieved across the attribute count spectrum.

The overall variation in accuracy across machine learning algorithms is shown in

Figure 33. The vertical axis represents the average accuracy across all eleven feature

selection methods. The figure shows that Random Forest has higher accuracy than SVM,

Table 28

Maximum Accuracy Across Test Matrix

122

which in turn has higher accuracy than the Neural Networks. But one must also look at

the scale. Compared to Random Forest, SVM is only 0.68% less, and Neural Net is

1.37% less.

Figure 34 shows the variation in accuracy for each classifier as well but broken

out by feature selection method. For all eleven methods, the order of highest accuracy is

the same, Random Forest, SVM and Neural Net, although divergence in the percent

difference can be observed in some. If the null hypothesis were true, i.e., there is no

effect of feature selection algorithm on classifier accuracy, then one would expect the

ordering of highest accuracy to lowest accuracy to vary randomly across the 11

algorithms, but clearly as shown in Figure 34, the ordering is consistent with Random

Forest always exhibiting the highest accuracy, followed by SVM and Neural Net. The

null hypothesis is false.

To better demonstrate the difference in algorithms by feature selection method,

Figure 35 shows the percentage decrease in accuracy for SVM and Neural Net compared

Figure 33

Variation in Accuracy Across Classifier Algorithm

0.95

0.96

0.97

0.98

0.99

1.00

Random Forest Suppot Vector Machine Neural Network

A
cc

u
ra

cy

123

Figure 34

Variation in Accuracy Across Feature Selection Methods

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

u
ra

cy

Feature Selection Method

RF

SVM

NN

Figure 35

Percentage Decrease in Accuracy Compared to Random Forest

-3.0%

-2.5%

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

SVM

NN

124

to Random Forest. Out of the eleven feature selection methods, four are noticeably lower

in accuracy, Relief and the three multivariate filter methods based on CFS.

These are the same feature selection methods that stand out in Table 28 depicting

the number of attributes selected for feature subsets. This phenomenon will be

investigated in more detail next.

Research Question 4

How does feature set size affect model accuracy across feature selection methods?

Given that feature set size was a variable in the experiments, there exists cases

where a viable solution exists at a smaller set size than the largest tested. As an example,

Figure 24 shows a graph of accuracy using Chi-Square as the feature selection method

and Random Forest as the validating classifier. While feature set sizes were tested up

through a set size of 375, it is clear that the solution converged on an acceptable accuracy

level significantly before 375. In this context convergence is the point at which further

improvements in accuracy are not significant and is defined by:

∆ 𝑦 ≤ 𝜏 ⇒ 𝑐 = 𝑇𝑟𝑢𝑒

where ∆ 𝑦 is the change in accuracy between feature set sizes, 𝜏 is the target value (in

these experiments arbitrarily set to 0.005) and c is the boolean convergence value.

As shown in earlier data plots, there are some cases where accuracy oscillates and

would never converge according to the above formulation. To remedy those situations in

order to provide consistency for comparison, a smoothing function was used to produce a

curve through the discrete data points. Figure 36 is one example using Chi-Square as the

feature selection method and Neural Net as the validating classifier. The solid line

125

represents the actual data from the experiments and the dashed line represents points

along the curve produced by the smoothing function and used for convergence analysis.

Recall there were also test cases where there were minimal valid feature set sizes,

as shown in Table 28 with a case in point being Relief having only a test case of feature

set size of five. In such instances, convergence has no meaning.

In terms of a null hypothesis, i.e., there is no effect of feature set size on model

accuracy, one intuitively knows this to be false just considering a feature set size of one,

to a feature set size of 10 or 100 or more; clearly there would be differences in results.

But regardless of intuition, the null hypothesis is shown to be false by the data presented

in Figure 36 with accuracy varying significantly as set size increases.

Figure 36

Curve Fit Example for Convergence Analysis

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0

A
cc

u
ra

cy

Feature Count

Chi2 - NN

Data

Curve

126

A convergence data summary for test cases using the full dataset (Permissions,

Intents and API Calls – PIA) is presented in Figure 37. The dark squares indicate points

where the solution was not converged. The lighter squares are with a converged solution

and the lighter squares with a star indicate the first data point where the solution

converged. Clear squares are where there was no valid feature set.

For cases that did not converge, such as CFS-InfoGain and RF, the accuracy of

the last datapoint is shown along with the ∆ 𝑦 at that point.

The data shows that classifier accuracy significantly varies based on the feature

set size. For example, in the first item, Information Gain and Random Forest, using any

feature set size less than 60 will result in a suboptimal accuracy performance. Also note

that the optimal feature set size varies with the classifier. This is true in all cases with the

exception of the embedded methods (LASSO Regression and Ridge Regression) where

convergence occurs at approximately the same point.

Feature Summary

Research Question 5

Among Permissions, Intents and API Calls, what are the important features?

It has been shown above that 1) using Permissions, Intents and API Calls together

are better than any of the three in other combinations, and 2) that optimal feature set size

can vary significantly with feature selection method and is an important parameter to

consider in order to build a model that will provide optimum accuracy.

127

Figure 37

Convergence Data for All Feature Sets Using Dataset PIA

128

Figure 38 plots the 20 convergence points from Figure 37 with a curve fit added

to depict a continuous function. Clearly there is a trend, and what it indicates is that if

one wants to ensure that their combination of feature selection method and classifier is

optimized in terms of convergence, then using the top 200 or above Permissions, Intents

and API Calls is the correct approach. For convenience, these top 200 attributes are

listed in Appendix F.

Figure 38

Convergence Versus Feature Set Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 50 100 150 200 250 300 350

P
er

ce
n

t
C

o
n

ve
rg

ed

Feature Count

129

Chapter 5

Conclusions, Implications and Recommendations

Conclusions

The following provides the major conclusions of this study. The methods used

are generic to the field, but these conclusions are specific to the domain of feature

selection for malware detection on the Android platform.

Permissions vs Intents vs API Calls

Considering the use of Android Permissions, Intents and API Calls as features,

using all three provides the best results. Additionally, using a combination of any two of

the feature types provides better results than using any one of them alone.

Feature Selection Using Multiple Feature Types

When using a combination of the three feature types, performing feature selection

on the combination provides better results than performing feature selection on each type

and then combining the results to create a final feature set.

Feature Set Size

Feature set size is important. While one specific test case did produce optimal

results with only the top 40 features, in general best results are achieved with a 200 or

greater feature count. If a feature set is used that is larger than the minimum required,

accuracy does not decrease, so it is safe to use more features than absolutely required

when in doubt.

130

Feature Selection Methods to be Avoided

Relief proved to be a poor performer of feature selection. In general, the features

it selects do not outperform randomly selected features. This could be attributable to the

random row selection function in the algorithm. When used with a large sample size

dataset and following conventional parameter settings of 10 iterations, there may be too

much randomness to allow consistent selection of appropriate features. A study of

varying dataset size and iteration count could shed light on the problem.

Given the performance of Relief, it is no surprise that CFS-Relief performed

poorly as well. However, regardless of the base correlation method used, CFS should

also be avoided as a feature selection method. While the features it selects are

significant, the algorithm stops too soon thus providing an insufficient feature set size.

The algorithm is deterministic in nature and thus repeatable based on the same correlation

input, so overcoming its shortcomings will require revisiting the design.

RFE – Neural Net (Perceptron) as a feature selection method is unpredictable.

While the accuracy results were acceptable in these experiments, the repeatability was

poor thus implying that not all feature sets selected would be acceptable.

Acceptable Feature Selection Methods

Information Gain, Chi-Square, Ridge Regression and LASSO Regression are

excellent feature selection methods with minimal variance across machine learning

classifiers. Additionally, all four methods take little computational time.

The main characteristic these methods have in common are that they all provide

weight factors for a large percentage of the feature input vectors. In fact, the first three

provide weights for all features while LASSO does allow some feature weights to resolve

131

to zero. This implies that researchers seeking the highest fidelity should not rely on

feature selection algorithms to specify the feature count, but rather should use some form

of performance selection and convergence analysis as shown in this report.

The two wrapper methods RFE–Random Forest and RFE–Support Vector

Machine provide acceptable results, but those results vary more with the machine

learning classifier used compared to those listed in the previous paragraph. However,

RFE-Support Vector Machine was significantly slower in terms of compute time

compare to all other acceptable feature selection methods.

Accuracy

While it was not a goal of this research to find a best performing feature set or a

best performing machine learning model, even without fine tuning of parameters, the six

acceptable feature selection methods averaged 99.6% accuracy with a Random Forest

classifier, 99.1% accuracy with a Support Vector Machine classifier and 98.6% accuracy

with a Neural Net (Perceptron) classifier.

Implications

This work is the most exhaustive analysis of Android feature selection in this field

of study to the best of our knowledge. It can be used as a guide for researchers

performing feature selection in the domain or a reference for researchers who want to

skip feature selection as a process and simply use a feature set based on the features listed

in the document.

Previous studies in the field that made use of the five feature selection methods

described as to be avoided or used feature set sizes too small, as defined herein, should

have the results revisited and possibly revised using appropriate feature sets.

132

 Many of the insights and conclusions presented here have the potential to be

applied to other malware/anomaly detection tasks, or more broadly, other pattern

recognitions problems, especially with regard to researchers needing to be cautious of

blindly relying on feature selection algorithms.

As shown, Relief, CFS, RFE-NN in general are not suitable for feature selection

in domains with large feature sets given their propensity to provide an insufficient feature

count. On the other hand, Information Gain, Chi-Square, LASSO Regression and Ridge

Regression are excellent feature selection choices assuming the full weight vectors are

used appropriately with additional analysis as demonstrated.

Although evaluating performance of machine learning classifiers was not in the

scope of this research, it was observed that Random Forest performed exceptionally well,

which is consistent with other published work in the domain as discussed. Of the three

techniques used, Random Forest was the only ensemble method, leading to the conjecture

that other ensemble approaches might perform just as well or better.

Recommendations

Future Work

This work encompassed a large scope, but as with any research project, there are

additional pathways that could be explored. One such path would be to expand the

experiments by adding feature selection algorithms, such as using Pearson’s Correlation

or RFE with other embedded classifiers. One could also vary the parameter settings on

the wrapper and embedded methods to see how such variations would affect selection.

Likewise, feature set validation with additional classifiers would be interesting as well as

varying parameter settings on the classifiers used in validation.

133

 Another path would be to expand on the analysis such as varying the ensemble

voting scheme using quartile membership or even using other similarity algorithms in

addition to Euclidian distance. These would not change the underlying experimental data

but might provide additional insights and interpretations.

A more extreme path would be to explore improving the Relief and CFS

algorithms to determine if they can be improved for use in this domain.

Finally, even with the large size of the dataset, one could update it with more

recent benign and malware samples.

Best Practices

It is clear from the results reported herein that researchers in the Android malware

detection field need to pay significant attention to feature selection. One can use this

work to explore and expand feature selection or simply pick from its recommendations.

But using arbitrary methods such as using only Permissions categorized as Dangerous by

Google (Permissions Overview, 2019) or having a feature selection method return its top

10 or top 20 features is not best practice.

Summary

Introduction

Android has been Google’s mobile operating system from 2008 to the present. It

currently holds approximately 85% of the world market with the only other relevant

competitor being Apple's iOS. Android is open source with an open ecosystem which

tends to make it an easy target for malware perpetrators.

Detection of malicious activity on computers has a significant research stream

going as far back as 1980. This research is focused on anomaly detection which started

134

with Expert Systems and eventually evolved into using machine learning and data mining

techniques. Malware detection on mobile devices typically takes a host-based approach,

evaluating the apps on the system, as opposed to network-based which would be less

effective given the on-again, off-again nature of mobile network connectivity.

When developing machine learning models, one initial, critical step is feature

selection, the process of identifying a subset of relevant features for use in construction of

the model. For Android, the features most often used are Permissions, Intents and API

Calls, individually, together or in some combination. But there are a number of other

features used less frequently such as hardware used, Android App Components, Control

Flow Graphs, URLs and many others. The problem is there is no consensus in the

research community as to the key Android feature types for machine learning models.

Even just considering the top three of Permissions, Intents and API Call, those are just

categories. There are hundreds of discrete attributes in each category.

Typical feature selection approaches in the community include using the subset of

Permissions categorized as Dangerous by Google, hand selecting features based on

domain knowledge, or even picking a method such as Information Gain and simply

taking the top n-ranked features. Unfortunately, there is no definitive study on Android

feature selection for researchers to be guided by or use as a reference.

Such is the goal of this research, to advance the state of the industry’s knowledge

on feature sets used for Android static analysis malware detection. The approach was to

use a broad test matrix consisting of all combinations of Permissions, Intents and API

Calls, each evaluated by several different feature selection algorithms and then each of

135

those validated with multiple machine learning classifiers. Then, using the experimental

results, answer the following five questions:

1) How does feature ranking vary when Permissions, Intents and API Calls are

selected separately versus combined?

2) How does feature ranking vary across feature selection algorithms?

3) How does machine learning model accuracy vary across machine learning

algorithms and feature selection algorithms?

4) How does feature set size affect model accuracy across feature selection methods?

5) Among Permissions, Intents and API Calls, what are the important features?

Methodology

Based on common usage in the community as well as to use several types of

feature selection algorithms, eleven different feature selection methods were chosen. The

selected methods were:

Chi-Square

Information gain

Relief

Correlation-based Feature Selection (CFS) with Chi-Square

Correlation-based Feature Selection (CFS) with Information Gain

Correlation-based Feature Selection (CFS) with Relief

Recursive Feature Elimination (RFE) using Neural Network (Perceptron)

Recursive Feature Elimination (RFE) using Random Forest

Recursive Feature Elimination (RFE) using Support Vector Machine

Lasso regression (L1 regularization)

Ridge regression (L2 regularization)

which encompasses multiple examples of univariate methods, multivariate methods,

wrapper methods and embedded methods.

136

To validate the results from the various feature selection methods, it was desired

to use multiple machine learning classifiers so as to demonstrate independence. The

algorithms selected were:

Random Forest

Support Vector Machine

Neural Network (Perceptron)

which also matched the classifiers used as the search engines in the RFE experiments.

The experiments used a large dataset of 119k Android applications, the Andro-

AutoPsy set from the University of Korea Hacking and Countermeasure Research lab.

Each app was decompressed and decompiled using an open-source tool called Jadx.

Instances of Permissions, Intents and API Calls were extracted from all of the apps and

transformed into a binary encoded dataset indicating the existence or lack of existence of

each attribute in each app. In addition to the extracted features, each dataset contained

three columns of random data as contrast variables against which we could compare

feature selection results.

Each of the seven combinations of feature types (Permissions, Intents and API

Calls) were used as input into the 11 different feature selection methods. The weight

values returned by each algorithm was used to infer a ranking, most important to least

important. Also, each attribute weight was compared to the weight the feature selection

algorithm gave to the random data, and any attribute whose weight was equal to or less

than the average weight of those random contrast variables was eliminated.

Finally, k-based feature subsets were created based on the rankings of the features

still present in each subset, i.e., top 5, top 10, top 20, etc. These multiple sized subsets

137

from each feature selection method for each dataset combination, were then used as input

for the three machine learning classifiers.

Results

For the feature vectors created from the experiments, Euclidean distance was

employed to evaluate similarity. In terms of dataset combinations, it was shown that

there was significant similarity in the first 10 to 15 percent of each vector when

comparing the features selected from the combined datasets (Permissions, Intents and

API Calls together) versus selecting from the feature types individually. But after 15

percent there is significant divergence.

Euclidean distance was also used to compare the similarity of the feature vectors

representing the various feature selection methods. This demonstrated that Information

Gain and Chi-Square produced very similar feature sets followed closely by the two

embedded methods. Overall, ten of the feature selection methods exhibited reasonable

similarity in the first 10 to 15 percent of the vectors with the one exception being RFE-

SVM.

After using all the feature subsets with the three different machine learning

classifiers, it was shown that using a combination of Permissions, Intents and API Calls

produced higher accuracy than using any of those alone or in any other combination. It

was also demonstrated that when using multiple feature types, feature selection should be

performed on the types combined, not separately and then combined.

The k-based selection experiments showed that feature set size is important, and

in general, researchers should be using around 200 features or more for optimal

classification.

138

With regard to efficacy of the various feature selection methods, the data

indicated that Relief, the three CFS based methods and RFE-Neural Network were not

satisfactory and therefore should be avoided. Conversely the data showed that

Information Gain, Chi-Square, LASSO Regression and Ridge Regression are very good

feature selection methods, and RFE–Random Forest and RFE–Support Vector Machine

are moderately good with the latter being least so due to the computational time it

requires.

Data and Code Repositories

All the data and custom Python code used in these experiments is available to the

public in the author’s Github repositories:

https://github.com/fcguyton/android_feature_selection

https://github.com/fcguyton/ml_algorithms, and

https://github.com/fcguyton/python_utilities.

139

Appendix A

References for Table 4

First Author Year Reference

Aafer, Yousra 2013 (Aafer, Du, & Yin, 2013)

Abaid, Zainab 2017 (Abaid, Kaafar, & Jha, 2017)

Abro, Fauzia 2018 (Abro, 2018)

Adebayo, Olawale 2014 (Adebayo & AbdulAziz, 2014)

Alatwi, Huda 2016 (Alatwi, 2016)

Allix, Kevin 2014
 (Allix K. , Bissyande, Jerome, Klein, &

Le, 2016)

Allix, Kevin 2016 (Allix K. , Bissyande, Klein, & Le, 2014)

Alswaina, Fahad 2018 (Alswaina & Elleithy, 2018)

Altaher, Altyeb 2017 (Altaher, 2017)

Altaher, Altyeb 2017 (Altaher & BaRukab, 2017)

Ariyapala, Kanishka 2016 (Ariyapala, Do, Anh, Ng, & Conti, 2016)

Arp, Daniel 2014 (Arp, et al., 2014)

Aswini, AM 2014 (Aswini & Vinod, 2014)

Aung, Zarni 2013 (Aung & Zaw, 2013)

Chan, Patrick 2014 (Chan & Song, 2014)

Coronado-De-Alba, Lilian 2016
 (Coronado-De-Alba, Rodriguez-Mota, &

Escamilla-Ambrosio, 2016)

Duc, Nguyen 2018 (Duc & Giang, 2018)

Fan, Ming 2017 (Fan, et al., 2017)

Feizollah, Ali 2017
 (Feizollah, Anuar, Salleh, Suarez-Tangil,

& Furnell, 2017)

Firdaus, Ahmad 2018 (Firdaus, Anuar, Karim, & Ab, 2018)

Ghaffari, Fariba 2017 (Ghaffari, Abadi, & Tajoddin, 2017)

Ghorbanzadeh, Mo 2013
 (Ghorbanzadeh, Chen, Ma, Clancy, &

McGwier, 2013)

Glodek, William 2013 (Glodek & Harang, 2013)

Huang, Chun-Ying 2013 (Huang, Tsai, & Hsu, 2013)

Idrees, Fauzia 2014 (Idrees & Rajarajan, 2014)

Idrees, Fauzia 2017
 (Idrees, Rajarajan, Conti, Chen, &

Rahulamathavan, 2017)

Li, Jin 2018 (Li, et al., 2018)

Li, Wenjia 2015 (Li, Ge, & Dai, 2015)

Liu, Che-Hsun 2016 (Liu, Zhang, & Wang, 2016)

140

Liu, Ning 2017 (Liu, Yang, & Zhang, 2017)

Liu, Ning 2018 (Liu N. , et al., 2018)

Lu, Yung-Feng 2018 (Lu, Kuo, Chen, Chen, & Chou, 2018)

Mahindru, Arvind 2017 (Mahindru & Singh, 2017)

Mahmood, Riyadh 2014 (Mahmood, Mirzaei, & Malek, 2014)

Mariconti, Enrico 2016 (Mariconti, et al., 2016)

Martin, Alejandro 2017
 (Martin, Fuentes-Hurtado, Naranjo, &

Camacho, 2017)

Melis, Marco 2018
 (Melis, Maiorca, Biggio, Giacinto, &

Roli, 2018)

Moonsamy, Veelasha 2014 (Moonsamy, Rong, & Liu, 2014)

Morales-Ortega, Salvador 2016

 (Morales-Ortega, Escamilla-Ambrosio,

Rodriguez-Mota, & Coronado-De-Alba,

2016)

Nauman, Mohammad 2018 (Nauman, Tanveer, Khan, & Syed, 2018)

Naway, Abdelmonim 2018 (Naway & Li, 2018)

Nezhadkamali, Maryam 2017 (Nezhadkamali, Soltani, & Seno, 2017)

Nix, Robin 2017 (Nix & Zhang, 2017)

Papadopoulos, Harris 2018
 (Papadopoulos, Georgiou, Eliades, &

Konstantinidis, 2018)

Peiravian, Naser 2013 (Peiravian & Zhu, 2013)

Qiao, Mengyu 2016 (Qiao, Sung, & Liu, 2016)

Rashidi, Bahman 2017 (Rashidi, Fung, & Bertino, 2017)

Reyhani, Hamedani 2018
 (Reyhani, Shin, Lee, Cho, & Hwang,

2018)

Rovelli, Paolo 2014 (Rovelli & Vigfusson, 2014)

Sahs, Justin 2012 (Sahs & Khan, 2012)

Shahriar, Hossain 2017 (Shahriar, Islam, & Clincy, 2017)

Shang, Fengjun 2017 (Shang, Li, Deng, & He, 2018)

Sharma, Akanksha 2014 (Sharma & Dash, 2014)

Shelke, Chetan 2017 (Shelke, 2017)

Smutz, Charles 2016 (Smutz & Stavrou, 2016)

Sun, Lichao 2016 (Sun, Li, Yan, Srisa-an, & Pan, 2016)

Verma, Sushma 2016 (Verma & Muttoo, 2016)

Wang, Wei 2018 (Wang, Li, Wang, Liu, & Zhang, 2018)

Wang, Wei 2018 (Wang, Zhao, & Wang, 2018)

Wang, Xiaoqing 2016 (Wang, Wang, & Zhu, 2016)

Wu, Dong-Jie 2012 (Wu, Mao, Wei, Lee, & Wu, 2012)

Xu, Ke 2018 (Xu, Li, Deng, & Chen, 2018)

Yang, Ming 2017 (Yang, Wang, Ling, Liu, & Ni, 2017)

141

Yerima, Suleiman 2013
 (Yerima, Sezer, McWilliams, & Muttik,

2013)

Yerima, Suleiman 2015 (Yerima, Sezer, & Muttik, 2015)

Zhang, Yi 2018 (Zhang, Yang, & Wang, 2018)

Zhao, Min 2011 (Zhao, Ge, Zhang, & Yuan, 2011)

Zhao, Min 2012 (Zhao, Zhang, Ge, & Yuan, 2012)

Zhao, Xiaoyan 2014 (Zhao, Fang, & Wang, 2014)

Zhu, Hui-Juan w/ Jiang 2018 (Zhu, et al., 2018) w/ Jiang

Zhu, Hui-Juan w/ You 2018 (Zhu, et al., 2018) w/ You

142

Appendix B

Experiment Feature List

Permissions

ID Permission

P004 ACCESS_COARSE_LOCATION

P005 ACCESS_FINE_LOCATION

P006 ACCESS_LOCATION_EXTRA_COMMANDS

P008 ACCESS_NETWORK_STATE

P010 ACCESS_WIFI_STATE

P012 ACTIVITY_RECOGNITION

P013 ADD_VOICEMAIL

P015 BATTERY_STATS

P016 BIND_ACCESSIBILITY_SERVICE

P025 BIND_DEVICE_ADMIN

P028 BIND_INPUT_METHOD

P031 BIND_NOTIFICATION_LISTENER_SERVICE

P034 BIND_REMOTEVIEWS

P037 BIND_TEXT_SERVICE

P041 BIND_VPN_SERVICE

P043 BIND_WALLPAPER

P044 BLUETOOTH

P045 BLUETOOTH_ADMIN

P050 BROADCAST_STICKY

P053 CALL_PHONE

P055 CAMERA

P058 CHANGE_CONFIGURATION

P059 CHANGE_NETWORK_STATE

P060 CHANGE_WIFI_MULTICAST_STATE

P061 CHANGE_WIFI_STATE

P062 CLEAR_APP_CACHE

P064 DELETE_CACHE_FILES

P067 DISABLE_KEYGUARD

P069 EXPAND_STATUS_BAR

P072 GET_ACCOUNTS

P074 GET_PACKAGE_SIZE

P076 GLOBAL_SEARCH

P079 INSTALL_SHORTCUT

P081 INTERNET

P082 KILL_BACKGROUND_PROCESSES

P088 MODIFY_AUDIO_SETTINGS

P092 NFC

P094 PACKAGE_USAGE_STATS

P096 PROCESS_OUTGOING_CALLS

P097 READ_CALENDAR

P098 READ_CALL_LOG

P099 READ_CONTACTS

P100 READ_EXTERNAL_STORAGE

P104 READ_PHONE_STATE

P105 READ_SMS

P106 READ_SYNC_SETTINGS

P107 READ_SYNC_STATS

P110 RECEIVE_BOOT_COMPLETED

P111 RECEIVE_MMS

P112 RECEIVE_SMS

P113 RECEIVE_WAP_PUSH

P114 RECORD_AUDIO

P115 REORDER_TASKS

P125 SET_ALARM

P133 SET_WALLPAPER

P134 SET_WALLPAPER_HINTS

P139 SYSTEM_ALERT_WINDOW

143

P146 USE_SIP

P147 VIBRATE

P148 WAKE_LOCK

P150 WRITE_CALENDAR

P151 WRITE_CALL_LOG

P152 WRITE_CONTACTS

P153 WRITE_EXTERNAL_STORAGE

P156 WRITE_SETTINGS

P157 WRITE_SYNC_SETTINGS

Intents

ID Intent

I001 ACTION_AIRPLANE_MODE_CHANGED

I002 ACTION_ALL_APPS

I003 ACTION_ANSWER

I006 ACTION_APP_ERROR

I007 ACTION_ASSIST

I008 ACTION_ATTACH_DATA

I009 ACTION_BATTERY_CHANGED

I010 ACTION_BATTERY_LOW

I011 ACTION_BATTERY_OKAY

I012 ACTION_BOOT_COMPLETED

I013 ACTION_BUG_REPORT

I014 ACTION_CALL

I015 ACTION_CALL_BUTTON

I016 ACTION_CAMERA_BUTTON

I018 ACTION_CHOOSER

I019 ACTION_CLOSE_SYSTEM_DIALOGS

I020 ACTION_CONFIGURATION_CHANGED

I022 ACTION_CREATE_SHORTCUT

I023 ACTION_DATE_CHANGED

I024 ACTION_DEFAULT

I026 ACTION_DELETE

I027 ACTION_DEVICE_STORAGE_LOW

I028 ACTION_DEVICE_STORAGE_OK

I029 ACTION_DIAL

I030 ACTION_DOCK_EVENT

I031 ACTION_DREAMING_STARTED

I032 ACTION_DREAMING_STOPPED

I033 ACTION_EDIT

I034 ACTION_EXTERNAL_APPLICATIONS_AVAILABLE

I035 ACTION_EXTERNAL_APPLICATIONS_UNAVAILABLE

I036 ACTION_FACTORY_TEST

I037 ACTION_GET_CONTENT

I041 ACTION_HEADSET_PLUG

I042 ACTION_INPUT_METHOD_CHANGED

I043 ACTION_INSERT

I044 ACTION_INSERT_OR_EDIT

I046 ACTION_INSTALL_PACKAGE

I047 ACTION_LOCALE_CHANGED

I049 ACTION_MAIN

I055 ACTION_MANAGE_NETWORK_USAGE

I056 ACTION_MANAGE_PACKAGE_STORAGE

I057 ACTION_MEDIA_BAD_REMOVAL

I058 ACTION_MEDIA_BUTTON

I059 ACTION_MEDIA_CHECKING

I060 ACTION_MEDIA_EJECT

I061 ACTION_MEDIA_MOUNTED

I062 ACTION_MEDIA_NOFS

I063 ACTION_MEDIA_REMOVED

I064 ACTION_MEDIA_SCANNER_FINISHED

I065 ACTION_MEDIA_SCANNER_SCAN_FILE

I066 ACTION_MEDIA_SCANNER_STARTED

I067 ACTION_MEDIA_SHARED

I068 ACTION_MEDIA_UNMOUNTABLE

I069 ACTION_MEDIA_UNMOUNTED

I070 ACTION_MY_PACKAGE_REPLACED

144

I073 ACTION_NEW_OUTGOING_CALL

I074 ACTION_OPEN_DOCUMENT

I078 ACTION_PACKAGE_ADDED

I079 ACTION_PACKAGE_CHANGED

I080 ACTION_PACKAGE_DATA_CLEARED

I081 ACTION_PACKAGE_FIRST_LAUNCH

I082 ACTION_PACKAGE_FULLY_REMOVED

I083 ACTION_PACKAGE_INSTALL

I084 ACTION_PACKAGE_NEEDS_VERIFICATION

I085 ACTION_PACKAGE_REMOVED

I086 ACTION_PACKAGE_REPLACED

I087 ACTION_PACKAGE_RESTARTED

I089 ACTION_PASTE

I090 ACTION_PICK

I091 ACTION_PICK_ACTIVITY

I092 ACTION_POWER_CONNECTED

I093 ACTION_POWER_DISCONNECTED

I094 ACTION_POWER_USAGE_SUMMARY

I096 ACTION_PROVIDER_CHANGED

I097 ACTION_QUICK_CLOCK

I099 ACTION_REBOOT

I100 ACTION_RUN

I101 ACTION_SCREEN_OFF

I102 ACTION_SCREEN_ON

I103 ACTION_SEARCH

I104 ACTION_SEARCH_LONG_PRESS

I105 ACTION_SEND

I106 ACTION_SENDTO

I107 ACTION_SEND_MULTIPLE

I108 ACTION_SET_WALLPAPER

I110 ACTION_SHUTDOWN

I111 ACTION_SYNC

I112 ACTION_SYSTEM_TUTORIAL

I113 ACTION_TIMEZONE_CHANGED

I114 ACTION_TIME_CHANGED

I115 ACTION_TIME_TICK

I116 ACTION_TRANSLATE

I117 ACTION_UID_REMOVED

I118 ACTION_UMS_CONNECTED

I119 ACTION_UMS_DISCONNECTED

I120 ACTION_UNINSTALL_PACKAGE

I121 ACTION_USER_BACKGROUND

I122 ACTION_USER_FOREGROUND

I123 ACTION_USER_INITIALIZE

I124 ACTION_USER_PRESENT

I126 ACTION_VIEW

I129 ACTION_VOICE_COMMAND

I130 ACTION_WALLPAPER_CHANGED

I131 ACTION_WEB_SEARCH

I132 CATEGORY_ALTERNATIVE

I133 CATEGORY_APP_BROWSER

I134 CATEGORY_APP_CALCULATOR

I135 CATEGORY_APP_CALENDAR

I136 CATEGORY_APP_CONTACTS

I137 CATEGORY_APP_EMAIL

I139 CATEGORY_APP_GALLERY

I140 CATEGORY_APP_MAPS

I141 CATEGORY_APP_MARKET

I142 CATEGORY_APP_MESSAGING

I143 CATEGORY_APP_MUSIC

I144 CATEGORY_BROWSABLE

I145 CATEGORY_CAR_DOCK

I146 CATEGORY_CAR_MODE

I147 CATEGORY_DEFAULT

I148 CATEGORY_DESK_DOCK

I149 CATEGORY_DEVELOPMENT_PREFERENCE

145

I150 CATEGORY_EMBED

I151 CATEGORY_FRAMEWORK_INSTRUMENTATION_TEST

I152 CATEGORY_HE_DESK_DOCK

I153 CATEGORY_HOME

I154 CATEGORY_INFO

I155 CATEGORY_LAUNCHER

I157 CATEGORY_LE_DESK_DOCK

I158 CATEGORY_MONKEY

I159 CATEGORY_OPENABLE

I160 CATEGORY_PREFERENCE

I161 CATEGORY_SAMPLE_CODE

I163 CATEGORY_SELECTED_ALTERNATIVE

I164 CATEGORY_TAB

I165 CATEGORY_TEST

I167 CATEGORY_UNIT_TEST

I259 FLAG_ACTIVITY_CLEAR_TOP

I273 FLAG_ACTIVITY_REORDER_TO_FRONT

I276 FLAG_ACTIVITY_SINGLE_TOP

API Calls

ID API Call

A001 android.accounts

A002 android.annotation.SuppressLint

A003 android.annotation.TargetApi

A004 android.app.ActivityManager

A005 android.app.admin.DeviceAdminReceiver

A006 android.app.admin.DevicePolicyManager

A007 android.app.AlarmManager

A008 android.app.AlertDialog

A009 android.app.AlertDialog.Builder

A010 android.app.Application

A011 android.app.backup

A012 android.app.DownloadManager

A013 android.app.Instrumentation

A014 android.app.IntentService

A015 android.app.KeyguardManager

A016 android.app.LauncherActivity

A017 android.app.ListFragment

A018 android.app.LoaderManager

A019 android.app.LocalActivityManager

A020 android.app.NativeActivity

A021 android.app.Notification

A022 android.app.PendingIntent

A023 android.app.SearchableInfo

A024 android.app.SearchManager

A025 android.app.Service

A026 android.app.TabActivity

A027 android.app.TaskStackBuilder

A028 android.bluetooth

A029 android.content.AbstractThreadedSyncAdapter

A030 android.content.ActivityNotFoundException

A031 android.content.AsyncQueryHandler

A032 android.content.BroadcastReceiver

A033 android.content.ClipboardManager

A034 android.content.ClipData

A035 android.content.ComponentCallbacks

A036 android.content.ComponentName

A037 android.content.ContentProvider

A038 android.content.ContentResolver

A039 android.content.ContentUris

A040 android.content.ContentValues

A041 android.content.ContextWrapper

A042 android.content.CursorLoader

A043 android.content.DialogInterface

A044 android.content.Entity

A045 android.content.Intent.ShortcutIconResource

A046 android.content.IntentFilter

146

A047 android.content.IntentSender

A048 android.content.Loader

A049 android.content.OperationApplicationException

A050 android.content.pm.ActivityInfo

A051 android.content.pm.ApplicationInfo

A052 android.content.pm.FeatureInfo

A053 android.content.pm.IPackageStatsObserver

A054 android.content.pm.LabeledIntent

A055 android.content.pm.PackageInfo

A056 android.content.pm.PackageManager

A057 android.content.pm.PackageStats

A058 android.content.pm.PermissionInfo

A059 android.content.pm.ProviderInfo

A060 android.content.pm.ResolveInfo

A061 android.content.pm.ServiceInfo

A062 android.content.pm.Signature

A063 android.content.res.AssetFileDescriptor

A064 android.content.res.AssetManager

A065 android.content.res.ColorStateList

A066 android.content.res.Configuration

A067 android.content.res.Resources

A068 android.content.res.XmlResourceParser

A069 android.content.SearchRecentSuggestionsProvider

A070 android.content.ServiceConnection

A071 android.content.SharedPreferences

A072 android.content.SyncResult

A073 android.content.UriMatcher

A074 android.database

A075 android.hardware.Camera

A076 android.hardware.display.DisplayManager

A077 android.hardware.GeomagneticField

A078 android.hardware.Sensor

A079 android.location.Address

A080 android.location.Criteria

A081 android.location.Geocoder

A082 android.location.Gps

A083 android.location.Location

A084 android.media.AsyncPlayer

A085 android.media.AudioManager

A086 android.media.AudioRecord

A087 android.media.AudioTrack

A088 android.media.CamcorderProfile

A089 android.media.ExifInterface

A090 android.media.FaceDetector

A091 android.media.JetPlayer

A092 android.media.MediaMetadataRetriever

A093 android.media.MediaPlayer

A094 android.media.MediaRecorder

A095 android.media.MediaScannerConnection

A096 android.media.RemoteControlClient

A097 android.media.Ringtone

A098 android.media.SoundPool

A099 android.media.ThumbnailUtils

A100 android.media.ToneGenerator

A101 android.net.ConnectivityManager

A102 android.net.DhcpInfo

A103 android.net.http.AndroidHttpClient

A104 android.net.http.HttpResponseCache

A105 android.net.http.SslCertificate

A106 android.net.LocalServerSocket

A107 android.net.LocalSocket

A108 android.net.LocalSocketAddress

A109 android.net.MailTo

A110 android.net.NetworkInfo

A111 android.net.Proxy

A112 android.net.SSLCertificateSocketFactory

147

A113 android.net.TrafficStats

A114 android.net.Uri

A115 android.net.UrlQuerySanitizer

A116 android.net.wifi

A117 android.nfc

A118 android.os.Binder

A119 android.os.Build

A120 android.os.CancellationSignal

A121 android.os.ConditionVariable

A122 android.os.CountDownTimer

A123 android.os.DeadObjectException

A124 android.os.Debug

A125 android.os.Environment

A126 android.os.FileObserver

A127 android.os.Handler

A128 android.os.IBinder

A129 android.os.IInterface

A130 android.os.Looper

A131 android.os.MemoryFile

A132 android.os.Message

A133 android.os.Messenger

A134 android.os.Parcel

A135 android.os.Parcelable

A136 android.os.ParcelFileDescriptor

A137 android.os.PowerManager

A138 android.os.Process

A139 android.os.RemoteCallbackList

A140 android.os.RemoteException

A141 android.os.ResultReceiver

A142 android.os.ServiceManager

A143 android.os.StatFs

A144 android.os.StrictMode

A145 android.os.SystemClock

A146 android.os.Vibrator

A147 android.preference.CheckBoxPreference

A148 android.preference.DialogPreference

A149 android.preference.EditTextPreference

A150 android.preference.ListPreference

A151 android.preference.Preference

A152 android.preference.RingtonePreference

A153 android.provider.BaseColumns

A154 android.provider.Browser

A155 android.provider.CalendarContract

A156 android.provider.CallLog.Calls

A157 android.provider.Contacts

A158 android.provider.MediaStore

A159 android.provider.SearchRecentSuggestions

A160 android.provider.Settings

A161 android.sax

A162 android.service.dreams.DreamService

A163 android.service.wallpaper.WallpaperService

A164 android.speech.RecognitionListener

A165 android.speech.SpeechRecognizer

A166 android.speech.tts.TextToSpeech

A167 android.support.v4.app

A168 android.support.v4.content

A169 android.support.v4.media.TransportMediator

A170 android.support.v4.os.EnvironmentCompat

A171 android.support.v4.os.ParcelableCompat

A172 android.support.v4.os.ParcelableCompatCreatorCallbacks

A173 android.support.v4.util.DebugUtils

A174 android.support.v4.util.LogWriter

A175 android.support.v4.util.LruCache

A176 android.support.v4.util.SimpleArrayMap

A177 android.support.v4.util.SparseArrayCompat

A178 android.support.v4.util.TimeUtils

148

A179 android.support.v7.app

A180 android.telephony

A181 android.util.AndroidException

A182 android.util.AndroidRuntimeException

A183 android.util.AttributeSet

A184 android.util.Base64

A185 android.util.Config

A186 android.util.DisplayMetrics

A187 android.util.EventLog

A188 android.util.FloatMath

A189 android.util.JsonReader

A190 android.util.JsonWriter

A191 android.util.Log

A192 android.util.LruCache

A193 android.util.MonthDisplayHelper

A194 android.util.Pair

A195 android.util.Patterns

A196 android.util.SparseArray

A197 android.util.SparseBooleanArray

A198 android.util.SparseIntArray

A199 android.util.StateSet

A200 android.util.TypedValue

A201 android.util.Xml

A202 android.util.Xml.Encoding

A203 android.webkit

149

Appendix C

Heatmap Data of Feature Ranking by Dataset.

ID Feature Name PIA PI PA IA P I A

P079 INSTALL_SHORTCUT 9 10 10 10

P112 RECEIVE_SMS 8 11 9 11

P139 SYSTEM_ALERT_WINDOW 9 10 10 10

I078 ACTION_PACKAGE_ADDED 9 10 9 11

I106 ACTION_SENDTO 9 11 9 10

P105 READ_SMS 9 10 9 10

I012 ACTION_BOOT_COMPLETED 8 10 9 11

A111 android.net.Proxy 9 9 10 10

I153 CATEGORY_HOME 9 9 9 10

A180 android.telephony 8 9 10 10

P104 READ_PHONE_STATE 7 10 8 11

A022 android.app.PendingIntent 9 9 9 9

A045 android.content.Intent.ShortcutIconResource 8 9 9 10

P100 READ_EXTERNAL_STORAGE 8 9 8 10

P153 WRITE_EXTERNAL_STORAGE 8 8 9 9

P005 ACCESS_FINE_LOCATION 7 9 8 8

P010 ACCESS_WIFI_STATE 5 9 7 11

P008 ACCESS_NETWORK_STATE 6 9 7 9

A003 android.annotation.TargetApi 8 8 7 8

A025 android.app.Service 7 8 8 8

A051 android.content.pm.ApplicationInfo 8 8 8 7

A055 android.content.pm.PackageInfo 9 7 7 8

P004 ACCESS_COARSE_LOCATION 6 7 8 9

P082 KILL_BACKGROUND_PROCESSES 5 10 5 10

A154 android.provider.Browser 6 7 7 9

P006 ACCESS_LOCATION_EXTRA_COMMANDS 4 8 6 10

P110 RECEIVE_BOOT_COMPLETED 7 7 6 8

I131 ACTION_WEB_SEARCH 6 7 7 8

A046 android.content.IntentFilter 6 8 7 7

A061 android.content.pm.ServiceInfo 6 7 7 8

P099 READ_CONTACTS 6 8 4 9

A062 android.content.pm.Signature 7 6 6 8

A128 android.os.IBinder 8 7 8 4

P113 RECEIVE_WAP_PUSH 6 7 6 7

I026 ACTION_DELETE 5 7 5 9

I079 ACTION_PACKAGE_CHANGED 5 8 5 8

I083 ACTION_PACKAGE_INSTALL 6 7 6 7

I090 ACTION_PICK 5 7 7 7

A039 android.content.ContentUris 6 8 4 8

A116 android.net.wifi 4 6 6 10

A134 android.os.Parcel 4 8 7 7

A191 android.util.Log 6 5 7 8

P045 BLUETOOTH_ADMIN 4 7 6 8

P053 CALL_PHONE 4 8 5 8

P061 CHANGE_WIFI_STATE 6 8 3 8

I085 ACTION_PACKAGE_REMOVED 6 8 4 7

I086 ACTION_PACKAGE_REPLACED 5 8 5 7

A004 android.app.ActivityManager 5 5 6 9

A032 android.content.BroadcastReceiver 5 6 6 8

A130 android.os.Looper 5 8 4 8

P111 RECEIVE_MMS 5 7 5 7

P147 VIBRATE 4 7 4 9

I027 ACTION_DEVICE_STORAGE_LOW 4 7 5 8

I029 ACTION_DIAL 4 7 4 9

I105 ACTION_SEND 3 8 4 9

I159 CATEGORY_OPENABLE 3 7 5 9

A194 android.util.Pair 6 5 7 6

P069 EXPAND_STATUS_BAR 3 7 6 7

150

I044 ACTION_INSERT_OR_EDIT 3 8 4 8

I124 ACTION_USER_PRESENT 5 6 5 7

I126 ACTION_VIEW 4 5 6 8

I144 CATEGORY_BROWSABLE 3 7 5 8

A024 android.app.SearchManager 6 5 5 7

A073 android.content.UriMatcher 4 8 4 7

A075 android.hardware.Camera 3 4 8 8

A085 android.media.AudioManager 5 4 6 8

A101 android.net.ConnectivityManager 7 7 5 4

P134 SET_WALLPAPER_HINTS 4 7 4 7

P148 WAKE_LOCK 4 4 5 9

I101 ACTION_SCREEN_OFF 2 7 4 9

A021 android.app.Notification 4 6 5 7

A030 android.content.ActivityNotFoundException 4 4 7 7

A047 android.content.IntentSender 4 6 5 7

A064 android.content.res.AssetManager 5 7 4 6

A120 android.os.CancellationSignal 5 5 6 6

A135 android.os.Parcelable 4 3 7 8

A151 android.preference.Preference 4 6 5 7

A176 android.support.v4.util.SimpleArrayMap 5 5 6 6

P044 BLUETOOTH 4 5 4 8

P058 CHANGE_CONFIGURATION 2 8 3 8

P062 CLEAR_APP_CACHE 2 7 4 8

P081 INTERNET 2 7 3 9

P088 MODIFY_AUDIO_SETTINGS 3 8 2 8

I091 ACTION_PICK_ACTIVITY 2 7 5 7

I130 ACTION_WALLPAPER_CHANGED 3 5 5 8

I154 CATEGORY_INFO 3 7 3 8

I158 CATEGORY_MONKEY 2 7 4 8

A040 android.content.ContentValues 5 5 5 6

A068 android.content.res.XmlResourceParser 3 4 7 7

A081 android.location.Geocoder 3 6 4 8

A197 android.util.SparseBooleanArray 4 6 5 6

P059 CHANGE_NETWORK_STATE 2 8 2 8

P114 RECORD_AUDIO 3 5 4 8

I022 ACTION_CREATE_SHORTCUT 2 5 6 7

I102 ACTION_SCREEN_ON 2 7 3 8

I108 ACTION_SET_WALLPAPER 2 6 5 7

A056 android.content.pm.PackageManager 5 5 5 5

A093 android.media.MediaPlayer 2 5 6 7

A127 android.os.Handler 4 5 5 6

A143 android.os.StatFs 4 4 8 4

P050 BROADCAST_STICKY 2 6 3 8

P074 GET_PACKAGE_SIZE 1 7 4 7

P156 WRITE_SETTINGS 3 5 3 8

I010 ACTION_BATTERY_LOW 3 5 3 8

I011 ACTION_BATTERY_OKAY 4 4 3 8

I014 ACTION_CALL 3 6 3 7

I019 ACTION_CLOSE_SYSTEM_DIALOGS 8 3 8

I023 ACTION_DATE_CHANGED 1 6 4 8

I147 CATEGORY_DEFAULT 3 5 2 9

A007 android.app.AlarmManager 5 4 4 6

A008 android.app.AlertDialog 4 4 6 5

A037 android.content.ContentProvider 3 6 5 5

A110 android.net.NetworkInfo 5 4 5 5

A125 android.os.Environment 4 4 4 7

A186 android.util.DisplayMetrics 5 4 5 5

A202 android.util.Xml.Encoding 4 4 6 5

P133 SET_WALLPAPER 2 5 3 8

I058 ACTION_MEDIA_BUTTON 1 7 3 7

I061 ACTION_MEDIA_MOUNTED 1 6 3 8

A060 android.content.pm.ResolveInfo 1 6 4 7

A066 android.content.res.Configuration 4 4 5 5

A079 android.location.Address 4 3 5 6

A132 android.os.Message 4 4 5 5

A137 android.os.PowerManager 5 4 4 5

151

A148 android.preference.DialogPreference 4 3 5 6

P067 DISABLE_KEYGUARD 1 7 2 7

P092 NFC 3 4 3 7

P115 REORDER_TASKS 3 4 3 7

P125 SET_ALARM 2 5 3 7

P157 WRITE_SYNC_SETTINGS 3 3 3 8

I033 ACTION_EDIT 1 5 2 9

I037 ACTION_GET_CONTENT 1 4 4 8

I103 ACTION_SEARCH 1 6 2 8

I104 ACTION_SEARCH_LONG_PRESS 6 3 8

I150 CATEGORY_EMBED 6 3 8

I155 CATEGORY_LAUNCHER 1 6 2 8

A014 android.app.IntentService 4 4 4 5

A080 android.location.Criteria 5 4 4 4

A083 android.location.Location 5 2 6 4

A094 android.media.MediaRecorder 2 4 4 7

A123 android.os.DeadObjectException 4 2 5 6

A138 android.os.Process 4 4 5 4

A146 android.os.Vibrator 2 3 7 5

A157 android.provider.Contacts 3 5 3 6

A158 android.provider.MediaStore 2 3 4 8

A161 android.sax 3 4 5 5

A201 android.util.Xml 4 4 4 5

P055 CAMERA 1 3 3 9

P106 READ_SYNC_SETTINGS 1 4 3 8

I049 ACTION_MAIN 2 5 2 7

I065 ACTION_MEDIA_SCANNER_SCAN_FILE 1 8 7

A010 android.app.Application 3 4 4 5

A031 android.content.AsyncQueryHandler 3 6 2 5

A038 android.content.ContentResolver 2 5 3 6

A043 android.content.DialogInterface 6 6 2 2

A071 android.content.SharedPreferences 3 4 5 4

A118 android.os.Binder 2 4 3 7

A160 android.provider.Settings 4 4 4 4

P028 BIND_INPUT_METHOD 1 4 3 7

P060 CHANGE_WIFI_MULTICAST_STATE 2 3 3 7

I018 ACTION_CHOOSER 4 3 8

I043 ACTION_INSERT 6 1 8

I094 ACTION_POWER_USAGE_SUMMARY 1 6 8

I096 ACTION_PROVIDER_CHANGED 7 1 7

I111 ACTION_SYNC 6 1 8

A019 android.app.LocalActivityManager 4 4 3 4

A053 android.content.pm.IPackageStatsObserver 4 4 4 3

A063 android.content.res.AssetFileDescriptor 4 4 3 4

A078 android.hardware.Sensor 2 4 4 5

P015 BATTERY_STATS 1 4 2 7

P072 GET_ACCOUNTS 4 1 9

I060 ACTION_MEDIA_EJECT 5 3 6

I066 ACTION_MEDIA_SCANNER_STARTED 6 8

I080 ACTION_PACKAGE_DATA_CLEARED 7 7

I107 ACTION_SEND_MULTIPLE 2 4 1 7

I113 ACTION_TIMEZONE_CHANGED 6 8

I132 CATEGORY_ALTERNATIVE 1 5 1 7

A067 android.content.res.Resources 2 4 2 6

A136 android.os.ParcelFileDescriptor 3 3 4 4

A141 android.os.ResultReceiver 1 4 2 7

A177 android.support.v4.util.SparseArrayCompat 3 4 3 4

A196 android.util.SparseArray 2 4 3 5

A200 android.util.TypedValue 4 3 3 4

P043 BIND_WALLPAPER 5 8

P096 PROCESS_OUTGOING_CALLS 6 7

P097 READ_CALENDAR 4 1 8

P150 WRITE_CALENDAR 2 3 8

P152 WRITE_CONTACTS 3 1 9

I129 ACTION_VOICE_COMMAND 6 7

I160 CATEGORY_PREFERENCE 1 3 1 8

152

A016 android.app.LauncherActivity 3 4 3 3

A044 android.content.Entity 4 3 3 3

A097 android.media.Ringtone 2 3 8

A109 android.net.MailTo 3 2 4 4

A112 android.net.SSLCertificateSocketFactory 2 4 3 4

A114 android.net.Uri 2 3 4 4

A115 android.net.UrlQuerySanitizer 3 3 3 4

A129 android.os.IInterface 3 2 3 5

A139 android.os.RemoteCallbackList 4 4 3 2

A140 android.os.RemoteException 4 3 3 3

A170 android.support.v4.os.EnvironmentCompat 2 4 3 4

P025 BIND_DEVICE_ADMIN 4 8

P107 READ_SYNC_STATS 1 4 1 6

P151 WRITE_CALL_LOG 1 3 1 7

I008 ACTION_ATTACH_DATA 4 8

I015 ACTION_CALL_BUTTON 4 1 7

I064 ACTION_MEDIA_SCANNER_FINISHED 4 8

I087 ACTION_PACKAGE_RESTARTED 1 2 1 8

I100 ACTION_RUN 5 7

A005 android.app.admin.DeviceAdminReceiver 4 2 3 3

A036 android.content.ComponentName 2 2 2 6

A059 android.content.pm.ProviderInfo 3 3 4 2

A074 android.database 2 4 2 4

A082 android.location.Gps 1 3 3 5

A119 android.os.Build 2 2 3 5

A145 android.os.SystemClock 2 3 3 4

A147 android.preference.CheckBoxPreference 3 2 4 3

A203 android.webkit 2 3 3 4

P016 BIND_ACCESSIBILITY_SERVICE 4 7

P034 BIND_REMOTEVIEWS 3 1 7

P064 DELETE_CACHE_FILES 1 3 7

I002 ACTION_ALL_APPS 4 1 6

I016 ACTION_CAMERA_BUTTON 3 1 7

I020 ACTION_CONFIGURATION_CHANGED 5 1 5

I024 ACTION_DEFAULT 2 1 8

I035 ACTION_EXTERNAL_APPLICATIONS_UNAVAILABLE 3 8

I042 ACTION_INPUT_METHOD_CHANGED 3 8

I062 ACTION_MEDIA_NOFS 1 2 1 7

I069 ACTION_MEDIA_UNMOUNTED 4 7

I099 ACTION_REBOOT 3 8

I115 ACTION_TIME_TICK 1 2 8

I161 CATEGORY_SAMPLE_CODE 3 8

A054 android.content.pm.LabeledIntent 2 2 3 4

A070 android.content.ServiceConnection 3 2 2 4

A117 android.nfc 1 2 4 4

A124 android.os.Debug 1 4 1 5

A153 android.provider.BaseColumns 2 3 2 4

A163 android.service.wallpaper.WallpaperService 1 3 2 5

P076 GLOBAL_SEARCH 2 1 7

I003 ACTION_ANSWER 2 1 7

I034 ACTION_EXTERNAL_APPLICATIONS_AVAILABLE 2 8

I041 ACTION_HEADSET_PLUG 5 5

I047 ACTION_LOCALE_CHANGED 3 7

I057 ACTION_MEDIA_BAD_REMOVAL 4 6

I063 ACTION_MEDIA_REMOVED 3 7

I117 ACTION_UID_REMOVED 2 1 7

I163 CATEGORY_SELECTED_ALTERNATIVE 2 1 7

I164 CATEGORY_TAB 1 2 1 6

A002 android.annotation.SuppressLint 2 2 3 3

A009 android.app.AlertDialog.Builder 2 3 2 3

A026 android.app.TabActivity 2 2 1 5

A057 android.content.pm.PackageStats 2 2 6

A105 android.net.http.SslCertificate 4 2 4

A126 android.os.FileObserver 2 3 2 3

A169 android.support.v4.media.TransportMediator 2 3 2 3

A188 android.util.FloatMath 1 4 1 4

153

A199 android.util.StateSet 3 2 5

I009 ACTION_BATTERY_CHANGED 2 1 6

I046 ACTION_INSTALL_PACKAGE 1 3 5

I056 ACTION_MANAGE_PACKAGE_STORAGE 2 7

I068 ACTION_MEDIA_UNMOUNTABLE 3 6

I070 ACTION_MY_PACKAGE_REPLACED 2 7

I112 ACTION_SYSTEM_TUTORIAL 4 1 4

I119 ACTION_UMS_DISCONNECTED 3 6

I149 CATEGORY_DEVELOPMENT_PREFERENCE 2 1 6

I167 CATEGORY_UNIT_TEST 3 1 5

A001 android.accounts 3 1 2 3

A012 android.app.DownloadManager 2 2 5

A069 android.content.SearchRecentSuggestionsProvider 1 2 1 5

A185 android.util.Config 3 1 5

P012 ACTIVITY_RECOGNITION 1 1 6

P013 ADD_VOICEMAIL 1 1 6

P041 BIND_VPN_SERVICE 1 1 6

P098 READ_CALL_LOG 1 7

P146 USE_SIP 1 7

I013 ACTION_BUG_REPORT 2 6

I059 ACTION_MEDIA_CHECKING 1 7

I067 ACTION_MEDIA_SHARED 1 7

I073 ACTION_NEW_OUTGOING_CALL 2 6

I118 ACTION_UMS_CONNECTED 1 7

I148 CATEGORY_DESK_DOCK 1 7

I151 CATEGORY_FRAMEWORK_INSTRUMENTATION_TEST 3 5

I165 CATEGORY_TEST 2 6

A035 android.content.ComponentCallbacks 1 1 1 5

A049 android.content.OperationApplicationException 1 2 2 3

A076 android.hardware.display.DisplayManager 1 2 3 2

A096 android.media.RemoteControlClient 1 2 3 2

A098 android.media.SoundPool 1 1 2 4

A142 android.os.ServiceManager 1 1 1 5

A166 android.speech.tts.TextToSpeech 1 2 5

A181 android.util.AndroidException 2 1 5

A183 android.util.AttributeSet 2 2 2 2

A184 android.util.Base64 2 1 5

A198 android.util.SparseIntArray 3 3 2

P031 BIND_NOTIFICATION_LISTENER_SERVICE 1 6

P037 BIND_TEXT_SERVICE 1 1 5

P094 PACKAGE_USAGE_STATS 7

I030 ACTION_DOCK_EVENT 7

A013 android.app.Instrumentation 1 3 3

A018 android.app.LoaderManager 1 1 1 4

A050 android.content.pm.ActivityInfo 3 1 3

A058 android.content.pm.PermissionInfo 3 1 2 1

A065 android.content.res.ColorStateList 1 2 4

A099 android.media.ThumbnailUtils 2 1 4

A102 android.net.DhcpInfo 1 6

A167 android.support.v4.app 2 1 2 2

I028 ACTION_DEVICE_STORAGE_OK 6

I145 CATEGORY_CAR_DOCK 6

A103 android.net.http.AndroidHttpClient 2 3 1

A122 android.os.CountDownTimer 3 3

A131 android.os.MemoryFile 1 5

A149 android.preference.EditTextPreference 1 2 1 2

A174 android.support.v4.util.LogWriter 1 1 1 3

A192 android.util.LruCache 1 1 1 3

I001 ACTION_AIRPLANE_MODE_CHANGED 1 1 3

I055 ACTION_MANAGE_NETWORK_USAGE 1 4

I093 ACTION_POWER_DISCONNECTED 1 4

I141 CATEGORY_APP_MARKET 1 4

A006 android.app.admin.DevicePolicyManager 3 2

A015 android.app.KeyguardManager 2 3

A023 android.app.SearchableInfo 1 1 1 2

A041 android.content.ContextWrapper 1 3 1

154

A052 android.content.pm.FeatureInfo 2 3

A087 android.media.AudioTrack 1 2 2

A113 android.net.TrafficStats 1 1 3

A121 android.os.ConditionVariable 1 1 1 2

A133 android.os.Messenger 1 4

A150 android.preference.ListPreference 1 1 2 1

A159 android.provider.SearchRecentSuggestions 1 4

A164 android.speech.RecognitionListener 1 4

A165 android.speech.SpeechRecognizer 2 3

A168 android.support.v4.content 1 2 1 1

A173 android.support.v4.util.DebugUtils 1 4

A182 android.util.AndroidRuntimeException 1 2 1 1

A193 android.util.MonthDisplayHelper 1 1 3

A195 android.util.Patterns 2 1 1 1

I081 ACTION_PACKAGE_FIRST_LAUNCH 4

I143 CATEGORY_APP_MUSIC 1 3

A011 android.app.backup 1 2 1

A028 android.bluetooth 1 2 1

A033 android.content.ClipboardManager 1 2 1

A084 android.media.AsyncPlayer 1 1 1 1

A089 android.media.ExifInterface 1 1 2

A107 android.net.LocalSocket 1 1 2

A155 android.provider.CalendarContract 1 1 2

I006 ACTION_APP_ERROR 1 2

I074 ACTION_OPEN_DOCUMENT 1 1 1

I082 ACTION_PACKAGE_FULLY_REMOVED 1 1 1

I092 ACTION_POWER_CONNECTED 1 2

I097 ACTION_QUICK_CLOCK 1 1 1

I114 ACTION_TIME_CHANGED 3

I146 CATEGORY_CAR_MODE 1 2

A020 android.app.NativeActivity 1 1 1

A027 android.app.TaskStackBuilder 1 1 1

A034 android.content.ClipData 1 1 1

A095 android.media.MediaScannerConnection 1 2

A100 android.media.ToneGenerator 1 1 1

A108 android.net.LocalSocketAddress 1 1 1

A144 android.os.StrictMode 1 1 1

A156 android.provider.CallLog.Calls 3

A179 android.support.v7.app 1 1 1

I007 ACTION_ASSIST 1 1

I031 ACTION_DREAMING_STARTED 1 1

I036 ACTION_FACTORY_TEST 1 1

I110 ACTION_SHUTDOWN 1 1

I116 ACTION_TRANSLATE 1 1

I120 ACTION_UNINSTALL_PACKAGE 2

I133 CATEGORY_APP_BROWSER 1 1

I136 CATEGORY_APP_CONTACTS 1 1

I140 CATEGORY_APP_MAPS 1 1

I157 CATEGORY_LE_DESK_DOCK 1 1

I259 FLAG_ACTIVITY_CLEAR_TOP 1 1

I276 FLAG_ACTIVITY_SINGLE_TOP 1 1

A017 android.app.ListFragment 1 1

A029 android.content.AbstractThreadedSyncAdapter 1 1

A048 android.content.Loader 1 1

A077 android.hardware.GeomagneticField 1 1

A086 android.media.AudioRecord 1 1

A104 android.net.http.HttpResponseCache 1 1

A171 android.support.v4.os.ParcelableCompat 1 1

A172 android.support.v4.os.ParcelableCompatCreatorCallbacks 1 1

A187 android.util.EventLog 1 1

I032 ACTION_DREAMING_STOPPED 1

I084 ACTION_PACKAGE_NEEDS_VERIFICATION 1

I089 ACTION_PASTE 1

I121 ACTION_USER_BACKGROUND 1

I123 ACTION_USER_INITIALIZE 1

I135 CATEGORY_APP_CALENDAR 1

155

I137 CATEGORY_APP_EMAIL 1

I139 CATEGORY_APP_GALLERY 1

I142 CATEGORY_APP_MESSAGING 1

I152 CATEGORY_HE_DESK_DOCK 1

I273 FLAG_ACTIVITY_REORDER_TO_FRONT 1

A042 android.content.CursorLoader 1

A090 android.media.FaceDetector 1

A091 android.media.JetPlayer 1

A092 android.media.MediaMetadataRetriever 1

A152 android.preference.RingtonePreference 1

I122 ACTION_USER_FOREGROUND

I134 CATEGORY_APP_CALCULATOR

A072 android.content.SyncResult

A088 android.media.CamcorderProfile

A106 android.net.LocalServerSocket

A162 android.service.dreams.DreamService

A175 android.support.v4.util.LruCache

A178 android.support.v4.util.TimeUtils

A189 android.util.JsonReader

A190 android.util.JsonWriter

156

Appendix D

Heatmap Data of Feature Ranking by Algorithm.

FID Feature Name

In

fo
G

a
in

 C

h
i2

R
e
li

e
f

C
F

S
-I

n
fo

G
a
in

C
F

S
-C

h
i2

C
F

S
-R

e
li

e
f

R
F

E
-A

N
N

R
F

E
-R

F

R
F

E
-S

V
M

L
A

S
S

O

R
id

g
e

P079 INSTALL_SHORTCUT 4 4 4 4 4 4 4 3 4 4

P112 RECEIVE_SMS 4 4 3 4 4 2 4 4 2 4 4

P139 SYSTEM_ALERT_WINDOW 4 4 3 4 4 4 4 4 4 4

I078 ACTION_PACKAGE_ADDED 4 4 4 4 4 2 4 4 1 4 4

I106 ACTION_SENDTO 4 4 4 4 4 1 4 4 2 4 4

P105 READ_SMS 4 4 2 4 4 4 4 4 4 4

I012 ACTION_BOOT_COMPLETED 4 4 4 4 4 2 3 4 1 4 4

A111 android.net.Proxy 4 4 4 4 4 4 4 2 4 4

I153 CATEGORY_HOME 4 4 4 4 4 1 4 4 4 4

A180 android.telephony 4 4 4 2 1 4 4 4 2 4 4

P104 READ_PHONE_STATE 4 4 4 4 1 2 3 4 2 4 4

A022 android.app.PendingIntent 4 4 4 4 2 4 4 2 4 4

A045 android.content.Intent.ShortcutIconResource 4 4 4 3 3 4 4 2 4 4

P100 READ_EXTERNAL_STORAGE 4 4 2 4 4 4 4 1 4 4

P153 WRITE_EXTERNAL_STORAGE 4 4 4 4 4 4 2 4 4

P005 ACCESS_FINE_LOCATION 4 4 4 1 3 4 4 4 4

P010 ACCESS_WIFI_STATE 4 4 4 2 1 2 2 4 2 4 3

P008 ACCESS_NETWORK_STATE 4 4 4 2 3 4 2 4 4

A003 android.annotation.TargetApi 4 4 4 4 4 3 4 4

A025 android.app.Service 4 4 4 4 4 3 4 4

A051 android.content.pm.ApplicationInfo 4 4 4 4 4 3 4 4

A055 android.content.pm.PackageInfo 4 4 4 1 4 4 2 4 4

P004 ACCESS_COARSE_LOCATION 4 4 4 1 2 4 4 4 3

P082 KILL_BACKGROUND_PROCESSES 4 4 2 4 4 2 4 2 2 2

A154 android.provider.Browser 4 4 3 1 1 4 4 4 4

P006 ACCESS_LOCATION_EXTRA_COMMANDS 4 4 2 2 2 2 4 4 2 2

P110 RECEIVE_BOOT_COMPLETED 4 4 3 3 4 2 4 4

I131 ACTION_WEB_SEARCH 4 4 2 1 4 4 1 4 4

A046 android.content.IntentFilter 4 4 4 3 4 1 4 4

A061 android.content.pm.ServiceInfo 4 4 1 4 4 3 4 4

P099 READ_CONTACTS 4 4 4 2 3 3 1 3 3

A062 android.content.pm.Signature 4 4 4 4 1 2 4 4

A128 android.os.IBinder 4 4 4 1 3 4 1 3 3

P113 RECEIVE_WAP_PUSH 4 4 4 4 2 4 4

I026 ACTION_DELETE 4 4 2 1 4 2 1 4 4

I079 ACTION_PACKAGE_CHANGED 4 4 2 4 2 2 4 4

I083 ACTION_PACKAGE_INSTALL 4 4 2 4 4 4 4

I090 ACTION_PICK 3 3 4 4 4 4 4

A039 android.content.ContentUris 4 4 2 3 4 2 4 3

A116 android.net.wifi 4 4 4 1 2 1 4 2 2 2

A134 android.os.Parcel 3 3 4 4 3 1 4 4

A191 android.util.Log 4 1 4 3 4 2 4 4

P045 BLUETOOTH_ADMIN 3 3 2 4 2 3 4 4

P053 CALL_PHONE 4 4 3 1 1 4 4 2 2

P061 CHANGE_WIFI_STATE 4 4 2 3 4 2 3 3

I085 ACTION_PACKAGE_REMOVED 4 4 4 1 2 4 3 3

I086 ACTION_PACKAGE_REPLACED 4 4 2 4 2 1 4 4

A004 android.app.ActivityManager 4 4 4 1 1 1 4 2 2 2

A032 android.content.BroadcastReceiver 4 4 4 1 4 2 3 3

A130 android.os.Looper 4 4 4 2 4 3 2 2

P111 RECEIVE_MMS 4 4 4 2 2 4 4

P147 VIBRATE 4 4 4 2 1 4 1 2 2

I027 ACTION_DEVICE_STORAGE_LOW 3 2 1 4 2 4 4 4

157

I029 ACTION_DIAL 4 4 4 1 1 4 2 2 2

I105 ACTION_SEND 3 4 4 2 1 4 2 2 2

I159 CATEGORY_OPENABLE 3 3 2 1 4 2 1 4 4

A194 android.util.Pair 4 4 4 1 4 3 4

P069 EXPAND_STATUS_BAR 4 4 3 2 3 3 4

I044 ACTION_INSERT_OR_EDIT 3 2 2 4 2 2 4 4

I124 ACTION_USER_PRESENT 1 2 4 4 4 4 4

I126 ACTION_VIEW 4 4 4 1 1 3 1 3 2

I144 CATEGORY_BROWSABLE 2 3 2 3 4 2 4 3

A024 android.app.SearchManager 4 4 1 4 2 4 4

A073 android.content.UriMatcher 4 4 2 2 4 3 2 2

A075 android.hardware.Camera 3 3 4 2 2 3 3 3

A085 android.media.AudioManager 1 2 4 3 4 1 4 4

A101 android.net.ConnectivityManager 4 4 2 2 4 3 2 2

P134 SET_WALLPAPER_HINTS 4 4 3 2 2 4 3

P148 WAKE_LOCK 4 4 4 1 1 4 2 1 1

I101 ACTION_SCREEN_OFF 1 1 4 2 3 4 2 3 2

A021 android.app.Notification 4 4 3 3 2 4 1 1

A030 android.content.ActivityNotFoundException 1 3 4 3 1 4 2 2 2

A047 android.content.IntentSender 4 3 4 1 2 4 4

A064 android.content.res.AssetManager 4 4 4 1 4 3 2

A120 android.os.CancellationSignal 4 4 4 1 1 4 4

A135 android.os.Parcelable 1 2 2 4 3 2 4 4

A151 android.preference.Preference 1 4 4 2 4 4 3

A176 android.support.v4.util.SimpleArrayMap 4 4 4 1 1 4 4

P044 BLUETOOTH 1 1 2 4 2 3 4 4

P058 CHANGE_CONFIGURATION 3 4 2 2 2 4 2 2

P062 CLEAR_APP_CACHE 4 4 1 3 2 2 2 3

P081 INTERNET 4 3 4 1 1 2 2 2 2

P088 MODIFY_AUDIO_SETTINGS 3 3 2 3 2 2 3 3

I091 ACTION_PICK_ACTIVITY 3 3 2 3 1 3 2 4

I130 ACTION_WALLPAPER_CHANGED 4 4 2 2 2 4 1 2

I154 CATEGORY_INFO 2 2 2 4 2 1 4 4

I158 CATEGORY_MONKEY 3 3 1 4 2 2 2 4

A040 android.content.ContentValues 4 4 4 4 4 1

A068 android.content.res.XmlResourceParser 4 4 3 4 2 2 2

A081 android.location.Geocoder 4 4 2 1 2 4 2 2

A197 android.util.SparseBooleanArray 4 3 4 2 4 4

P059 CHANGE_NETWORK_STATE 4 4 2 2 2 2 2 2

P114 RECORD_AUDIO 4 4 2 1 4 3 1 1

I022 ACTION_CREATE_SHORTCUT 4 4 2 1 3 1 3 2

I102 ACTION_SCREEN_ON 4 4 2 2 3 1 2 2

I108 ACTION_SET_WALLPAPER 4 4 2 3 1 1 2 3

A056 android.content.pm.PackageManager 4 4 4 4 4

A093 android.media.MediaPlayer 3 3 4 4 2 3 1

A127 android.os.Handler 4 3 4 1 4 4

A143 android.os.StatFs 4 4 4 1 3 1 2 1

P050 BROADCAST_STICKY 1 1 2 4 2 2 3 4

P074 GET_PACKAGE_SIZE 3 4 3 2 2 2 3

P156 WRITE_SETTINGS 4 4 3 1 2 2 2 1

I010 ACTION_BATTERY_LOW 1 1 2 4 2 1 4 4

I011 ACTION_BATTERY_OKAY 1 1 1 4 1 3 4 4

I014 ACTION_CALL 4 4 4 1 1 2 2 1

I019 ACTION_CLOSE_SYSTEM_DIALOGS 3 3 2 2 2 2 3 2

I023 ACTION_DATE_CHANGED 2 2 2 4 2 2 2 3

I147 CATEGORY_DEFAULT 1 1 4 1 2 4 1 3 2

A007 android.app.AlarmManager 4 4 4 1 4 2

A008 android.app.AlertDialog 4 1 2 4 3 2 3

A037 android.content.ContentProvider 3 4 3 1 4 4

A110 android.net.NetworkInfo 4 4 4 4 3

A125 android.os.Environment 4 4 4 1 4 1 1

A186 android.util.DisplayMetrics 4 4 4 1 4 2

A202 android.util.Xml.Encoding 4 2 4 1 4 4

P133 SET_WALLPAPER 4 4 2 1 2 3 1 1

I058 ACTION_MEDIA_BUTTON 2 2 2 3 2 1 3 3

I061 ACTION_MEDIA_MOUNTED 1 1 2 3 2 2 4 3

158

A060 android.content.pm.ResolveInfo 2 3 4 2 3 2 2

A066 android.content.res.Configuration 2 3 4 4 4 1

A079 android.location.Address 4 4 2 1 4 3

A132 android.os.Message 4 4 4 1 4 1

A137 android.os.PowerManager 4 4 4 4 2

A148 android.preference.DialogPreference 2 3 1 3 2 4 3

P067 DISABLE_KEYGUARD 2 2 2 2 4 3 2

P092 NFC 1 1 4 1 2 4 4

P115 REORDER_TASKS 1 1 4 1 2 4 4

P125 SET_ALARM 4 4 2 2 2 1 2

P157 WRITE_SYNC_SETTINGS 1 1 1 4 1 1 4 4

I033 ACTION_EDIT 1 1 2 1 1 4 3 2 2

I037 ACTION_GET_CONTENT 1 1 4 2 3 1 3 2

I103 ACTION_SEARCH 1 1 4 2 1 3 1 2 2

I104 ACTION_SEARCH_LONG_PRESS 2 2 2 3 1 1 3 3

I150 CATEGORY_EMBED 1 2 1 3 2 2 3 3

I155 CATEGORY_LAUNCHER 3 1 4 2 2 1 2 2

A014 android.app.IntentService 4 4 4 4 1

A080 android.location.Criteria 4 4 4 4 1

A083 android.location.Location 4 2 4 1 3 3

A094 android.media.MediaRecorder 4 4 1 1 3 1 2 1

A123 android.os.DeadObjectException 4 4 3 2 2 2

A138 android.os.Process 4 4 4 3 1 1

A146 android.os.Vibrator 1 1 4 4 1 3 1 1 1

A157 android.provider.Contacts 1 1 4 1 4 2 3 1

A158 android.provider.MediaStore 3 4 2 1 4 1 1 1

A161 android.sax 3 2 4 4 4

A201 android.util.Xml 4 4 4 1 4

P055 CAMERA 1 1 4 1 1 3 3 1 1

P106 READ_SYNC_SETTINGS 1 1 1 4 1 2 3 3

I049 ACTION_MAIN 3 1 4 2 1 2 3

I065 ACTION_MEDIA_SCANNER_SCAN_FILE 2 2 2 1 2 3 2 2

A010 android.app.Application 1 3 4 4 4

A031 android.content.AsyncQueryHandler 4 4 2 2 2 2

A038 android.content.ContentResolver 1 3 4 4 2 2

A043 android.content.DialogInterface 4 2 4 2 2 2

A071 android.content.SharedPreferences 4 4 4 2 2

A118 android.os.Binder 1 2 1 4 1 4 3

A160 android.provider.Settings 4 4 4 4

P028 BIND_INPUT_METHOD 1 1 4 1 2 3 3

P060 CHANGE_WIFI_MULTICAST_STATE 1 1 4 1 1 3 4

I018 ACTION_CHOOSER 3 2 1 3 1 2 1 2

I043 ACTION_INSERT 1 2 2 3 2 1 2 2

I094 ACTION_POWER_USAGE_SUMMARY 2 2 2 2 1 3 2 1

I096 ACTION_PROVIDER_CHANGED 2 2 2 2 1 1 3 2

I111 ACTION_SYNC 3 2 2 2 1 1 2 2

A019 android.app.LocalActivityManager 4 3 4 4

A053 android.content.pm.IPackageStatsObserver 4 3 4 4

A063 android.content.res.AssetFileDescriptor 1 1 4 2 1 1 3 2

A078 android.hardware.Sensor 3 4 4 3 1

P015 BATTERY_STATS 1 1 3 2 1 2 4

P072 GET_ACCOUNTS 1 2 2 1 1 3 2 1 1

I060 ACTION_MEDIA_EJECT 2 3 2 3 1 3

I066 ACTION_MEDIA_SCANNER_STARTED 2 2 2 2 2 2 1 1

I080 ACTION_PACKAGE_DATA_CLEARED 2 2 2 2 2 2 2

I107 ACTION_SEND_MULTIPLE 1 1 2 2 4 1 2 1

I113 ACTION_TIMEZONE_CHANGED 1 2 2 2 2 1 2 2

I132 CATEGORY_ALTERNATIVE 1 1 2 3 1 2 2 2

A067 android.content.res.Resources 4 1 1 4 1 2 1

A136 android.os.ParcelFileDescriptor 4 2 4 4

A141 android.os.ResultReceiver 4 3 2 1 1 1 2

A177 android.support.v4.util.SparseArrayCompat 1 4 1 4 4

A196 android.util.SparseArray 2 1 1 3 2 2 3

A200 android.util.TypedValue 1 4 4 3 2

P043 BIND_WALLPAPER 2 2 2 1 2 1 2 1

P096 PROCESS_OUTGOING_CALLS 2 2 2 2 1 2 2

159

P097 READ_CALENDAR 2 2 1 1 2 3 1 1

P150 WRITE_CALENDAR 1 1 2 1 2 2 2 2

P152 WRITE_CONTACTS 1 1 2 1 1 2 3 1 1

I129 ACTION_VOICE_COMMAND 2 2 2 2 1 2 2

I160 CATEGORY_PREFERENCE 2 2 1 2 1 3 1 1

A016 android.app.LauncherActivity 4 1 4 4

A044 android.content.Entity 4 1 4 4

A097 android.media.Ringtone 3 2 1 2 1 2 1 1

A109 android.net.MailTo 4 2 3 4

A112 android.net.SSLCertificateSocketFactory 4 3 3 3

A114 android.net.Uri 4 3 3 1 2

A115 android.net.UrlQuerySanitizer 4 3 2 4

A129 android.os.IInterface 1 2 2 4 1 2 1

A139 android.os.RemoteCallbackList 4 4 2 3

A140 android.os.RemoteException 1 4 2 4 2

A170 android.support.v4.os.EnvironmentCompat 4 4 2 1 2

P025 BIND_DEVICE_ADMIN 1 1 1 2 1 2 2 2

P107 READ_SYNC_STATS 1 1 3 1 3 1 2

P151 WRITE_CALL_LOG 1 1 2 1 3 2 2

I008 ACTION_ATTACH_DATA 2 2 1 1 1 2 1 2

I015 ACTION_CALL_BUTTON 2 1 1 3 1 1 1 2

I064 ACTION_MEDIA_SCANNER_FINISHED 2 2 2 1 2 1 1 1

I087 ACTION_PACKAGE_RESTARTED 1 1 2 2 1 1 1 3

I100 ACTION_RUN 2 2 2 2 1 1 2

A005 android.app.admin.DeviceAdminReceiver 4 1 4 3

A036 android.content.ComponentName 1 1 4 4 1 1

A059 android.content.pm.ProviderInfo 1 2 3 3 3

A074 android.database 1 1 4 4 1 1

A082 android.location.Gps 1 1 3 3 4

A119 android.os.Build 1 1 4 4 2

A145 android.os.SystemClock 1 1 4 4 2

A147 android.preference.CheckBoxPreference 3 2 1 3 3

A203 android.webkit 4 1 4 1 1 1

P016 BIND_ACCESSIBILITY_SERVICE 1 1 2 1 2 2 2

P034 BIND_REMOTEVIEWS 1 1 2 1 2 2 2

P064 DELETE_CACHE_FILES 1 1 3 1 1 2 2

I002 ACTION_ALL_APPS 2 2 2 1 1 3

I016 ACTION_CAMERA_BUTTON 2 1 1 2 1 1 1 2

I020 ACTION_CONFIGURATION_CHANGED 1 2 1 1 2 1 2 1

I024 ACTION_DEFAULT 1 1 2 1 1 3 1 1

I035
ACTION_EXTERNAL_APPLICATIONS_UNAVAI

LABLE

1 1 2 2 2 1 1 1

I042 ACTION_INPUT_METHOD_CHANGED 2 2 1 2 1 1 1 1

I062 ACTION_MEDIA_NOFS 1 1 3 1 3 1 1

I069 ACTION_MEDIA_UNMOUNTED 1 1 2 1 2 1 2 1

I099 ACTION_REBOOT 2 1 2 1 1 2 1 1

I115 ACTION_TIME_TICK 1 1 1 1 2 3 1 1

I161 CATEGORY_SAMPLE_CODE 2 2 1 2 1 1 1 1

A054 android.content.pm.LabeledIntent 4 4 2 1

A070 android.content.ServiceConnection 1 3 4 3

A117 android.nfc 3 2 2 4

A124 android.os.Debug 4 1 2 2 2

A153 android.provider.BaseColumns 4 4 1 2

A163 android.service.wallpaper.WallpaperService 3 3 1 1 2 1

P076 GLOBAL_SEARCH 1 1 3 1 2 1 1

I003 ACTION_ANSWER 2 2 1 1 1 2 1

I034
ACTION_EXTERNAL_APPLICATIONS_AVAILA

BLE

1 1 2 1 2 1 1 1

I041 ACTION_HEADSET_PLUG 2 1 2 2 2 1

I047 ACTION_LOCALE_CHANGED 1 1 2 1 1 2 2

I057 ACTION_MEDIA_BAD_REMOVAL 1 1 2 1 1 2 2

I063 ACTION_MEDIA_REMOVED 1 1 2 2 2 1 1

I117 ACTION_UID_REMOVED 2 2 1 1 1 2 1

I163 CATEGORY_SELECTED_ALTERNATIVE 2 2 1 1 1 1 1 1

I164 CATEGORY_TAB 3 2 1 1 1 1 1

A002 android.annotation.SuppressLint 4 3 3

160

A009 android.app.AlertDialog.Builder 4 4 2

A026 android.app.TabActivity 4 1 1 1 2 1

A057 android.content.pm.PackageStats 2 3 1 2 1 1

A105 android.net.http.SslCertificate 3 3 2 2

A126 android.os.FileObserver 4 2 4

A169 android.support.v4.media.TransportMediator 4 3 3

A188 android.util.FloatMath 4 2 2 2

A199 android.util.StateSet 1 1 2 3 3

I009 ACTION_BATTERY_CHANGED 3 1 2 1 1 1

I046 ACTION_INSTALL_PACKAGE 1 1 2 3 1 1

I056 ACTION_MANAGE_PACKAGE_STORAGE 2 2 1 1 1 1 1

I068 ACTION_MEDIA_UNMOUNTABLE 2 2 1 1 1 1 1

I070 ACTION_MY_PACKAGE_REPLACED 1 1 2 1 1 1 2

I112 ACTION_SYSTEM_TUTORIAL 2 2 2 1 2

I119 ACTION_UMS_DISCONNECTED 2 2 2 1 1 1

I149 CATEGORY_DEVELOPMENT_PREFERENCE 2 2 1 1 1 1 1

I167 CATEGORY_UNIT_TEST 2 2 1 1 3

A001 android.accounts 1 2 4 1 1

A012 android.app.DownloadManager 1 2 3 1 2

A069 android.content.SearchRecentSuggestionsProvider 1 1 4 1 2

A185 android.util.Config 3 1 2 1 2

P012 ACTIVITY_RECOGNITION 1 1 1 1 3 1

P013 ADD_VOICEMAIL 1 1 1 1 3 1

P041 BIND_VPN_SERVICE 1 1 1 1 3 1

P098 READ_CALL_LOG 1 1 1 1 1 1 2

P146 USE_SIP 1 1 1 1 1 2 1

I013 ACTION_BUG_REPORT 2 2 1 1 1 1

I059 ACTION_MEDIA_CHECKING 1 1 1 1 2 1 1

I067 ACTION_MEDIA_SHARED 1 1 1 1 2 1 1

I073 ACTION_NEW_OUTGOING_CALL 2 1 2 1 1 1

I118 ACTION_UMS_CONNECTED 2 1 1 1 1 1 1

I148 CATEGORY_DESK_DOCK 1 1 1 1 2 1 1

I151
CATEGORY_FRAMEWORK_INSTRUMENTATIO

N_TEST

2 2 1 1 2

I165 CATEGORY_TEST 2 2 1 1 1 1

A035 android.content.ComponentCallbacks 1 3 2 1 1

A049 android.content.OperationApplicationException 3 2 1 1 1

A076 android.hardware.display.DisplayManager 3 4 1

A096 android.media.RemoteControlClient 3 4 1

A098 android.media.SoundPool 1 1 4 1 1

A142 android.os.ServiceManager 1 3 1 1 1 1

A166 android.speech.tts.TextToSpeech 3 1 1 1 1 1

A181 android.util.AndroidException 1 1 2 1 1 2

A183 android.util.AttributeSet 4 4

A184 android.util.Base64 1 2 2 2 1

A198 android.util.SparseIntArray 1 2 1 2 2

P031 BIND_NOTIFICATION_LISTENER_SERVICE 1 1 1 1 2 1

P037 BIND_TEXT_SERVICE 1 1 1 3 1

P094 PACKAGE_USAGE_STATS 1 1 1 1 1 1 1

I030 ACTION_DOCK_EVENT 1 1 1 1 1 1 1

A013 android.app.Instrumentation 1 1 2 1 1 1

A018 android.app.LoaderManager 1 4 1 1

A050 android.content.pm.ActivityInfo 2 3 2

A058 android.content.pm.PermissionInfo 1 3 2 1

A065 android.content.res.ColorStateList 1 1 1 2 2

A099 android.media.ThumbnailUtils 2 3 1 1

A102 android.net.DhcpInfo 1 1 2 1 1 1

A167 android.support.v4.app 1 4 2

I028 ACTION_DEVICE_STORAGE_OK 1 1 1 1 1 1

I145 CATEGORY_CAR_DOCK 1 1 1 1 1 1

A103 android.net.http.AndroidHttpClient 2 1 1 2

A122 android.os.CountDownTimer 2 2 2

A131 android.os.MemoryFile 1 1 1 2 1

A149 android.preference.EditTextPreference 3 3

A174 android.support.v4.util.LogWriter 2 1 2 1

A192 android.util.LruCache 2 3 1

161

I001 ACTION_AIRPLANE_MODE_CHANGED 1 1 3

I055 ACTION_MANAGE_NETWORK_USAGE 1 1 1 1 1

I093 ACTION_POWER_DISCONNECTED 1 1 2 1

I141 CATEGORY_APP_MARKET 1 2 1 1

A006 android.app.admin.DevicePolicyManager 1 1 1 2

A015 android.app.KeyguardManager 1 1 1 1 1

A023 android.app.SearchableInfo 3 1 1

A041 android.content.ContextWrapper 2 2 1

A052 android.content.pm.FeatureInfo 2 1 2

A087 android.media.AudioTrack 1 1 1 2

A113 android.net.TrafficStats 1 2 1 1

A121 android.os.ConditionVariable 1 4

A133 android.os.Messenger 2 1 1 1

A150 android.preference.ListPreference 4 1

A159 android.provider.SearchRecentSuggestions 1 1 2 1

A164 android.speech.RecognitionListener 2 1 1 1

A165 android.speech.SpeechRecognizer 2 1 2

A168 android.support.v4.content 1 1 3

A173 android.support.v4.util.DebugUtils 1 2 1 1

A182 android.util.AndroidRuntimeException 4 1

A193 android.util.MonthDisplayHelper 1 3 1

A195 android.util.Patterns 2 3

I081 ACTION_PACKAGE_FIRST_LAUNCH 1 1 1 1

I143 CATEGORY_APP_MUSIC 1 2 1

A011 android.app.backup 3 1

A028 android.bluetooth 1 3

A033 android.content.ClipboardManager 1 3

A084 android.media.AsyncPlayer 3 1

A089 android.media.ExifInterface 1 1 1 1

A107 android.net.LocalSocket 1 1 2

A155 android.provider.CalendarContract 1 2 1

A106 android.net.LocalServerSocket 1 1 1 1

I006 ACTION_APP_ERROR 1 2

I074 ACTION_OPEN_DOCUMENT 3

I082 ACTION_PACKAGE_FULLY_REMOVED 1 2

I092 ACTION_POWER_CONNECTED 2 1

I097 ACTION_QUICK_CLOCK 3

I114 ACTION_TIME_CHANGED 1 1 1

I146 CATEGORY_CAR_MODE 1 1 1

A020 android.app.NativeActivity 3

A027 android.app.TaskStackBuilder 3

A034 android.content.ClipData 1 2

A095 android.media.MediaScannerConnection 1 1 1

A100 android.media.ToneGenerator 3

A108 android.net.LocalSocketAddress 1 2

A144 android.os.StrictMode 3

A156 android.provider.CallLog.Calls 1 1 1

A179 android.support.v7.app 3

I007 ACTION_ASSIST 2

I031 ACTION_DREAMING_STARTED 2

I036 ACTION_FACTORY_TEST 2

I110 ACTION_SHUTDOWN 2

I116 ACTION_TRANSLATE 2

I120 ACTION_UNINSTALL_PACKAGE 1 1

I133 CATEGORY_APP_BROWSER 2

I136 CATEGORY_APP_CONTACTS 2

I140 CATEGORY_APP_MAPS 2

I157 CATEGORY_LE_DESK_DOCK 2

I259 FLAG_ACTIVITY_CLEAR_TOP 2

I276 FLAG_ACTIVITY_SINGLE_TOP 2

A017 android.app.ListFragment 2

A029 android.content.AbstractThreadedSyncAdapter 1 1

A048 android.content.Loader 2

A077 android.hardware.GeomagneticField 1 1

A086 android.media.AudioRecord 2

A104 android.net.http.HttpResponseCache 2

162

A171 android.support.v4.os.ParcelableCompat 2

A172
android.support.v4.os.ParcelableCompatCreatorCallba
cks

 2

A187 android.util.EventLog 2

I032 ACTION_DREAMING_STOPPED 1

I084 ACTION_PACKAGE_NEEDS_VERIFICATION 1

I089 ACTION_PASTE 1

I121 ACTION_USER_BACKGROUND 1

I123 ACTION_USER_INITIALIZE 1

I135 CATEGORY_APP_CALENDAR 1

I137 CATEGORY_APP_EMAIL 1

I139 CATEGORY_APP_GALLERY 1

I142 CATEGORY_APP_MESSAGING 1

I152 CATEGORY_HE_DESK_DOCK 1

I273 FLAG_ACTIVITY_REORDER_TO_FRONT 1

A042 android.content.CursorLoader 1

A090 android.media.FaceDetector 1

A091 android.media.JetPlayer 1

A092 android.media.MediaMetadataRetriever 1

A152 android.preference.RingtonePreference 1

A088 android.media.CamcorderProfile 1

A190 android.util.JsonWriter 1

A072 android.content.SyncResult

A162 android.service.dreams.DreamService

A175 android.support.v4.util.LruCache

A178 android.support.v4.util.TimeUtils

A189 android.util.JsonReader

I122 ACTION_USER_FOREGROUND

I134 CATEGORY_APP_CALCULATOR

163

Appendix E

Dataset Evaluation by Feature Selection Method and Classifier

164

165

166

Appendix F

Top 200 Permissions, Intents and API Calls

Feature Type Feature Name

1 Permission INSTALL_SHORTCUT

2 Permission RECEIVE_SMS

3 Permission SYSTEM_ALERT_WINDOW

4 Intent ACTION_PACKAGE_ADDED

5 Intent ACTION_SENDTO

6 Permission READ_SMS

7 Intent ACTION_BOOT_COMPLETED

8 API Call android.net.Proxy

9 Intent CATEGORY_HOME

10 API Call android.telephony

11 Permission READ_PHONE_STATE

12 API Call android.app.PendingIntent

13 API Call android.content.Intent.ShortcutIconResource

14 Permission READ_EXTERNAL_STORAGE

15 Permission WRITE_EXTERNAL_STORAGE

16 Permission ACCESS_FINE_LOCATION

17 Permission ACCESS_WIFI_STATE

18 Permission ACCESS_NETWORK_STATE

19 API Call android.annotation.TargetApi

20 API Call android.app.Service

21 API Call android.content.pm.ApplicationInfo

22 API Call android.content.pm.PackageInfo

23 Permission ACCESS_COARSE_LOCATION

24 Permission KILL_BACKGROUND_PROCESSES

25 API Call android.provider.Browser

26 Permission ACCESS_LOCATION_EXTRA_COMMANDS

27 Permission RECEIVE_BOOT_COMPLETED

28 Intent ACTION_WEB_SEARCH

29 API Call android.content.IntentFilter

30 API Call android.content.pm.ServiceInfo

31 Permission READ_CONTACTS

32 API Call android.content.pm.Signature

33 API Call android.os.IBinder

34 Permission RECEIVE_WAP_PUSH

35 Intent ACTION_DELETE

36 Intent ACTION_PACKAGE_CHANGED

37 Intent ACTION_PACKAGE_INSTALL

38 Intent ACTION_PICK

39 API Call android.content.ContentUris

167

40 API Call android.net.wifi

41 API Call android.os.Parcel

42 API Call android.util.Log

43 Permission BLUETOOTH_ADMIN

44 Permission CALL_PHONE

45 Permission CHANGE_WIFI_STATE

46 Intent ACTION_PACKAGE_REMOVED

47 Intent ACTION_PACKAGE_REPLACED

48 API Call android.app.ActivityManager

49 API Call android.content.BroadcastReceiver

50 API Call android.os.Looper

51 Permission RECEIVE_MMS

52 Permission VIBRATE

53 Intent ACTION_DEVICE_STORAGE_LOW

54 Intent ACTION_DIAL

55 Intent ACTION_SEND

56 Intent CATEGORY_OPENABLE

57 API Call android.util.Pair

58 Permission EXPAND_STATUS_BAR

59 Intent ACTION_INSERT_OR_EDIT

60 Intent ACTION_USER_PRESENT

61 Intent ACTION_VIEW

62 Intent CATEGORY_BROWSABLE

63 API Call android.app.SearchManager

64 API Call android.content.UriMatcher

65 API Call android.hardware.Camera

66 API Call android.media.AudioManager

67 API Call android.net.ConnectivityManager

68 Permission SET_WALLPAPER_HINTS

69 Permission WAKE_LOCK

70 Intent ACTION_SCREEN_OFF

71 API Call android.app.Notification

72 API Call android.content.ActivityNotFoundException

73 API Call android.content.IntentSender

74 API Call android.content.res.AssetManager

75 API Call android.os.CancellationSignal

76 API Call android.os.Parcelable

77 API Call android.preference.Preference

78 API Call android.support.v4.util.SimpleArrayMap

79 Permission BLUETOOTH

80 Permission CHANGE_CONFIGURATION

81 Permission CLEAR_APP_CACHE

82 Permission INTERNET

83 Permission MODIFY_AUDIO_SETTINGS

168

84 Intent ACTION_PICK_ACTIVITY

85 Intent ACTION_WALLPAPER_CHANGED

86 Intent CATEGORY_INFO

87 Intent CATEGORY_MONKEY

88 API Call android.content.ContentValues

89 API Call android.content.res.XmlResourceParser

90 API Call android.location.Geocoder

91 API Call android.util.SparseBooleanArray

92 Permission CHANGE_NETWORK_STATE

93 Permission RECORD_AUDIO

94 Intent ACTION_CREATE_SHORTCUT

95 Intent ACTION_SCREEN_ON

96 Intent ACTION_SET_WALLPAPER

97 API Call android.content.pm.PackageManager

98 API Call android.media.MediaPlayer

99 API Call android.os.Handler

100 API Call android.os.StatFs

101 Permission BROADCAST_STICKY

102 Permission GET_PACKAGE_SIZE

103 Permission WRITE_SETTINGS

104 Intent ACTION_BATTERY_LOW

105 Intent ACTION_BATTERY_OKAY

106 Intent ACTION_CALL

107 Intent ACTION_CLOSE_SYSTEM_DIALOGS

108 Intent ACTION_DATE_CHANGED

109 Intent CATEGORY_DEFAULT

110 API Call android.app.AlarmManager

111 API Call android.app.AlertDialog

112 API Call android.content.ContentProvider

113 API Call android.net.NetworkInfo

114 API Call android.os.Environment

115 API Call android.util.DisplayMetrics

116 API Call android.util.Xml.Encoding

117 Permission SET_WALLPAPER

118 Intent ACTION_MEDIA_BUTTON

119 Intent ACTION_MEDIA_MOUNTED

120 API Call android.content.pm.ResolveInfo

121 API Call android.content.res.Configuration

122 API Call android.location.Address

123 API Call android.os.Message

124 API Call android.os.PowerManager

125 API Call android.preference.DialogPreference

126 Permission DISABLE_KEYGUARD

127 Permission NFC

169

128 Permission REORDER_TASKS

129 Permission SET_ALARM

130 Permission WRITE_SYNC_SETTINGS

131 Intent ACTION_EDIT

132 Intent ACTION_GET_CONTENT

133 Intent ACTION_SEARCH

134 Intent ACTION_SEARCH_LONG_PRESS

135 Intent CATEGORY_EMBED

136 Intent CATEGORY_LAUNCHER

137 API Call android.app.IntentService

138 API Call android.location.Criteria

139 API Call android.location.Location

140 API Call android.media.MediaRecorder

141 API Call android.os.DeadObjectException

142 API Call android.os.Process

143 API Call android.os.Vibrator

144 API Call android.provider.Contacts

145 API Call android.provider.MediaStore

146 API Call android.sax

147 API Call android.util.Xml

148 Permission CAMERA

149 Permission READ_SYNC_SETTINGS

150 Intent ACTION_MAIN

151 Intent ACTION_MEDIA_SCANNER_SCAN_FILE

152 API Call android.app.Application

153 API Call android.content.AsyncQueryHandler

154 API Call android.content.ContentResolver

155 API Call android.content.DialogInterface

156 API Call android.content.SharedPreferences

157 API Call android.os.Binder

158 API Call android.provider.Settings

159 Permission BIND_INPUT_METHOD

160 Permission CHANGE_WIFI_MULTICAST_STATE

161 Intent ACTION_CHOOSER

162 Intent ACTION_INSERT

163 Intent ACTION_POWER_USAGE_SUMMARY

164 Intent ACTION_PROVIDER_CHANGED

165 Intent ACTION_SYNC

166 API Call android.app.LocalActivityManager

167 API Call android.content.pm.IPackageStatsObserver

168 API Call android.content.res.AssetFileDescriptor

169 API Call android.hardware.Sensor

170 Permission BATTERY_STATS

171 Permission GET_ACCOUNTS

170

172 Intent ACTION_MEDIA_EJECT

173 Intent ACTION_MEDIA_SCANNER_STARTED

174 Intent ACTION_PACKAGE_DATA_CLEARED

175 Intent ACTION_SEND_MULTIPLE

176 Intent ACTION_TIMEZONE_CHANGED

177 Intent CATEGORY_ALTERNATIVE

178 API Call android.content.res.Resources

179 API Call android.os.ParcelFileDescriptor

180 API Call android.os.ResultReceiver

181 API Call android.support.v4.util.SparseArrayCompat

182 API Call android.util.SparseArray

183 API Call android.util.TypedValue

184 Permission BIND_WALLPAPER

185 Permission PROCESS_OUTGOING_CALLS

186 Permission READ_CALENDAR

187 Permission WRITE_CALENDAR

188 Permission WRITE_CONTACTS

189 Intent ACTION_VOICE_COMMAND

190 Intent CATEGORY_PREFERENCE

191 API Call android.app.LauncherActivity

192 API Call android.content.Entity

193 API Call android.media.Ringtone

194 API Call android.net.MailTo

195 API Call android.net.SSLCertificateSocketFactory

196 API Call android.net.Uri

197 API Call android.net.UrlQuerySanitizer

198 API Call android.os.IInterface

199 API Call android.os.RemoteCallbackList

200 API Call android.os.RemoteException

171

References

Aafer, Y., Du, W., & Yin, H. (2013). Droidapiminer: Mining api-level features for robust

malware detection in android. International Conference on Security and Privacy

in Communication Systems (pp. 86-103). Springer.

Abaid, Z., Kaafar, M. A., & Jha, S. (2017). Quantifying the impact of adversarial evasion

attacks on machine learning based android malware classifiers. 2017 IEEE 16th

International Symposium on Network Computing and Applications (NCA) (pp. 1-

10). IEEE.

Abro, F. I. (2018). Investigating Android permissions and intents for malware detection.

London, UK: City, Universtiy of London. Retrieved from

http://openaccess.city.ac.uk/19741/

Acar, Y., Backes, M., Bugiel, S., Fahl, S., McDaniel, P., & Smith, M. (2016). Sok:

Lessons learned from android security research for appified software platforms.

2016 IEEE Symposium on Security and Privacy (SP) (pp. 433-451). IEEE.

Adebayo, O. S., & AbdulAziz, N. (2014). Android malware classification using static

code analysis and apriori algorithm improved with particle swarm optimization.

2014 4th World Congress on Information and Communication Technologies

(WICT 2 (pp. 123-128). IEEE.

Alatwi, H. A. (2016). Android malware detection using category-based machine learning

classifiers. Rochester Institute of Technology.

Allix, K., Bissyande, T. F., Jerome, Q., Klein, J., & Le, T. Y. (2016). Empirical

assessment of machine learning-based malware detectors for Android. Empirical

Software Engineering, 21(1), 183-211.

Allix, K., Bissyande, T. F., Klein, J., & Le, T. Y. (2014). Machine Learning-Based

Malware Detection for Android Applications: History Matters! University of

Luxembourg, SnT.

Alswaina, F., & Elleithy, K. (2018). Android Malware Permission-Based Multi-Class

Classification Using Extremely Randomized Trees. IEEE Access, 6, 76217-

76227.

Altaher, A. (2017). An improved Android malware detection scheme based on an

evolving hybrid neuro-fuzzy classifier (EHNFC) and permission-based features.

Neural Computing and Applications, 28(12), 4147-4157.

172

Altaher, A., & BaRukab, O. (2017). Android malware classification based on ANFIS

with fuzzy c-means clustering using significant application permissions. Turkish

Journal of Electrical Engineering & Computer Sciences, 25(3), 2232-2242.

Amadeo, R. (2017). Android 8.0 Oreo, thoroughly reviewed. Retrieved 12 1, 2018, from

arstechnica.com: https://arstechnica.com/gadgets/2017/09/android-8-0-oreo-

thoroughly-reviewed/5/#h1

Anderson, H. S., Kharkar, A., Filar, B., Evans, D., & Roth, P. (2018). Learning to evade

static PE machine learning malware models via reinforcement learning. 08917

ArXiv Preprint ArXiv:.

Application Fundamentals. (2020). Retrieved 5 1, 2020, from android.com:

https://developer.android.com/guide/components/fundamentals.html

Ariyapala, K., Do, H. G., Anh, H. N., Ng, W. K., & Conti, M. (2016). A host and

network based intrusion detection for android smartphones. 2016 30th

International Conference on Advanced Information Networking and Applications

Workshops (WAINA) (pp. 849-854). IEEE.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. (2014).

DREBIN: Effective and Explainable Detection of Android Malware in Your

Pocket. NDSS. 14, pp. 23-26. Internet Society.

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., . . . McDaniel, P.

(2014). Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-

aware taint analysis for android apps. Acm Sigplan Notices. 49, pp. 259-269.

ACM.

Aswini, A., & Vinod, P. (2014). Android malware analysis using ensemble features.

International Conference on Security, Privacy, and Applied Cryptography

Engineering (pp. 303-318). Springer.

Aung, Z., & Zaw, W. (2013). Permission-based android malware detection. International

Journal of Scientific & Technology Research, 2(3), 228-234.

AV-Test Malware Statistics. (2019). Retrieved 5 30, 2019, from av-test.org:

https://www.av-test.org/en/statistics/malware/

Bhattacharya, A., Goswami, R. T., & Mukherjee, K. (2019). A feature selection

technique based on rough set and improvised PSO algorithm (PSORS-FS) for

permission based detection of Android malwares. International Journal of

Machine Learning and Cybernetics, 10(7), 1893-1907.

173

Bolon-Canedo, V., Sanchez-Marono, N., & Alonso-Betanzos, A. (2013). A review of

feature selection methods on synthetic data. Knowledge and Information Systems,

34(3), 483-519.

Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning

methods for cyber security intrusion detection. IEEE Communications Surveys &

Tutorials, 18(2), 1153-1176.

Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011). Crowdroid: behavior-based

malware detection system for android. Proceedings of the 1st ACM Workshop on

Security and Privacy in Smartphones and Mobile Devices (pp. 15-26). ACM.

Caruana, R., & Niculescu-Mizil, A. (2006). An Empirical Comparison of Supervised

Learning Algorithms. Proceedings of the 23rd International Conference on

Machine Learning.

Castillo, C. A. (2011). Android malware past, present, and future.

Chan, P. P., & Song, W.-K. (2014). Static detection of Android malware by using

permissions and API calls. 2014 International Conference on Machine Learning

and Cybernetics. 1, pp. 82-87. IEEE.

Chen, S., Fan, L., Chen, C., Su, T., Li, W., Liu, Y., & Xu, L. (2019). Storydroid:

Automated generation of storyboard for Android apps. 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE) (pp. 596-607). IEEE.

Contagio Malware Dump. (2020). Retrieved 12 1, 2019, from

contagiodump.blogspot.com: http://contagiodump.blogspot.com/

Coronado-De-Alba, L. D., Rodriguez-Mota, A., & Escamilla-Ambrosio, P. J. (2016).

Feature selection and ensemble of classifiers for Android malware detection. 2016

8th IEEE Latin-American Conference on Communications (LATINCOM) (pp. 1-

6). IEEE.

Dex to Java decompiler. (2019). Retrieved 12 1, 2019, from github.com/skylot:

https://github.com/skylot/jadx

Duc, N. V., & Giang, P. T. (2018). NADM: Neural Network for Android Detection

Malware. Proceedings of the Ninth International Symposium on Information and

Communication Technology (pp. 449-455). ACM.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P., . . . Sheth, A. N.

(2010). TaintDroid: an information-flow tracking system for realtime privacy

174

monitoring on smartphones. ACM Transactions on Computer Systems (TOCS),

32(2), 5.

Fan, M., Liu, J., Wang, W., Li, H., Tian, Z., & Liu, T. (2017). Dapasa: detecting android

piggybacked apps through sensitive subgraph analysis. IEEE Transactions on

Information Forensics and Security, 12(8), 1772-1785.

Fang, Z., Wang, J., Li, B., Wu, S., Zhou, Y., & Huang, H. (2019). Evading Anti-Malware

Engines With Deep Reinforcement Learning. IEEE Access, 7, 48867-48879.

Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S., Conti, M., & Rajarajan,

M. (2015). Android security: a survey of issues, malware penetration, and

defenses. IEEE Communications Surveys & Tutorials, 17(2), 998-1022.

Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., & Furnell, S. (2017).

Androdialysis: Analysis of android intent effectiveness in malware detection.

Computers & Security, 65, 121-134.

Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. (2011). Android permissions

demystified. Proceedings of the 18th ACM Conference on Computer and

Communications Security (pp. 627-638). ACM.

Firdaus, A., Anuar, N. B., Karim, A., & Ab, R. M. (2018). Discovering optimal features

using static analysis and a genetic search based method for Android malware

detection. Frontiers of Information Technology & Electronic Engineering, 19(6),

712-736.

Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware analysis and classification: A

survey. Journal of Information Security, 2014.

Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, G., & Vazquez, E. (2009).

Anomaly-based network intrusion detection: Techniques, systems and challenges.

Computers & Security, 28(1), 18-28.

Ghaffari, F., Abadi, M., & Tajoddin, A. (2017). AMD-EC: Anomaly-based Android

malware detection using ensemble classifiers. 2017 Iranian Conference on

Electrical Engineering (ICEE) (pp. 2247-2252). IEEE.

Ghorbanzadeh, M., Chen, Y., Ma, Z., Clancy, T. C., & McGwier, R. (2013). A neural

network approach to category validation of android applications. 2013

International Conference on Computing, Networking and Communications

(ICNC) (pp. 740-744). IEEE.

175

Global mobile OS market share in sales to end users from 1st quarter 2009 to 2nd

quarter 2017. (2018). Retrieved 3 24, 2018, from statista.com:

https://www.statista.com/statistics/266136/global-market-share-held-by-

smartphone-operating-systems/

Glodek, W., & Harang, R. (2013). Rapid permissions-based detection and analysis of

mobile malware using random decision forests. MILCOM 2013-2013 IEEE

Military Communications Conference (pp. 980-985). IEEE.

Grajeda, C., Breitinger, F., & Baggili, I. (2017). Availability of datasets for digital

forensics--And what is missing. Digital Investigation, 22, S94-S105.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.

Journal of Machine Learning Research, 3(Mar), 1157-1182.

Guyon, I., Aliferis, C., Cooper, G., Elisseeff, A., Pellet, J.-P., Spirtes, P., & Statnikov, A.

(2008). Design and analysis of the causation and prediction challenge. Causation

and Prediction Challenge, (pp. 1-33).

Guyon, I., Janzing, D., & Scholkopf, B. (2010). Causality: Objectives and assessment.

Causality: Objectives and Assessment, (pp. 1-42).

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer

classification using support vector machines. Machine Learning, 46(1-3), 389-

422.

Hall, M. A. (1999). Correlation-based feature selection for machine learning. University

of Waikato Hamilton.

Hou, O. (2012). A Look at Google Bouncer. Retrieved 4 6, 2018, from trendmicro.com:

https://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-google-

bouncer/

Huang, C.-Y., Tsai, Y.-T., & Hsu, C.-H. (2013). Performance evaluation on permission-

based detection for android malware. Advances in Intelligent Systems and

Applications, 2, 111-120.

Idrees, F., & Rajarajan, M. (2014). Investigating the android intents and permissions for

malware detection. 2014 IEEE 10th International Conference on Wireless and

Mobile Computing, Networking and Communications (WiMob) (pp. 354-358).

IEEE.

176

Idrees, F., Rajarajan, M., Conti, M., Chen, T. M., & Rahulamathavan, Y. (2017).

PIndroid: A novel Android malware detection system using ensemble learning

methods. Computers & Security, 68, 36-46.

Intents and Intent Filters. (2019). Retrieved 4 1, 2018, from android.com:

https://developer.android.com/guide/components/intents-filters.html

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An Introduction to Statistical

Learning. Springer.

Jang, J.-w., Kang, H., Woo, J., Mohaisen, A., & Kim, H. K. (2015). Andro-autopsy: Anti-

malware system based on similarity matching of malware and malware creator-

centric information. Digital Investigation, 14, 17-35.

Kang, H., Jang, J.-w., Mohaisen, A., & Kim, H. K. (2015). Detecting and classifying

android malware using static analysis along with creator information.

International Journal of Distributed Sensor Networks, 11(6), 479174.

Kononenko, I. (1994). Estimating attributes: analysis and extensions of RELIEF.

European conference on machine learning (pp. 171-182). Springer.

Kotsiantis, S., Zaharakis, I., & Pintelas, P. (2007). Supervised Machine Learning: A

Review of Classification Techniques. Informatica, 31(3), 249-268.

Kursa, M. B., & Rudnicki, W. R. (2011). The all relevant feature selection using random

forest. 5112 ArXiv Preprint ArXiv:.

Langford, E. (2006). Quartiles in elementary statistics. Journal of Statistics Education,

14(3).

Lee, R., & Sumiya, K. (2010). Measuring geographical regularities of crowd behaviors

for Twitter-based geo-social event detection. Proceedings of the 2nd ACM

SIGSPATIAL International Workshop on Location Based Social Networks, (pp. 1-

10).

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017).

Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6), 1-

45.

Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., & Ye, H. (2018). Significant Permission

Identification for Machine Learning Based Android Malware Detection. IEEE

Transactions on Industrial Informatics, 14(7), 3216-25.

177

Li, W., Ge, J., & Dai, G. (2015). Detecting malware for android platform: An svm-based

approach. 2015 IEEE 2nd International Conference on Cyber Security and Cloud

Computing (pp. 464-469). IEEE.

Lin, X., Yang, F., Zhou, L., Yin, P., Kong, H., Xing, W., . . . Xu, G. (2012). A support

vector machine-recursive feature elimination feature selection method based on

artificial contrast variables and mutual information. Journal of Chromatography

B, 910, 149-155.

Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., & Das, K. (2000). The 1999 DARPA

off-line intrusion detection evaluation. Computer Networks, 34(4), 579-595.

Lison, P. (2015). An introduction to machine learning. Language Technology Group

(LTG), 35.

Liu, C.-H., Zhang, Z.-J., & Wang, S.-D. (2016). An android malware detection approach

using Bayesian inference. 2016 IEEE International Conference on Computer and

Information Technology (CIT) (pp. 476-483). IEEE.

Liu, H., Dougherty, E. R., Dy, J. G., Torkkola, K., Tuv, E., Peng, H., . . . Parsons, L.

(2005). Evolving feature selection. IEEE Intelligent Systems, 20(6), 64-76.

Liu, N., Yang, M., & Zhang, S. (2017). Detecting applications with malicious behavior in

Android device based on GA and SVM. 2017 2nd International Conference on

Electrical, Control and Automation Engineering (ECAE 2. Atlantis Press.

Liu, N., Yang, M., Zhang, H., Yang, C., Zhao, Y., Gan, J., & Zhang, S. (2018). Detection

of Android Applications with Malicious Behavior Based on Sparse Bayesian

Learning Algorithm. International Conference on Cloud Computing and Security

(pp. 266-275). Springer.

Lu, Y.-F., Kuo, C.-F., Chen, H.-Y., Chen, C.-W., & Chou, S.-C. (2018). A SVM-Based

Malware Detection Mechanism for Android Devices. 2018 International

Conference on System Science and Engineering (ICSSE) (pp. 1-6). IEEE.

Machine Learning for Malware Detection. (2019). Retrieved 11 10, 2019, from

kaspersky.com: https://media.kaspersky.com/en/enterprise-security/Kaspersky-

Lab-Whitepaper-Machine-Learning.pdf

Mahindru, A., & Singh, P. (2017). Dynamic permissions based Android malware

detection using machine learning techniques. Proceedings of the 10th Innovations

in Software Engineering Conference (pp. 202-210). ACM.

178

Mahmood, R., Mirzaei, N., & Malek, S. (2014). Evodroid: Segmented evolutionary

testing of android apps. Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering (pp. 599-609). ACM.

Mariconti, E., Onwuzurike, L., Andriotis, P., De, C. E., Ross, G., & Stringhini, G. (2016).

Mamadroid: Detecting android malware by building markov chains of behavioral

models. 04433 ArXiv Preprint ArXiv:.

Martin, A., Fuentes-Hurtado, F., Naranjo, V., & Camacho, D. (2017). Evolving deep

neural networks architectures for android malware classification. 2017 IEEE

Congress on Evolutionary Computation (CEC) (pp. 1659-1666). IEEE.

Martin, A., Menendez, H. D., & Camacho, D. (2017). MOCDroid: multi-objective

evolutionary classifier for Android malware detection. Soft Computing, 21(24),

7405-7415.

Melis, M., Maiorca, D., Biggio, B., Giacinto, G., & Roli, F. (2018). Explaining Black-

box Android Malware Detection. ArXiv Preprint.

Moonsamy, V., Rong, J., & Liu, S. (2014). Mining permission patterns for contrasting

clean and malicious android applications. Future Generation Computer Systems,

36, 122-132.

Morales-Ortega, S., Escamilla-Ambrosio, P. J., Rodriguez-Mota, A., & Coronado-De-

Alba, L. D. (2016). Native malware detection in smartphones with android os

using static analysis, feature selection and ensemble classifiers. 2016 11th

International Conference on Malicious and Unwanted Software (MALWARE) (pp.

1-8). IEEE.

Napoleon, D., & Pavalakodi, S. (2011). A new method for dimensionality reduction using

k-means clustering algorithm for high dimensional data set. International Journal

of Computer Applications, 13(7), 41-46.

Nauman, M., Tanveer, T. A., Khan, S., & Syed, T. A. (2018). Deep neural architectures

for large scale android malware analysis. Cluster Computing, 21(1), 569-588.

Naway, A., & Li, Y. (2018). Using Deep Neural Network for Android Malware

Detection. International Journal of Advanced Studies in Computers, Science and

Engineering, 7(12), 9-18.

Nezhadkamali, M., Soltani, S., & Seno, S. A. (2017). Android malware detection based

on overlapping of static features. 2017 7th International Conference on Computer

and Knowledge Engineering (ICCKE) (pp. 319-325). IEEE.

179

Nix, R., & Zhang, J. (2017). Classification of Android apps and malware using deep

neural networks. 2017 International Joint Conference on Neural Networks

(IJCNN) (pp. 1871-1878). IEEE.

Number of Android applications. (2020). Retrieved 5 1, 2020, from appbrain.com:

https://www.appbrain.com/stats/number-of-android-apps

Paja, W., & Pancerz, K. (2017). Feature selection methods applied to severe brain

damages data. 2017 Federated Conference on Computer Science and Information

Systems (FedCSIS) (pp. 199-202). IEEE.

Papadopoulos, H., Georgiou, N., Eliades, C., & Konstantinidis, A. (2018). Android

malware detection with unbiased confidence guarantees. Neurocomputing, 280, 3-

12.

Park, M., Seo, J., Han, J., Oh, H., & Lee, K. (2018). Situational Awareness Framework

for Threat Intelligence Measurement of Android Malware. Journal of Wireless

Mobile Networks, Ubiquitous Computing, and Dependable Applications, 9(3), 25-

38.

Pauck, F., Bodden, E., & Wehrheim, H. (2018). Do android taint analysis tools keep their

promises? Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of

Software Engineering, (pp. 331-341).

Peiravian, N., & Zhu, X. (2013). Machine learning for android malware detection using

permission and api calls. 2013 IEEE 25th International Conference on Tools With

Artificial Intelligence (pp. 300-305). IEEE.

Permissions Overview. (2019). Retrieved 4 1, 2018, from android.com:

https://developer.android.com/guide/topics/permissions/overview.html#permissio

n-groups

Peterson, L. E., & Coleman, M. A. (2005). Comparison of gene identification based on

artificial neural network pre-processing with k-means cluster and principal

component analysis. International Workshop on Fuzzy Logic and Applications

(pp. 267-276). Springer.

Qiao, M., Sung, A. H., & Liu, Q. (2016). Merging permission and API features for

Android malware detection. 2016 5th IIAI International Congress on Advanced

Applied Informatics (IIAI-AAI) (pp. 566-571). IEEE.

180

Raphael, J. (2017). The big secret behind Google Play Protect on Android. Retrieved 12

1, 2018, from computerworld.com:

https://www.computerworld.com/article/3210587/android/google-play-protect-

android.html

Rashidi, B., Fung, C., & Bertino, E. (2017). Android malicious application detection

using support vector machine and active learning. 2017 13th International

Conference on Network and Service Management (CNSM) (pp. 1-9). IEEE.

Reyhani, H. M., Shin, D., Lee, M., Cho, S.-J., & Hwang, C. (2018). AndroClass: An

Effective Method to Classify Android Applications by Applying Deep Neural

Networks to Comprehensive Features. Wireless Communications and Mobile

Computing, 2018.

Rousseeuw, P. J., & Hubert, M. (2011). Robust statistics for outlier detection. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 73-79.

Rovelli, P., & Vigfusson, Y. (2014). Pmds: Permission-based malware detection system.

International Conference on Information Systems Security (pp. 338-357).

Springer.

Sahs, J., & Khan, L. (2012). A machine learning approach to android malware detection.

2012 European Intelligence and Security Informatics Conference (pp. 141-147).

IEEE.

Samani, R., & Davis, G. (2019). McAfee Mobile Threat Report. Retrieved 7 20, 2019,

from mcafee.com: https://www.mcafee.com/enterprise/en-us/assets/reports

Scarsella, A., Reith, R., Chau, M., & Shirer, M. (2018). With Expectations of a Positive

Second Half of 2018 and Beyond, Smartphone Volumes Poised to Return to

Growth, According to IDC. Retrieved 12 1, 2018, from idc.com:

https://www.idc.com/getdoc.jsp?containerId=prUS44240118

scikit-learn - Machine Learning in Python. (2010). Retrieved 4 9, 2019, from scikit-

learn.org: https://scikit-learn.org/

Seo, S.-H., Gupta, A., Sallam, A. M., Bertino, E., & Yim, K. (2014). Detecting mobile

malware threats to homeland security through static analysis. Journal of Network

and Computer Applications, 38, 43-53.

Shahriar, H., Islam, M., & Clincy, V. (2017). Android malware detection using

permission analysis. SoutheastCon (pp. 1-6). IEEE.

181

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From

Theory to Algorithms. Cambridge University Press.

Shang, F., Li, Y., Deng, X., & He, D. (2018). Android malware detection method based

on naive Bayes and permission correlation algorithm. Cluster Computing, 21(1),

966-66.

Sharma, A., & Dash, S. K. (2014). Mining API calls and permissions for Android

malware detection. International Conference on Cryptology and Network Security

(pp. 191-205). Springer.

Shelke, C. J. (2017). Permission based malware detection by using k means algorithm in

Android OS. Asian Journal of Computer Science Engineering (AJCSE), 2(2).

Shih, H.-C., & Liu, E.-R. (2016). New quartile-based region merging algorithm for

unsupervised image segmentation using color-alone feature. Information

Sciences, 342, 24-36.

Smutz, C., & Stavrou, A. (2016). When a Tree Falls: Using Diversity in Ensemble

Classifiers to Identify Evasion in Malware Detectors. NDSS. Internet Society.

Su, X., Zhang, D., Li, W., & Zhao, K. (2016). A deep learning approach to android

malware feature learning and detection. 2016 IEEE Trustcom/BigDataSE/ISPA

(pp. 244-251). IEEE.

Sufatrio, M., Tan, D. J., Chua, T.-W., & Thing, V. L. (2015). Securing android: a survey,

taxonomy, and challenges. ACM Computing Surveys (CSUR), 47(4), 58.

Sun, L., Li, Z., Yan, Q., Srisa-an, W., & Pan, Y. (2016). SigPID: significant permission

identification for android malware detection. 2016 11th International Conference

on Malicious and Unwanted Software (MALWARE) (pp. 1-8). IEEE.

Sung, A. H., & Mukkamala, S. (2003). Identifying important features for intrusion

detection using support vector machines and neural networks. 2003 Symposium

on Applications and the Internet (pp. 209-216). IEEE.

Talal, M., Zaidan, A., Zaidan, B., Albahri, O., Alsalem, M., Albahri, A., . . . Alaa, M.

(2019). Comprehensive review and analysis of anti-malware apps for

smartphones. Telecommunication Systems, 72(2), 285-337.

Tam, K., Feizollah, A., Anuar, N. B., Salleh, R., & Cavallaro, L. (2017). The evolution of

android malware and android analysis techniques. ACM Computing Surveys

(CSUR), 49(4), 76.

182

The best antivirus software for Android. (2018). Retrieved 12 1, 2018, from av-test.org:

https://www.av-test.org/en/antivirus/mobile-devices/

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 58(1), 267-288.

Tsang, C.-H., Kwong, S., & Wang, H. (2007). Genetic-fuzzy rule mining approach and

evaluation of feature selection techniques for anomaly intrusion detection. Pattern

Recognition, 40(9), 2373-2391.

Tukey, J. W. (1977). Exploratory data analysis (Vol. 2). Reading, Mass.

Tuv, E., Borisov, A., & Torkkola, K. (2006). Feature selection using ensemble based

ranking against artificial contrasts. The 2006 IEEE International Joint Conference

on Neural Network Proceedings (pp. 2181-2186). IEEE.

Tuv, E., Borisov, A., Runger, G., & Torkkola, K. (2009). Feature selection with

ensembles, artificial variables, and redundancy elimination. The Journal of

Machine Learning Research, 10, 1341-1366.

Ustebay, S., Turgut, Z., & Aydin, M. A. (2018). Intrusion detection system with recursive

feature elimination by using random forest and deep learning classifier. 2018

International Congress on Big Data, Deep Learning and Fighting Cyber

Terrorism (IBIGDELFT) (pp. 71-76). IEEE.

Verma, S., & Muttoo, S. (2016). An Android Malware Detection Framework-based on

Permissions and Intents. Defence Science Journal, 66(6), 618-623.

VirusShare. (2020). Retrieved 12 1, 2019, from virusshare.com: https://virusshare.com

Wang, W., Li, Y., Wang, X., Liu, J., & Zhang, X. (2018). Detecting Android malicious

apps and categorizing benign apps with ensemble of classifiers. Future

Generation Computer Systems, 78, 987-994.

Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., & Zhang, X. (2014). Exploring

permission-induced risk in android applications for malicious application

detection. IEEE Transactions on Information Forensics and Security, 9(11),

1869-1882.

Wang, W., Zhao, M., & Wang, J. (2018). Effective android malware detection with a

hybrid model based on deep autoencoder and convolutional neural network.

Journal of Ambient Intelligence and Humanized Computing, 10(8), 3035-3043.

183

Wang, X., Wang, J., & Zhu, X. (2016). A Static Android Mal-ware Detection Based on

Actual Used Permissions Combination and API Calls. World Academy of Science,

Engineering and Technology, International Journal of Computer, Electrical,

Automation, Control and Information Engineering, 10(9), 1547-1554.

Weka 3: Data Mining Software in Java. (2018). Retrieved 12 1, 2018, from

cs.waikato.ac.nz: https://www.cs.waikato.ac.nz/ml/weka/

Welcome to the definitive Android Central take on the history of Google's OS. (2015).

Retrieved 4 1, 2018, from androidcentral.com:

https://www.androidcentral.com/android-history

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., & Wu, K.-P. (2012). Droidmat: Android

malware detection through manifest and api calls tracing. 2012 Seventh Asia Joint

Conference on Information Security (Asia JCIS) (pp. 62-69). IEEE.

Xu, K., Li, Y., Deng, R. H., & Chen, K. (2018). DeepRefiner: Multi-layer Android

Malware Detection System Applying Deep Neural Networks. 2018 IEEE

European Symposium on Security and Privacy (EuroS&P) (pp. 473-487). IEEE.

Xu, W., Zhang, F., & Zhu, S. (2013). Permlyzer: Analyzing permission usage in android

applications. 2013 IEEE 24th International Symposium on Software Reliability

Engineering (ISSRE) (pp. 400-410). IEEE.

Yang, M., Wang, S., Ling, Z., Liu, Y., & Ni, Z. (2017). Detection of malicious behavior

in android apps through API calls and permission uses analysis. Concurrency and

Computation: Practice and Experience, 29(19), e4172.

Yerima, S. Y., Sezer, S., & Muttik, I. (2015). High accuracy android malware detection

using ensemble learning. IET Information Security, 9(6), 313-320.

Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. (2013). A new android malware

detection approach using bayesian classification. 2013 IEEE 27th International

Conference on Advanced Information Networking and Applications (AINA) (pp.

121-128). IEEE.

Zhang, Y., Yang, Y., & Wang, X. (2018). A Novel Android Malware Detection

Approach Based on Convolutional Neural Network. Proceedings of the 2nd

International Conference on Cryptography, Security and Privacy (pp. 144-149).

ACM.

184

Zhao, M., Ge, F., Zhang, T., & Yuan, Z. (2011). Antimaldroid: An efficient svm-based

malware detection framework for android. International Conference on

Information Computing and Applications (pp. 158-166). Springer.

Zhao, M., Zhang, T., Ge, F., & Yuan, Z. (2012). RobotDroid: a lightweight malware

detection framework on smartphones. Journal of Networks, 7(4), 715.

Zhao, X., Fang, J., & Wang, X. (2014). Android malware detection based on permissions.

IET.

Zhou, Y., & Jiang, X. (2012). Dissecting android malware: Characterization and

evolution. 2012 IEEE Symposium on Security and Privacy (pp. 95-109). IEEE.

Retrieved from http://malgenomeproject.org

Zhou, Y., Wang, Z., Zhou, W., & Jiang, X. (2012). Hey, you, get off of my market:

detecting malicious apps in official and alternative android markets. NDSS. 25,

pp. 50-52. Internet Society.

Zhu, H.-J., Jiang, T.-H., Ma, B., You, Z.-H., Shi, W.-L., & Cheng, L. (2018). HEMD: a

highly efficient random forest-based malware detection framework for Android.

Neural Computing and Applications, 30(11), 3353-61.

Zhu, H.-J., You, Z.-H., Zhu, Z.-X., Shi, W.-L., Chen, X., & Cheng, L. (2018). DroidDet:

effective and robust detection of android malware using static analysis along with

rotation forest model. Neurocomputing, 272, 638-646.

	Feature Selection on Permissions, Intents and APIs for Android Malware Detection
	Share Feedback About This Item

	tmp.1620045174.pdf.0K5kt

