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Malicious applications pose an enormous security threat to mobile computing devices.    

Currently 85% of all smartphones run Android, Google’s open-source operating system, 

making that platform the primary threat vector for malware attacks.  Android is a 

platform that hosts roughly 99% of known malware to date, and is the focus of most 

research efforts in mobile malware detection due to its open source nature.  One of the 

main tools used in this effort is supervised machine learning.  While a decade of work has 

made a lot of progress in detection accuracy, there is an obstacle that each stream of 

research is forced to overcome, feature selection, i.e., determining which attributes of 

Android are most effective as inputs into machine learning models. 

 

This dissertation aims to address that problem by providing the community with an 

exhaustive analysis of the three primary types of Android features used by researchers: 

Permissions, Intents and API Calls.  The intent of the report is not to describe a best 

performing feature set or a best performing machine learning model, nor to explain why 

certain Permissions, Intents or API Calls get selected above others, but rather to provide a 

holistic methodology to help guide feature selection for Android malware detection. 

 

The experiments used eleven different feature selection techniques covering filter 

methods, wrapper methods and embedded methods.  Each feature selection technique 

was applied to seven different datasets based on the seven combinations available of 

Permissions, Intents and API Calls.  Each of those seven datasets are from a base set of 

119k Android apps.  All of the result sets were then validated against three different 

machine learning models, Random Forest, SVM and a Neural Net, to test applicability 

across algorithm type.   

 

The experiments show that using a combination of Permissions, Intents and API Calls 

produced higher accuracy than using any of those alone or in any other combination and 

that feature selection should be performed on the combined dataset, not by feature type 

and then combined.  The data also shows that, in general, a feature set size of 200 or 

more attributes is required for optimal results.  Finally, the feature selection methods 

Relief, Correlation-based Feature Selection (CFS) and Recursive Feature Elimination 

(RFE) using a Neural Net are not satisfactory approaches for Android malware detection 

work. 

 



Fred Guyton 

 

 

 

Based on the proposed methodology and experiments, this research provided insights into 

feature selection – a significant but often overlooked issue in Android malware detection. 

We believe the results reported herein is an important step for effective feature evaluation 

and selection in assisting malware detection especially for datasets with a large number 

of features. The methodology also has the potential to be applied to similar malware 

detection tasks or even in broader domains such as pattern recognition. 
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Chapter 1 

Introduction     

Background 

Smartphones have become ubiquitous during this past decade and have come to 

store more and more of their owner’s personal data, going well beyond simple contact 

and social media data but including much more sensitive and private information such as 

usernames and passwords for access to financial sites as well as payment information 

itself such as credit card and bank account numbers.  During this time the predominant 

mobile platforms have resolved down to two systems: Android and Apple (iOS).   

Android, owned by Google, now has 85% of the world market share according to IDC, an 

industry leading technology research firm (Scarsella, Reith, Chau, & Shirer, 2018)  

Apple’s iOS has the remaining 15% market share with all other platforms being 

negligible.  

Android 

Google’s mobile operating system was originally developed by a company of the 

same name, Android, started by Andy Rubin, a former engineer at Apple (Welcome to 

the definitive Android Central take on the history of Google's OS, 2015).  It was built 

based on the Linux kernel for convenience of getting device drivers, memory 

management, process management, networking and security with minimal effort.  Google 

purchased Android (the company) in 2005 and later released the first commercial device 

running Android in 2008, the T-Mobile G1 built by HTC, just over a year after the debut 
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of the first iPhone.  In a step that turned out to be extremely important, Google also open-

sourced it as the Android Open Source Project (AOSP). 

At the time, the dominant mobile phone operating system was Symbian at almost 

50% market share, used by Samsung, Motorola, Sony Ericsson, Nokia and other smaller 

players (Global mobile OS market share in sales to end users from 1st quarter 2009 to 

2nd quarter 2017, 2018).   In second place was Blackberry OS by RIM at 20% and third 

place was a tie between Windows Phone by Microsoft and iOS on Apple’s iPhone, both 

at 10%.  With Android being open source, it was adopted by several manufacturers and 

started to experience phenomenal growth.  By mid-2010 it overtook iOS and today is the 

dominant player at 85% share of the mobile market. 

Applications are the essence of what makes smartphones “smart”.  Google, Apple 

and other third-party developers use “app stores” as convenient online sources for free 

and paid apps, easily accessible by users who can download and install apps on their 

device with no outside assistance.  The official Google app store is Google Play.  As of 

the end of the first quarter of 2020, there were over 2.9 million apps available on Google 

Play (Number of Android applications, 2020).   

As mentioned earlier, Android is built on top of a modified Linux kernel.  As 

shown in Figure 1 there are three additional architectural layers, Native Libraries and 

Runtime environment, the App Framework, and Applications. 

The Linux kernel acts as the hardware abstraction layer and provides the basic 

computing infrastructure.  The next layer up has two segments.  The Native Libraries 

which provide key services with examples being media, audio and database management.  

The Runtime environment contains the ART VM (Android Runtime Virtual Machine) 
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which is the equivalent of a JVM (Java Virtual Machine) except written specifically for 

Android.  It runs Dex files, which are the byte code files that come from compiling Java 

classes and JAR files for Android.  ART replaced the Dalvic VM from earlier versions of 

Android.  Also in the Runtime environment are the core libraries which provide the basic 

Java package and associated utilities. 

The next level up is the App Framework which provides all the service 

“managers” for applications, such as the Telephony Manager and Location Manager.  

These are built around four major components: activities, services, broadcast receivers 

and content providers. 

Activities are essentially a user interface (UI).  It represents a single screen, so an 

app may have many different activities with each being independent from the others.  

Activities are launched using Intents, a concept covered in a later section. 

Figure 1 

Android Architecture 
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Services are for keeping an app running in the background to perform long-

running operations such as playing music while the user does something else on the 

device.   Services do not have UIs (activities) and as with activities, services are launched 

using Intents.   

Broadcast Receivers are used to broadcast messages to the system or other apps 

allowing them to react to events such as a text message being received, or the screen 

being turned off.  Like services they have no UI and are launched using Intents. 

Content Providers manage a shared set of app data (or data-store) for situations 

where apps want to share their data with other apps, such as Contacts being available to 

the email app or phone app.  UIs are handled by the app making use of the content 

provider (Faruki, et al., 2015; Application Fundamentals, 2020). 

The top layer in the Android stack (Figure 1) is that of Applications.  Apps are 

written in the programming languages Java and/or Kotlin.  To access the lower layers of 

the stack, apps use Intents, as discussed above, as well as Permissions, with all being 

programmed using the exposed Android APIs. 

Permissions are a key part of Android often playing a significant role in malware 

detection.  The purpose of a Permission is to protect the privacy and data of the user. 

Apps must request permission to access certain sensitive user data such as text messages 

and contacts, as well as various system components such as the camera, microphone, and 

network.  Depending on the Permission level, Android might grant the permission 

automatically or might prompt the user to approve or disapprove the request. 

Android categorizes all Permissions into four categories: normal, dangerous, 

signature and special. 
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Normal - Permissions that have minimal risk to the user, system or device and are 

granted by default at install time.  They protect access to APIs that can cause no harm 

such as installing a shortcut. 

Dangerous - Permissions considered as high risk given their capability of 

accessing private data and important sensors on the device.  Users must accept or decline 

an app’s ability to use a dangerous Permission as the app is being installed.  These 

Permissions protect access to APIs that could cause harm, like those related to spending 

money or collecting private data.  Examples would include the ability to read text 

messages or record audio. 

Signature - Permissions that are granted only if the requesting app is signed by the 

same certificate authority as the app that defined the permission.  Given that security 

check, they are granted automatically at the install time and are available with the system 

apps.  APIs that require such permission level include accessing voicemail, NFC and 

VPN, among others. 

Special - Permissions are system level and labeled “Not for use by 3rd party 

apps.”  Examples include the APIs granting access to system alerts and writing settings 

(Felt, Chin, Hanna, Song, & Wagner, 2011; Tam, Feizollah, Anuar, Salleh, & Cavallaro, 

2017; Permissions Overview, 2019). 

Intents are another important piece of the Android OS.  An Intent is a messaging 

component for requesting an action from another app component.  Three fundamental use 

cases are: starting an activity, starting a service and initiating a broadcast.  They are used 

extensively for inter-application and intra-application communication.  Android restricts 
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who may send certain intents to prevent apps from mimicking them (Felt, Chin, Hanna, 

Song, & Wagner, 2011). 

There are two types of Intents: explicit and implicit. 

Explicit – Intents that specify precisely which app will be used.  Known as early 

binding, this type is typically used to start a component within the same app such as 

starting a new activity in response to a user action, or start a service. 

Implicit – Known as late binding, it does not name a specific component but 

rather declares an action to perform for which a component from another app can 

manage.  An example is an app that wants to display a location on a map might use an 

implicit Intent to request that some other app capable of performing that function show 

the specified location on a map (Intents and Intent Filters, 2019). 

Android’s tremendous marketshare and open architecture make it a popular target 

for malicious apps.  Security firm AV-Test reports that over the last three years there was 

an average of 5.9 million new malicious apps per year specifically targeting Android 

(AV-Test Malware Statistics, 2019).  The malware covers a large range of nefarious 

processes aimed at mobile devices, from stealing users’ most sensitive information to one 

of the most popular today - running botnets for crypto-currency mining (Samani & Davis, 

2019).   

The popularity also means that Google Play, the app store, is a key threat vector.  

Google took steps to address the problem in 2012 by deploying to Google Play a 

scanning tool called Bouncer to help detect malware, but according to Hou (2012) there 

was minimal impact due to the limited scope of the scan.  Five years later in 2017, 

Google rebranded Bouncer under the name “Play Protect” and included on-device 
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protection (Amadeo, 2017) but according to an analysis by Computerworld, all the 

services announced as part of Play Protect were already part of Play Store and Android 

for some time past (Raphael, 2017), so once again there was minimal impact.  A recent 

comparison of different antivirus products on Android by an independent test lab rated 

Play Protect last among twenty products tested (The best antivirus software for Android, 

2018). 

Threat Detection 

In classic intrusion detection as well as mobile malware detection, approaches are 

classified as either signature-based or anomaly-based.  As described by Garcia-Teodoro, 

Diaz-Verdejo, Maciá-Fernández and Vázquez (2009), signature-based systems look for 

defined patterns, or signatures within the app and compare to a signature database of 

known attacks.  Anomaly-based systems attempt to model the “normal” behavior of a 

system and generate an anomaly alert whenever the difference between an observation 

and the normal behavior exceeds some predefined threshold.   

Within the world of anomaly-based detection, another stratification of techniques 

relates to how the analysis is accomplished.  Detection of malware happens by either 

examining its code or by executing it in a safe environment (Gandotra, Bansal, & Sofat, 

2014).  The former is known as static analysis.  With static analysis, the executable app 

(in Android referred to as an APK file) first has to be decompiled into source code and 

that code is analyzed for patterns that indicate malware or not.  The latter is known as 

dynamic analysis.  Dynamic analysis occurs with the app running and monitors things 

like information flow, function calls, etc., with the goal of observing what the app does 

and detecting if it is malware or not based on its actions. 
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Garcia-Teodoro, et al., further categorize anomaly-based systems as either: 1) 

statistical-based, which is focused on stochastic behavior, 2) knowledge-based, which 

requires availability of prior knowledge and/or data, or 3) machine learning-based, which 

is essentially a categorization of patterns.  The third one is of interest here and is explored 

in more detail in the next section. 

Machine Learning 

Machine learning techniques can be mapped to three primary scenarios: 1) 

situations where examples of data are available that provide the input and the output, 2) 

situations where only the input data is available and 3) situations where only the input 

data is available but there is a feedback loop indicating the quality of the prediction  

(Lison, 2015).  The three cases are generally referred to as: supervised learning, 

unsupervised learning and reinforcement learning, respectively. 

Considering the problem of malware detection with respect to these three, 

reinforcement learning has yet to be shown as an effective tool given the nature of the life 

cycle of malware.  “Reinforcement” would require someone identifying that they had 

installed malware and feeding that back into the detection engine, which implies the 

event to be prevented, installing malware, had already occurred and that the user would 

know that and report it.  Interestingly it is being used to attack malware detection as 

described by Anderson, Kharkar, Filar, Evans and Roth (2018), and Fang, Wang, Li, Wu, 

Zhou and Huang (2019), where they demonstrate the use of reinforcement learning 

against dynamic analysis and static analysis respectively. 

Unsupervised learning has low applicability as a stand-alone approach to malware 

detection due to the need for positive identification of malware as well as the need for 
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low false positives.  However, it is often used in feature engineering where the goal is to 

understand the structure of various features in an application (Machine Learning for 

Malware Detection, 2019).  This understanding is then applied to feature selection to be 

used in supervised models such as demonstrated by Verma and Muttoo (2016) who used 

the unsupervised technique of K-means clustering to limit the number of features to be 

analyzed by a supervised approach using Decision Trees. 

Supervised learning as described by Shalev-Shwartz and Ben-David (2014) is 

"using experience to gain expertise," by having a training example that has key 

information that is missing from other test data, or data of interest in the wild.  This key 

information, typically referred to as labels on the data, is used to teach or supervise the 

learner by providing the answers to how the model should predict based on input.  The 

model is then applied to unlabeled data to make predictions without having the answers a 

priori. 

In supervised learning, target predictions can be characterized as either 

quantitative or qualitative, where the quantitative variables have numerical values and 

qualitative variables have values in one of n different classes, or categories (James, 

Witten, Hastie, & Tibshirani, 2017).  These two approaches are generally referred to as 

regression versus classification respectively.  Regression approaches aim to predict 

values along a continuous output variable.  Examples include a stock price, the value of a 

house, and a person’s income.  Classification approaches aim to predict values of discreet 

output variables.  Examples of classification variables include email type (spam or not 

spam), whether a person will default on a loan (yes or no), whether a patient has cancer 

(yes or no), and of most importance here, whether an application is malware or benign. 
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There are a number of approaches, or algorithms, for supervised machine 

learning.  Following is a list and brief description of the supervised machine learning 

classifiers that are most widely used today. (James, Witten, Hastie, & Tibshirani, 2017; 

Shalev-Shwartz & Ben-David, 2014) 

Support Vector Machine (SVM):  A linear method of classification in which data 

is defined as points in an n-dimensional space (where n is the number of features). 

The model defines a hyperplane that optimally separates (classifies) all of the data 

points onto one side or the other of the hyperplane. 

Bayesian Networks:   An algorithmic applications of Bayes theorem resulting in a 

probabilistic graphical model representing the relationships between several 

random variables, or features. 

Naïve Bayes:  Another probabilistic classifier based on Bayes theorem but with a 

significant restriction.  The “naïve” moniker is due to the fact that it assumes that 

the presence of a particular feature in a class is unrelated to the presence of any 

other feature. 

Decision Trees:  Classification models in the form of a tree structure where data 

points are broken down into smaller and smaller subsets as an associated decision 

tree is incrementally developed as an “if-then” rule set.  The resulting structure 

has branches and leaves where branches represent a decision node and leaves 

represent a classification node. 

K-nearest Neighbor:  An instance-based algorithm in which data is defined as 

points in an n-dimensional space.  When a new data point arrives, the closest k 



11 

 

 

number of instances (nearest neighbors) to that point are analyzed and the most 

common class of those are the prediction or classification of the new data point. 

Logistic Regression:  Regardless of the regression term in the name, it is a 

classification algorithm.  It transforms n features using the logistic function, most 

often using a sigmoid curve, to a probability output from 0 to 1 which can then be 

interpolated into binary results. 

Artificial Neural Networks (ANN):  Models that are inspired by the structure of 

biological neural networks.  They consist of a set of connected input/output units 

in two or more layers where each connection has a weight associated with it that 

gets tuned in the training phase to adapt the network to the particular problem at 

hand. 

Ensemble methods are machine learning techniques that combines several models 

such as just described in order to produce an even better predictive model.  The following 

four techniques are ensemble methods used in conjunction with one or more of the 

previously described algorithms. 

Random Forest:  An ensemble technique for supervised learning classification 

that works by constructing a multitude of decision trees.  The final classification 

is the mode of the classes (classification) of the individual trees.  

Adaptive Boosting:  Also known as AdaBoost, it is used with many different 

machine learning algorithms but typically with only one type per model.  It is a 

sequential ensemble method where the output of those algorithms, referred to as 

weak learners, are combined into a weighted sum that represents the final output 

of the boosted classifier. 
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Bootstrap Aggregation:  Also known as Bagging, this technique can also be used 

with many different machine learning algorithms but typically with only one type 

per model.  It is a parallel ensemble method that uses bootstrap sampling of the 

dataset to construct many independent models using the weak learners and 

aggregating those results into a final classification. 

Stacking: An ensemble method that uses multiple different machine learning 

algorithms in a single model.  The various algorithms use the same dataset, and 

their output is fed into yet another machine learning algorithm as a meta-model.  

This meta-model will take the outputs of the weak learners as inputs and develop 

a final classification. 

When trying to decide between machine learning approaches (algorithms) one 

obvious candidate for including in the selection criteria is performance.  Caruana and 

Niculescu-Mizil (2006) performed a large-scale empirical comparison of several 

supervised learning algorithms using eight performance criteria.  Comparing machine 

learning techniques in general can be problematic given the tendency for some techniques 

to perform better in certain problem domains, so this study used eleven different 

classification problems and associated datasets.  The datasets were diverse including 

census data, medical imaging, particle physics, text recognition and biological data. 

The machine learning techniques under study were Decision Trees, SVMs, 

Logistic regression, Naïve Bayes, ANN and K-nearest Neighbor along with three 

ensemble methods on Decision Trees: Random Forests, Bagged Decision Trees and 

Boosted Decision Trees.  The performance criteria included threshold metrics, 

ordering/rank metrics and probability metrics.  The first group included accuracy, F-score 
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and lift.  The second included area under the ROC curve (Receiver operating 

characteristic), average precision, and precision/recall breakeven point.  The probability 

metrics were squared error (Root Mean Square) and cross-entropy. 

A summary of the results of their testing is presented in Table 1.  It is interesting 

to note that for all performance metrics, which includes all the problem domains under 

study, the three ensemble methods dominated the top three positions.  Considering non-

ensemble techniques, SVMs and Neural Nets performed best, again across all 

performance metrics.  Conversely, the lowest performers were consistently Logistic 

Regression and Naïve Bayes. 

Kotsiantis, Zaharakis and Pintelas (2007) analyzed a number of supervised 

learning techniques that also included Decision Trees, SVMs, Naïve Bayes, ANN and K-

nearest Neighbor, but no ensemble methods.  A normalized summary of their data is 

presented in Table 2.  This study has more qualitative commentary and performance 

criteria related to speed compared to the prior study, but the first column does address 

accuracy.  In that metric, SVMs and Neural Nets are cited as the top performers, which 

directly coincides with the results of the Caruana and Niculescu-Mizil work when not 

Table 1 

Caruana and Niculescu-Mizil Performance Study 
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considering ensemble techniques.  Both studies also have Naïve Bayes as the lowest 

performer. 

Feature Selection 

In machine learning, features are individual independent measurable properties or 

characteristics that act as input into the model.  For example, a machine learning model 

used to predict the probability of rain might have features such as the outside 

temperature, wind speed and humidity.  Complex models can contain large numbers of 

input features, hundreds and even thousands. 

Feature selection is the process of selecting a subset of relevant features for use in 

construction of machine learning models.  In their seminal work on the subject, Guyon 

and Elisseeff (2003) described three reasons to focus on improving feature selection: 1) 

higher model accuracy, 2) faster model performance and 3) better understanding of the 

model itself.  They went on to suggest that researchers with sufficient time and 

computational resources should “compare several feature selection methods, including 

[…] new idea[s]” and approaches. 

According to Liu, et al. (2005), the goals of feature selection in machine learning 

are: 

• Reducing dimensionality,  

Table 2  

Kotsiantis, Zaharakis and Pintelas Comparison 
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• Removing irrelevant and redundant features,  

• Reducing the amount of data needed for learning,  

• Improving algorithms’ predictive accuracy, and  

• Increasing the constructed models’ comprehensibility 

There are a number of approaches to feature selection.  One that can be best 

described as exhaustive search is exemplified by the work of Sung and Mukkamala 

(2003) in which to select the most effective features of the classic KDD dataset 

(Lippmann, Haines, Fried, Korba, & Das, 2000) they removed variables one-by-one and 

reran their models each time determining the accuracy based on all features minus the 

one removed.  This technique inherently assumes complete independence of attributes. 

Another approach is to use heuristics, such as that by Li, Ge and Dai (2015) 

where they relied on the Android categorization of Permissions, using only the ones 

labeled as “Dangerous Permissions” (Permissions Overview, 2019).  Using heuristics 

requires domain knowledge.  In this instance, the authors understand how Google labels 

groups of permissions and decided that based on their domain knowledge the use of that 

subgroup of Permissions was appropriate. 

A third, and the most common approach to feature selection, is called filter 

methods, which use a statistical measure to assign a score to each feature and who’s 

ranking ultimately determines if they are used or not.  The methods are often univariate 

and consider the features independently.  As examples, Chan and Song (2014) used 

information gain theory in their feature selection of Android Permissions and API calls.  

Tsang, Kwong and Wang (2007) performed a comparison of analysis techniques 

including information gain theory, gain ratio, Chi-square and Relief-F.   
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A fourth technique is called wrapper methods which treat feature selection as a 

search problem.  Some predictive model is used to evaluate a combination of features and 

assign a score based on model accuracy.  Various search techniques can be employed.  

As an example, Wang, Wang, Feng, Liu, Han and Zhang (2014) used forward selection 

which is an iterative approach with each iteration adding the feature which best improves 

the model. 

A feature selection approach referred to as embedded methods attempts to learn 

which features best contribute to the accuracy of the model while the model is being 

created. Of these approaches, the most common are regularization methods that introduce 

additional constraints into the optimization of a predictive algorithm in order to bias the 

model towards lower complexity.  Nezhadkamali, Soltani and Seno (2017) used one of 

the more popular regularization algorithms, LASSO or L1 regularization, in their 

comparison with various filter methods.   

A variation on feature selection is often referred to as feature learning.  The goal 

with this approach is to allow a system to automatically discover what feature 

representations are needed for accurate classification and more specifically some number 

of representations that is significantly less than the original number of features in the raw 

data.  One of the more popular techniques for this dimensionality reduction approach is 

Principle Component Analysis (PCA).  PCA is an unsupervised algorithm that creates 

linear combinations of the original features ranked in order of variance allowing a subset, 

amounting to the most important, to be selected thereby reducing the number of features.  

With respect to malware detection, Zhao, Fang and Wang (2014) used PCA with a 
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feature set of Android Permissions to define the attributes for input into a Support Vector 

Machine as the primary classifier. 

K-means clustering is another popular approach for dimensionality reduction. 

This unsupervised technique tries to find k-clusters of the data by minimizing the square 

error function.  The new attributes are then represented by the centroids of the clusters.  

K-means can be computationally expensive, so in an interesting variation, Napoleon and 

Pavalakodi (2011) used PCA on their high-dimensional dataset first and then applied K-

means clustering for further reductions. 

An approach that has gained significantly in popularity of late is the use of Neural 

Networks.  This is often referred to as deep learning, but some use the term deep learning 

simply to imply the use of multi-layer, deep, Neural Networks.   

There are a number of variations in the use of Neural Networks for dimensionality 

reduction.  In one such, with respect to Android malware detection, Su, Zhang, Li and 

Zhao (2016) used a Neural Network based on a Deep Belief Network (DBN) for feature 

learning against Permissions and API calls with the selected features then used for input 

into a Support Vector Machine for classification.  They reported improved results to other 

published ML techniques but had no direct comparison.  Nix and Zhang (2017) also used 

a Neural Net, specifically a Deep Neural Network (DNN) to automatically learn features 

on Android APKs.  They restricted their feature types to API calls only and on sequences 

thereof as opposed to existence.  Results were compared to the use of SVM and Naïve 

Bayes on the same dataset and showed a higher accuracy. 

Duc and Giang (2018) used a Neural Network model based on a Multilayer 

Perceptron (MLP) to learn features from Permissions, Intents (Intents and Intent Filters, 
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2019), API calls, app components, hardware used and URLs.  The results, compared to 

prior published results on the same dataset using an SVM, were mixed showing a higher 

precision but a lower recall.  In a similar study Wang, Zhao and Wang (2018) used 

variations of a Convolution Neural Network (CNN) for feature learning also including 

the feature types: Permissions, Intents, API calls and hardware used.  Their results were 

compared to the same dataset run on an SVM,  Decision Tree, Random Forest and K-

nearest Neighbor and showed an increase in accuracy. 

Android Features 

Feature selection starts by defining what set or type of features will be used in the 

model.  For example, with respect to Android malware detection using static analysis, the 

input could be limited to just Android Permissions with the idea being that the selection 

process will determine, of all the Permissions available in the Android OS, which ones 

should be used in the machine learning classifier.   

A survey was conducted by this author on research related to Android malware 

detection using static analysis and machine learning.  Over the 71 publications reviewed, 

there was a total of eleven different Android features used, some using just a single 

feature type, others using multiple.  Table 3 shows a metadata analysis of features used.  

By far, the most common attribute type used are Permissions, with 82% of the 

publications describing their use.  Second is API calls with just over 50% including that 

feature, and third are Intents at 24%.  The remaining eight features are used much more 

sparsely as shown in the table. 

 It is also interesting to note that most researchers do not detail the features used.  

There are currently a total of 158 Permissions in the Android OS so it would be of value 
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to know precisely which ones are important.  The same can be said for other features 

such as Intents of which there are 295 Intents defined in Android, and there are hundreds 

of variations on API calls given the hierarchical nature of API definitions. 

Problem Statement 

This variety in approaches to static analysis points to a problem in the academic 

and commercial arena of Android malware detection; there is a lack of agreement 

regarding what Android feature set is most effective for detecting zero-day attacks with 

machine learning techniques.  Not only is there significant disagreement on the categories 

of Android features that are effective (Permissions, API Calls, etc.) but there are 

hundreds of discrete attributes in those categories and there is no consistency in which 

discrete attributes of the categories are effective.  Using Permissions as an example, there 

are 158 different Permissions defined in Android.  Some researchers just use the subset 

that Google classifies as "dangerous".  In other cases, the Permissions subset was hand 

Table 3  

Summary of Android Features Used by Publication 
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selected based on the researchers' domain knowledge.  And often, the dataset in question 

is simply run through some selection method such as Information Gain, and results are  

blindly accepted as the most important subset to apply.  In large part this inconsistency in 

approach is due to the fact that there is no definitive study to provide guidance to 

researchers who desire to get past the task of feature selection and work on innovative 

next-step approaches in detection. 

Dissertation Goal 

The goal of this research is to advance the state of the industry’s knowledge on 

feature sets used for Android static analysis malware detection.  Figure 2 presents the 

evaluation framework of the approach.  The column on the left labeled as Original 

Figure 2  

Feature Set Evaluation Framework 
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Feature Sets represents all possible combinations of the three groups of features under 

evaluation: Permissions, Intents and APIs.  Given that the research community uses 

various combinations of these, as demonstrated earlier, then using each combination as a 

starting feature provides the broadest possible domain coverage. 

 The second column, labeled  Feature Subset Selection, depicts the categories of 

feature selection techniques used: two filter method approaches, univariate and 

multivariate, wrapper methods and embedded methods.  Each category represents one or 

more algorithms employed to create a feature subset for each of the original feature sets 

from the first column. 

This provides a broad set of top-level feature subsets representing every possible 

combination of the original feature sets and the feature selection techniques.  In terms of 

concrete numbers, there are seven original feature sets and eleven feature selection 

algorithms across the four defined categories which equals 77 different feature subsets.  

Within these top-level subsets, feature importance is determined by the weights assigned 

by each algorithm in addition to comparison to random columns of data included in each 

dataset.  The point of this latter aspect is that regardless of a feature's reported weight, if 

it cannot predict better than features consisting of random data, it should be discarded.  

Finally, subsets of the important features (top five, top ten, etc.) are created to look at the 

effect of feature count.  As detailed later, this resulted in 615 unique feature subsets. 

The third column, Feature Set Validation, is where each of the 615 feature subsets 

are used as input into three different different machine learning algorithms.  Thus, there 

are 1,845 total test cases evaluated and analyzed. 



22 

 

 

This approach significantly adds to a very limited amount of feature selection 

knowledge in the Android space by providing a robust analysis of the key feature types 

and providing detailed result sets naming the specific attributes that prove to be most 

relevant for the various machine learning algorithms. 

Note that it was not a goal of the research to find a best performing feature set or a 

best performing machine learning model, nor to explain why certain Permissions, Intents 

or API Calls get selected above others.  

Research Questions 

1. How does feature ranking vary when Permissions, Intents and API Calls are selected 

separately versus combined? 

2. How does feature ranking vary across feature selection algorithms? 

3. How does machine learning model accuracy vary across machine learning algorithms 

and feature selection algorithms? 

4. How does feature set size affect model accuracy across feature selection methods? 

5. Among Permissions, Intents and API Calls, what are the important features? 

Relevance and Significance 

As discussed in the section Feature Selection, the importance of selecting the 

most appropriate features for machine learning algorithms cannot be overstated.  To date, 

no one has taken a systematic approach to evaluation of features in the Android malware 

detection arena.  This research is the first. 

The shear variation in approach by the research community as documented 

previously in Android Features and more specifically Table 3 shows the depth of the 
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problem.  In addition, most feature selection studies publish the results strictly in terms of 

malware detection capability, not the actual list of features, just the category used.  This 

research not only publishes the performance results, but the details of which features 

were selected by the various methods providing a significant reference to future 

researchers. 

Assumptions, Limitations and Delimitations 

1. The scope of the investigation is limited to Android Permissions, Intents and API 

Calls. 

2. The scope of the investigation is limited to eleven feature selection methods (detailed 

in the Methodology section). 

3. The scope of the investigation is limited to three machine learning algorithms 

(detailed in the Methodology section). 

Definition of Terms 

Accuracy: The fraction of predictions a machine learning model predicts correctly. 

Android application package (APK): The package file format used by the Android 

operating system for distribution and installation of applications. 

Application Programming Interface (API): A set of definitions and protocols for 

integrating software components or applications.  

Area Under the Curve (AUC): Measures the quality of a machine learning model's 

predictions irrespective of the classification threshold, with the curve being the 

Receiver Operator Curve (ROC). 
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Artificial Neural Network (ANN): Models that are inspired by the structure of 

biological neural networks  consisting of a set of connected input/output units in 

two or more layers where each connection has a weight associated with it that gets 

tuned in the training phase to adapt the network to the particular problem at hand. 

Classification and Regression Tree (CART): A decision tree that can perform 

classification and regression. 

Classifier: A machine learning model that is trained to classify its input into n number of 

distinct classes.  

Control Flow Graph (CFG): A graphical representation of all execution paths possible 

for a running software application. 

Convolutional Neural Network (CNN): A Neural Network algorithm which can input 

an image, assign importance to various aspects in the image and be able to 

differentiate one from another.  

Correlation-based Feature Selection (CFS): A feature selection algorithm that takes a 

basis set of feature correlations and compares inter-feature correlation and each 

features’ correlation with the class label vector to select a feature subset. 

Crossover: An operator in evolutionary computing, inspired by the concept of sexual 

reproduction in which two genomes combine traits to produce children containing 

a mixture of both sets of traits. 

Dataset: For supervised learning, it is a collection of input values (X) and the labeled 

output values (y).  The dataset is typically divided into training and validation 

subsets. 
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Decision Tree (DT): A machine learning model in the form of a tree structure where data 

points are broken down into smaller and smaller subsets as an associated decision 

tree is incrementally developed as an “if-then” rule set.  The resulting structure 

has branches and leaves where branches represent a decision node and leaves 

represent a classification node. 

Deep Belief Network (DBN):  An unsupervised Neural Network that uses probabilities 

to produce outputs.  They consist of multiple layers of latent variables, with 

connections between the layers but not between components within each layer. 

Deep Learning: Neural network architectures that uses multiple layers (three or more) to 

extract higher level features from the initial input data. 

Deep Neural Network (DNN): A neural network with three or more layers. 

Evolving Clustering Method (ECM): A machine learning distance-based clustering 

method for dynamic clustering of an input stream of data in a single pass.  

F-measure: Also known as F1 score or F-score is the harmonic mean of Recall and 

Precision. 

False Negative (FN): In the case of malware detection, an outcome where a malicious 

app (positive) is classified as benign (negative). 

False Positive (FP): In the case of malware detection, an outcome where a benign app 

(negative) is classified as malicious (positive). 

False Positive Rate (FPR): The proportion of actual negative outcomes that a machine 

learning model predicts incorrectly. 

Feature Engineering: The technique of creating new features from the original features 

by applying one or more mathematical transformations. 
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Feature Importance: A mathematical representation of the importance of an individual  

feature in a machine learning model relative to the other features. 

Feature Selection: The process of choosing the most important features of a machine 

learning model and creating a feature subset. 

Feature Vector: The set of inputs to a machine learning model expressed as a vector. 

Feature: An individual value from the feature vector.   

Fuzzy C-means Method (FCM):  A machine learning clustering algorithm that allows 

one piece of data to belong to two or more clusters. 

Genetic Algorithm (GA):  An evolutionary computing model inspired by biological 

systems, specifically evolution.  It develops a group of possible solutions to a 

classification problem and evolves them using a fitness function until an 

optimized solution resolves. 

KDD dataset: A network intrusion dataset from the 1999 KDD Cup annual competition 

hosted by the Association for Computing Machinery (ACM). 

K-nearest Neighbor (KNN): An instance-based algorithm in which data is defined as 

points in an n-dimensional space.  When a new data point arrives, the closest k 

number of instances (nearest neighbors) to that point are analyzed and the most 

common class of those are the prediction or classification of the new data point. 

Latent Semantic Indexing (LSI): A technique in Natural Language Processing (NLP) 

analyzing relationships between documents and the strings they contain. 

Layer: A collection of related neurons in a neural network such as the input layer or 

output layer, or some layer in between. 
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Least Absolute Shrinkage and Selection Operator (LASSO): A regression technique 

that performs L1 regularization, meaning it penalizes the L1 norm of the feature 

weights which ultimately will force some of the weights to zero.   

Multilayer Perceptron (MLP): An Artificial Neural Network (ANN) that has an input 

layer, an output layer, and one or more hidden layers between. 

Mutation: An operator in evolutionary computing, where during the crossover process 

some random mutation of the traits from the parents occurs in the child, 

mimicking what happens in human reproduction. 

Natural Language Processing (NLP): Machine learning algorithms designed to 

understand human language. 

Nearfield Communication (NFC): A set of networking standards used to establish 

communication between mobile devices in very close proximity. 

Partial Decision Trees (PART): A Decision Tree that contains branches to undefined 

sub trees. 

Particle Swarm Optimization (PSO): A population-based stochastic optimization 

technique inspired by intelligent collective behavior of animals such as flocks of 

birds or schools of fish. 

Precision: The proportion of positive predictions from a machine learning model that 

were actually correct. 

Preprocessing: The process that prepares a dataset to be ready as input for a machine 

learning model. 

Principal Component Analysis (PCA): An unsupervised algorithm that creates linear 

combinations of the original features ranked in order of variance allowing a 
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subset, amounting to the most important, to be selected thereby reducing the 

number of features. 

Random Forest (RF): An ensemble technique for supervised learning classification that 

works by constructing a multitude of Decision Trees.  The final classification is 

the mode of the classes (classification) of the individual trees. 

Recall: Also known as True Positive Rate (TPR) is the proportion of actual positive 

outcomes that a machine learning model predicts correctly. 

Recursive Feature Elimination (RFE): An iterative procedure using backward feature 

elimination incorporating a classifier for ranking the features in each iteration. 

Receiver Operating Curve (ROC): A curve plotting Recall against False Positive Rate 

(FPR) for various thresholds. 

Regression: A machine learning model that predicts values along a continuous output 

variable. 

Selection: In evolutionary computing, the process that chooses fit individuals for creating 

the next generation through evolutionary operations such as crossover and 

mutation. 

Singular Value Decomposition (SVD): A matrix decomposition method used for feature 

dimensionality reduction. 

Support Vector Machine (SVM):  A linear method of classification in which data is 

defined as points in an n-dimensional space (where n is the number of features). 

The model defines a hyperplane that optimally separates (classifies) all of the data 

points onto one side or the other of the hyperplane. 
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True Negative (TN): In the case of malware detection, an outcome where a benign app 

(negative) is correctly predicted as benign (negative). 

True Positive (TP): In the case of malware detection, an outcome where a malicious app 

(positive) is correctly predicted as malicious (positive). 

Virtual Machine (VM): A software emulation of a physical computer on an actual 

physical computer. 

Virtual Private Network (VPN): A networking technology that encrypts 

communication over an unsecured public network so that it can be used as if it 

were a secure private network. 

List of Acronyms 

ANN:  Artificial Neural Network 

API:  Application Programming Interface 

APK:  Android application package 

ART:  Android Runtime 

AUC:  Area Under the Curve 

CART:  Classification and Regression Tree 

CFG:  Control Flow Graph 

CFS:  Correlation-based Feature Selection 

CNN:  Convolutional Neural Network 

DBN:  Deep Belief Network 
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DNN:  Deep Neural Network 

DT:  Decision Tree 

ECM:  Evolving Clustering Method 

FCM:  Fuzzy C-means Method 

FN:  False Negative 

FP:  False Positive 

FPR:  False Positive Rate 

GA:  Genetic Algorithm 

GUI:  Graphical User Interface 

KNN:  K-nearest Neighbor 

LASSO:  Least Absolute Shrinkage and Selection Operator 

LSI:  Latent Semantic Indexing 

ML: Machine learning 

MLP:  Multilayer Perceptron 

NFC:  Nearfield Communication 

PART:  Partial Decision Trees 

PCA:  Principle Component Analysis 

PSO:  Particle Swarm Optimization 

RAM:  Random Access Memory 
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RF:  Random Forest 

RFE:  Recursive Feature Elimination 

ROC:  Receiver Operating Curve 

OS:  Operating System 

SVD:  Singular Value Decomposition 

SVM:  Support Vector Machine 

TB:  Terabyte 

TN:  True Negative 

TP:  True Positive 

TPR:  True Positive Rate 

UI:  User Interface 

VM:  Virtual Machine 

VPN:  Virtual Private Network 

Summary 

As smartphones become more and more integral to peoples’ daily lives, both 

personal and business, the need to secure those systems grows.  With 85% of the worlds’ 

mobile phones running Google’s Android operating system, that OS has become the key 

threat vector for bad actors trying to compromise those systems.  There is a rich history 

of research in threat detection on computers dating back into the 1970s, but smartphones 

are a relatively new phenomena and Android itself was only released in late 2008, so 
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there has only been a decade of research on Android protection.  In addition to the 

relative newness of Android, Google continues to modify it, ostensibly for improvements 

in user experience and security, and threat actors continue to improve their methods of 

defeating its security.  It is an arms race. 

The ultimate goal in threat detection is identifying and stopping zero-day attacks.  

There are a number of research streams towards that end in the Android community, and 

one such approach is using static analysis and machine learning.  The concept is to 

analyze the source code of an Android app and using some machine learning algorithm, 

make the prediction as to if that app is benign or malicious.  Those predictions need to be 

highly accurate, not giving off too many false alarms; otherwise in a real-life situation it 

would tend to get ignored by the user. 

A key aspect of any machine learning model is the input data, or features.  In the 

decade of work in Android security, many different feature types and specific features 

have been used by researchers, and the variation in feature use continues today.  The 

most used feature types are components of the OS known as Permissions, Intents, and 

API calls, used individually or in various combinations.  But those are feature types.  

There are actually 158 different Permissions, 295 different Intents and several hundred 

API calls depending on how they are grouped. 

This study focuses on providing insight into feature importance for those three 

feature types and hundreds of specific features.  It was accomplished by testing all 

combinations of Permissions, Intents and API calls, using various feature ranking and 

subset selection techniques to determine the most important ones, and then validating 

which of those result sets work best using various machine learning models.  
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Chapter 2 

Review of the Literature 

Android as a Target 

Android first appeared on the market in September 2008.  Early on there was little 

interest from threat actors due to the minimal volume of targets.  The first reported 

malware came two years later in August 2010 when Kaspersky Labs reported the 

discovery of the first SMS Trojan for Android, called “FakePlayer”  and Symantec 

reported finding location spyware consisting of a modified version of the classic “snake” 

video game. (Castillo, 2011)  

Even though the first threats in the wild were not detected until the third quarter 

of 2010, security researchers started investigating Android as soon as it was released.  In 

one early work Enck, et al. (2010)  reported on a dynamic analysis tool they created 

called TaintDroid.  It used a variation of information flow analysis called taint analysis 

where “tainted data” is injected into specified data flows in the running app, such as GPS 

location and contacts, then traced and analyzed it to determine if the app exposed private 

user information.  

Burguera, Zurutuza, and Nadjm-Tehrani (2011) reported on their crowd-source-

based malware detection app and system named Crowdroid.  This was an app that users 

ran on their phone and fed non-personal but app behavior data (system calls) over the 

Internet to central servers.  The servers would perform the malware analysis using a K-

means clustering algorithm and report results back to the user(s).  While the authors did 

have the system running and reported some success in malware detection, the main 
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contribution was this early demonstration of using machine learning in Android threat 

detection. 

Zhao, Zhang, Ge and Yuan (2012) created another tool using dynamic analysis 

they referred to as RobotDroid which incorporated a Support Vector Machine (SVM) for 

detection using system calls as the feature vector.  There was limited testing performed 

but for those tests a detection rate of 90% to 93% was reported with a false positive rate 

of 3% to 5%.   

In an assessment approach by Sahs and Khan (2012), their goal was to determine 

the effectiveness of using control flow graphs (CFGs) and Permissions via static analysis 

based on a Support Vector Machine as the classifier.  The system was tested on a dataset 

of 2,272 apps of which 4% were malicious.  The authors’ determination was that 

Permissions and CFGs appeared to be a correct approach in terms of input features for 

the SVM, but that the CFGs needed to be more detailed in order to improve the systems’ 

accuracy. 

In one early use of a large dataset consisting of over 200,000 apps, Zhou, Wang, 

Zhou and Jiang (2012) created a dual detection engine where in one side, they defined 

known malware signatures based on Permissions, and in the other used dynamic analysis 

looking for behaviors they considered likely to be used by malware, such as downloading 

code from the Internet to run.  The accuracy based on testing was high but the percentage 

of malware in the dataset was very small, less than one percent, so the results are unclear. 

Wu, Mao, Wei, Lee and Wu (2012) developed a host-based tool they named 

Droidmat to perform static analysis using Permissions, Intents, API calls and component 

(Activity, Service, Broadcast Receiver).  It used K-means clustering as well as 
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Expectation Maximization (EM) clustering for feature selection and then K-nearest-

neighbor for classification.  An accuracy of 98% was reported on a test database of just 

over 1,700 apps with 13% malware.   

Xu, Zhang and Zhu (2013) created an assessment tool they referred to as 

Permlyzer to be a general-purpose Permission analysis framework.  The system used 

dynamic analysis to create a map, or call stack, that provided fine-grained information on 

Permissions use at runtime.  Permlyzer would actually takes control of the app (requiring 

modification to the base Android operating system) and execute all possible code paths.  

Their statistical findings based on analyzing over 100K apps showed significant overlap 

between Permission requests from malicious apps versus many non-malicious apps that 

use common third-party libraries indicating that using Permission only as features for 

malware detection could be problematic. 

Peiravian and Zhu (2013) investigated the using Permissions and API calls for 

Android malware detection.  Of those features, the authors created custom selection lists 

for attribute input to the classifiers.  They used three different machine learning 

approaches using the Weka library suite (Weka 3: Data Mining Software in Java, 2018).  

The three classifiers were Support Vector Machines, Decision Trees and Bagging 

Predictor.  The dataset contained 2,510 apps of which about 50% were malicious.  

Comparing the three approaches across multiple scenarios, Bagging was the top 

performer followed by Support Vector Machines and then Decision Trees with accuracy 

averaging around 95%. 

In research similar to above described, Huang, Tsai and Hsu (2013) investigated 

the effectiveness of multiple machine learning algorithms also using the Weka library.  
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The key differences were: 1) Huang, et al., only used Permissions (all Permissions) and 

did not include API calls, 2) a Support Vector Machine was one of the algorithms but the 

other techniques were Decision Trees, Naïve Bayes and AdaBoost, and 3) their dataset 

was much larger at over 100K apps.  The results showed an average accuracy of 81% 

with the top performer being the Support Vector Machine, followed by Naïve Bayes and 

AdaBoost.  While the authors indicated satisfaction with the accuracy, clearly their 

research indicated detection using only Permissions was not likely to be successful. 

Yerima, Sezer, McWilliams and Muttik (2013) created a tool to scan Android app 

stores such as Google Play to help expunge them of malware.  They used Permissions 

and API calls as the features, Information Gain for feature selection and a Bayesian 

classifier.  Experiments were run against a dataset of 2,000 apps with 50% malware using 

various sets of the features selected ranging from 5 – 20 attributes.  Their results were 

that with 15 – 20 of the selected features, a predictive capability at a 90% to 92% could 

be achieved. 

Aung and Zaw (2013) also used Information Gain theory for feature selection 

based on Permissions only.  The selected features were evaluated using K-means 

clustering for segmentation and classification used Decision Tree and Random Forests 

algorithms.  Testing was conducted on two datasets of 200 and 500 apps.  The top 

performer was Random Forests with accuracy just under 92%.  The lowest was one of the 

Decision Tree algorithms at 85% accuracy. 

Glodek and Harang (2013) used a novel approach of feature engineering when 

they created a system starting with Permissions, Intents, Broadcast Receivers and the 

presence of embedded applications in the native code (yes/no).  The occurrence 



37 

 

 

frequency of these in a set of malware apps were determined and a set of rules were 

created based on combinations observed, and these rules then became the real feature 

vector.  These were applied to a Random Forest algorithm from the Scikit-learn library 

(scikit-learn - Machine Learning in Python, 2010) using a custom dataset of benign apps 

combined with an existing malware dataset from the Malware Genome Project of Zhou 

and Jiang (2012).   The results of the experiments were an average accuracy of 81%. 

A Maturing Research Stream 

In a well-known study by Arp, et al. (2014) they created a system they referred to 

as DREBIN.  It used a broad feature set consisting of Permissions, Intents, API calls, app 

components, hardware components and URLs providing a feature vector of 545,000 

attributes.  These were the input into a Support Vector Machine for classification.  A 

dataset was created of 129,013 apps that also incorporated the Malware Genome Project 

malware dataset, ending up with 4% malware content.  Their results showed an accuracy 

of 94%, which was high for the time.  Interestingly, DREBIN also output information 

related to the input features detailing why it classified a specific app as malicious or 

benign. 

In an approach reminiscent of Enck, et al. (2010), Arzt, et al. (2014) used taint 

analysis for classification, but in their research used static instead of dynamic analysis.  

The system builds a model based on control flow graphs extracted from an app and uses 

tainted variables inserted into the flow to follow throughout all possible flow paths.  

Custom rules then determine if data is being leaked, indicating malware.  The number of 

apps tested was small but they did compare results to two commercially available 

systems from the time and out-performed them with a 93% accuracy. 



38 

 

 

In an interesting study of Permission usage in Android apps, Moonsamy, Rong, 

and Liu (2014) looked at what they termed “required” Permissions versus “used” 

Permissions.  In every Android app there is an xml file named, AndroidManifest.xml, 

that contains information about what the package uses and specifically Permissions that 

are requested.   Often researchers just use this list of Permissions (defined as “required” 

in this work) because they are easily attainable.  However, app developers can use other 

Permissions that are not in the manifest file.  To extract these the byte code has to be 

decompiled and the source code parsed to find which Permissions were “used.”  

Moonsamy, et al., extracted both for a dataset that contained over 1,200 benign apps plus 

the malware apps from the Genome Project and performed a statistical analysis looking at 

required Permissions for benign apps, required Permissions for malicious apps, used 

Permissions for benign apps and used Permissions for malicious apps.  Their results 

indicated there was enough difference between required and used, that used Permissions 

should be considered in malware detection as opposed to only required ones. 

Chan and Song (2014) investigated the detection accuracy of using Permissions 

and API calls compared to using Permissions only.  Information Gain theory was used for 

feature subset selection.  The test dataset consisted of 800 apps with 21% malicious.  

They tested Permissions only versus Permissions and API calls using seven different 

machine learning algorithms from the Weka library: Naïve Bayes, Support Vector 

Machine, two Neural Nets (RBF and MLP), Liblinear, Decision Tree and Random Forest.  

The average accuracy for Permissions only was 88.8% versus 89.3% with API calls 

indicating no difference.  The highest performer was Random Forest at 92%.  

Interestingly, adding the API calls caused Naïve Bayes and RBF Network to decrease in 
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accuracy.  While the results indicated there was no reason to add API calls as a feature, 

this is inconsistent with other published research.  The small dataset and feature subset 

selection could have had adverse effects on the answers. 

Sharma and Dash (2014) investigated feature selection approaches using 

Permissions and API calls.  The two feature selection methods were Correlation-based 

Feature Selection (CFS) using Pearson’s correlation and Information Gain theory.  They 

started with 35 features (19 Permissions and 16 API calls) that were preselected as 

important.  Based on the feature ranking of the two algorithms, various numbers of the 

features, top 5, top 10, etc. up to the full 35, were fed into both a Naïve Bayes algorithm 

and a K-nearest Neighbor (KNN) algorithm using a dataset of 2,000 apps at 50% 

malware.  Overall, there was minimal difference in the results coming through CFS 

versus Information Gain.  Interestingly, smaller numbers of features improved Naïve 

Bayes while more features improved KNN, and in general KNN performed better with up 

to 96% accuracy versus 94% with Naïve Bayes. 

Another feature selection investigation was performed by Zhao, Fang and Wang 

(2014) in which using only Permissions as the feature, they incorporated Principal 

Component Analysis (PCA) for dimensionality reduction.  Initially, variations in PCA 

settings were used with a Support Vector Machine (SVM) to determine the optimum 

PCA configuration, which in their case resulted in a reduction down to 41 attributes.  

These features were then used with the a dataset of 454 apps of which 220 were malware 

for validation with seven machine learning algorithms: Bayesian Networks, Naïve Bayes, 

NB Tree, CART (Classification and Regression Tree), Random Tree, Decision Tree and 

an SVM.  Overall, the SVM provided the highest accuracy at 90% will all others being 
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below 87%, however, this result could be because the PCA parameters were tuned using 

the SVM.  No other combinations were reported. 

Seo, Gupta, Sallam, Bertino and Yim (2014) created a static analysis tool that 

looked at “suspicious” Permissions and API calls and performed keyword searches of the 

source code looking for strings that the authors identified as often being used in malware.  

The Permissions, API calls and keyword lists were developed based on a statistical 

analysis of the Malware Genome Project dataset.  The tool would then compare what it 

found in the app source code to the lists and provide a risk ranking.  Testing was 

performed on 76 apps that were selected because they fit the model, but accuracy results 

were not reported. 

In a similar vein, in research by Kang, Jang, Mohaisen and Kim (2015), they 

identified certain malicious behaviors like command usage with root privilege, hiding 

SMS notification, and collecting sensitive information as possibly indicating malware.  

Their system collected data from app source code as to if the app contained any of those 

behaviors.  In the next level their system looked for a usage of what they defined as 

“critical” Permissions.  These features were fed into a Naïve Bayes classifier and tested 

on a dataset of over 55,000 apps with 8% malware.  The accuracy was reported at 98% 

but given the hand-tooled nature of the features it is uncertain how generalizable this 

technique might be. 

Sun, Li, Yan, Srisa-an, and Pan (2016) created a three tiered feature selection 

method for reducing the dimensionality of a Permissions feature vector.  In the first level 

they used a forward selection custom ranking system to create the first feature subset.  

The second level used a filter method based on support to create yet another feature 



41 

 

 

subset.  In the final tier they removed highly correlated features, ending up at a final 

subset of just 22 Permissions out of the starting 135 Permissions.  Validation used a 

dataset of approximately 5,500 apps with 18% malware and six different machine 

learning algorithms from the Weka library: Random Committee, Rotation Forest, 

Functional Tree, Decision Tree (PART), Random Forest and SVM.  The top performer 

was Functional Tree with 96% accuracy. 

Two methods of feature selection were investigated by Qiao, Sung and Liu (2016) 

as means of reducing dimensionality across the set of all Permissions and API calls.  The 

first was a filter method, ANOVA, and the second was a wrapper method, Recursive 

Feature Elimination (RFE) using an SVM.  Validation was performed using three 

machine learning algorithms: Random Forest, Artificial Neural Network and Support 

Vector Machine on a dataset of 5,000 custom collected benign apps and malware from 

the Genome Project.  Experiments were run with all features versus the selected features, 

and then with only Permissions, only API calls, and with both.  The results showed that 

using API calls or API calls and Permissions performed a little better than just 

Permissions (95% vs 93% on Random Forest).  The results also showed there was no 

appreciable difference between the two feature selection methods or in using all features 

versus incorporating feature selection.  The biggest factor in difference in accuracy was 

which machine learning algorithm was used with Random Forest and Neural Net 

performing about the same with 94% accuracy and SVM coming in at 82%. 

Another investigation of Permissions requested versus Permissions used was 

undertaken by Wang, Wang and Zhu (2016) but also included API calls.  Feature 

selection was employed using both Information Gain theory and Correlation-based 
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Feature Selection using Pearson’s correlation (CFS).  A number of combinations were 

run with each feature selection technique including just with used Permissions, just with 

requested Permissions, only API calls and then used Permissions with API calls.  The 

dataset involved had 2,375 apps with 50% malware.  Five machine learning algorithms 

from the Weka suite were used for validation: Decision Tree, Random Forest, K-nearest-

neighbor, Support Vector Machine and AdaBoost.  Results showed minimal difference in 

accuracy from feature selection using Information Gain versus  CFS, except when using 

only API calls in which case Information Gain in general was about 2% better.  Across 

the full test matrix, the top performer was AdaBoost with a reported accuracy of 99.8%, 

which seems high compared to other published results using the same features. 

Verma and Muttoo (2016) used Intents in addition to Permissions in their 

detection scheme incorporating Information Gain for feature selection.  Interestingly, the 

methodology treated the two features vectors separately, analyzing each app using Intents 

and then using Permissions.  Apps were labeled as malicious or benign if both processes 

agreed, otherwise it was labeled “suspicious.”  A dataset of 1,470 apps of with 42% 

malware was used with three classifiers from the Weka library: K-means clustering and 

two different Decision Trees, ID3 and J48.  Results showed that J48 performed best with 

an accuracy of 94% compared to 92% for ID3 and 74% for the K-means algorithm. 

Using a dynamic analysis approach, Yang, Wang, Ling, Liu and Ni (2017) built a 

customized version of Android as a "behavior inspection platform.”  It ran a taint tracking 

program on apps recording their API calls and Permissions use.  Experiments were run 

against a dataset of 3,934 apps with 27% malware.  Two classifiers were employed: a 

Support Vector Machine (SVM) and Naïve Bayes.  The SVM was marginally better in 
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accuracy 98% versus 97% for Naïve Bayes, but false negative rate for Naïve Bayes was 

very high at 44%. 

In an interesting use of dynamic analysis, Mahindru and Singh (2017) ran apps 

through an emulator to extract Permissions used, which were then vectorized for use by 

static analysis.  They used a dataset of 11,000 apps with five different classifiers from the 

Weka suite: Naïve Bayes, Decision Tree, Random Forest, Simple Logistic and Lazy 

Instance-based learner (K*).  Reported results show an accuracy of 99% for Decision 

Tree, Random Forest and Simple Logistic which seems to be an outlier for using only 

Permissions as a feature set. 

In a novel approach to Permissions analysis for malware detection Shahriar, Islam 

and Clincy (2017) investigated using natural language processing, specifically Latent 

Semantic Indexing (LSI) to map the association of related Permissions to malicious apps 

based on the text in the Permission name or description.  The map was created using a 

custom malware dataset in one dimension and Dangerous Permissions in the other 

dimension.  Dimensionality reduction is then accomplished using Singular Value 

Decomposition (SVD).  Results from various tests showed successful identification of 

malware ranging from 76% to 89% but there could be an overfitting problem given the 

overlap of training and test apps. 

Nezhadkamali, Soltani and Seno (2017) reported on their research using 

Permissions, Intents and API calls that also used a concept they referred to as Feature 

Pockets, when two or more features from the three separate feature sets overlap with each 

other, i.e., have the same resource.  A feature refinement process was performed to 

reduce the dimensionality of the model inputs followed by three different feature 
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selection methods, tested separately: Information Gain, Gini Impurity and LASSO (L1).  

The dataset used consisted of the 1,260 malicious apps from the Genome Project plus an 

additional 498 benign apps.  Classification was performed with three machine learning 

algorithms: Decision Tree, Support Vector Machine and Random Forest.  The test matrix 

included all combinations of feature selection methods and classification methods plus 

using Permissions only, Permissions and API calls, and Permissions, API calls and 

Intents.  The results showed that using all three features, Permissions, API calls and 

Intents was more accurate than using just Permissions or Permissions and API calls.  In 

terms of feature selection methods, Information Gain proved more accurate across all 

classifiers, and lastly, Random Forest, was the highest performing classifier with 99% 

accuracy.  As with the prior study by Shahriar, et al., the small size of the dataset makes 

the relevance of the high accuracy results somewhat suspect. 

Research performed by Altaher (2017) used just Permissions as the feature input 

with feature selection based on Information Gain theory.  For classification, a neuro-

fuzzy system was created by modifying an evolving cluster method (ECM) system for 

generating the fuzzy rules, which then feed into a neural network.  A dataset of 500 apps 

were used, half being malware.  Results showed an accuracy of 90% which is comparable 

to other works using Permissions only.  Follow-up work was performed by Altaher and 

BaRukab (2017) again using Permissions and Information Gain for feature selection.  

Instead of using ECM to generate the fuzzy rules, they used a Fuzzy c-means (FCM) 

clustering algorithm.  The testing dataset consisted of the 1,260 apps of the Malware 

Genome Project.  Results were marginally better than the prior work reporting 91% 

accuracy. 



45 

 

 

Wang, Li, Wang, Liu and Zhang (2018) used a set of features for their study that 

included Permissions, Intents, API calls and hardware used.  A feature selection wrapper 

method based on a Support Vector Machine (SVM) was used for dimensionality 

reduction.  A dataset of over 116,000 apps with 7% malware was used for testing.  Five 

different machine learning algorithms were used in addition to an ensemble method.  The 

five were: SVM, Random Forest, Naïve Bayes, K-nearest Neighbor (KNN) and 

Classification and Regression Tree (CART).  The ensemble approach was a simple 

voting scheme among the five.  Interestingly the accuracy of all but Naïve Bayes was 

98% to 99%, and it was significantly lower with 76% accuracy. 

Shang, Li, Deng and He (2018) used a two-phase feature selection approach in 

their Permissions only research.  The first step was to use Pearson’s correlation and 

create the first feature subset by eliminating Permissions below a specified p-value.  In 

the second phase Information Gain theory is used to create a second subset and provide 

weighting input for the Naïve Bayes classifier used.  Tests were run on a dataset of 2,670 

apps with 65% malware.  Results showed the Naïve Bayes accuracy at 86% which is on 

par for Permissions only detection methods.  

In research by Alswaina and Elleithy (2018), Permissions were the sole feature 

vector under consideration.  Feature selection was performed by a wrapper method using 

Extremely Randomized Trees for creating a feature subset.  The dataset used was that of 

the Malware Genome Project which was tested using five machine learning classifiers 

plus one ensemble method: Support Vector Machine, Neural Network, Decision Tree, K-

nearest-neighbor (KNN) and Random Forest.  The ensemble method was Bagging with 

an unspecified base classifier.  Results showed the top performers were Random Forest 
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(itself an ensemble method) and Neural Network at 96% accuracy followed closely by 

KNN at 95%.  The numbers appear a bit high for Permissions only, which possibly points 

back to the small size of the dataset. 

Firdaus, Anuar, Karim and Ab (2018) used directories accessed, and system 

commands in addition to Permissions and API calls as their features.  Next they used a 

wrapper method for feature selection incorporating a Genetic Algorithm from the Weka 

library.  Interestingly, the resulting feature set consisted of only six attributes: three 

Permissions, two services and one directory, but no system commands.  The dataset used 

consisted of 6,105 apps of which 5,555 were malicious.  Validation was performed with 

five classifiers: Naïve Bayes, Neural Net, Functional Tree, Random Forest and Decision 

Tree.  Testing showed an accuracy of roughly 95% for all five classifiers.  This odd result 

may indicate the GA culled the feature set too far, not providing a broad enough feature 

vector. 

In an interesting study of feature selection techniques for Permissions-based 

malware detection, Bhattacharya, Goswami and Mukherjee (2019) proposed Particle 

Swarm Optimization (PSO) using rough set theory and compared results against nine 

other feature selection techniques, including six filter methods and three wrapper 

methods.  The filter methods were: Pearson correlation, Information Gain, Gain Ratio, 

Chi-squared, One Rule and Relief.  The wrapper methods were: Forward Selection, PSO 

(not incorporating rough set theory) and Genetic Algorithm. Testing was done with two 

different datasets and a Decision Tree classifier.  Their proposed PSO method improved 

over the second best methods by 1%, with those second best being Gain Ratio and Relief.  
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The results also showed all the filter methods being better than any of the wrapper 

methods.    

A Static Analysis Survey 

Android security and privacy research has grown tremendously during its ten 

years of existence.  Acar, et al. (2016)  surveyed the state of research and categorized it 

into five major categories: 1) Permission-based access control, 2) app webification issues 

(the integration of web content into mobile apps), 3) programmer-induced leakage, i.e., 

poor programming practices, 4) software distribution channels (trust worthiness of app 

markets), and 5) vendor customization leading to OS fragmentation.  Of the publications 

cited, over 50% were in the Permission-based access control grouping. 

A more recent survey by Talal, et al. (2019) took a different approach in research 

categorization.  They presented four broad categories: 1) survey and review, 2) security 

solutions, subdivided into malware protection techniques and malware detection 

techniques, 3) malware studies, ranging from data collections to social science models, 

and 4) ranking and classification, i.e., classifying malware according to their families or 

security risk level.  The majority of research reported on was in the second grouping, 

security solutions.  Of those, approximately 75% were focused on detection versus 25% 

on protection. 

Tam, Feizollah, Anuar, Salleh and Cavallaro (2017) describe malware detection 

techniques as falling into one of three categories: 1) static analysis which evaluates an 

app without executing any code, 2) dynamic analysis which executes the app and 

observes the results, and 3) hybrid analysis which combines techniques of static and 

dynamic approaches.  Within their surveyed work 56% used static analysis only, with the 
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remaining split between dynamic and hybrid analysis.  These numbers align with another 

review by Sufatrio, Tan, Chua and Thing (2015) in which the publications they cited 

represented 63% static analysis with again, the remaining split evenly between dynamic 

and hybrid analysis. 

A significant amount of static analysis research uses machine learning (ML).  In 

their survey, Talal, et al. (2019), describe fifteen different ML techniques in use among 

the work cited.  Approximately two-thirds make use of multiple techniques with the rest 

using a single ML technique.  The most common ones in use, and all about the same level 

were, Naïve Bayes, Decision Tree, Random Forest and Support Vector Machine. 

Table 4 presents the results of a survey conducted by this author cataloging 71 

publications in which machine learning techniques were used for Android malware 

detection.   
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In the collection of research, there were 31 different machine learning techniques 

used across all of the works, shown along the top row of the table.  The columns 

representing which technique each effort used are ordered by most used on the left with 

lesser used techniques going to the right.   

Survey Analysis 

A metadata analysis is presented in Table 5.  In this cataloging, the five most used 

techniques were Support Vector Machine first at 31% of the publications incorporating it, 

Table 5   

Summary of ML Technique by Publication 
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second was Random Forest, followed by Neural Networks, Decision Tree and Naïve 

Bayes.  Each of the other techniques are below 10% going from a count of five down to 

one.  The most techniques evaluated by a single source was seven while 34 publications, 

almost half, cited using a single technique. 

In the community of Android malware detection research there are two datasets 

that are often cited and or used either in whole or in part.  Those datasets are the Android 

Malware Genome Project (Zhou & Jiang, 2012) which contain 1,260 malware samples, 

and the Drebin dataset (Arp, et al., 2014) which contains 129,013 total samples of which 

5,560 are malware and the rest benign.  Interestingly, the 5,560 malware samples in 

Drebin include the 1,260 samples from the Genome Project.  For creating custom 

datasets, there are various places to get benign apps, the main one being Google Play; 

however, the availability of verified malware samples is much more limited, and rightly 

so.  Two major sources of malware samples are VirusShare (VirusShare, 2020) and 

Contagio Malware Dump (Contagio Malware Dump, 2020). 

Of the work presented above, only three confined themselves to solely using one 

of these two referenced datasets.  All others create a custom dataset but often using 

samples from one or both of the two referenced datasets.   Of the 71 citations, 51 

provided information on the source of their dataset’s malware samples.  Table 6 is a 

metadata analysis of those sources.   Given that the Drebin dataset includes the Genome 

Table 6  

Dataset Malware Sources 
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Project samples, those two represent 66% of the source with VirusShare and Contagio 

providing the rest at 14% and 20% respectively. 

Also of interest is dataset size.  In machine learning, more data for testing and 

training is always better, but assembling a custom dataset can require a lot of work.  So it 

is not surprising to see a wide range of dataset sizes, i.e., the number of APK files used, 

within the referenced work.  The range goes from a low of 106 samples up to a maximum 

of 206,264 samples.  As shown in the metadata analysis in Table 7 around 65% of the 

research was conducted with datasets of 10,000 or less and only 15% used 100,000 or 

more.  

A final point of interest related to the datasets used is the percentage of APKs in 

the dataset that is malware.  Table 8 presents a metadata analysis of that metric.   Note 

that there are two modalities in evidence: 20% and below being the first and 41 – 60 % 

being the second.  None of the work reported testing with various percentages of malware 

using the same dataset, so the impact of this distribution is to be determined. 

Table 7  

Dataset Sizes 

 

Table 8  

Dataset Percentage Malware 
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Survey Summary 

Compared to the computer industry overall, mobile operating systems are a 

relatively new component of the technology landscape.  The convergence to only two 

major players, Android and iOS, is just over a decade old.  New operating systems are 

always followed by new threat vectors and Android was no different.  With just over ten 

years of research in Android malware detection, there has been significant progress, but 

there remain gaps that need to be addressed. 

One major void is an exhaustive analysis of what Android features are most 

indicative for malware detection.  While there has been significant work in the industry 

on feature selection for machine learning in general, there is a definite lack of such a 

focus with respect to Android, with ample evidence shown in the above survey. 
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Chapter 3 

Methodology 

Notations 

Table 9 lists the notations to be used for the remainder of this text.  The format 

uses bold uppercase characters for matrices (e.g. X), bold lowercase characters for 

vectors (e.g., y) and italicized, uppercase fonts for sets (e.g. F  ).   

The first step in designing the experiments is to select the library to be employed.   

Table 9   

Symbols 

This notation closely follows that used by Li, et al., (2017). 

Notations Description 

E Expected values 

O Observed values 

n Number of instances in the dataset 

d Number of all features in the dataset 

k Number of selected features 

X Binary data matrix with n instance and d or k features 

x i j Feature values for ith instance and jth feature 

Y Binary class label vector for all n instances 

y i Class value for ith instance 

W Feature weight vector for k features 

w j Feature weight value for jth feature 

F Original feature set with d features 

S Selected feature set with k selected features 

V Contrast variables matrix, n instances with 3 features  

T Set of feature selection methods 
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Scikit-Learn (scikit-learn - Machine Learning in Python, 2010) was selected as the library 

to use due to it being open source, written in Python and having a broad list of available 

algorithms. 

Feature Scope 

The breadth of feature types used in static analysis for Android malware detection 

is presented in Table 3.  For this research, the feature types under test were the top three 

of interest in the community: Permissions, API calls and Intents.  The next two in the list, 

hardware and app components, are essentially redundant to the first three since to use 

either, an API call is required and possibly even a Permission.  The remaining features, 

such as CFGs, URLs, etc., may be important in some domains but are believed to be less 

important in this research given that every Android app, malware and benign, will make 

use of a variety of Permissions, API calls and Intents providing a broad detection surface.  

Adding other feature sets is unlikely to increase that detection surface area enough to 

justify the increase in computational time and therefore in detection time.  

Given the diversity of the combinations of the three in use, all seven combinations 

are used as starting feature sets in the experiment as shown in Figure 2.  This includes 

using the three individually as well as all together as a single feature set in addition to the 

other various combinations.  Each combination occurs prior to any subset selection.  

Given that there are 158 Permissions, 295 Intents and 581 significant API calls, the 

starting feature sets range from as low as 158 attributes (Permissions only) to 1,034 

attributes (Permissions, Intents and API calls).   
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Feature Selection Algorithms 

 As described in the section Feature Selection, there are three main objective 

approaches to feature selection: 

1. Filter methods 

2. Wrapper methods 

3. Embedded methods 

Given that the focus of this research work is to provide an expansive view of 

feature importance, multiple feature selection techniques were used from each of the 

above categories in order to compare and contrast the selected features with 

representative approaches across the spectrum.  Table 10 lists the eleven selected 

techniques: three univariate filter methods, three multivariate, three wrapper methods and 

two embedded methods.  Univariate filter methods assume independence of the features 

from one another and only select based on the correlation with the class.  These three 

univariate algorithms were selected due to the popularity of those methods in feature 

Table 10  

Feature Selection Algorithms Text Matrix 

 



58 

 

 

selection and therefore it would be informative to see the results they produce compared 

directly.   

Univariate Filter Methods 

Chi-Square 

The Chi-Square test is used in statistics to test the independence of two events, or 

in the case of feature selection to test whether the occurrence of a specific feature value 

and the occurrence of a specific class are independent.  It can be expressed as: 

𝜒2(𝑿| 𝒚) =   ∑ ∑
(𝑶𝑖𝑗  −  𝑬𝑖𝑗)2

𝑬𝑖𝑗

𝑑

𝑗=1

𝑟

𝑖=1

                                             (1) 

where r is the number of different values in a given feature vector, d is the number of 

features in the dataset, O is the count of observed values and E is the expected frequency  

(Li, et al., 2017). 

Information Gain 

Information Gain (also known as Mutual Information) is a statistical method that 

measures the amount of information shared between a feature and its class labels.  It is 

based on the concept of information entropy from information theory.  Information Gain 

is defined as:  

𝐼(𝑿| 𝒚) =   ∑ ∑ 𝑃(𝑥𝑖, 𝑦𝑖)

𝑦𝑖 ∈ 𝑌

log 
𝑃(𝑥𝑖, 𝑦𝑖)

𝑃(𝑥𝑖)𝑃(𝑦𝑖)
 𝑥𝑖 ∈ 𝑋

                                (2) 

where P(xi) is the probability of xi over X, P(yi) is the probability of yi over Y, and P(xi, yi) 

is the joint probability of xi and yi  (Li, et al., 2017). 



59 

 

 

Relief 

The Relief algorithm (Kononenko, 1994) estimates the quality of attributes 

according to how well their values distinguish between instances that are near to one 

another.  Given a randomly selected instance vector xi, it searches for the two nearest 

neighbors: one from the same class, and the other from a different class, and then updates 

the quality estimate for all the features, depending on the values for xi. 

Relief can be expressed as: 

𝑅(𝑿|𝒚) =  
𝐺𝑖𝑛𝑖′ ×  ∑ 𝑃(𝑥)2

𝑥∈𝑋

(1 −  ∑ 𝑃(𝑌)2
𝑦𝑖 ∈ 𝑌 ) ∑ 𝑃(𝑌)2

𝑦𝑖 ∈ 𝑌

                                     (3) 

where Gini′ is a modified version of the Gini-index which is highly correlated with 

Information Gain covered earlier, P(x) is the probability of the values of vector x, and 

P(y) is the probability of the classes in the labeled set. 

Multivariate Filter Methods 

Multivariate methods select feature importance based on higher correlation with 

the class, just like univariate methods, but then look for low correlation between features.  

CFS (Correlation-based Feature Selection) will be used to take the same three sets of 

correlations and consider the interaction among features 

Correlation-based Feature Selection (CFS) 

Correlation-based Feature Selection (CFS) is based on the thesis that “A good 

feature subset is one that contains features highly correlated with (predictive of) the class, 

yet uncorrelated with (not predictive of) each other” (Hall, 1999).  It requires an initial 

correlation analysis on which to base the selection algorithm.  While this initial technique 

is required it is not subscribed and any approach can be used.  For this research, the three 
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previously discussed univariate methods were used: Chi-Square, Information Gain and 

Relief. 

CFS uses a concept of “Merit” as a heuristic by which to compare inter-feature 

correlation.  It is given by: 

𝑀𝑆  =  
𝑘 𝑟𝑐𝑓̅̅ ̅̅

√𝑘 +  𝑘(𝑘 −  1) 𝑟𝑓𝑓̅̅ ̅̅
                                                     (4) 

where S is the feature subset with k number of selected features, 𝑟𝑐𝑓̅̅ ̅̅  is the mean feature-

class correlation and 𝑟𝑓𝑓̅̅ ̅̅  is the mean feature-feature correlation (Hall, 1999). 

Wrapper Methods 

Recursive Feature Elimination (RFE) 

Recursive Feature Elimination (RFE) is an iterative procedure using backward 

feature elimination.  However, as opposed to eliminating just one feature at a time, it 

allows for evaluating and eliminating (or keeping) feature subsets (Guyon, Weston, 

Barnhill, & Vapnik, 2002).  RFE incorporates a classifier for ranking the features in each 

iteration.  RFE can be described by: 

      (5) 

 

where F d is the original feature set with d features, S k is a selected feature set with k 

selected features and n is the subset reduction value.  Guyon and collaborators originally 

developed RFE using an SVM as the classifier, but it has since been used with different 

models among researchers, most notably Random Forest, as exemplified by Ustebay, 

Turgut, and Aydin (2018) as well as a Neural Network as demonstrated by Peterson and 

Coleman (2005). 
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Embedded Methods 

Ridge regression 

Ridge regression, also known as Tikhonov regularization, is a multiple regression 

technique using a cost function based on the residual sum of squares.  It adds a 

regularization (or penalty) function that is an L2 norm, i.e., based on Euclidean distance.  

Optimization is based on minimizing the cost function, which is defined as: 

∑( 𝑦𝑖  − ∑ 𝑥𝑖𝑗

𝑑

𝑗 = 1

𝑤𝑗  )2

𝑛

𝑖 = 1

 +   𝜆 ∑ 𝑤𝑗
2

𝑑

𝑗 = 1

                                       (6) 

        ├─    regression model    ─┤ ├─ penalty function ─┤ 

where y is a vector of the class observations for n number of instances in the dataset, x is 

a matrix of the model predictor variables for n instances by d number of features, and w is 

the vector of weights (or model coefficients) corresponding to each feature.  

To control the regularization function, λ is used as a tuning parameter that 

increases or decreases the size of the penalty, which for Ridge, is the sum of the squares 

of the weight coefficients.  This implies that for λ = 0 the coefficients are the same as 

simple linear regression and as λ → ∞ all coefficients are driven towards zero, but never 

actually reach zero (James, Witten, Hastie, & Tibshirani, 2017). 

LASSO regression 

LASSO, which stands for Least Absolute Shrinkage and Selection Operator, was 

developed to improve on Ridge regression by performing L1 regularization using 

Manhattan distance instead of using L2.  The cost function is similar to Ridge except for 

the penalty term and is defined as: 
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∑( 𝑦𝑖  − ∑ 𝑥𝑖𝑗

𝑑

𝑗 = 1

𝑤𝑗  )2

𝑛

𝑖 = 1

 +   𝜆 ∑ |𝑤𝑗|

𝑑

𝑗 = 1

                                       (7) 

        ├─    regression model    ─┤ ├─ penalty function ─┤ 

where y is a vector of the class observations for n number of instances in the dataset, x is 

a matrix of the model predictor variables for n instances by d number of features, and w is 

the vector of weights (or model coefficients) corresponding to each feature.    

As with Ridge, λ is a tuning parameter that controls the size of the penalty, but for 

LASSO, the penalty is the sum of the absolute value of the weight coefficients.  This 

implies that for λ = 0 the coefficients are the same as simple linear regression and as λ → 

∞ all coefficients approach zero and some actually equal zero implicitly selecting features 

to be eliminated, which is the desired improvement of LASSO over Ridge   

(Tibshirani, 1996).   

Machine Learning Algorithm Selection 

The goal of this research was to show the variation in feature selection inputs and 

indicate how that variation reflects in different machine learning models.  It was not a 

goal to find a best performing feature set, nor to find a best performing machine learning 

model.  

The classifier selection was based on common usage among other researchers so 

as to make replication and comparison easy.  In the same vein, with the exception of 

Random Forest, ensemble techniques were eliminated, such as boosting and stacking.  

The final consideration was performance.  It was desired to have models that have 

consistently exhibited high accuracy in various domains. 
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Based on the data presented earlier in Tables 1, 2 and 5, the three classifiers 

selected were Random Forest, Support Vector Machine and Neural Network.  

Specifically, the Neural Network classifier was a Perceptron, chosen because the problem 

at hand is one of binary classification and with a single layer would be expected to have 

high performance in terms of speed to convergence.  The list of selected algorithms is 

presented in Table 11.   

Experiment Design 

Preprocessing 

A high-level view of the preprocessing procedure is presented in Figure 3.  The 

malware dataset used is a custom collection of over 119,000 Android apps with an eight 

percent malware component.  See the section Datasets for more details. 

There are many tools available for reverse engineering Android apps.  Four 

requirements were identified for tool selection for this project.  First, it needs to be open 

source in order to provide a level of transparency as well as be affordable.  Second, the 

open source project needs to be actively maintained.  Given that Android itself changes 

from time to time and is customized by different vendors, it is critical to use a tool that 

stays up to date with those changes.  Third, the tool needs to have a command line 

interface to support automation.  A good test database of APKs consists of thousands of 

Table 11  

ML Classifiers Text Matrix 
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files, too many to use a GUI one file at a time.  And finally, the decompiled files need to 

be in Java simply due to the author's expertise in that language versus Android assembly 

language.  

Jadx (Dex to Java decompiler, 2019) was selected.  It meets all the stated 

requirements and is a popular tool among Android researchers.  Firdaus, Anuar, Karim 

and Ab (2018) used Jadx in their research on Android feature selection.  Pauck, Bodden 

and Wehrheim (2018) presented a new approach for comparing taint analysis tools and 

used Jadx to prep the data.  It was also used as part of the development of a new classifier 

approach to get around obfuscation by Martin, Menendez and Camacho (2017).  And 

Chen, Fan, Chen, Su, Li, Liu and Xu (2019) actually incorporated Jadx as part of their 

Storydroid tool for use in app development. 

Figure 3   

Preprocessing 
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Jadx has a graphical user interface as well as a command line interface, the latter 

making it convenient for integrating with other tools.  Its main function is decompressing 

APK’s resulting in .xml files and .dex files.  It then decompiles the .dex files into Java 

source code. 

From the resulting .xml and .java source files, the features of interest are then 

parsed using custom Python code.  For this experiment, those features are Permissions, 

Intents and API Calls.  To simplify data management each feature is assigned a unique 

identifier consisting of the first letter of the type, P for Permissions, I for Intents and A 

for API Calls, followed by the concatenation of an integer value ranging from 1 to the 

maximum number of features available.  As an example, Permission IDs went from P001 

to P158 and the Permission READ_EXTERNAL_STORAGE was assigned an ID of 

P100.   

A separate module of the code then performs binary encoding of the extracted 

features to account for the existence (1) or non-existence (0) of each feature in each APK 

file, an example of which is depicted in Figure 4 as a dataset fragment of the Permissions 

file.  The encoding creates three datasets, one for each feature type as well as a dataset 

containing just the target variable indicating malware (1) or benign (0).  Keeping each of 

the four datasets in separate files makes the mechanics of concatenating them for the test 

dataset of interest a simple exercise.  Each of these four files contains 119,183 rows of 

data, one row per APK.   
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These feature vector datasets segmented as Permissions, Intents and API Calls can 

then be used individually or combined into larger feature vectors by concatenating the 

segments.  Table 12 shows the seven combinations of the three feature types and 

associated feature counts possible for each combination. 

Feature Subset Selection 

Feature subset selection is the process of selecting a subset of relevant features for 

use in model construction.  The goal is to remove features that are either redundant or 

Table 12  

Datasets Test Matrix 

 

Figure 4   

Binary Encoded Dataset Fragment 
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irrelevant.  For this experiment, there are four phases (as depicted in Figure 5) 

encompassed in an 8-step process (shown in Figure 6).  Phase 1 starts with all 

Permissions, Intents and API calls.  The next three phases, Algorithmic Selection, 

Performance Selection and K-based Selection are descibed in the following sections. 

Algorithmic Selection 

Algorithmic selection refers to the feature selection method actually eliminating 

non-relevant features as part of its process.  Of the eleven feature selection algorithms 

used, eight perform this type of subset selection.  The three that do not are Information 

Gain, Chi-squared and Ridge Regression.  For example, if 100 features are submitted to 

the Information Gain algorithm, it will return the weights for all 100 features.  However 

if 100 features are submitted to the LASSO Regression algorithm, it will return weights 

only for the features the algorithm deems significant, so that would be some number less 

than 100 most likely.  In other words, in this case, LASSO Regression has 

algorithmically selected a subset of features. 

Figure 5   

Feature Subset Selection Phases 
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In many library implementations the operator can specify the number of features 

to return, so in this example, one could submit 100 features to Information Gain and 

request some arbitrary number of features in return, say the top 10.  In that case, the 

algorithm would return only the top 10 weights, but that is arbitrary subset selection 

based on the operator’s experience, domain knowledge or simple guess, but having 

nothing to do with the calculations of the algorithm.  

Figure 6  

Feature Subset Selection Process 
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Algorithmic selection steps are 3 - 7 in Figure 6.  They include randomizing the 

rows of the dataset, then dividing it into k-fold datasets, specifically five, resulting in five 

datasets of approximately 24k rows, and each is then submitted to one of the eleven 

feature selection algorithms.  The five results are then aggregated and the mean is 

calculated.  These results are then normalized so that all weights are in the range of zero 

to one. 

Figure 7 is an example using dummy data of what a resulting subset of 25 

features, P01 – P25, might look like, with each feature having a weight assigned by the 

feature selection algorithm.   

At this point in the process there are two distinct types of results, one where all 

features fed into the feature selection algorithm are returned with weights, and a second 

where the only features and weights returned are those deemed significant by the 

selection algorithm.  These two cohorts will be referred to as C1 and C2 respectively. 

For C1, no features have been eliminated.  Put conversely, no features have been 

selected.  A process is needed to select the significant features.  For the C2 cohort, there 

are feature subsets as selected by the respective algorithms, but there has been no process 

to evaluate the quality of those subsets.  The performance selection process is used to 

address these two issues. 

Figure 7  

Algorithmic Selection Results Example 
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Performance Selection 

Performance selection refers to analyzing the performance of the feature selection 

algorithm and further subsetting by elimination of features deemed irrelevant based on an 

independent measure of the feature selection algorithm’s output.  From the weights 

assigned by algorithmic selection, rank order of importance can be determined, however, 

from this ranking of features, it is not evident how to threshold the ranking to incorporate 

only important attributes and to exclude others as noise.  As an example, assume a feature 

selection algorithm returns a subset of 400 features, each having an associated real 

number weight.  One could consider the attribute with the highest weight value as the 

most important feature and the attribute with the smallest weight value as the least 

important feature, but how does one determine if all 400 features are relevant?  Rather, is 

it the top ranked 25, or 50, or 100 that are relevant? 

That is the question addressed by Tuv, Borisov and Torkkols (2006) when they 

introduced the use of “artificial contrast variables.”  To quote their introduction of the 

concept: 

In order to determine a cut-off point for the importance scores, there 

needs to be a contrast variable that is known to be truly independent of the 

target.  By comparing variable importance to this contrast (or several), 

one can then use a statistical test to determine which variables are truly 

important. 

In their experiments using contrast variables ensembled with a Random Forest classifier, 

Tuv, Borisov and Torkkols (2006) show that the technique outperformed RFE and CFS 

for feature selection.   
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In a work on determining causality, Guyon, Janzing and Scholkopf (2010) refers 

to these contrast variables as “probes” similar to those used in statistics for ranking by 

comparing the index of ranked variables to the index of hypothetical variables from a null 

distribution set of irrelevant variables.  They further describe the use of probes as 

“…relatively straightforward for regular feature selection” and even reference their use in 

a previous work by Guyon, et al. (2008). 

Kursa and Rudnicki (2011) used a Random Forest classifier for setting feature 

importance in their gene expression dataset and contrast variables combined with a 

Borata algorithm for feature subset development.  Lin, et al. (2012) used contrast 

variables combined with RFE wrapping an SVM for feature selection in order to subset a 

high dimension database from chromatography–mass spectrometry systems.  In another 

medical application, Paja and Pancerz (2017) used Information Gain for weighting and 

then contrast variables for thresholding to develop their final feature subset. 

In using contrast variables, one has to consider the possible impact of the added 

columns on feature ranking and on performance.  This could range from zero (no contrast 

variables) to some number greater than the number of real features.  In terms of a 

percentage of the total number of real features, in practice researchers report successful 

results with ranges from 0.5% to 2.5%.  Considering an example dataset with 400 

features this would equate to adding from 2 to 10 artificial attributes. 

For this work, thresholding was also accomplished using artificial contrast 

variables.  They are treated as additional features, just as the Permissions, Intents and API 

Calls.  The major difference is that instead of consisting of data extracted from actual 

Android apps, the contrast features are populated with data from a random number 
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generation algorithm, in this case, 0 or 1 due to the binary nature of the datasets.   To the 

feature selection algorithm, these contrast features are just additional features, no 

different than the Permissions, Intents or API Calls, and the algorithm assigns weights to 

the contrast features just like all other real features. 

In that these experiments evaluate all features in each set and run time was not 

important, the number of contrast variables used was not significant.  The number 

ultimately selected and incorporated into each set was three.  Early prototypes were run 

with a single contrast variable and it was observed that some algorithms provided 

inconsistent results (weights) when repeated, so three were tested and using the average 

of the weights made the observed variation much smaller.  No runs were made with more 

than three since it was judged there would be diminishing return. 

The process then is to contrast the weights (or more precisely the mean of the 

weights) of these features of random  data to the weights of the features from algorithmic 

selection and determine if further feature reduction if indicated.  

For this step, let F represent the original matrix of feature vectors: 

F m = {Permissions, Intents … }  (see Table 12) 

where m = 7 (the number of instances).  

 𝑭 𝑉  =  𝑭 𝑚  +  𝑽 

where V is the matrix of contrast variables added to the original matrix of attributes for 

each dataset.  A matrix of candidate feature sets, F  T is created by applying each feature 

selection technique T where: 

 T r = {Chi-Square, Information Gain, … }  (See Table 10) 

and r = 11 (the number of techniques to be employed) onto each original feature set F V :   
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 F  T = Tr (F  
V ) 

The size n of each candidate feature set will vary based on the results of the selection 

algorithm.  For each feature set in F  T , the values of the weights vector, w, are 

determined by T  which equates to a feature importance measure.  Let 𝒘 𝐹 be the weights 

matrix for the orignial features F  
m , and let 𝒘 𝑉 be the weights matrix for the contrast 

variable features V.  Then the preliminary subset S  ′ of signficant features is built from the 

features of F  whose weights are greater than the mean of the weights of the features of V 

( 𝒘𝑉̅̅ ̅̅ ), such that:   

𝑺′ ⊆   𝑭 𝑚  

Getting back to the previous example, Figure 8 shows the weights of the contrast 

variables to the right of the weights of the original features, labeled as R01, R02 and R03, 

where the label ‘R’ stands for random.  They are separate in the figure to help visualize 

the process, but the feature selection algorithm just sees them as features no different than 

P01 - P25 and assigns weights similarly.  (See also step 2 in Figure 6.)  In this example, 

the mean of the weights of the contrast variables is 0.408.  The weight of each feature, 

P01 - P25, is then compared to that mean, and if the weight of that feature is less than 

0.408, it is eliminated.  In the figure this is represented in the second row which shows 9 

Figure 8  

Performance Selection Results Example 
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of the 25 features removed.  Then, as shown on the third row of the figure, an importance 

order is inferred based on the weights, resulting in a feature significance order for this 

instance with the range 1 - 16. 

With respect to the C1 cohort where all features have a weight value, the 

population of S  ′ is trivial.  However, for C2, there are three variations possible.  The first 

is where none of the feature weights are greater than 𝒘 𝑉̅̅ ̅̅̅: 

𝒘 𝑚𝑎𝑥
 𝐹  ≤  𝒘 𝑉̅̅ ̅̅̅  

 meaning the algorithm that selected those features could not distinguish between real 

features that are truly significant and random data.  The second scenario is the opposite, 

where all of the feature weights from the algorithmic selection process are greater than 

𝒘 𝑉̅̅ ̅̅̅: 

𝒘 𝑚𝑖𝑛
 𝐹  >  𝒘 𝑉̅̅ ̅̅̅  

This result has the performance selection process in complete agreement as to the 

significance of all the features selected.  The third scenario is a mix of these two extremes 

where some of the feature weights are greater than 𝒘𝑉̅̅ ̅̅  and some are not: 

𝒘 𝑚𝑖𝑛
 𝐹  <  𝒘 𝑉̅̅ ̅̅̅  ≥  𝒘 𝑚𝑎𝑥

 𝐹    

  For comparing this effect, let the number of features returned from a given 

algorithmic selection process be 𝑛𝐴𝑆 and the number of features returned from the 

performance selection process as 𝑛𝑃𝑆, then we can define the effectiveness of that 

algorithm for feature selection as: 

eff𝑖  =  
𝑛𝑃𝑆

𝑛𝐴𝑆
                                                                   (8) 



75 

 

 

where i is the feature selection method in Table 10.  In such a rating, 100% effectiveness 

would be the case in which performance selection was in full agreement with the 

algorithmic selection results and 0% effectiveness is the case where the feature selection 

algorithm could not distinguish between significant features and random data. 

Feature Ranking 

As described by Bolon-Canedo, Sanchez-Marono and Alonso-Betanzos (2013), 

there are two main approaches to evaluating feature selections, individual evaluation, 

which provides an ordered ranking of features, and subset evaluation, which provides a 

candidate feature subset.  In that the goal of this research was to analyze the importance 

of all Android features within the three categories of Permissions, Intents and API Calls, 

as opposed to selecting a single, best performing feature set, the individual evaluation 

approach was selected which provides an ordered ranking of features. 

In order to evaluate performance of specific features across a range of subset 

creation methods an ensemble voting scheme was chosen based on quartile membership 

of the ordered set and across two data stratifications: dataset combination and feature 

selection method.  There is a long history of quartile analysis as an evaluative technique 

going as far back as Tukey (1977) in his seminal work Exploratory Data Analysis 

although he used the term hinges.  As defined by Langford (2006), the simplest way to 

delineate a quartile is to find the median of a dataset, the number which puts at least half 

of the data values at that number or below and at least half of the data values at that 

number or above, and then to define the first quartile (Q1) to be the median of the bottom 

half, and the third quartile (Q3) to be the median of the top half.  Data below the Q1 point 

is in the first quartile and data above the Q3 point is in the fourth quartile. 
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Quartiles are often used in statistical outlier identification (Rousseeuw & Hubert, 

2011) where the aim is to minimize the impact of outliers.  While that was not the goal 

desired here, the identification task is the same.  The approach is generic in that it spans 

many research streams.  As examples, Shih and Liu (2016) used quartile analysis for 

threshold determination in their work in image processing, and Lee and Sumiya (2010) 

employed it to geo-locate social event occurrence based on Twitter data. 

Final determination to use quartiles came after data statistics were computed 

using half deciles, deciles, the selected quartile, second quartile and percentiles.  The goal 

of the analysis is to provide a meaningful representation of importance.  It was 

determined based on the range of statistical calculations that half deciles and deciles 

filtered too much of the results.  Conversely, second quartile did not adequately bring 

higher performers to the top and percentiles simply did not provide a clear demarcation 

point.   

Cluster analysis was another alternative considered but rejected.  While it could 

show the groups, theoretically some being significant and others not, but there is no 

inherit ranking such as  

Q1 < Q2 < Q3 < Q4 

as naturally available in quartile analysis. 

Ranking by dataset combination 

Define 𝜌𝑑𝑖 to be the number of times the order of feature 𝒇𝑖 is in the first quartile 

for the d th  combination among the m dataset combinations used.  Then the range of 𝜌𝑑𝑖 

can be given as: 

   0 ≤   𝜌𝑑𝑖  ≤  |T | 
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where T  is the set of feature selection methods used with |T | = 11, and  

    1 ≤  𝑖 ≤  |F  |  

where F  are the original feature sets based on m combinations.  To be more concrete, if 

𝜌𝑑𝑖  = 11 then the ith feature of F  was ranked in the top 25% by each feature selection 

method, i.e., it is selected as an important feature.  Conversely if 𝜌𝑑𝑖 = 0 then none of the 

feature selection methods ranked that feature as important.  (Note that F  does not contain 

the contrast variables as their usefulness was for performance selection and are not to be 

treated as real features for the ranking process.) 

For comparison of 𝜌𝑑𝑖 across the data stratifications, a permutation (reordering) of 

features can be defined by: 

〈 𝜋(𝑑1), 𝜋(𝑑2), . . . , 𝜋(𝑑, |𝐹|) 〉 

with 

𝜌𝜋(𝑑1)  ≥  𝜌𝜋(𝑑2)  ≥ . . . ≥  𝜌𝜋(𝑑,|𝐹|) 

so that sequences can be mapped. 

Ranking by feature selection method 

Define 𝜌𝜏𝑖 to be the number of times the order of feature 𝒇𝑖 was in the first 

quartile of the 𝜏th algorithm among the n feature selection methods used.  Then the range  

of 𝜌𝜏𝑖 can be given as: 

    0 ≤  𝜌𝜏𝑖  ≤  |F |  

Note that while there are seven feature set combinations, referring back to Table 12 one 

can see that any given feature type can only be in four of the seven combinations so that 

the actual range of 𝜌𝜏𝑖 is: 

   0 ≤   𝜌𝜏𝑖  ≤   4 
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Similar to the prior concrete example, if 𝜌𝜏𝑖  = 4 then the ith feature of F  was ranked in 

the top 25% by each combination in which that feature type existed, i.e., it is selected as 

an important feature.  Conversely if 𝜌𝜏𝑖  = 0 then none of the combinations had it ranked 

as an important feature. 

As with dataset variation, for comparison of 𝜌𝜏𝑖 across selection methods, a 

permutation can be defined by: 

〈 𝜋(𝜏1), 𝜋(𝜏2), . . . , 𝜋(𝜏, |𝐹|) 〉 

with 

𝜌𝜋(𝜏1)  ≥  𝜌𝜋(𝜏2)  ≥ . . . ≥  𝜌𝜋(𝜏,|𝐹|) 

so that sequences can be mapped. 

K-based Selection 

The final feature subset S  is then built by varying the number of features selected, 

k, where 

𝑘𝑖  ∈  { 5, 10, 15, 20, 30, 40, 50, 75, 100 … 𝑑𝑠′}, 1 ≤  𝑖  ≤  𝑛 

a set arbitrarily selected to provide robust coverage of the span of possible selected 

subsets, and 𝑑𝑆′ represents the largest number of features in the subset vector which can 

vary based on the prior subset selection processes and will be less than or equal to the 

original number of features in the dataset, i.e.,  𝑑𝑆′  ≤   𝑑.    

Then  

𝑺𝒊  ∈  {𝑺1, 𝑺2, 𝑺3  ⋯ 𝑺𝑛}, 1 ≤  𝑖  ≤  𝑛 

where 𝑺𝒊 is the ith feature set with ki features. 

For an understanding of how S  is built, let us refer back to the example where 

after performance selection there are twelve features ranked in order of importance.  As 
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shown in Figure 9, the first k-based subset in the example is five, labeled as FS1 for 

feature subset one.  The five top ranked features, P17, P02 , P19, P01 and P15 make up 

the feature subset.  That subset is then validated using n machine learning classifiers.  

Next, for FS2, the top 10 ranked features are used as a subset and that subset is run 

through the same n classifiers.  This is followed by FS3 and the top 15 features.  

However, at FS4 (20 features), based on the number of features down-selected as part of 

the algorithmic selection and performance selection processes, there are not enough 

features left to create a k-based subset of 20 features, so the process ends with FS4 and all 

following k-based subsets, i.e., where k >= 20 is undefined. 

Each combination of dataset and feature selection method (e.g. Permissions only and 

Information Gain) can have a different number of features available going into the k-

based selection phase which implies that each combination can have a different number 

of feature subsets used in the validation phase. 

Validation Analysis 

Experiments were run with the various machine learning techniques described 

above using the previously described malware database.  The key measurements coming 

Figure 9   

K-based Selection and Validation 

 

n ML classifiers (3)
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from the experiments were number of true positives, number of true negatives, number of 

false negatives and number of false positives as shown in the confusion matrix of Figure 

10 and defined in Table 13. 

From this raw data, calculations are made for: true positive rate (TPR), false 

positive rate (FPR), accuracy, precision and F-measure. 

True Positive Rate is defined as: 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

False Positive Rate is defined as: 𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

Accuracy is defined as:  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 

 

Table 13  

Experiment Measurements 

Measure Description 

TP True Positive # malicious apps classified as malicious apps 

TN True Negative # benign apps classified as benign apps 

FN False Negative # malicious apps classified as benign apps 

FP False Positive # benign apps classified as malicious apps 

 

Figure 10   

Experiment Confusion Matrix. 
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Two parameters that go into the calculation of F-measure are precision (p) and 

recall (r).   

Recall, or sensitivity, is defined the same as TPR in this context: 𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

Precision, also known as the positive predictor value, is described in the following 

formula. 

Precision is defined as:  𝑝 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

F-measure or F1 score is then the harmonic mean of precision and recall. 

F-measure is defined as:  𝐹 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∙  
𝑝 ∙𝑟

𝑝+𝑟
 

   These five measurements are all standard metrics used in evaluation of machine 

learning tools for Android malware detection.  In a survey of measurements in use, by 

Talal, et al. (2019), the proposed measurements align with five of the top seven as shown 

in Table 14.  Also of note are the two time-based metrics: Detection time and Training 

time.  Given the current experiments execute training and detection as part of the same 

process, elapsed time is the metric of interest.   

Somewhat related in terms of system level performance, but not included in the 

table, is memory, both internal (system RAM) and external (drive space).  These were not 

included in the observations since the size of available RAM is going to affect overall 

processing time due to the operating system paging and swapping to the disk drive when 

more memory is needed than is available, so in that sense it is already part of the metric.  

Drive space was not considered simply because it is very inexpensive and should not be 

allowed to be a bottleneck in performance. 

The other three items, unchecked in the table, AOC, FNR and TNR, are all 

calculations from the same raw data so can easily be calculated if desired.  
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The results covered in the next chapter will incorporate all six metrics to provide 

consistency with other published works thus providing ample opportunity for 

comparison.   

Resources 

Systems  

The system used in the research was a Windows 10 system running on an Intel i7 

(8 core, 1.8 GHz) with 16 GB of RAM and 8 TB of external storage.   

Libraries 

As discussed in the previous section, the machine learning library used was 

Scikit-learn (scikit-learn - Machine Learning in Python, 2010).   

Datasets 

There is a maxim in machine learning that more data is always better.  When 

dealing in the arena of malware detection, the problem is that data is not easily attained.  

Table 14   

Summary of Measurement Criteria. 
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The first step in the process is gathering labeled applications, i.e., labeled "malware" or 

"benign".  The next step is decompiling the apps and extracting the desired features.  This 

can be very computationally intensive with durations in terms of days or weeks 

depending on the number of apps.  Finally, the extracted data needs to be cleaned, 

encoded, and formed into datasets appropriate for input into machine learning libraries.  

Such required level of effort results in much malware research having smaller rather than 

larger datasets.  Of the literature survey conducted herein, over 70% of the papers used 

datasets containing on the order of 10,000 instances or less, and 15% of the papers 

described using 1,000 samples or less.  A major goal of this research was to use an 

exceptionally large dataset, large at least with respect to comparative research. 

In their survey on the availability of forensic datasets, Grajeda, Breitingerr and 

Baggili (2017) listed only two Android malware datasets that meet the above criteria: 

Drebin (Arp, et al., 2014)  and Andro-AutoPsy Lab (Jang, Kang, Woo, Mohaisen, & 

Kim, 2015) as shown in Table 15.  The Drebin dataset is older and even contains some 

malware samples from an older set, that of the Genome project (Zhou & Jiang, 2012). 

Andro-AutoPsy, compiled as part of the Andro-Autopsy project at the University 

of Korea Hacking and Countermeasure Research is newer and contains almost twice as 

many malware samples, all of which came from the two most respected malware 

repositories in the community, Contagio Malware Dump (Contagio Malware Dump, 

2020) and VirusShare (VirusShare, 2020).  As another level of quality check, in order to 

be included in the Andro-AutoPsy dataset, the malware had to have been diagnosed by at 

least ten different antivirus vendors.  The final collection of almost 10,000 samples span a 

range of 30 different malware families.  With respect to the 100K+ benign samples, all 
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were downloaded from Google Play.  Many comparisons have been made to their base 

research with some such as Park, Seo, Han, Oh and Lee (2018) using some or all of the 

dataset. 

Additional goals of this research related to datasets include using one based on 

real apps, as opposed to contrived or synthetic datasets, plus using a dataset that is 

available to other researchers for download.  Both of the datasets in Table 15 meet those 

requirements.  Given all of the above, Andro-AutoPsy was selected as the dataset for this 

research, mainly due to the quality and sample size of malware.   

Table 15   

Dataset Options 
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Chapter 4 

Results 

Data Description 

As described in the section Datasets, the raw dataset consisted of 119,183 

Android applications in the form of APK files.  Of those, 9,990 were malware leaving 

109,193 as benign, or 8.4% malware overall (Table 15).  Each APK was decompiled and 

Android Permissions, Intents and API Calls were extracted from the Java source code and 

the manifest XML file.  The collection totaled over 500K Permissions, 800K Intents and 

3.7M API calls. 

At the time the experiments were run in January 2020, there were 158 

Permissions defined in Android, 295 Intents and innumerable Java API calls available.  

When those three feature groups were extracted from all the APKs, only 66 distinct 

Permissions of the 158 defined were found used.  Likewise, 139 distinct Intents of 295 

were found, and a total of 203 Android Java API calls were identified.  Thus, the 

resulting list of attributes consisted of 408 distinct Android features across the 119K 

Android apps.  Table 16 presents an updated version of Table 12 with the observed 

feature counts.  These numbers do not include the three features of contrast variables 

added as part of the performance selection phase. 

As described earlier, in order to simplify data management, all features were 

given unique identifiers.  These IDs and the feature names are presented in Appendix B. 
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Feature Subset Selection Process 

The feature selection process was described previously in the section Feature 

Subset Selection as consisting of four phases as shown in Figure 5.  After obtaining all 

features, as listed in Table 16, the second step, algorithmic selection, consisted of 

running each of the eleven different feature selection methods against the seven feature 

type combinations.  As defined in the earlier referenced section, the maximum possible 

feature subsets at this stage was:  F  
T m×r where m = 7 (dataset combinations) and r = 11 

(feature selection techniques), or 77 feature subsets.  The inclusion of the term maximum 

in the definition was due to the possible circumstance of some feature subsets being the 

same.  Upon completion of the experiments creating the feature subsets, it was observed 

that there were no duplicates, thus, phase two in the process did result in 77 distinct 

feature subsets. 

Also note that all algorithms were set to provide the maximum number of feature 

weights.  For methods such as Information Gain that implies that if 408 features go into 

the process, one will get 408 feature weights out.  However, other algorithms eliminate 

Table 16   

Datasets Test Matrix - Observed Feature Count 
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features as part of their internal calculations and return only the features the algorithm 

calculated to be significant.  As an example, CFS has a stepwise process calculating a 

metric defined as merit per feature.  Each feature with a merit value equal to or greater 

than the previous is assumed significant.  The first time a feature’s merit value is less 

than the previous, the algorithm assumes it has determined all the significant features and 

the process stops.  So if one were to use 408 features as input to CFS, it might return 10, 

50 or 100 as significant, but most likely some number less than 408. 

The feature counts for each algorithm-dataset combination from the experiments 

are presented in Table 17 by rows and columns respectively.  Comparing the counts to 

the count of all features in Table 16 one can see that of the eleven feature selection 

algorithms, seven actually eliminated features, while four (Information Gain, Chi-Square, 

RFE - Support Vector Machine and Ridge Regression) provided feature weights for all 

features.  As an example, the dataset of all three attribute types (PIA) contained a feature 

count of 408, as described in row one of Table 16.  After algorithmic selection only the 

Table 17   

Phase 2 - Feature Count by Dataset and 

Feature Category. 
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subsets from Information Gain, Chi-Square, RFE-SVM and Ridge Regression still 

contain 408 features (first data column of Table 17). 

The next phase of subset selection, performance selection, eliminated attributes 

based on feature significance.  Table 18 presents the feature counts after phase three.  In 

the table, each dataset combination now has two columns, one showing the feature counts 

after algorithmic selection (𝑛𝐴𝑆) as reported in Table 17, and a second column showing 

feature count after performance selection  (𝑛𝑃𝑆). 

With respect to the C1 cohort defined earlier, significant features are features with 

weight values greater than 𝒘𝒱̅̅ ̅̅ .  Using Information Gain and the PIA dataset as an 

example, of the 408 features weighted by the Information Gain algorithm, 29 features had 

weights less than or equal to 𝒘𝒱̅̅ ̅̅  and thus were eliminated.  Or in other words, 379 

features were selected by the performance selection process as significant. 

For the C2 cohort and the three variations in outcomes, the first is where none of 

Table 18  

Phase 3 - Feature Count by Dataset and Feature Category. 
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the feature weights are greater than 𝒘𝒱̅̅ ̅̅ .  An example of that outcome is Relief and the 

PIA dataset where Relief determined 282 features to be significant, but also rated the 

random data (𝒘𝒱̅̅ ̅̅ ) at the same level. 

The second scenario is the opposite, where all of the feature weights from the 

algorithmic selection process are greater than 𝒘𝒱̅̅ ̅̅ .  An example of this outcome is CFS - 

Information Gain and the PIA dataset.  The CFS process selected 14 features as 

significant and all of those were greater than 𝒘𝒱̅̅ ̅̅ . 

The third outcome is a mix of these two extremes where some of the feature 

weights are greater than 𝒘𝒱̅̅ ̅̅  and some are not.  An example of that situation is RFE - 

Random Forest where the RFE process selected 382 features as significant, but only 146 

of those had weights greater than 𝒘𝒱̅̅ ̅̅ . 

Based on all the feature counts presented in Table 18, we can now calculate the 

algorithm effectiveness as defined earlier in equation (8).  For the eleven feature selection 

methods and seven database combinations, the algorithm effectiveness is presented in 

Table 19.  It is easy to notice that with two of the filter-multivariate methods, CFS – 

Table 19   

Feature Selection Algorithm Effectiveness. 
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Information Gain and CFS – Chi-Square, are rated at the top performers at 100%.  Also 

notice the poor performance of the filter-univariate method, Relief, where all or very 

nearly all features it selected were deemed not significant.   

Table 20 removes the dataset segregation and shows the effectiveness for each 

feature selection algorithm for the total of all datasets, sorted best to worst.  As expected 

from the previous table, CFS – Information Gain and CFS – Chi-Square are rated as the 

most effective algorithms and Relief was the poorest.   

The same data aggregated by feature selection type is presented in Table 21, 

unsorted.  Due to the extremely poor performance of Relief, the third column provides 

the data without inclusion of the Relief performance numbers.  First notice that the worst 

performers are the wrapper methods.  However, the best performers change in ranking 

based on the inclusion or exclusion of Relief.  Given the few representative methods 

(three of each filter method and two embedded methods) one would have to consider this 

data inconclusive in terms of performance ranking by these group types. 

 

Table 20   

Overall Algorithm 

Effectiveness. 
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A secondary measure that should be considered when comparing various 

algorithms is the time it takes to compute the results.  Table 22 presents the 

computational time required for each feature selection algorithm for the total of all 

datasets, sorted fastest to slowest.  The time is shown in minutes, but the third column is a 

normalized version which abstracts the time results from the performance of the specific 

computer system used in the experiments, which did not vary throughout the process.  

One could view this as three groupings: seven of the methods are 1% each, then there is 

Table 21   

Effectiveness by Feature Selection Type. 

 

  * Excluding Relief 

Table 22   

Compute Time per Feature 

Selection Method. 
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both versions of Relief accounting for roughly 20% each, and then the outliers of RFE – 

Support Vector Machine and CFS – Information Gain.  Considering the effectiveness and 

speed together (Table 20 and Table 22 respectively) one would be tempted to label CFS - 

Chi-Square as the best performing feature selection method.  However, another point to 

consider is the number or attributes selected by each method.  In Table 18 it is obvious 

that the three CFS methods select considerably fewer features than most of the others.  

And while most if not all of the CFS algorithmic selections did pass the performance 

selection step, it does indicate that in situations where more features would improve 

classifier accuracy, CFS could be insufficient. 

For completeness, Table 23 presents the compute time aggregated by feature 

selection type.  It is a bit surprising that Wrapper methods were not the slowest, given 

they are well-known for being so given the nature of the designed, i.e., a selection 

algorithm wrapped around a machine learning classifier. 

Ranking Features 

In terms of results from the experiments, a visual representation of 𝜌𝑑𝑖 is shown in 

Figure 11 as a heatmap of the top feature rankings, segmented by feature groups, i.e., 

dataset combinations.  The shading is based on the value of 𝜌𝑑𝑖 for the specific feature.  

Table 23  

Compute Time per Feature 

Selection Type. 
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In the presentation that means a lighter shade indicates lower importance and darker is 

higher importance.  The columns represent the seven different combinations of feature 

types: Permissions, Intents and API Calls.   
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 Figure 11 

Heatmap of Feature Ranking by Dataset 
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The blank cells are datapoints where that feature was not available for ranking.  For 

example, the top item, Permission P079, INSTALL_SHORTCUT, was not in the datasets 

of IA (Intents and API calls), I (Intents only) or A (API calls only) because there were no 

Permissions in those datasets by definition.  Appendix C contains the numerical data for 

all features. 

Figure 12 is a similar heatmap but of 𝜌𝜏𝑖 which shows the top feature rankings 

segmented by feature selection algorithm.  The columns represent the eleven different 

selection methods used.  In this representation, the blank cells are datapoints where the 

feature selection algorithm eliminated that feature and therefore did not assign a weight.  

For example, the top item, Permission P079, INSTALL_SHORTCUT, was not in the 

features selected by the CFS-Relief method for any of the dataset combinations.  

Appendix D contains the numerical data for all features.  
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Figure 12 

Heatmap of Feature Ranking by Feature Selection Algorithm 
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With feature ranking complete, the information is now available to address the 

first two research questions. 

Research Question 1 

How does feature ranking vary when Permissions, Intents and API Calls are selected 

separately versus combined? 

To conduct this analysis, ranking of the features based on singular datasets 

(Permissions only, Intents only and API Calls only, datasets #5, #6 and #7 respectively in 

Table 12) is compared to rankings based on the combination of all datasets (dataset #1). 

By definition the combination set contains Permissions, Intents and API Calls, so in order 

to make the comparison, for each feature type, the other two features are removed from 

the combination set and it is contracted.  As an example, P008 is the 18th most significant 

feature, as shown in Figure 11, but becomes the 10th most significant feature when 

Intents and API Calls are removed from the combination set. 

 If a null hypothesis were true, there is no effect on ranking when comparing 

sequences, then the two ranking vectors would be equal.  Looking at simply the top ten 

for Permissions in each from the experimental results we can observe that: 

〈𝜋11, 𝜋12, . . . , 𝜋1,10〉  =  〈 P079, P112, P139, P105, P104 , P100, P153, P005, P010, P008 〉 

〈𝜋51, 𝜋52, . . . , 𝜋5,10〉  =  〈 P105, P079, P139, P113, P153 , P112, P104, P005, P004, P100 〉 

so that clearly 

〈𝜋11, 𝜋12, . . . , 𝜋1,10〉  ≠  〈𝜋51, 𝜋52, . . . , 𝜋5,10〉 

and thus, more generally 

〈𝜋11, 𝜋12, . . . , 𝜋1,𝑘𝐹〉  ≠  〈𝜋51, 𝜋52, . . . , 𝜋5,𝑘𝐹〉 

and expanding to the other two feature types we can show 
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〈𝜋11, 𝜋12, . . . , 𝜋1,𝑘𝐹〉  ≠  〈𝜋61, 𝜋62, . . . , 𝜋6,𝑘𝐹〉 

and 

〈𝜋11, 𝜋12, . . . , 𝜋1,𝑘𝐹〉  ≠  〈𝜋71, 𝜋72, . . . , 𝜋7,𝑘𝐹〉 

 

The null hypothesis is false. 

To quantify the effect, a similarity scoring function is required that can show 

similarity as a sequence.  One approach would be a binary scoring referred to as the 

Hamming distance in information theory.  It involves comparing the ith elements of each 

vector, but such a naïve comparison would lead to a conclusion that the two are mostly 

dissimilar, which is not the case.   

Consider again 〈𝜋11, 𝜋12, . . . , 𝜋1,10〉 and 〈𝜋51, 𝜋52, . . . , 𝜋5,10〉.  As shown in Figure 13, 

a binary ith-based comparison would indicate only two of the ten to be a match, P139 in 

position three and P005 in position eight.  This would yield a similarity score of 20% 

considering the top 10 set.  Yet when looking at the union of the set, 8 of the 10 elements 

of each are in common.  Figure 14 shows the example with the original two matches plus 

the additional six.  This would yield a similarity score of 80%.  In a set of size 66, such as 

Permissions, one would conclude that if 8 of the top 10 are the same, then there is 

certainly some similarity.  

Figure 13  

Combined to Single Set Membership Example - Exact Match 

 

0   0 1  0 0 0  0  1     0 0
binary 

scoring
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However, there are limits to a strict set union analysis given that the two overall 

sets are actually equal, it is only the sequence that varies.  What is needed is a string 

comparison technique that goes beyond evaluating similarity of elements contained in the 

sets, but that applies a penalty if the like elements are not in the same position.  The 

Euclidean distance method provides just such a function, allowing the assumption that 

the sets are equal and calculating a similarity score based on how close the same elements 

are in position.  For comparing 𝜋(𝑑1𝑖) to 𝜋(𝑑5𝑖), 𝜋(𝑑6𝑖)  and 𝜋(𝑑7𝑖), the Euclidean 

distance, σ, is defined as: 

𝜎1,5  =  |𝜋(𝑑1𝑖)  −  𝜋(𝑑5𝑖)| , 

𝜎1,6  =  |𝜋(𝑑1𝑖)  −  𝜋(𝑑6𝑖)| 𝑎𝑛𝑑 

𝜎1,7  =  |𝜋(𝑑1𝑖)  −  𝜋(𝑑7𝑖)| . 

The reverse, for comparing to 𝜋(𝑑5𝑖), 𝜋(𝑑6𝑖)  and 𝜋(𝑑7𝑖) to 𝜋(𝑑1𝑖) is defined as: 

𝜎5,1 =  |𝜋(𝑑5𝑖)  −  𝜋(𝑑1𝑖)| , 

𝜎6,1 =  |𝜋(𝑑6𝑖)  −  𝜋(𝑑1𝑖) 𝑎𝑛𝑑| 

𝜎7,1 =  |𝜋(𝑑7𝑖)  −  𝜋(𝑑1𝑖)| , 

In order to achieve a cross-comparison for understanding the overall difference between 

two result sets, we take an average of the two distances per comparison.  The final 

Euclidean distance is then: : 

Figure 14   

Combined to Single Set Membership Example - Union 
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𝜎5  =  
𝜎1,5  +  𝜎5,1

2
 , 

𝜎6  =  
𝜎1,6  +  𝜎6,1

2
 𝑎𝑛𝑑 

𝜎7  =  
𝜎1,7  +  𝜎7,1

2
 . 

Figure 15 shows the example sets with the Euclidean distance added (rounded for brevity 

on the image) and illustrates the calculation for the first element.  For P079, the distance 

between the combination ranking and the singular ranking is one.  For P105, the distance 

between the combination ranking and the singular ranking is three.  Then the Euclidean 

distance for the first rank is the average, which is two. 

Noted that the two sets shown in Figure 15 are subsets (top 10  specifically) of 

features being selected and the calculations are for illustration purpose only.  All 

calculations of Euclidean distances are based on the complete selected feature sets.  For 

example, features such as P004, P008, P010, P113 are included in both complete feature 

sets but not in one or the other subsets. 

When using Euclidean distance to measure similarity, low numbers imply higher 

similarity and high numbers imply lower similarity.  But in similarity measures it is 

typical for larger values to indicate similar objects and smaller values to indicate 

Figure 15  

Combined to Single Set Membership Example – Euclidean Distance 
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dissimilar objects, usually accomplished by taking the inverse of the distance measures.  

In addition, for the overall similarity score, being normalized would abstract the number 

of features per type from the scoring vector and make comparison among feature types 

more meaningful.  We thus define the similarity score, γ, describing the feature by 

element as: 

𝛾(𝜋𝑓)  =  1 −  
𝜎(𝝅𝑓)

𝑛𝑓
 

where 𝑛𝑓 is the number of attributes in each feature type.  The similarity score for the 

features set overall is then: 

𝛾𝑓  =  𝛾(𝜋𝑓)̅̅ ̅̅ ̅̅ ̅ 

For the above concrete example  𝛾𝑃  is undefined due to the distance 

measurements extending beyond the top 10, such as P010 which is in the top 10 of the 

combined sequence, but not in the top 10 of the individual sequence.  

Moving beyond the first ten elements of the example and applying to the entire 

Permissions attribute set leads to a 𝛾𝑃 = 92% with an element-wise distribution 

presented in Figure 16.  In the chart, the element-by-element score is the dotted line.  

Given the noise evident in the score line, a smoothing function (the dark line) is applied 

in order to provide a better visualization of the result.  The smoothing function is simply 

the average of the surrounding cells, in this case the average encompasses 5% of the cells 

on each side of a point.    
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Figure 17 combines the same analysis with that of Intents and API Calls, plus a 

Random function to show as contrast.  The chart indicates that there is minimal effect of 

getting feature ranking from the combined dataset versus the singular datasets when 

considering the top 10 – 15 percent for all three attribute types.  This means that if one 

wants a feature set of Permissions, Intents and API Calls, and the desired feature count is 

small, then it does not matter if the feature selection process is performed with all three 

feature groups combined, or if selection is performed separately and then combined. 

However, from around 15 – 25 percent there is a sharp divergence in the 

similarity.  Intents go from mid-90s to around 80% and eventually below, operating in the 

same range as the random function.  Both Permissions and API Calls oscillate in the 

Figure 16  

Similarity of Permissions: Combined Dataset vs Permissions Only Dataset 
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upper 80s to lower 90s range with no obvious pattern.  The overall similarity of the three 

vectors, combined datasets to singular datasets, are shown in the legend of the figure, and 

are: Permissions = 92%, Intents = 83% and API Calls = 90%. 

The implication of this data is that during the feature selection phase on the 

Android platform, researchers must be cognizant of the effect of layering multiple feature 

types in their dataset, with the detrimental effects getting worse the larger the feature set 

employed.  As an example, suppose someone wants to have a dataset of Permissions and 

Intents with an attribute count of around 100.  If feature selection is performed separately 

to get the most important Permissions to use and then to get the most important Intents, 

Figure 17  

Similarity of Feature Types: Combined Dataset vs Singular Only Datasets 
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the feature set could be significantly different than if the Permissions and Intents were 

combined and then feature selection performed. 

Given the plethora of small sample sizes used in this research stream for 

convenience, a poor selection of the features could dramatically change the end results of 

classification. 

Research Question 2 

How does feature ranking vary across feature selection algorithms? 

Similar to the prior question, this analysis compares the feature rankings from 

each of the 11 feature selection algorithms, to the ranking from the combination of all 

features.   If there were no effect of feature selection method on feature ranking (the null 

hypothesis) then all permutations would be equal.  Table 24 presents the top ten features 

for each of the eleven feature selection methods.  Through simple observation one can 

see the null hypothesis is false.  The closest in similarity are the first two methods, 

Information Gain and Chi-Square, where the sequences of the first five elements are the 

same, but other than those two segments, the table indicates a lot of diversity. 



105 

 

 

In order to evaluate how the methods vary, the ranking based on the combination 

of all methods, 𝝅𝐶, will be used be used as a standard for comparison.  As with dataset 

evaluation, a similarity score based on Euclidean distance will be the base measurement. 

The first comparison of methods is with the three univariate filter methods: 

Information Gain, Chi-Square and Relief.  Figure 18 shows the similarity among the 

three.  Notice the remarkable consistency between Information Gain and Chi-Square 

implying that these methods are essentially interchangeable for any researchers 

considering choosing one of the two.  Also note that because they are strictly 

correlational, they provide rankings for the entire feature set whereas Relief only 

provides rankings for those features deemed significant by the algorithm, in this case, 

completing execution around 72% of Feature Count (x-axis). 

Table 24  

 Top10 Selected Features by Feature Selection Method 
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Figure 19 looks at the three multivariate filter methods: CFS – Information Gain, 

CFS – Chi-Square and CFS – Relief.  The base chart presents the data at the same scale 

as all the other charts in this sequence, however, due to the limited coverage over the x-

axis, an overlay is included in the figure that magnifies the area of interest.   

Recall that the CFS algorithm starts with a correlation input and the three CFS 

methods employed here are using the same three univariate methods presented as stand-

alone methods in the prior section.  Therefore, one would expect some level of 

consistency between the stand-alone results and the CFS results. 

As easily observed on the figure overlay, the consistency of CFS – Information 

Gain and CFS – Chi-Square is high.  Also notice that both methods complete execution at  

Figure 18   

Similarity of Univariate Filter Methods 
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just over 5% of feature count.  In other words, out of 408 attributes, these two CFS 

methods returned 22 attributes as important.  CFS – Relief diverges from the other two as 

with the univariate analysis, but returns 50 attributes as important, more than double the 

other two CFS methods. 

Similarity of the three wrapper methods, RFE – Neural Net, RFE – Random 

Forest and RFE – Support Vector Machine, is presented in Figure 20.  While there is 

some consistency between the first two in the first half of the feature set, overall, all three 

vary significantly.  Because these wrapper methods use classifiers as their search engine, 

the classifiers may perform differently based on the domain.  In a following section, 

Figure 19  

Similarity of Multivariate Filter Methods 
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validating the feature sets with classifiers will shed light on this variation and its effect on 

accuracy. 

Finally, the last grouping, embedded methods, consisting of LASSO Regression 

and Ridge Regression, are shown in Figure 21.  We see that as expected, LASSO does 

select features, i.e., it does not provide a weighting for all features but only the ones the 

algorithm selects as significant.  As shown in the chart, it completes execution at around 

85% of feature count.  Prior to that point, up to around 60% there is a lot of consistency 

between the two methods.  Referring back to compute time in Table 22, the difference in 

that respect is minimal between the two, as well as with several other methods.  

Figure 20  

Similarity of Wrapper Methods 
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Researchers trying to choose between L1 and L2 regression should see little impact 

between the two unless aiming for the maximum size attribute count. 

The similarity of all eleven feature selection methods is presented in Figure 22.  

This chart is comprised of the same data presented in the previous four charts, all at the 

same scale.  The volume of data makes it somewhat challenging to discern individual 

lines but notice the shading in the upper left quadrant.  Ten out of eleven of the methods 

show a remarkable consistency given the variety of algorithms.  This area shows that 

compared to the baseline measurement, they all start at 90% similar ±5% trending down 

to 80% similar ±5% approaching one third of the attribute set count.  This shows that the 

larger the feature set size, the greater the impact based on the feature selection method.  

Figure 21  

Similarity of Embedded Methods 
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Data Repeatability 

When basing conclusions on experimental data, it is useful to understand the 

repeatability of the numbers, especially when there are outliers as RFE-SVM is in the 

previous figure.  Such outliers always beg the question as to if the data is bad or if it is a 

valid phenomenon.   

Repeatability was investigated for the eleven feature selection methods discussed 

in the previous section.  In that it is the method to be proven, and not the effect of the data 

on the method, only one of the seven dataset combinations was chosen for the 

investigation, the Permissions only version.  The assumption is that any variances in 

repeatability for one dataset would manifest itself in all seven datasets. 

Figure 22  

Similarity of All Eleven Feature Selection Methods 
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For each feature selection method, using the Permissions only dataset, the 

experiment was run ten times and the feature rankings compared.  In a perfect scenario, 

the same method would provide the same feature ranking ten times in a row.  For 

example, if Information Gain ranked P010 (ACCESS_WIFI_STATE) as the fifth most 

important Permission, the question is, would it rank it fifth every time, or could some 

variation in the process cause it to get ranked fourth or sixth, or some other ranking, 

during certain runs? 

The answer is that it varies depending on the feature selection method.  To 

analyze the effect, the standard deviation is calculated for each method for each 

significant feature, i.e., post-Performance Selection.  Table 25 offers three examples of 

the calculations.  The first column shows that Information Gain ranked feature P010 as 

fifth most important all ten iterations, thus the standard deviation is zero.  The second 

column shows that the Relief method ranked P104 either first or second for all iterations 

resulting in a standard deviation of 0.52.  The third column shows a much less desirable 

outcome with RFE – Neural Network ranking P043 in a range from 25 to 43 with a 

standard deviation of 6.72. 

Table 25  

Selected Repeatability Data 
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Figure 23 is a graph of all standard deviations for all eleven feature selection 

methods.  Note that not all lines cover the full feature rank range.  This is because the 

standard deviation is only relevant for features that were selected by the process.  Refer 

back to Table 18 for the counts associated with each.  As easily determined from the 

figure, RFE – Neural Network is the poorest performer in terms of data repeatability.  

Likewise, Relief and CFS – Relief shows relatively high standard deviations especially 

considering the few number of features selected by each. 

Table 26 provides the average standard deviation for all methods.  Note that the 

top four include Information Gain, Chi-Square and then the CFS version of each.  Of 

those four, only Information Gain was not perfect repeatability, although it was perfect 

Figure 23  

Data Repeatability for Feature Selection Methods 
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for rankings 1 – 60.  Only the last four rankings showed any variation of between one to 

three ranks.   

Validating Feature Subsets 

After ranking all the features, the next step was to test the efficacy of the various 

feature subsets across the three machine learning classifiers, Random Forest, Support 

Vector Machine and Neural Network.  In many feature selection algorithms, the user 

specifies the number of features they want returned, for example, top 10 or top 20.  In 

these experiments, the number of features used with the classifiers was varied so as to 

determine the effect of feature set size on classifier accuracy.  In cases where the number 

of features to test exceeded the number provided by the performance selection step, then 

that test sequence ended. 

Table 27 presents the test matrix used, a total of 128 feature subsets.  As 

described in Performance Selection, the subset sizes were selected arbitrarily to provide 

robust coverage of the span of possible selected subsets.  Each of these were then 

Table 26   

Average Repeatability 

(Standard Deviation) 

 



114 

 

 

validated using each of the three machine learning methods, creating 384 unique result 

sets.   

Before comparing the various feature selection methods, the data to be analyzed 

can be reduced by making the final determination on the best dataset to use.  Recall from 

our earlier discussion that seven datasets, as listed in Table 16, have been used 

throughout the experiments.  Each of these were used separately as the dataset for each 

feature selection method (Table 10) and each machine learning algorithm (Table 11).   

Figure 24 shows a comparison in classifier accuracy of the seven datasets using 

Chi-Square as the feature selection method and Random Forest as the machine learning 

classifier.  This is but one instance of the 33 variations (11 feature selection methods x 3 

machine learning algorithms).  It is clear from the chart that the dataset PIA (Permissions, 

Intents and API Calls) performs best, although not significantly.  Notice that five of the 

seven variations achieve over 99% accuracy, with the lowest being API Calls alone.  The 

two between 98% and 99% are Permissions alone and Intents alone. 

Table 27  

Classifier Test Matrix: Feature Subset Size by Feature Selection Method. 
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The horizonal axis in this chart is feature set count.  Recall that it was also a 

variable in the test matrix.  The effects of feature count will be discussed later.  The task 

at hand is to identify the dataset to carry forward into further analysis. 

Considering all the data, with respect to the dataset analysis, Chi-Square is 

representative of the majority of the results.  Figure 25 shows RFE – Neural Net with a 

Random Forest classifier and Figure 26 shows the same with Ridge Regression.   

Notice that the dataset performance order is exactly the same in all three charts.  

There were a couple of instances where PIA was not the top performer, but those were 

cases with sparse data and no convergence on feature count.     

To determine if there is an effect on ordering based on the classifier, Figure 27 

shows the dataset comparison of accuracy using Chi-Square as the feature selection 

methods and Support Vector Machine (SVM) as the classifier and Figure 28 shows the 

same but with a Neural Network as the classifier. 

Figure 24  

Dataset Comparison of Accuracy with Chi-Square and Random Forest 
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Figure 26  

Dataset Comparison of Accuracy with RFE–NN and Random Forest 
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Figure 25  

Dataset Comparison of Accuracy with Ridge Regression and Random Forest 
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Figure 27  

Dataset Comparison of Accuracy with Chi-Square and SVM 
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Figure 28  

Dataset Comparison of Accuracy with Chi-Square and Neural Network 
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Note that there is a difference in accuracy among the three classifiers, to be 

discussed later, but with regard to the selection of the optimal dataset, the consensus for 

all three classifiers is that PIA performs best. 

Charts for all dataset accuracy comparisons for the various feature selection 

methods and the three machine learning classifiers are presented in Appendix E.  Certain 

variations, such as CFS – Chi-Square with Random Forest are not charted there due to a 

lack of data points that resulted from the three-phase selection process as shown in Table 

27. 

The final data stratification to look at is the metric.  To this point the metric 

discussed has been accuracy.  The actual raw data for the experiments are TP, TN, FN 

and FP (Table 12) which all go into the calculation of accuracy.  All of the other metrics 

of interest, true positive rate (TPR), false positive rate (FPR), precision and F-measure 

(F1), defined in the Analysis section, use the same raw data so it is no surprise that the 

trends are the same.   

For completeness, these metrics for Chi-Square and Random Forest are presented 

next.  First, Figure 29 shows true positive rate and Figure 30 shows false positive rate.   

As one would expect, the two have an inverse relationship.  The dataset PIA has 

the highest TPR and lowest FPR, respectively. 

Finally, Figure 31 shows precision in this same context and Figure 32 shows F-

measure. 
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Figure 29  

Dataset Comparison of TPR with Chi-Square and Random Forest 
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Figure 30 

Dataset Comparison of FPR with Chi-Square and Random Forest 
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Figure 31  

Dataset Comparison of Precision with Chi-Square and Random Forest 
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Figure 32  

Dataset Comparison of F-measure with Chi-Square and Random Forest 
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With this comparison complete, it has been shown that when evaluating the three 

machine learning classifiers against the eleven feature selection methods, of the seven 

dataset combinations, the best performance is achieved using PIA (Permissions, Intents 

and API Calls) together as opposed to any other available combination and accuracy is a 

representative metric. 

Research Question 3 

How does machine learning model accuracy vary across machine learning algorithms 

and feature selection algorithms? 

The variation in model accuracy across machine learning algorithms for each 

feature selection method is presented in Table 28.  These data are for the highest accuracy 

achieved across the attribute count spectrum. 

The overall variation in accuracy across machine learning algorithms is shown in 

Figure 33.  The vertical axis represents the average accuracy across all eleven feature 

selection methods.  The figure shows that Random Forest has higher accuracy than SVM, 

Table 28  

Maximum Accuracy Across Test Matrix 
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which in turn has higher accuracy than the Neural Networks.  But one must also look at 

the scale.  Compared to Random Forest, SVM is only 0.68% less, and Neural Net is 

1.37% less.  

Figure 34 shows the variation in accuracy for each classifier as well but broken 

out by feature selection method.  For all eleven methods, the order of highest accuracy is 

the same, Random Forest, SVM and Neural Net, although divergence in the percent 

difference can be observed in some.  If the null hypothesis were true, i.e., there is no 

effect of feature selection algorithm on classifier accuracy, then one would expect the 

ordering of highest accuracy to lowest accuracy to vary randomly across the 11 

algorithms, but clearly as shown in Figure 34, the ordering is consistent with Random 

Forest always exhibiting the highest accuracy, followed by SVM and Neural Net.  The 

null hypothesis is false. 

To better demonstrate the difference in algorithms by feature selection method, 

Figure 35 shows the percentage decrease in accuracy for SVM and Neural Net compared  

Figure 33  

Variation in Accuracy Across Classifier Algorithm 
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Figure 34  

Variation in Accuracy Across Feature Selection Methods 
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Figure 35   

Percentage Decrease in Accuracy Compared to Random Forest 
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to Random Forest.  Out of the eleven feature selection methods, four are noticeably lower 

in accuracy, Relief and the three multivariate filter methods based on CFS. 

These are the same feature selection methods that stand out in Table 28 depicting 

the number of attributes selected for feature subsets.  This phenomenon will be 

investigated in more detail next. 

Research Question 4 

How does feature set size affect model accuracy across feature selection methods? 

Given that feature set size was a variable in the experiments, there exists cases 

where a viable solution exists at a smaller set size than the largest tested.  As an example, 

Figure 24 shows a graph of accuracy using Chi-Square as the feature selection method 

and Random Forest as the validating classifier.  While feature set sizes were tested up 

through a set size of 375, it is clear that the solution converged on an acceptable accuracy 

level significantly before 375.  In this context convergence is the point at which further 

improvements in accuracy are not significant and is defined by: 

∆ 𝑦 ≤ 𝜏  ⇒   𝑐 =  𝑇𝑟𝑢𝑒 

where ∆ 𝑦 is the change in accuracy between feature set sizes, 𝜏 is the target value (in 

these experiments arbitrarily set to 0.005) and c is the boolean convergence value. 

As shown in earlier data plots, there are some cases where accuracy oscillates and 

would never converge according to the above formulation.  To remedy those situations in 

order to provide consistency for comparison, a smoothing function was used to produce a 

curve through the discrete data points.  Figure 36 is one example using Chi-Square as the 

feature selection method and Neural Net as the validating classifier.  The solid line 
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represents the actual data from the experiments and the dashed line represents points 

along the curve produced by the smoothing function and used for convergence analysis. 

Recall there were also test cases where there were minimal valid feature set sizes, 

as shown in Table 28 with a case in point being Relief having only a test case of feature 

set size of five.  In such instances, convergence has no meaning.  

In terms of a null hypothesis, i.e., there is no effect of feature set size on model 

accuracy, one intuitively knows this to be false just considering a feature set size of one, 

to a feature set size of 10 or 100 or more; clearly there would be differences in results.  

But regardless of intuition, the null hypothesis is shown to be false by the data presented 

in Figure 36 with accuracy varying significantly as set size increases. 

Figure 36  

Curve Fit Example for Convergence Analysis
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A convergence data summary for test cases using the full dataset (Permissions, 

Intents and API Calls – PIA) is presented in Figure 37.  The dark squares indicate points 

where the solution was not converged.  The lighter squares are with a converged solution 

and the lighter squares with a star indicate the first data point where the solution 

converged.  Clear squares are where there was no valid feature set. 

For cases that did not converge, such as CFS-InfoGain and RF, the accuracy of 

the last datapoint is shown along with the  ∆ 𝑦 at that point. 

The data shows that classifier accuracy significantly varies based on the feature 

set size.  For example, in the first item, Information Gain and Random Forest, using any 

feature set size less than 60 will result in a suboptimal accuracy performance.  Also note 

that the optimal feature set size varies with the classifier.  This is true in all cases with the 

exception of the embedded methods (LASSO Regression and Ridge Regression) where 

convergence occurs at approximately the same point. 

Feature Summary 

Research Question 5 

Among Permissions, Intents and API Calls, what are the important features? 

It has been shown above that 1) using Permissions, Intents and API Calls together 

are better than any of the three in other combinations, and 2) that optimal feature set size 

can vary significantly with feature selection method and is an important parameter to 

consider in order to build a model that will provide optimum accuracy.  
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Figure 37  

Convergence Data for All Feature Sets Using Dataset PIA 

 



128 

 

 

Figure 38 plots the 20 convergence points from Figure 37 with a curve fit added 

to depict a continuous function.  Clearly there is a trend, and what it indicates is that if 

one wants to ensure that their combination of feature selection method and classifier is 

optimized in terms of convergence, then using the top 200 or above Permissions, Intents 

and API Calls is the correct approach.  For convenience, these top 200 attributes are 

listed in Appendix F. 

 

 

 

 

 

  

Figure 38  

Convergence Versus Feature Set Size 
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Chapter 5 

Conclusions, Implications and Recommendations 

Conclusions 

The following provides the major conclusions of this study.  The methods used 

are generic to the field, but these conclusions are specific to the domain of feature 

selection for malware detection on the Android platform. 

Permissions vs Intents vs API Calls 

Considering the use of Android Permissions, Intents and API Calls as features, 

using all three provides the best results.  Additionally, using a combination of any two of 

the feature types provides better results than using any one of them alone. 

Feature Selection Using Multiple Feature Types 

When using a combination of the three feature types, performing feature selection 

on the combination provides better results than performing feature selection on each type 

and then combining the results to create a final feature set. 

Feature Set Size 

Feature set size is important.  While one specific test case did produce optimal 

results with only the top 40 features, in general best results are achieved with a 200 or 

greater feature count.  If a feature set is used that is larger than the minimum required, 

accuracy does not decrease, so it is safe to use more features than absolutely required 

when in doubt. 
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Feature Selection Methods to be Avoided 

Relief proved to be a poor performer of feature selection.  In general, the features 

it selects do not outperform randomly selected features.  This could be attributable to the 

random row selection function in the algorithm.  When used with a large sample size 

dataset and following conventional parameter settings of 10 iterations, there may be too 

much randomness to allow consistent selection of appropriate features.  A study of 

varying dataset size and iteration count could shed light on the problem. 

Given the performance of Relief, it is no surprise that CFS-Relief performed 

poorly as well.  However, regardless of the base correlation method used, CFS should 

also be avoided as a feature selection method.  While the features it selects are 

significant, the algorithm stops too soon thus providing an insufficient feature set size.  

The algorithm is deterministic in nature and thus repeatable based on the same correlation 

input, so overcoming its shortcomings will require revisiting the design. 

RFE – Neural Net (Perceptron) as a feature selection method is unpredictable.  

While the accuracy results were acceptable in these experiments, the repeatability was 

poor thus implying that not all feature sets selected would be acceptable. 

Acceptable Feature Selection Methods 

Information Gain, Chi-Square, Ridge Regression and LASSO Regression are 

excellent feature selection methods with minimal variance across machine learning 

classifiers.  Additionally, all four methods take little computational time.   

The main characteristic these methods have in common are that they all provide 

weight factors for a large percentage of the feature input vectors.  In fact, the first three 

provide weights for all features while LASSO does allow some feature weights to resolve 
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to zero.  This implies that researchers seeking the highest fidelity should not rely on 

feature selection algorithms to specify the feature count, but rather should use some form 

of performance selection and convergence analysis as shown in this report. 

The two wrapper methods RFE–Random Forest and RFE–Support Vector 

Machine provide acceptable results, but those results vary more with the machine 

learning classifier used compared to those listed in the previous paragraph.  However, 

RFE-Support Vector Machine was significantly slower in terms of compute time 

compare to all other acceptable feature selection methods. 

Accuracy 

While it was not a goal of this research to find a best performing feature set or a 

best performing machine learning model, even without fine tuning of parameters, the six 

acceptable feature selection methods averaged 99.6% accuracy with a Random Forest 

classifier, 99.1% accuracy with a Support Vector Machine classifier and 98.6% accuracy 

with a Neural Net (Perceptron) classifier. 

Implications 

This work is the most exhaustive analysis of Android feature selection in this field 

of study to the best of our knowledge.  It can be used as a guide for researchers 

performing feature selection in the domain or a reference for researchers who want to 

skip feature selection as a process and simply use a feature set based on the features listed 

in the document. 

Previous studies in the field that made use of the five feature selection methods 

described as to be avoided or used feature set sizes too small, as defined herein, should 

have the results revisited and possibly revised using appropriate feature sets. 
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 Many of the insights and conclusions presented here have the potential to be 

applied to other malware/anomaly detection tasks, or more broadly, other pattern 

recognitions problems, especially with regard to researchers needing to be cautious of 

blindly relying on feature selection algorithms.    

As shown, Relief, CFS, RFE-NN in general are not suitable for feature selection 

in domains with large feature sets given their propensity to provide an insufficient feature 

count.  On the other hand, Information Gain, Chi-Square, LASSO Regression and Ridge 

Regression are excellent feature selection choices assuming the full weight vectors are 

used appropriately with additional analysis as demonstrated. 

Although evaluating performance of machine learning classifiers was not in the 

scope of this research, it was observed that Random Forest performed exceptionally well, 

which is consistent with other published work in the domain as discussed.  Of the three 

techniques used, Random Forest was the only ensemble method, leading to the conjecture 

that other ensemble approaches might perform just as well or better. 

Recommendations 

Future Work 

This work encompassed a large scope, but as with any research project, there are 

additional pathways that could be explored.  One such path would be to expand the 

experiments by adding feature selection algorithms, such as using Pearson’s Correlation 

or RFE with other embedded classifiers.  One could also vary the parameter settings on 

the wrapper and embedded methods to see how such variations would affect selection. 

Likewise, feature set validation with additional classifiers would be interesting as well as 

varying parameter settings on the classifiers used in validation. 
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 Another path would be to expand on the analysis such as varying the ensemble 

voting scheme using quartile membership or even using other similarity algorithms in 

addition to Euclidian distance.  These would not change the underlying experimental data 

but might provide additional insights and interpretations. 

A more extreme path would be to explore improving the Relief and CFS 

algorithms to determine if they can be improved for use in this domain. 

Finally, even with the large size of the dataset, one could update it with more 

recent benign and malware samples. 

Best Practices 

It is clear from the results reported herein that researchers in the Android malware 

detection field need to pay significant attention to feature selection.  One can use this 

work to explore and expand feature selection or simply pick from its recommendations.  

But using arbitrary methods such as using only Permissions categorized as Dangerous by 

Google (Permissions Overview, 2019) or having a feature selection method return its top 

10 or top 20 features is not best practice. 

Summary 

Introduction 

Android has been Google’s mobile operating system from 2008 to the present.  It 

currently holds approximately 85% of the world market with the only other relevant 

competitor being Apple's iOS.  Android is open source with an open ecosystem which 

tends to make it an easy target for malware perpetrators. 

Detection of malicious activity on computers has a significant research stream 

going as far back as 1980.  This research is focused on anomaly detection which started 
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with Expert Systems and eventually evolved into using machine learning and data mining 

techniques.  Malware detection on mobile devices typically takes a host-based approach, 

evaluating the apps on the system, as opposed to network-based which would be less 

effective given the on-again, off-again nature of mobile network connectivity. 

When developing machine learning models, one initial, critical step is feature 

selection, the process of identifying a subset of relevant features for use in construction of 

the model.  For Android, the features most often used are Permissions, Intents and API 

Calls, individually, together or in some combination.  But there are a number of other 

features used less frequently such as hardware used, Android App Components, Control 

Flow Graphs, URLs and many others.  The problem is there is no consensus in the 

research community as to the key Android feature types for machine learning models.  

Even just considering the top three of Permissions, Intents and API Call, those are just 

categories.  There are hundreds of discrete attributes in each category. 

Typical feature selection approaches in the community include using the subset of 

Permissions categorized as Dangerous by Google, hand selecting features based on 

domain knowledge, or even picking a method such as Information Gain and simply 

taking the top n-ranked features.  Unfortunately, there is no definitive study on Android 

feature selection for researchers to be guided by or use as a reference. 

Such is the goal of this research, to advance the state of the industry’s knowledge 

on feature sets used for Android static analysis malware detection.  The approach was to 

use a broad test matrix consisting of all combinations of Permissions, Intents and API 

Calls, each evaluated by several different feature selection algorithms and then each of 
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those validated with multiple machine learning classifiers.  Then, using the experimental 

results, answer the following five questions: 

1) How does feature ranking vary when Permissions, Intents and API Calls are 

selected separately versus combined? 

2) How does feature ranking vary across feature selection algorithms? 

3) How does machine learning model accuracy vary across machine learning 

algorithms and feature selection algorithms? 

4) How does feature set size affect model accuracy across feature selection methods? 

5) Among Permissions, Intents and API Calls, what are the important features? 

Methodology 

Based on common usage in the community as well as to use several types of 

feature selection algorithms, eleven different feature selection methods were chosen.  The 

selected methods were: 

Chi-Square 

Information gain 

Relief 

Correlation-based Feature Selection (CFS) with Chi-Square 

Correlation-based Feature Selection (CFS) with Information Gain 

Correlation-based Feature Selection (CFS) with Relief 

Recursive Feature Elimination (RFE) using Neural Network (Perceptron) 

Recursive Feature Elimination (RFE) using Random Forest 

Recursive Feature Elimination (RFE) using Support Vector Machine 

Lasso regression (L1 regularization) 

Ridge regression (L2 regularization) 

which encompasses multiple examples of univariate methods, multivariate methods, 

wrapper methods and embedded methods. 
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To validate the results from the various feature selection methods, it was desired 

to use multiple machine learning classifiers so as to demonstrate independence.  The 

algorithms selected were: 

Random Forest 

Support Vector Machine 

Neural Network (Perceptron) 

which also matched the classifiers used as the search engines in the RFE experiments. 

The experiments used a large dataset of 119k Android applications, the Andro-

AutoPsy set from the University of Korea Hacking and Countermeasure Research lab.  

Each app was decompressed and decompiled using an open-source tool called Jadx.  

Instances of Permissions, Intents and API Calls were extracted from all of the apps and 

transformed into a binary encoded dataset indicating the existence or lack of existence of 

each attribute in each app.  In addition to the extracted features, each dataset contained 

three columns of random data as contrast variables against which we could compare 

feature selection results.   

Each of the seven combinations of feature types (Permissions, Intents and API 

Calls) were used as input into the 11 different feature selection methods.  The weight 

values returned by each algorithm was used to infer a ranking, most important to least 

important.  Also, each attribute weight was compared to the weight the feature selection 

algorithm gave to the random data, and any attribute whose weight was equal to or less 

than the average weight of those random contrast variables was eliminated. 

Finally, k-based feature subsets were created based on the rankings of the features 

still present in each subset, i.e., top 5, top 10, top 20, etc.   These multiple sized subsets 
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from each feature selection method for each dataset combination, were then used as input 

for the three machine learning classifiers. 

Results 

For the feature vectors created from the experiments, Euclidean distance was 

employed to evaluate similarity.  In terms of dataset combinations, it was shown that 

there was significant similarity in the first 10 to 15 percent of each vector when 

comparing the features selected from the combined datasets (Permissions, Intents and 

API Calls together) versus selecting from the feature types individually.  But after 15 

percent there is significant divergence. 

Euclidean distance was also used to compare the similarity of the feature vectors 

representing the various feature selection methods.  This demonstrated that Information 

Gain and Chi-Square produced very similar feature sets followed closely by the two 

embedded methods.  Overall, ten of the feature selection methods exhibited reasonable 

similarity in the first 10 to 15 percent of the vectors with the one exception being RFE-

SVM. 

After using all the feature subsets with the three different machine learning 

classifiers, it was shown that using a combination of Permissions, Intents and API Calls 

produced higher accuracy than using any of those alone or in any other combination.  It 

was also demonstrated that when using multiple feature types, feature selection should be 

performed on the types combined, not separately and then combined. 

The k-based selection experiments showed that feature set size is important, and 

in general, researchers should be using around 200 features or more for optimal 

classification. 
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With regard to efficacy of the various feature selection methods, the data 

indicated that Relief, the three CFS based methods and RFE-Neural Network were not 

satisfactory and therefore should be avoided.  Conversely the data showed that 

Information Gain, Chi-Square, LASSO Regression and Ridge Regression are very good 

feature selection methods, and RFE–Random Forest and RFE–Support Vector Machine 

are moderately good with the latter being least so due to the computational time it 

requires. 

Data and Code Repositories 

All the data and custom Python code used in these experiments is available to the 

public in the author’s Github repositories: 

https://github.com/fcguyton/android_feature_selection 

https://github.com/fcguyton/ml_algorithms, and 

https://github.com/fcguyton/python_utilities. 
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Appendix A 

References for Table 4 

First Author  Year Reference 

Aafer, Yousra                                                                                                                                          2013  (Aafer, Du, & Yin, 2013) 

Abaid, Zainab                                                                                                                                          2017  (Abaid, Kaafar, & Jha, 2017) 

Abro, Fauzia                                                                                                                                           2018  (Abro, 2018) 

Adebayo, Olawale                                                                                                                                       2014  (Adebayo & AbdulAziz, 2014) 

Alatwi, Huda                                                                                                                                           2016  (Alatwi, 2016) 

Allix, Kevin                                                                                                                                           2014 
 (Allix K. , Bissyande, Jerome, Klein, & 

Le, 2016) 

Allix, Kevin                                                                                                                                           2016  (Allix K. , Bissyande, Klein, & Le, 2014) 

Alswaina, Fahad                                                                                                                                        2018  (Alswaina & Elleithy, 2018) 

Altaher, Altyeb                                                                                                                                        2017  (Altaher, 2017) 

Altaher, Altyeb                                                                                                                                        2017  (Altaher & BaRukab, 2017) 

Ariyapala, Kanishka                                                                                                                                    2016  (Ariyapala, Do, Anh, Ng, & Conti, 2016) 

Arp, Daniel                                                                                                                                            2014  (Arp, et al., 2014) 

Aswini, AM                                                                                                                                             2014  (Aswini & Vinod, 2014) 

Aung, Zarni                                                                                                                                            2013  (Aung & Zaw, 2013) 

Chan, Patrick                                                                                                                                          2014  (Chan & Song, 2014) 

Coronado-De-Alba, Lilian                                                                                                                               2016 
 (Coronado-De-Alba, Rodriguez-Mota, & 

Escamilla-Ambrosio, 2016) 

Duc, Nguyen                                                                                                                                            2018  (Duc & Giang, 2018) 

Fan, Ming                                                                                                                                              2017  (Fan, et al., 2017) 

Feizollah, Ali                                                                                                                                         2017 
 (Feizollah, Anuar, Salleh, Suarez-Tangil, 

& Furnell, 2017) 

Firdaus, Ahmad                                                                                                                                         2018  (Firdaus, Anuar, Karim, & Ab, 2018) 

Ghaffari, Fariba                                                                                                                                       2017  (Ghaffari, Abadi, & Tajoddin, 2017) 

Ghorbanzadeh, Mo                                                                                                                                       2013 
 (Ghorbanzadeh, Chen, Ma, Clancy, & 

McGwier, 2013) 

Glodek, William                                                                                                                                        2013  (Glodek & Harang, 2013) 

Huang, Chun-Ying                                                                                                                                       2013  (Huang, Tsai, & Hsu, 2013) 

Idrees, Fauzia                                                                                                                                         2014  (Idrees & Rajarajan, 2014) 

Idrees, Fauzia                                                                                                                                         2017 
 (Idrees, Rajarajan, Conti, Chen, & 

Rahulamathavan, 2017) 

Li, Jin                                                                                                                                                2018  (Li, et al., 2018) 

Li, Wenjia                                                                                                                                             2015  (Li, Ge, & Dai, 2015) 

Liu, Che-Hsun                                                                                                                                          2016  (Liu, Zhang, & Wang, 2016) 
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Liu, Ning                                                                                                                                              2017  (Liu, Yang, & Zhang, 2017) 

Liu, Ning                                                                                                                                              2018  (Liu N. , et al., 2018) 

Lu, Yung-Feng                                                                                                                                          2018  (Lu, Kuo, Chen, Chen, & Chou, 2018) 

Mahindru, Arvind                                                                                                                                       2017  (Mahindru & Singh, 2017) 

Mahmood, Riyadh                                                                                                                                        2014  (Mahmood, Mirzaei, & Malek, 2014) 

Mariconti, Enrico                                                                                                                                      2016  (Mariconti, et al., 2016) 

Martin, Alejandro                                                                                                                                      2017 
 (Martin, Fuentes-Hurtado, Naranjo, & 

Camacho, 2017) 

Melis, Marco                                                                                                                                           2018 
 (Melis, Maiorca, Biggio, Giacinto, & 

Roli, 2018) 

Moonsamy, Veelasha                                                                                                                                     2014  (Moonsamy, Rong, & Liu, 2014) 

Morales-Ortega, Salvador                                                                                                                               2016 

 (Morales-Ortega, Escamilla-Ambrosio, 

Rodriguez-Mota, & Coronado-De-Alba, 

2016) 

Nauman, Mohammad                                                                                                                                       2018  (Nauman, Tanveer, Khan, & Syed, 2018) 

Naway, Abdelmonim                                                                                                                                      2018  (Naway & Li, 2018) 

Nezhadkamali, Maryam                                                                                                                                   2017  (Nezhadkamali, Soltani, & Seno, 2017) 

Nix, Robin                                                                                                                                             2017  (Nix & Zhang, 2017) 

Papadopoulos, Harris                                                                                                                                   2018 
 (Papadopoulos, Georgiou, Eliades, & 

Konstantinidis, 2018) 

Peiravian, Naser                                                                                                                                       2013  (Peiravian & Zhu, 2013) 

Qiao, Mengyu                                                                                                                                           2016  (Qiao, Sung, & Liu, 2016) 

Rashidi, Bahman                                                                                                                                        2017  (Rashidi, Fung, & Bertino, 2017) 

Reyhani, Hamedani                                                                                                                                      2018 
 (Reyhani, Shin, Lee, Cho, & Hwang, 

2018) 

Rovelli, Paolo                                                                                                                                         2014  (Rovelli & Vigfusson, 2014) 

Sahs, Justin                                                                                                                                           2012  (Sahs & Khan, 2012) 

Shahriar, Hossain                                                                                                                                      2017  (Shahriar, Islam, & Clincy, 2017) 

Shang, Fengjun                                                                                                                                         2017  (Shang, Li, Deng, & He, 2018) 

Sharma, Akanksha                                                                                                                                       2014  (Sharma & Dash, 2014) 

Shelke, Chetan                                                                                                                                         2017  (Shelke, 2017) 

Smutz, Charles                                                                                                                                         2016  (Smutz & Stavrou, 2016) 

Sun, Lichao                                                                                                                                            2016  (Sun, Li, Yan, Srisa-an, & Pan, 2016) 

Verma, Sushma                                                                                                                                          2016  (Verma & Muttoo, 2016) 

Wang, Wei                                                                                                                                              2018  (Wang, Li, Wang, Liu, & Zhang, 2018) 

Wang, Wei                                                                                                                                              2018  (Wang, Zhao, & Wang, 2018) 

Wang, Xiaoqing                                                                                                                                         2016  (Wang, Wang, & Zhu, 2016) 

Wu, Dong-Jie                                                                                                                                           2012  (Wu, Mao, Wei, Lee, & Wu, 2012) 

Xu, Ke                                                                                                                                                 2018  (Xu, Li, Deng, & Chen, 2018) 

Yang, Ming                                                                                                                                             2017  (Yang, Wang, Ling, Liu, & Ni, 2017) 
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Yerima, Suleiman                                                                                                                                       2013 
 (Yerima, Sezer, McWilliams, & Muttik, 

2013) 

Yerima, Suleiman                                                                                                                                       2015  (Yerima, Sezer, & Muttik, 2015) 

Zhang, Yi                                                                                                                                              2018  (Zhang, Yang, & Wang, 2018) 

Zhao, Min                                                                                                                                              2011  (Zhao, Ge, Zhang, & Yuan, 2011) 

Zhao, Min                                                                                                                                              2012  (Zhao, Zhang, Ge, & Yuan, 2012) 

Zhao, Xiaoyan 2014 (Zhao, Fang, & Wang, 2014) 

Zhu, Hui-Juan  w/ Jiang                                                                                                                                        2018  (Zhu, et al., 2018) w/ Jiang 

Zhu, Hui-Juan  w/ You                                                                                                                                        2018  (Zhu, et al., 2018) w/ You 
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Appendix B 

Experiment Feature List 

Permissions 

ID Permission 

P004 ACCESS_COARSE_LOCATION 

P005 ACCESS_FINE_LOCATION 

P006 ACCESS_LOCATION_EXTRA_COMMANDS 

P008 ACCESS_NETWORK_STATE 

P010 ACCESS_WIFI_STATE 

P012 ACTIVITY_RECOGNITION 

P013 ADD_VOICEMAIL 

P015 BATTERY_STATS 

P016 BIND_ACCESSIBILITY_SERVICE 

P025 BIND_DEVICE_ADMIN 

P028 BIND_INPUT_METHOD 

P031 BIND_NOTIFICATION_LISTENER_SERVICE 

P034 BIND_REMOTEVIEWS 

P037 BIND_TEXT_SERVICE 

P041 BIND_VPN_SERVICE 

P043 BIND_WALLPAPER 

P044 BLUETOOTH 

P045 BLUETOOTH_ADMIN 

P050 BROADCAST_STICKY 

P053 CALL_PHONE 

P055 CAMERA 

P058 CHANGE_CONFIGURATION 

P059 CHANGE_NETWORK_STATE 

P060 CHANGE_WIFI_MULTICAST_STATE 

P061 CHANGE_WIFI_STATE 

P062 CLEAR_APP_CACHE 

P064 DELETE_CACHE_FILES 

P067 DISABLE_KEYGUARD 

P069 EXPAND_STATUS_BAR 

P072 GET_ACCOUNTS 

P074 GET_PACKAGE_SIZE 

P076 GLOBAL_SEARCH 

P079 INSTALL_SHORTCUT 

P081 INTERNET 

P082 KILL_BACKGROUND_PROCESSES 

P088 MODIFY_AUDIO_SETTINGS 

P092 NFC 

P094 PACKAGE_USAGE_STATS 

P096 PROCESS_OUTGOING_CALLS 

P097 READ_CALENDAR 

P098 READ_CALL_LOG 

P099 READ_CONTACTS 

P100 READ_EXTERNAL_STORAGE 

P104 READ_PHONE_STATE 

P105 READ_SMS 

P106 READ_SYNC_SETTINGS 

P107 READ_SYNC_STATS 

P110 RECEIVE_BOOT_COMPLETED 

P111 RECEIVE_MMS 

P112 RECEIVE_SMS 

P113 RECEIVE_WAP_PUSH 

P114 RECORD_AUDIO 

P115 REORDER_TASKS 

P125 SET_ALARM 

P133 SET_WALLPAPER 

P134 SET_WALLPAPER_HINTS 

P139 SYSTEM_ALERT_WINDOW 
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P146 USE_SIP 

P147 VIBRATE 

P148 WAKE_LOCK 

P150 WRITE_CALENDAR 

P151 WRITE_CALL_LOG 

P152 WRITE_CONTACTS 

P153 WRITE_EXTERNAL_STORAGE 

P156 WRITE_SETTINGS 

P157 WRITE_SYNC_SETTINGS 

Intents 

ID Intent 

I001 ACTION_AIRPLANE_MODE_CHANGED 

I002 ACTION_ALL_APPS 

I003 ACTION_ANSWER 

I006 ACTION_APP_ERROR 

I007 ACTION_ASSIST 

I008 ACTION_ATTACH_DATA 

I009 ACTION_BATTERY_CHANGED 

I010 ACTION_BATTERY_LOW 

I011 ACTION_BATTERY_OKAY 

I012 ACTION_BOOT_COMPLETED 

I013 ACTION_BUG_REPORT 

I014 ACTION_CALL 

I015 ACTION_CALL_BUTTON 

I016 ACTION_CAMERA_BUTTON 

I018 ACTION_CHOOSER 

I019 ACTION_CLOSE_SYSTEM_DIALOGS 

I020 ACTION_CONFIGURATION_CHANGED 

I022 ACTION_CREATE_SHORTCUT 

I023 ACTION_DATE_CHANGED 

I024 ACTION_DEFAULT 

I026 ACTION_DELETE 

I027 ACTION_DEVICE_STORAGE_LOW 

I028 ACTION_DEVICE_STORAGE_OK 

I029 ACTION_DIAL 

I030 ACTION_DOCK_EVENT 

I031 ACTION_DREAMING_STARTED 

I032 ACTION_DREAMING_STOPPED 

I033 ACTION_EDIT 

I034 ACTION_EXTERNAL_APPLICATIONS_AVAILABLE 

I035 ACTION_EXTERNAL_APPLICATIONS_UNAVAILABLE 

I036 ACTION_FACTORY_TEST 

I037 ACTION_GET_CONTENT 

I041 ACTION_HEADSET_PLUG 

I042 ACTION_INPUT_METHOD_CHANGED 

I043 ACTION_INSERT 

I044 ACTION_INSERT_OR_EDIT 

I046 ACTION_INSTALL_PACKAGE 

I047 ACTION_LOCALE_CHANGED 

I049 ACTION_MAIN 

I055 ACTION_MANAGE_NETWORK_USAGE 

I056 ACTION_MANAGE_PACKAGE_STORAGE 

I057 ACTION_MEDIA_BAD_REMOVAL 

I058 ACTION_MEDIA_BUTTON 

I059 ACTION_MEDIA_CHECKING 

I060 ACTION_MEDIA_EJECT 

I061 ACTION_MEDIA_MOUNTED 

I062 ACTION_MEDIA_NOFS 

I063 ACTION_MEDIA_REMOVED 

I064 ACTION_MEDIA_SCANNER_FINISHED 

I065 ACTION_MEDIA_SCANNER_SCAN_FILE 

I066 ACTION_MEDIA_SCANNER_STARTED 

I067 ACTION_MEDIA_SHARED 

I068 ACTION_MEDIA_UNMOUNTABLE 

I069 ACTION_MEDIA_UNMOUNTED 

I070 ACTION_MY_PACKAGE_REPLACED 
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I073 ACTION_NEW_OUTGOING_CALL 

I074 ACTION_OPEN_DOCUMENT 

I078 ACTION_PACKAGE_ADDED 

I079 ACTION_PACKAGE_CHANGED 

I080 ACTION_PACKAGE_DATA_CLEARED 

I081 ACTION_PACKAGE_FIRST_LAUNCH 

I082 ACTION_PACKAGE_FULLY_REMOVED 

I083 ACTION_PACKAGE_INSTALL 

I084 ACTION_PACKAGE_NEEDS_VERIFICATION 

I085 ACTION_PACKAGE_REMOVED 

I086 ACTION_PACKAGE_REPLACED 

I087 ACTION_PACKAGE_RESTARTED 

I089 ACTION_PASTE 

I090 ACTION_PICK 

I091 ACTION_PICK_ACTIVITY 

I092 ACTION_POWER_CONNECTED 

I093 ACTION_POWER_DISCONNECTED 

I094 ACTION_POWER_USAGE_SUMMARY 

I096 ACTION_PROVIDER_CHANGED 

I097 ACTION_QUICK_CLOCK 

I099 ACTION_REBOOT 

I100 ACTION_RUN 

I101 ACTION_SCREEN_OFF 

I102 ACTION_SCREEN_ON 

I103 ACTION_SEARCH 

I104 ACTION_SEARCH_LONG_PRESS 

I105 ACTION_SEND 

I106 ACTION_SENDTO 

I107 ACTION_SEND_MULTIPLE 

I108 ACTION_SET_WALLPAPER 

I110 ACTION_SHUTDOWN 

I111 ACTION_SYNC 

I112 ACTION_SYSTEM_TUTORIAL 

I113 ACTION_TIMEZONE_CHANGED 

I114 ACTION_TIME_CHANGED 

I115 ACTION_TIME_TICK 

I116 ACTION_TRANSLATE 

I117 ACTION_UID_REMOVED 

I118 ACTION_UMS_CONNECTED 

I119 ACTION_UMS_DISCONNECTED 

I120 ACTION_UNINSTALL_PACKAGE 

I121 ACTION_USER_BACKGROUND 

I122 ACTION_USER_FOREGROUND 

I123 ACTION_USER_INITIALIZE 

I124 ACTION_USER_PRESENT 

I126 ACTION_VIEW 

I129 ACTION_VOICE_COMMAND 

I130 ACTION_WALLPAPER_CHANGED 

I131 ACTION_WEB_SEARCH 

I132 CATEGORY_ALTERNATIVE 

I133 CATEGORY_APP_BROWSER 

I134 CATEGORY_APP_CALCULATOR 

I135 CATEGORY_APP_CALENDAR 

I136 CATEGORY_APP_CONTACTS 

I137 CATEGORY_APP_EMAIL 

I139 CATEGORY_APP_GALLERY 

I140 CATEGORY_APP_MAPS 

I141 CATEGORY_APP_MARKET 

I142 CATEGORY_APP_MESSAGING 

I143 CATEGORY_APP_MUSIC 

I144 CATEGORY_BROWSABLE 

I145 CATEGORY_CAR_DOCK 

I146 CATEGORY_CAR_MODE 

I147 CATEGORY_DEFAULT 

I148 CATEGORY_DESK_DOCK 

I149 CATEGORY_DEVELOPMENT_PREFERENCE 
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I150 CATEGORY_EMBED 

I151 CATEGORY_FRAMEWORK_INSTRUMENTATION_TEST 

I152 CATEGORY_HE_DESK_DOCK 

I153 CATEGORY_HOME 

I154 CATEGORY_INFO 

I155 CATEGORY_LAUNCHER 

I157 CATEGORY_LE_DESK_DOCK 

I158 CATEGORY_MONKEY 

I159 CATEGORY_OPENABLE 

I160 CATEGORY_PREFERENCE 

I161 CATEGORY_SAMPLE_CODE 

I163 CATEGORY_SELECTED_ALTERNATIVE 

I164 CATEGORY_TAB 

I165 CATEGORY_TEST 

I167 CATEGORY_UNIT_TEST 

I259 FLAG_ACTIVITY_CLEAR_TOP 

I273 FLAG_ACTIVITY_REORDER_TO_FRONT 

I276 FLAG_ACTIVITY_SINGLE_TOP 

API Calls 

ID API Call 

A001 android.accounts 

A002 android.annotation.SuppressLint 

A003 android.annotation.TargetApi 

A004 android.app.ActivityManager 

A005 android.app.admin.DeviceAdminReceiver 

A006 android.app.admin.DevicePolicyManager 

A007 android.app.AlarmManager 

A008 android.app.AlertDialog 

A009 android.app.AlertDialog.Builder 

A010 android.app.Application 

A011 android.app.backup 

A012 android.app.DownloadManager 

A013 android.app.Instrumentation 

A014 android.app.IntentService 

A015 android.app.KeyguardManager 

A016 android.app.LauncherActivity 

A017 android.app.ListFragment 

A018 android.app.LoaderManager 

A019 android.app.LocalActivityManager 

A020 android.app.NativeActivity 

A021 android.app.Notification 

A022 android.app.PendingIntent 

A023 android.app.SearchableInfo 

A024 android.app.SearchManager 

A025 android.app.Service 

A026 android.app.TabActivity 

A027 android.app.TaskStackBuilder 

A028 android.bluetooth 

A029 android.content.AbstractThreadedSyncAdapter 

A030 android.content.ActivityNotFoundException 

A031 android.content.AsyncQueryHandler 

A032 android.content.BroadcastReceiver 

A033 android.content.ClipboardManager 

A034 android.content.ClipData 

A035 android.content.ComponentCallbacks 

A036 android.content.ComponentName 

A037 android.content.ContentProvider 

A038 android.content.ContentResolver 

A039 android.content.ContentUris 

A040 android.content.ContentValues 

A041 android.content.ContextWrapper 

A042 android.content.CursorLoader 

A043 android.content.DialogInterface 

A044 android.content.Entity 

A045 android.content.Intent.ShortcutIconResource 

A046 android.content.IntentFilter 
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A047 android.content.IntentSender 

A048 android.content.Loader 

A049 android.content.OperationApplicationException 

A050 android.content.pm.ActivityInfo 

A051 android.content.pm.ApplicationInfo 

A052 android.content.pm.FeatureInfo 

A053 android.content.pm.IPackageStatsObserver 

A054 android.content.pm.LabeledIntent 

A055 android.content.pm.PackageInfo 

A056 android.content.pm.PackageManager 

A057 android.content.pm.PackageStats 

A058 android.content.pm.PermissionInfo 

A059 android.content.pm.ProviderInfo 

A060 android.content.pm.ResolveInfo 

A061 android.content.pm.ServiceInfo 

A062 android.content.pm.Signature 

A063 android.content.res.AssetFileDescriptor 

A064 android.content.res.AssetManager 

A065 android.content.res.ColorStateList 

A066 android.content.res.Configuration 

A067 android.content.res.Resources 

A068 android.content.res.XmlResourceParser 

A069 android.content.SearchRecentSuggestionsProvider 

A070 android.content.ServiceConnection 

A071 android.content.SharedPreferences 

A072 android.content.SyncResult 

A073 android.content.UriMatcher 

A074 android.database 

A075 android.hardware.Camera 

A076 android.hardware.display.DisplayManager 

A077 android.hardware.GeomagneticField 

A078 android.hardware.Sensor 

A079 android.location.Address 

A080 android.location.Criteria 

A081 android.location.Geocoder 

A082 android.location.Gps 

A083 android.location.Location 

A084 android.media.AsyncPlayer 

A085 android.media.AudioManager 

A086 android.media.AudioRecord 

A087 android.media.AudioTrack 

A088 android.media.CamcorderProfile 

A089 android.media.ExifInterface 

A090 android.media.FaceDetector 

A091 android.media.JetPlayer 

A092 android.media.MediaMetadataRetriever 

A093 android.media.MediaPlayer 

A094 android.media.MediaRecorder 

A095 android.media.MediaScannerConnection 

A096 android.media.RemoteControlClient 

A097 android.media.Ringtone 

A098 android.media.SoundPool 

A099 android.media.ThumbnailUtils 

A100 android.media.ToneGenerator 

A101 android.net.ConnectivityManager 

A102 android.net.DhcpInfo 

A103 android.net.http.AndroidHttpClient 

A104 android.net.http.HttpResponseCache 

A105 android.net.http.SslCertificate 

A106 android.net.LocalServerSocket 

A107 android.net.LocalSocket 

A108 android.net.LocalSocketAddress 

A109 android.net.MailTo 

A110 android.net.NetworkInfo 

A111 android.net.Proxy 

A112 android.net.SSLCertificateSocketFactory 
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A113 android.net.TrafficStats 

A114 android.net.Uri 

A115 android.net.UrlQuerySanitizer 

A116 android.net.wifi 

A117 android.nfc 

A118 android.os.Binder 

A119 android.os.Build 

A120 android.os.CancellationSignal 

A121 android.os.ConditionVariable 

A122 android.os.CountDownTimer 

A123 android.os.DeadObjectException 

A124 android.os.Debug 

A125 android.os.Environment 

A126 android.os.FileObserver 

A127 android.os.Handler 

A128 android.os.IBinder 

A129 android.os.IInterface 

A130 android.os.Looper 

A131 android.os.MemoryFile 

A132 android.os.Message 

A133 android.os.Messenger 

A134 android.os.Parcel 

A135 android.os.Parcelable 

A136 android.os.ParcelFileDescriptor 

A137 android.os.PowerManager 

A138 android.os.Process 

A139 android.os.RemoteCallbackList 

A140 android.os.RemoteException 

A141 android.os.ResultReceiver 

A142 android.os.ServiceManager 

A143 android.os.StatFs 

A144 android.os.StrictMode 

A145 android.os.SystemClock 

A146 android.os.Vibrator 

A147 android.preference.CheckBoxPreference 

A148 android.preference.DialogPreference 

A149 android.preference.EditTextPreference 

A150 android.preference.ListPreference 

A151 android.preference.Preference 

A152 android.preference.RingtonePreference 

A153 android.provider.BaseColumns 

A154 android.provider.Browser 

A155 android.provider.CalendarContract 

A156 android.provider.CallLog.Calls 

A157 android.provider.Contacts 

A158 android.provider.MediaStore 

A159 android.provider.SearchRecentSuggestions 

A160 android.provider.Settings 

A161 android.sax 

A162 android.service.dreams.DreamService 

A163 android.service.wallpaper.WallpaperService 

A164 android.speech.RecognitionListener 

A165 android.speech.SpeechRecognizer 

A166 android.speech.tts.TextToSpeech 

A167 android.support.v4.app 

A168 android.support.v4.content 

A169 android.support.v4.media.TransportMediator 

A170 android.support.v4.os.EnvironmentCompat 

A171 android.support.v4.os.ParcelableCompat 

A172 android.support.v4.os.ParcelableCompatCreatorCallbacks 

A173 android.support.v4.util.DebugUtils 

A174 android.support.v4.util.LogWriter 

A175 android.support.v4.util.LruCache 

A176 android.support.v4.util.SimpleArrayMap 

A177 android.support.v4.util.SparseArrayCompat 

A178 android.support.v4.util.TimeUtils 
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A179 android.support.v7.app 

A180 android.telephony 

A181 android.util.AndroidException 

A182 android.util.AndroidRuntimeException 

A183 android.util.AttributeSet 

A184 android.util.Base64 

A185 android.util.Config 

A186 android.util.DisplayMetrics 

A187 android.util.EventLog 

A188 android.util.FloatMath 

A189 android.util.JsonReader 

A190 android.util.JsonWriter 

A191 android.util.Log 

A192 android.util.LruCache 

A193 android.util.MonthDisplayHelper 

A194 android.util.Pair 

A195 android.util.Patterns 

A196 android.util.SparseArray 

A197 android.util.SparseBooleanArray 

A198 android.util.SparseIntArray 

A199 android.util.StateSet 

A200 android.util.TypedValue 

A201 android.util.Xml 

A202 android.util.Xml.Encoding 

A203 android.webkit 

 

  



149 

 

 

Appendix C 

Heatmap Data of Feature Ranking by Dataset. 

ID Feature Name PIA PI PA IA  P I A 

P079 INSTALL_SHORTCUT 9 10 10   10   

P112 RECEIVE_SMS 8 11 9   11   

P139 SYSTEM_ALERT_WINDOW 9 10 10   10   

I078 ACTION_PACKAGE_ADDED 9 10  9   11  

I106 ACTION_SENDTO 9 11  9   10  

P105 READ_SMS 9 10 9   10   

I012 ACTION_BOOT_COMPLETED 8 10  9   11  

A111 android.net.Proxy 9  9 10    10 

I153 CATEGORY_HOME 9 9  9   10  

A180 android.telephony 8  9 10    10 

P104 READ_PHONE_STATE 7 10 8   11   

A022 android.app.PendingIntent 9  9 9    9 

A045 android.content.Intent.ShortcutIconResource 8  9 9    10 

P100 READ_EXTERNAL_STORAGE 8 9 8   10   

P153 WRITE_EXTERNAL_STORAGE 8 8 9   9   

P005 ACCESS_FINE_LOCATION 7 9 8   8   

P010 ACCESS_WIFI_STATE 5 9 7   11   

P008 ACCESS_NETWORK_STATE 6 9 7   9   

A003 android.annotation.TargetApi 8  8 7    8 

A025 android.app.Service 7  8 8    8 

A051 android.content.pm.ApplicationInfo 8  8 8    7 

A055 android.content.pm.PackageInfo 9  7 7    8 

P004 ACCESS_COARSE_LOCATION 6 7 8   9   

P082 KILL_BACKGROUND_PROCESSES 5 10 5   10   

A154 android.provider.Browser 6  7 7    9 

P006 ACCESS_LOCATION_EXTRA_COMMANDS 4 8 6   10   

P110 RECEIVE_BOOT_COMPLETED 7 7 6   8   

I131 ACTION_WEB_SEARCH 6 7  7   8  

A046 android.content.IntentFilter 6  8 7    7 

A061 android.content.pm.ServiceInfo 6  7 7    8 

P099 READ_CONTACTS 6 8 4   9   

A062 android.content.pm.Signature 7  6 6    8 

A128 android.os.IBinder 8  7 8    4 

P113 RECEIVE_WAP_PUSH 6 7 6   7   

I026 ACTION_DELETE 5 7  5   9  

I079 ACTION_PACKAGE_CHANGED 5 8  5   8  

I083 ACTION_PACKAGE_INSTALL 6 7  6   7  

I090 ACTION_PICK 5 7  7   7  

A039 android.content.ContentUris 6  8 4    8 

A116 android.net.wifi 4  6 6    10 

A134 android.os.Parcel 4  8 7    7 

A191 android.util.Log 6  5 7    8 

P045 BLUETOOTH_ADMIN 4 7 6   8   

P053 CALL_PHONE 4 8 5   8   

P061 CHANGE_WIFI_STATE 6 8 3   8   

I085 ACTION_PACKAGE_REMOVED 6 8  4   7  

I086 ACTION_PACKAGE_REPLACED 5 8  5   7  

A004 android.app.ActivityManager 5  5 6    9 

A032 android.content.BroadcastReceiver 5  6 6    8 

A130 android.os.Looper 5  8 4    8 

P111 RECEIVE_MMS 5 7 5   7   

P147 VIBRATE 4 7 4   9   

I027 ACTION_DEVICE_STORAGE_LOW 4 7  5   8  

I029 ACTION_DIAL 4 7  4   9  

I105 ACTION_SEND 3 8  4   9  

I159 CATEGORY_OPENABLE 3 7  5   9  

A194 android.util.Pair 6  5 7    6 

P069 EXPAND_STATUS_BAR 3 7 6   7   
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I044 ACTION_INSERT_OR_EDIT 3 8  4   8  

I124 ACTION_USER_PRESENT 5 6  5   7  

I126 ACTION_VIEW 4 5  6   8  

I144 CATEGORY_BROWSABLE 3 7  5   8  

A024 android.app.SearchManager 6  5 5    7 

A073 android.content.UriMatcher 4  8 4    7 

A075 android.hardware.Camera 3  4 8    8 

A085 android.media.AudioManager 5  4 6    8 

A101 android.net.ConnectivityManager 7  7 5    4 

P134 SET_WALLPAPER_HINTS 4 7 4   7   

P148 WAKE_LOCK 4 4 5   9   

I101 ACTION_SCREEN_OFF 2 7  4   9  

A021 android.app.Notification 4  6 5    7 

A030 android.content.ActivityNotFoundException 4  4 7    7 

A047 android.content.IntentSender 4  6 5    7 

A064 android.content.res.AssetManager 5  7 4    6 

A120 android.os.CancellationSignal 5  5 6    6 

A135 android.os.Parcelable 4  3 7    8 

A151 android.preference.Preference 4  6 5    7 

A176 android.support.v4.util.SimpleArrayMap 5  5 6    6 

P044 BLUETOOTH 4 5 4   8   

P058 CHANGE_CONFIGURATION 2 8 3   8   

P062 CLEAR_APP_CACHE 2 7 4   8   

P081 INTERNET 2 7 3   9   

P088 MODIFY_AUDIO_SETTINGS 3 8 2   8   

I091 ACTION_PICK_ACTIVITY 2 7  5   7  

I130 ACTION_WALLPAPER_CHANGED 3 5  5   8  

I154 CATEGORY_INFO 3 7  3   8  

I158 CATEGORY_MONKEY 2 7  4   8  

A040 android.content.ContentValues 5  5 5    6 

A068 android.content.res.XmlResourceParser 3  4 7    7 

A081 android.location.Geocoder 3  6 4    8 

A197 android.util.SparseBooleanArray 4  6 5    6 

P059 CHANGE_NETWORK_STATE 2 8 2   8   

P114 RECORD_AUDIO 3 5 4   8   

I022 ACTION_CREATE_SHORTCUT 2 5  6   7  

I102 ACTION_SCREEN_ON 2 7  3   8  

I108 ACTION_SET_WALLPAPER 2 6  5   7  

A056 android.content.pm.PackageManager 5  5 5    5 

A093 android.media.MediaPlayer 2  5 6    7 

A127 android.os.Handler 4  5 5    6 

A143 android.os.StatFs 4  4 8    4 

P050 BROADCAST_STICKY 2 6 3   8   

P074 GET_PACKAGE_SIZE 1 7 4   7   

P156 WRITE_SETTINGS 3 5 3   8   

I010 ACTION_BATTERY_LOW 3 5  3   8  

I011 ACTION_BATTERY_OKAY 4 4  3   8  

I014 ACTION_CALL 3 6  3   7  

I019 ACTION_CLOSE_SYSTEM_DIALOGS  8  3   8  

I023 ACTION_DATE_CHANGED 1 6  4   8  

I147 CATEGORY_DEFAULT 3 5  2   9  

A007 android.app.AlarmManager 5  4 4    6 

A008 android.app.AlertDialog 4  4 6    5 

A037 android.content.ContentProvider 3  6 5    5 

A110 android.net.NetworkInfo 5  4 5    5 

A125 android.os.Environment 4  4 4    7 

A186 android.util.DisplayMetrics 5  4 5    5 

A202 android.util.Xml.Encoding 4  4 6    5 

P133 SET_WALLPAPER 2 5 3   8   

I058 ACTION_MEDIA_BUTTON 1 7  3   7  

I061 ACTION_MEDIA_MOUNTED 1 6  3   8  

A060 android.content.pm.ResolveInfo 1  6 4    7 

A066 android.content.res.Configuration 4  4 5    5 

A079 android.location.Address 4  3 5    6 

A132 android.os.Message 4  4 5    5 

A137 android.os.PowerManager 5  4 4    5 
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A148 android.preference.DialogPreference 4  3 5    6 

P067 DISABLE_KEYGUARD 1 7 2   7   

P092 NFC 3 4 3   7   

P115 REORDER_TASKS 3 4 3   7   

P125 SET_ALARM 2 5 3   7   

P157 WRITE_SYNC_SETTINGS 3 3 3   8   

I033 ACTION_EDIT 1 5  2   9  

I037 ACTION_GET_CONTENT 1 4  4   8  

I103 ACTION_SEARCH 1 6  2   8  

I104 ACTION_SEARCH_LONG_PRESS  6  3   8  

I150 CATEGORY_EMBED  6  3   8  

I155 CATEGORY_LAUNCHER 1 6  2   8  

A014 android.app.IntentService 4  4 4    5 

A080 android.location.Criteria 5  4 4    4 

A083 android.location.Location 5  2 6    4 

A094 android.media.MediaRecorder 2  4 4    7 

A123 android.os.DeadObjectException 4  2 5    6 

A138 android.os.Process 4  4 5    4 

A146 android.os.Vibrator 2  3 7    5 

A157 android.provider.Contacts 3  5 3    6 

A158 android.provider.MediaStore 2  3 4    8 

A161 android.sax 3  4 5    5 

A201 android.util.Xml 4  4 4    5 

P055 CAMERA 1 3 3   9   

P106 READ_SYNC_SETTINGS 1 4 3   8   

I049 ACTION_MAIN 2 5  2   7  

I065 ACTION_MEDIA_SCANNER_SCAN_FILE 1 8     7  

A010 android.app.Application 3  4 4    5 

A031 android.content.AsyncQueryHandler 3  6 2    5 

A038 android.content.ContentResolver 2  5 3    6 

A043 android.content.DialogInterface 6  6 2    2 

A071 android.content.SharedPreferences 3  4 5    4 

A118 android.os.Binder 2  4 3    7 

A160 android.provider.Settings 4  4 4    4 

P028 BIND_INPUT_METHOD 1 4 3   7   

P060 CHANGE_WIFI_MULTICAST_STATE 2 3 3   7   

I018 ACTION_CHOOSER  4  3   8  

I043 ACTION_INSERT  6  1   8  

I094 ACTION_POWER_USAGE_SUMMARY 1 6     8  

I096 ACTION_PROVIDER_CHANGED  7  1   7  

I111 ACTION_SYNC  6  1   8  

A019 android.app.LocalActivityManager 4  4 3    4 

A053 android.content.pm.IPackageStatsObserver 4  4 4    3 

A063 android.content.res.AssetFileDescriptor 4  4 3    4 

A078 android.hardware.Sensor 2  4 4    5 

P015 BATTERY_STATS 1 4 2   7   

P072 GET_ACCOUNTS  4 1   9   

I060 ACTION_MEDIA_EJECT  5  3   6  

I066 ACTION_MEDIA_SCANNER_STARTED  6     8  

I080 ACTION_PACKAGE_DATA_CLEARED  7     7  

I107 ACTION_SEND_MULTIPLE 2 4  1   7  

I113 ACTION_TIMEZONE_CHANGED  6     8  

I132 CATEGORY_ALTERNATIVE 1 5  1   7  

A067 android.content.res.Resources 2  4 2    6 

A136 android.os.ParcelFileDescriptor 3  3 4    4 

A141 android.os.ResultReceiver 1  4 2    7 

A177 android.support.v4.util.SparseArrayCompat 3  4 3    4 

A196 android.util.SparseArray 2  4 3    5 

A200 android.util.TypedValue 4  3 3    4 

P043 BIND_WALLPAPER  5    8   

P096 PROCESS_OUTGOING_CALLS  6    7   

P097 READ_CALENDAR  4 1   8   

P150 WRITE_CALENDAR  2 3   8   

P152 WRITE_CONTACTS  3 1   9   

I129 ACTION_VOICE_COMMAND  6     7  

I160 CATEGORY_PREFERENCE 1 3  1   8  
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A016 android.app.LauncherActivity 3  4 3    3 

A044 android.content.Entity 4  3 3    3 

A097 android.media.Ringtone   2 3    8 

A109 android.net.MailTo 3  2 4    4 

A112 android.net.SSLCertificateSocketFactory 2  4 3    4 

A114 android.net.Uri 2  3 4    4 

A115 android.net.UrlQuerySanitizer 3  3 3    4 

A129 android.os.IInterface 3  2 3    5 

A139 android.os.RemoteCallbackList 4  4 3    2 

A140 android.os.RemoteException 4  3 3    3 

A170 android.support.v4.os.EnvironmentCompat 2  4 3    4 

P025 BIND_DEVICE_ADMIN  4    8   

P107 READ_SYNC_STATS 1 4 1   6   

P151 WRITE_CALL_LOG 1 3 1   7   

I008 ACTION_ATTACH_DATA  4     8  

I015 ACTION_CALL_BUTTON  4  1   7  

I064 ACTION_MEDIA_SCANNER_FINISHED  4     8  

I087 ACTION_PACKAGE_RESTARTED 1 2  1   8  

I100 ACTION_RUN  5     7  

A005 android.app.admin.DeviceAdminReceiver 4  2 3    3 

A036 android.content.ComponentName 2  2 2    6 

A059 android.content.pm.ProviderInfo 3  3 4    2 

A074 android.database 2  4 2    4 

A082 android.location.Gps 1  3 3    5 

A119 android.os.Build 2  2 3    5 

A145 android.os.SystemClock 2  3 3    4 

A147 android.preference.CheckBoxPreference 3  2 4    3 

A203 android.webkit 2  3 3    4 

P016 BIND_ACCESSIBILITY_SERVICE  4    7   

P034 BIND_REMOTEVIEWS  3 1   7   

P064 DELETE_CACHE_FILES 1 3    7   

I002 ACTION_ALL_APPS  4  1   6  

I016 ACTION_CAMERA_BUTTON  3  1   7  

I020 ACTION_CONFIGURATION_CHANGED  5  1   5  

I024 ACTION_DEFAULT  2  1   8  

I035 ACTION_EXTERNAL_APPLICATIONS_UNAVAILABLE  3     8  

I042 ACTION_INPUT_METHOD_CHANGED  3     8  

I062 ACTION_MEDIA_NOFS 1 2  1   7  

I069 ACTION_MEDIA_UNMOUNTED  4     7  

I099 ACTION_REBOOT  3     8  

I115 ACTION_TIME_TICK 1 2     8  

I161 CATEGORY_SAMPLE_CODE  3     8  

A054 android.content.pm.LabeledIntent 2  2 3    4 

A070 android.content.ServiceConnection 3  2 2    4 

A117 android.nfc 1  2 4    4 

A124 android.os.Debug 1  4 1    5 

A153 android.provider.BaseColumns 2  3 2    4 

A163 android.service.wallpaper.WallpaperService 1  3 2    5 

P076 GLOBAL_SEARCH  2 1   7   

I003 ACTION_ANSWER  2  1   7  

I034 ACTION_EXTERNAL_APPLICATIONS_AVAILABLE  2     8  

I041 ACTION_HEADSET_PLUG  5     5  

I047 ACTION_LOCALE_CHANGED  3     7  

I057 ACTION_MEDIA_BAD_REMOVAL  4     6  

I063 ACTION_MEDIA_REMOVED  3     7  

I117 ACTION_UID_REMOVED  2  1   7  

I163 CATEGORY_SELECTED_ALTERNATIVE  2  1   7  

I164 CATEGORY_TAB 1 2  1   6  

A002 android.annotation.SuppressLint 2  2 3    3 

A009 android.app.AlertDialog.Builder 2  3 2    3 

A026 android.app.TabActivity 2  2 1    5 

A057 android.content.pm.PackageStats   2 2    6 

A105 android.net.http.SslCertificate   4 2    4 

A126 android.os.FileObserver 2  3 2    3 

A169 android.support.v4.media.TransportMediator 2  3 2    3 

A188 android.util.FloatMath 1  4 1    4 



153 

 

 

A199 android.util.StateSet   3 2    5 

I009 ACTION_BATTERY_CHANGED  2  1   6  

I046 ACTION_INSTALL_PACKAGE 1 3     5  

I056 ACTION_MANAGE_PACKAGE_STORAGE  2     7  

I068 ACTION_MEDIA_UNMOUNTABLE  3     6  

I070 ACTION_MY_PACKAGE_REPLACED    2   7  

I112 ACTION_SYSTEM_TUTORIAL  4  1   4  

I119 ACTION_UMS_DISCONNECTED  3     6  

I149 CATEGORY_DEVELOPMENT_PREFERENCE  2  1   6  

I167 CATEGORY_UNIT_TEST  3  1   5  

A001 android.accounts 3  1 2    3 

A012 android.app.DownloadManager   2 2    5 

A069 android.content.SearchRecentSuggestionsProvider 1  2 1    5 

A185 android.util.Config   3 1    5 

P012 ACTIVITY_RECOGNITION  1 1   6   

P013 ADD_VOICEMAIL  1 1   6   

P041 BIND_VPN_SERVICE  1 1   6   

P098 READ_CALL_LOG  1    7   

P146 USE_SIP   1   7   

I013 ACTION_BUG_REPORT  2     6  

I059 ACTION_MEDIA_CHECKING  1     7  

I067 ACTION_MEDIA_SHARED  1     7  

I073 ACTION_NEW_OUTGOING_CALL  2     6  

I118 ACTION_UMS_CONNECTED  1     7  

I148 CATEGORY_DESK_DOCK 1      7  

I151 CATEGORY_FRAMEWORK_INSTRUMENTATION_TEST  3     5  

I165 CATEGORY_TEST  2     6  

A035 android.content.ComponentCallbacks 1  1 1    5 

A049 android.content.OperationApplicationException 1  2 2    3 

A076 android.hardware.display.DisplayManager 1  2 3    2 

A096 android.media.RemoteControlClient 1  2 3    2 

A098 android.media.SoundPool 1  1 2    4 

A142 android.os.ServiceManager 1  1 1    5 

A166 android.speech.tts.TextToSpeech   1 2    5 

A181 android.util.AndroidException   2 1    5 

A183 android.util.AttributeSet 2  2 2    2 

A184 android.util.Base64   2 1    5 

A198 android.util.SparseIntArray   3 3    2 

P031 BIND_NOTIFICATION_LISTENER_SERVICE  1    6   

P037 BIND_TEXT_SERVICE 1  1   5   

P094 PACKAGE_USAGE_STATS      7   

I030 ACTION_DOCK_EVENT       7  

A013 android.app.Instrumentation 1   3    3 

A018 android.app.LoaderManager 1  1 1    4 

A050 android.content.pm.ActivityInfo   3 1    3 

A058 android.content.pm.PermissionInfo 3  1 2    1 

A065 android.content.res.ColorStateList 1  2     4 

A099 android.media.ThumbnailUtils   2 1    4 

A102 android.net.DhcpInfo   1     6 

A167 android.support.v4.app 2  1 2    2 

I028 ACTION_DEVICE_STORAGE_OK       6  

I145 CATEGORY_CAR_DOCK       6  

A103 android.net.http.AndroidHttpClient 2   3    1 

A122 android.os.CountDownTimer 3   3     

A131 android.os.MemoryFile   1     5 

A149 android.preference.EditTextPreference 1  2 1    2 

A174 android.support.v4.util.LogWriter 1  1 1    3 

A192 android.util.LruCache 1  1 1    3 

I001 ACTION_AIRPLANE_MODE_CHANGED  1  1   3  

I055 ACTION_MANAGE_NETWORK_USAGE  1     4  

I093 ACTION_POWER_DISCONNECTED  1     4  

I141 CATEGORY_APP_MARKET  1     4  

A006 android.app.admin.DevicePolicyManager    3    2 

A015 android.app.KeyguardManager 2       3 

A023 android.app.SearchableInfo 1  1 1    2 

A041 android.content.ContextWrapper 1  3     1 
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A052 android.content.pm.FeatureInfo    2    3 

A087 android.media.AudioTrack   1 2    2 

A113 android.net.TrafficStats   1 1    3 

A121 android.os.ConditionVariable 1  1 1    2 

A133 android.os.Messenger    1    4 

A150 android.preference.ListPreference 1  1 2    1 

A159 android.provider.SearchRecentSuggestions   1     4 

A164 android.speech.RecognitionListener   1     4 

A165 android.speech.SpeechRecognizer   2     3 

A168 android.support.v4.content 1  2 1    1 

A173 android.support.v4.util.DebugUtils   1     4 

A182 android.util.AndroidRuntimeException 1  2 1    1 

A193 android.util.MonthDisplayHelper 1  1     3 

A195 android.util.Patterns 2  1 1    1 

I081 ACTION_PACKAGE_FIRST_LAUNCH       4  

I143 CATEGORY_APP_MUSIC    1   3  

A011 android.app.backup 1   2    1 

A028 android.bluetooth 1  2     1 

A033 android.content.ClipboardManager 1  2     1 

A084 android.media.AsyncPlayer 1  1 1    1 

A089 android.media.ExifInterface   1 1    2 

A107 android.net.LocalSocket 1  1     2 

A155 android.provider.CalendarContract 1  1     2 

I006 ACTION_APP_ERROR  1     2  

I074 ACTION_OPEN_DOCUMENT  1  1   1  

I082 ACTION_PACKAGE_FULLY_REMOVED  1  1   1  

I092 ACTION_POWER_CONNECTED  1     2  

I097 ACTION_QUICK_CLOCK  1  1   1  

I114 ACTION_TIME_CHANGED       3  

I146 CATEGORY_CAR_MODE    1   2  

A020 android.app.NativeActivity 1  1     1 

A027 android.app.TaskStackBuilder 1  1 1     

A034 android.content.ClipData 1  1     1 

A095 android.media.MediaScannerConnection    1    2 

A100 android.media.ToneGenerator 1   1    1 

A108 android.net.LocalSocketAddress 1   1    1 

A144 android.os.StrictMode 1  1     1 

A156 android.provider.CallLog.Calls   3      

A179 android.support.v7.app   1 1    1 

I007 ACTION_ASSIST  1     1  

I031 ACTION_DREAMING_STARTED    1   1  

I036 ACTION_FACTORY_TEST 1      1  

I110 ACTION_SHUTDOWN    1   1  

I116 ACTION_TRANSLATE 1      1  

I120 ACTION_UNINSTALL_PACKAGE       2  

I133 CATEGORY_APP_BROWSER    1   1  

I136 CATEGORY_APP_CONTACTS    1   1  

I140 CATEGORY_APP_MAPS 1      1  

I157 CATEGORY_LE_DESK_DOCK  1     1  

I259 FLAG_ACTIVITY_CLEAR_TOP 1 1       

I276 FLAG_ACTIVITY_SINGLE_TOP    1   1  

A017 android.app.ListFragment 1       1 

A029 android.content.AbstractThreadedSyncAdapter 1       1 

A048 android.content.Loader 1       1 

A077 android.hardware.GeomagneticField 1       1 

A086 android.media.AudioRecord    1    1 

A104 android.net.http.HttpResponseCache 1       1 

A171 android.support.v4.os.ParcelableCompat   1     1 

A172 android.support.v4.os.ParcelableCompatCreatorCallbacks   1 1     

A187 android.util.EventLog   1     1 

I032 ACTION_DREAMING_STOPPED       1  

I084 ACTION_PACKAGE_NEEDS_VERIFICATION       1  

I089 ACTION_PASTE       1  

I121 ACTION_USER_BACKGROUND    1     

I123 ACTION_USER_INITIALIZE       1  

I135 CATEGORY_APP_CALENDAR       1  
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I137 CATEGORY_APP_EMAIL       1  

I139 CATEGORY_APP_GALLERY       1  

I142 CATEGORY_APP_MESSAGING       1  

I152 CATEGORY_HE_DESK_DOCK 1        

I273 FLAG_ACTIVITY_REORDER_TO_FRONT       1  

A042 android.content.CursorLoader 1        

A090 android.media.FaceDetector    1     

A091 android.media.JetPlayer   1      

A092 android.media.MediaMetadataRetriever    1     

A152 android.preference.RingtonePreference   1      

I122 ACTION_USER_FOREGROUND         

I134 CATEGORY_APP_CALCULATOR         

A072 android.content.SyncResult         

A088 android.media.CamcorderProfile         

A106 android.net.LocalServerSocket         

A162 android.service.dreams.DreamService         

A175 android.support.v4.util.LruCache         

A178 android.support.v4.util.TimeUtils         

A189 android.util.JsonReader         

A190 android.util.JsonWriter         
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Appendix D 

Heatmap Data of Feature Ranking by Algorithm. 

FID Feature Name 
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P079 INSTALL_SHORTCUT 4 4 4 4 4  4 4 3 4 4 

P112 RECEIVE_SMS 4 4 3 4 4 2 4 4 2 4 4 

P139 SYSTEM_ALERT_WINDOW 4 4 3 4 4  4 4 4 4 4 

I078 ACTION_PACKAGE_ADDED 4 4 4 4 4 2 4 4 1 4 4 

I106 ACTION_SENDTO 4 4 4 4 4 1 4 4 2 4 4 

P105 READ_SMS 4 4 2 4 4  4 4 4 4 4 

I012 ACTION_BOOT_COMPLETED 4 4 4 4 4 2 3 4 1 4 4 

A111 android.net.Proxy 4 4 4 4 4  4 4 2 4 4 

I153 CATEGORY_HOME 4 4 4 4 4 1 4 4  4 4 

A180 android.telephony 4 4 4 2 1 4 4 4 2 4 4 

P104 READ_PHONE_STATE 4 4 4 4 1 2 3 4 2 4 4 

A022 android.app.PendingIntent 4 4 4 4  2 4 4 2 4 4 

A045 android.content.Intent.ShortcutIconResource 4 4 4 3 3  4 4 2 4 4 

P100 READ_EXTERNAL_STORAGE 4 4 2 4 4  4 4 1 4 4 

P153 WRITE_EXTERNAL_STORAGE 4 4 4   4 4 4 2 4 4 

P005 ACCESS_FINE_LOCATION 4 4 4   1 3 4 4 4 4 

P010 ACCESS_WIFI_STATE 4 4 4 2 1 2 2 4 2 4 3 

P008 ACCESS_NETWORK_STATE 4 4 4   2 3 4 2 4 4 

A003 android.annotation.TargetApi 4 4 4    4 4 3 4 4 

A025 android.app.Service 4 4 4    4 4 3 4 4 

A051 android.content.pm.ApplicationInfo 4 4 4    4 4 3 4 4 

A055 android.content.pm.PackageInfo 4 4 4   1 4 4 2 4 4 

P004 ACCESS_COARSE_LOCATION 4 4 4   1 2 4 4 4 3 

P082 KILL_BACKGROUND_PROCESSES 4 4 2 4 4  2 4 2 2 2 

A154 android.provider.Browser 4 4 3 1 1  4 4  4 4 

P006 ACCESS_LOCATION_EXTRA_COMMANDS 4 4 2 2 2  2 4 4 2 2 

P110 RECEIVE_BOOT_COMPLETED 4 4 3    3 4 2 4 4 

I131 ACTION_WEB_SEARCH 4 4 2 1   4 4 1 4 4 

A046 android.content.IntentFilter 4 4 4    3 4 1 4 4 

A061 android.content.pm.ServiceInfo 4 4 1    4 4 3 4 4 

P099 READ_CONTACTS 4 4 4   2 3 3 1 3 3 

A062 android.content.pm.Signature 4 4 4    4 1 2 4 4 

A128 android.os.IBinder 4 4 4   1 3 4 1 3 3 

P113 RECEIVE_WAP_PUSH 4 4     4 4 2 4 4 

I026 ACTION_DELETE 4 4 2   1 4 2 1 4 4 

I079 ACTION_PACKAGE_CHANGED 4 4 2    4 2 2 4 4 

I083 ACTION_PACKAGE_INSTALL 4 4 2    4 4  4 4 

I090 ACTION_PICK 3 3 4    4 4  4 4 

A039 android.content.ContentUris 4 4 2    3 4 2 4 3 

A116 android.net.wifi 4 4 4 1 2  1 4 2 2 2 

A134 android.os.Parcel 3 3 4    4 3 1 4 4 

A191 android.util.Log 4 1 4   3 4 2  4 4 

P045 BLUETOOTH_ADMIN 3 3 2    4 2 3 4 4 

P053 CALL_PHONE 4 4 3   1 1 4 4 2 2 

P061 CHANGE_WIFI_STATE 4 4 2    3 4 2 3 3 

I085 ACTION_PACKAGE_REMOVED 4 4 4   1 2 4  3 3 

I086 ACTION_PACKAGE_REPLACED 4 4 2    4 2 1 4 4 

A004 android.app.ActivityManager 4 4 4 1 1  1 4 2 2 2 

A032 android.content.BroadcastReceiver 4 4 4    1 4 2 3 3 

A130 android.os.Looper 4 4 4    2 4 3 2 2 

P111 RECEIVE_MMS 4 4     4 2 2 4 4 

P147 VIBRATE 4 4 4   2 1 4 1 2 2 

I027 ACTION_DEVICE_STORAGE_LOW 3 2 1    4 2 4 4 4 
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I029 ACTION_DIAL 4 4 4   1 1 4 2 2 2 

I105 ACTION_SEND 3 4 4   2 1 4 2 2 2 

I159 CATEGORY_OPENABLE 3 3 2   1 4 2 1 4 4 

A194 android.util.Pair 4 4 4    1 4  3 4 

P069 EXPAND_STATUS_BAR 4 4     3 2 3 3 4 

I044 ACTION_INSERT_OR_EDIT 3 2 2    4 2 2 4 4 

I124 ACTION_USER_PRESENT 1 2 4    4 4  4 4 

I126 ACTION_VIEW 4 4 4   1 1 3 1 3 2 

I144 CATEGORY_BROWSABLE 2 3 2    3 4 2 4 3 

A024 android.app.SearchManager 4 4 1    4  2 4 4 

A073 android.content.UriMatcher 4 4 2    2 4 3 2 2 

A075 android.hardware.Camera 3 3 4    2 2 3 3 3 

A085 android.media.AudioManager 1 2 4    3 4 1 4 4 

A101 android.net.ConnectivityManager 4 4 2    2 4 3 2 2 

P134 SET_WALLPAPER_HINTS 4 4     3 2 2 4 3 

P148 WAKE_LOCK 4 4 4   1 1 4 2 1 1 

I101 ACTION_SCREEN_OFF 1 1 4   2 3 4 2 3 2 

A021 android.app.Notification 4 4 3 3 2   4 1 1  

A030 android.content.ActivityNotFoundException 1 3 4   3 1 4 2 2 2 

A047 android.content.IntentSender 4 3     4 1 2 4 4 

A064 android.content.res.AssetManager 4 4 4    1 4  3 2 

A120 android.os.CancellationSignal 4 4     4 1 1 4 4 

A135 android.os.Parcelable 1 2 2    4 3 2 4 4 

A151 android.preference.Preference  1 4   4 2 4  4 3 

A176 android.support.v4.util.SimpleArrayMap 4 4     4 1 1 4 4 

P044 BLUETOOTH 1 1 2    4 2 3 4 4 

P058 CHANGE_CONFIGURATION 3 4 2    2 2 4 2 2 

P062 CLEAR_APP_CACHE 4 4 1    3 2 2 2 3 

P081 INTERNET 4 3 4   1 1 2 2 2 2 

P088 MODIFY_AUDIO_SETTINGS 3 3 2    3 2 2 3 3 

I091 ACTION_PICK_ACTIVITY 3 3 2    3 1 3 2 4 

I130 ACTION_WALLPAPER_CHANGED 4 4 2    2 2 4 1 2 

I154 CATEGORY_INFO 2 2 2    4 2 1 4 4 

I158 CATEGORY_MONKEY 3 3 1    4 2 2 2 4 

A040 android.content.ContentValues 4 4 4   4  4 1   

A068 android.content.res.XmlResourceParser 4 4 3     4 2 2 2 

A081 android.location.Geocoder 4 4 2  1  2 4  2 2 

A197 android.util.SparseBooleanArray 4 3     4  2 4 4 

P059 CHANGE_NETWORK_STATE 4 4 2    2 2 2 2 2 

P114 RECORD_AUDIO 4 4 2    1 4 3 1 1 

I022 ACTION_CREATE_SHORTCUT 4 4 2    1 3 1 3 2 

I102 ACTION_SCREEN_ON 4 4 2    2 3 1 2 2 

I108 ACTION_SET_WALLPAPER 4 4 2    3 1 1 2 3 

A056 android.content.pm.PackageManager   4    4 4  4 4 

A093 android.media.MediaPlayer 3 3 4     4 2 3 1 

A127 android.os.Handler   4    3 4 1 4 4 

A143 android.os.StatFs 4 4 4    1 3 1 2 1 

P050 BROADCAST_STICKY 1 1 2    4 2 2 3 4 

P074 GET_PACKAGE_SIZE 3 4     3 2 2 2 3 

P156 WRITE_SETTINGS 4 4 3    1 2 2 2 1 

I010 ACTION_BATTERY_LOW 1 1 2    4 2 1 4 4 

I011 ACTION_BATTERY_OKAY 1 1 1    4 1 3 4 4 

I014 ACTION_CALL 4 4 4   1 1 2  2 1 

I019 ACTION_CLOSE_SYSTEM_DIALOGS 3 3 2    2 2 2 3 2 

I023 ACTION_DATE_CHANGED 2 2 2    4 2 2 2 3 

I147 CATEGORY_DEFAULT 1 1 4   1 2 4 1 3 2 

A007 android.app.AlarmManager 4 4 4  1   4 2   

A008 android.app.AlertDialog   4   1 2 4 3 2 3 

A037 android.content.ContentProvider   3    4 3 1 4 4 

A110 android.net.NetworkInfo 4 4 4     4 3   

A125 android.os.Environment 4 4 4   1  4  1 1 

A186 android.util.DisplayMetrics 4 4 4   1  4 2   

A202 android.util.Xml.Encoding 4 2     4  1 4 4 

P133 SET_WALLPAPER 4 4 2    1 2 3 1 1 

I058 ACTION_MEDIA_BUTTON 2 2 2    3 2 1 3 3 

I061 ACTION_MEDIA_MOUNTED 1 1 2    3 2 2 4 3 
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A060 android.content.pm.ResolveInfo 2 3 4    2 3  2 2 

A066 android.content.res.Configuration 2 3 4   4  4 1   

A079 android.location.Address 4 4 2    1 4 3   

A132 android.os.Message 4 4 4   1  4 1   

A137 android.os.PowerManager 4 4 4     4 2   

A148 android.preference.DialogPreference 2 3 1    3  2 4 3 

P067 DISABLE_KEYGUARD 2 2     2 2 4 3 2 

P092 NFC 1 1     4 1 2 4 4 

P115 REORDER_TASKS 1 1     4 1 2 4 4 

P125 SET_ALARM 4 4     2 2 2 1 2 

P157 WRITE_SYNC_SETTINGS 1 1 1    4 1 1 4 4 

I033 ACTION_EDIT 1 1 2   1 1 4 3 2 2 

I037 ACTION_GET_CONTENT 1 1 4   2  3 1 3 2 

I103 ACTION_SEARCH 1 1 4   2 1 3 1 2 2 

I104 ACTION_SEARCH_LONG_PRESS 2 2 2    3 1 1 3 3 

I150 CATEGORY_EMBED 1 2 1    3 2 2 3 3 

I155 CATEGORY_LAUNCHER 3 1 4    2 2 1 2 2 

A014 android.app.IntentService 4 4 4     4 1   

A080 android.location.Criteria 4 4 4     4 1   

A083 android.location.Location   4    2 4 1 3 3 

A094 android.media.MediaRecorder 4 4 1    1 3 1 2 1 

A123 android.os.DeadObjectException 4 4     3  2 2 2 

A138 android.os.Process 4 4 4     3 1 1  

A146 android.os.Vibrator 1 1 4   4 1 3 1 1 1 

A157 android.provider.Contacts 1 1 4    1 4 2 3 1 

A158 android.provider.MediaStore 3 4 2    1 4 1 1 1 

A161 android.sax 3 2     4   4 4 

A201 android.util.Xml 4 4 4     1 4   

P055 CAMERA 1 1 4   1 1 3 3 1 1 

P106 READ_SYNC_SETTINGS 1 1 1    4 1 2 3 3 

I049 ACTION_MAIN 3 1 4    2 1  2 3 

I065 ACTION_MEDIA_SCANNER_SCAN_FILE 2 2 2    1 2 3 2 2 

A010 android.app.Application 1 3 4   4  4    

A031 android.content.AsyncQueryHandler 4 4     2  2 2 2 

A038 android.content.ContentResolver 1 3 4     4 2 2  

A043 android.content.DialogInterface   4    2 4 2 2 2 

A071 android.content.SharedPreferences 4 4 4     2 2   

A118 android.os.Binder  1 2    1 4 1 4 3 

A160 android.provider.Settings 4 4 4     4    

P028 BIND_INPUT_METHOD 1 1     4 1 2 3 3 

P060 CHANGE_WIFI_MULTICAST_STATE 1 1     4 1 1 3 4 

I018 ACTION_CHOOSER 3 2 1    3 1 2 1 2 

I043 ACTION_INSERT 1 2 2    3 2 1 2 2 

I094 ACTION_POWER_USAGE_SUMMARY 2 2 2    2 1 3 2 1 

I096 ACTION_PROVIDER_CHANGED 2 2 2    2 1 1 3 2 

I111 ACTION_SYNC 3 2 2    2 1 1 2 2 

A019 android.app.LocalActivityManager       4  3 4 4 

A053 android.content.pm.IPackageStatsObserver       4  3 4 4 

A063 android.content.res.AssetFileDescriptor 1 1 4    2 1 1 3 2 

A078 android.hardware.Sensor 3 4 4     3 1   

P015 BATTERY_STATS 1 1     3 2 1 2 4 

P072 GET_ACCOUNTS 1 2 2   1 1 3 2 1 1 

I060 ACTION_MEDIA_EJECT   2    3 2 3 1 3 

I066 ACTION_MEDIA_SCANNER_STARTED 2 2 2    2 2 2 1 1 

I080 ACTION_PACKAGE_DATA_CLEARED 2 2 2    2 2  2 2 

I107 ACTION_SEND_MULTIPLE 1 1 2    2 4 1 2 1 

I113 ACTION_TIMEZONE_CHANGED 1 2 2    2 2 1 2 2 

I132 CATEGORY_ALTERNATIVE 1 1 2    3 1 2 2 2 

A067 android.content.res.Resources   4   1 1 4 1 2 1 

A136 android.os.ParcelFileDescriptor       4  2 4 4 

A141 android.os.ResultReceiver 4 3     2 1 1 1 2 

A177 android.support.v4.util.SparseArrayCompat   1    4  1 4 4 

A196 android.util.SparseArray   2   1 1 3 2 2 3 

A200 android.util.TypedValue  1 4     4 3 2  

P043 BIND_WALLPAPER 2 2 2    1 2 1 2 1 

P096 PROCESS_OUTGOING_CALLS 2 2     2 2 1 2 2 
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P097 READ_CALENDAR 2 2 1    1 2 3 1 1 

P150 WRITE_CALENDAR 1 1 2    1 2 2 2 2 

P152 WRITE_CONTACTS 1 1 2   1 1 2 3 1 1 

I129 ACTION_VOICE_COMMAND 2 2 2    2 1 2  2 

I160 CATEGORY_PREFERENCE 2 2 1    2 1 3 1 1 

A016 android.app.LauncherActivity       4  1 4 4 

A044 android.content.Entity       4  1 4 4 

A097 android.media.Ringtone 3 2 1    2 1 2 1 1 

A109 android.net.MailTo       4  2 3 4 

A112 android.net.SSLCertificateSocketFactory       4  3 3 3 

A114 android.net.Uri 4 3 3     1 2   

A115 android.net.UrlQuerySanitizer       4  3 2 4 

A129 android.os.IInterface 1 2 2     4 1 2 1 

A139 android.os.RemoteCallbackList       4  4 2 3 

A140 android.os.RemoteException  1 4    2 4 2   

A170 android.support.v4.os.EnvironmentCompat 4 4     2  1  2 

P025 BIND_DEVICE_ADMIN 1 1 1    2 1 2 2 2 

P107 READ_SYNC_STATS 1 1     3 1 3 1 2 

P151 WRITE_CALL_LOG 1 1     2 1 3 2 2 

I008 ACTION_ATTACH_DATA 2 2 1    1 1 2 1 2 

I015 ACTION_CALL_BUTTON 2 1 1    3 1 1 1 2 

I064 ACTION_MEDIA_SCANNER_FINISHED 2 2 2    1 2 1 1 1 

I087 ACTION_PACKAGE_RESTARTED 1 1 2    2 1 1 1 3 

I100 ACTION_RUN 2 2 2    2 1  1 2 

A005 android.app.admin.DeviceAdminReceiver       4  1 4 3 

A036 android.content.ComponentName 1 1 4     4 1 1  

A059 android.content.pm.ProviderInfo 1 2     3   3 3 

A074 android.database 1 1 4     4  1 1 

A082 android.location.Gps 1 1     3   3 4 

A119 android.os.Build 1 1 4     4 2   

A145 android.os.SystemClock 1 1 4     4 2   

A147 android.preference.CheckBoxPreference   3    2  1 3 3 

A203 android.webkit   4   1  4 1 1 1 

P016 BIND_ACCESSIBILITY_SERVICE 1 1     2 1 2 2 2 

P034 BIND_REMOTEVIEWS 1 1     2 1 2 2 2 

P064 DELETE_CACHE_FILES 1 1     3 1 1 2 2 

I002 ACTION_ALL_APPS 2 2 2    1 1 3   

I016 ACTION_CAMERA_BUTTON 2 1 1    2 1 1 1 2 

I020 ACTION_CONFIGURATION_CHANGED 1 2 1    1 2 1 2 1 

I024 ACTION_DEFAULT 1 1 2    1 1 3 1 1 

I035 
ACTION_EXTERNAL_APPLICATIONS_UNAVAI

LABLE 

1 1 2    2 2 1 1 1 

I042 ACTION_INPUT_METHOD_CHANGED 2 2 1    2 1 1 1 1 

I062 ACTION_MEDIA_NOFS 1 1     3 1 3 1 1 

I069 ACTION_MEDIA_UNMOUNTED 1 1 2    1 2 1 2 1 

I099 ACTION_REBOOT 2 1 2    1 1 2 1 1 

I115 ACTION_TIME_TICK 1 1 1    1 2 3 1 1 

I161 CATEGORY_SAMPLE_CODE 2 2 1    2 1 1 1 1 

A054 android.content.pm.LabeledIntent 4 4     2  1   

A070 android.content.ServiceConnection  1 3     4 3   

A117 android.nfc       3  2 2 4 

A124 android.os.Debug   4    1  2 2 2 

A153 android.provider.BaseColumns 4 4      1 2   

A163 android.service.wallpaper.WallpaperService   3    3 1 1 2 1 

P076 GLOBAL_SEARCH 1 1     3 1 2 1 1 

I003 ACTION_ANSWER 2 2 1    1 1 2  1 

I034 
ACTION_EXTERNAL_APPLICATIONS_AVAILA

BLE 

1 1 2    1 2 1 1 1 

I041 ACTION_HEADSET_PLUG   2    1 2 2 2 1 

I047 ACTION_LOCALE_CHANGED 1 1     2 1 1 2 2 

I057 ACTION_MEDIA_BAD_REMOVAL 1 1     2 1 1 2 2 

I063 ACTION_MEDIA_REMOVED 1 1     2 2 2 1 1 

I117 ACTION_UID_REMOVED 2 2 1    1 1 2  1 

I163 CATEGORY_SELECTED_ALTERNATIVE 2 2 1    1 1 1 1 1 

I164 CATEGORY_TAB 3 2 1    1 1 1  1 

A002 android.annotation.SuppressLint   4     3 3   
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A009 android.app.AlertDialog.Builder   4     4 2   

A026 android.app.TabActivity   4    1 1 1 2 1 

A057 android.content.pm.PackageStats 2 3     1  2 1 1 

A105 android.net.http.SslCertificate       3  3 2 2 

A126 android.os.FileObserver       4   2 4 

A169 android.support.v4.media.TransportMediator       4  3  3 

A188 android.util.FloatMath   4     2  2 2 

A199 android.util.StateSet 1 1     2   3 3 

I009 ACTION_BATTERY_CHANGED   3   1  2 1 1 1 

I046 ACTION_INSTALL_PACKAGE 1 1     2  3 1 1 

I056 ACTION_MANAGE_PACKAGE_STORAGE 2 2 1    1 1 1  1 

I068 ACTION_MEDIA_UNMOUNTABLE 2 2 1    1 1 1  1 

I070 ACTION_MY_PACKAGE_REPLACED 1 1     2 1 1 1 2 

I112 ACTION_SYSTEM_TUTORIAL 2 2 2     1 2   

I119 ACTION_UMS_DISCONNECTED 2 2 2    1 1   1 

I149 CATEGORY_DEVELOPMENT_PREFERENCE 2 2 1    1 1 1  1 

I167 CATEGORY_UNIT_TEST 2 2 1     1 3   

A001 android.accounts   1    2 4 1  1 

A012 android.app.DownloadManager 1 2     3   1 2 

A069 android.content.SearchRecentSuggestionsProvider 1      1  4 1 2 

A185 android.util.Config 3 1     2   1 2 

P012 ACTIVITY_RECOGNITION 1 1     1 1 3  1 

P013 ADD_VOICEMAIL 1 1     1 1 3  1 

P041 BIND_VPN_SERVICE 1 1     1 1 3  1 

P098 READ_CALL_LOG 1 1     1 1 1 1 2 

P146 USE_SIP 1 1 1    1 1 2  1 

I013 ACTION_BUG_REPORT 2 2 1    1 1 1   

I059 ACTION_MEDIA_CHECKING 1 1     1 1 2 1 1 

I067 ACTION_MEDIA_SHARED 1 1     1 1 2 1 1 

I073 ACTION_NEW_OUTGOING_CALL   2    1 2 1 1 1 

I118 ACTION_UMS_CONNECTED 2 1 1    1 1  1 1 

I148 CATEGORY_DESK_DOCK 1 1     1 1 2 1 1 

I151 
CATEGORY_FRAMEWORK_INSTRUMENTATIO

N_TEST 

2 2 1     1 2   

I165 CATEGORY_TEST 2 2 1    1 1   1 

A035 android.content.ComponentCallbacks       1 3 2 1 1 

A049 android.content.OperationApplicationException 3 2 1      1 1  

A076 android.hardware.display.DisplayManager 3 4        1  

A096 android.media.RemoteControlClient 3 4       1   

A098 android.media.SoundPool 1 1 4     1 1   

A142 android.os.ServiceManager 1 3     1  1 1 1 

A166 android.speech.tts.TextToSpeech 3 1     1  1 1 1 

A181 android.util.AndroidException 1 1     2  1 1 2 

A183 android.util.AttributeSet   4     4    

A184 android.util.Base64 1 2 2     2 1   

A198 android.util.SparseIntArray 1      2  1 2 2 

P031 BIND_NOTIFICATION_LISTENER_SERVICE 1 1     1 1 2  1 

P037 BIND_TEXT_SERVICE 1 1      1 3  1 

P094 PACKAGE_USAGE_STATS 1 1     1 1 1 1 1 

I030 ACTION_DOCK_EVENT 1 1     1 1 1 1 1 

A013 android.app.Instrumentation 1 1     2  1 1 1 

A018 android.app.LoaderManager 1        4 1 1 

A050 android.content.pm.ActivityInfo   2     3 2   

A058 android.content.pm.PermissionInfo       1  3 2 1 

A065 android.content.res.ColorStateList       1 1 1 2 2 

A099 android.media.ThumbnailUtils       2  3 1 1 

A102 android.net.DhcpInfo 1 1     2  1 1 1 

A167 android.support.v4.app       1 4 2   

I028 ACTION_DEVICE_STORAGE_OK 1 1     1 1 1  1 

I145 CATEGORY_CAR_DOCK 1 1     1  1 1 1 

A103 android.net.http.AndroidHttpClient       2  1 1 2 

A122 android.os.CountDownTimer       2   2 2 

A131 android.os.MemoryFile 1 1     1  2  1 

A149 android.preference.EditTextPreference   3      3   

A174 android.support.v4.util.LogWriter       2  1 2 1 

A192 android.util.LruCache       2  3 1  
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I001 ACTION_AIRPLANE_MODE_CHANGED 1 1       3   

I055 ACTION_MANAGE_NETWORK_USAGE 1 1     1  1  1 

I093 ACTION_POWER_DISCONNECTED 1 1       2  1 

I141 CATEGORY_APP_MARKET       1  2 1 1 

A006 android.app.admin.DevicePolicyManager       1  1 1 2 

A015 android.app.KeyguardManager   1    1 1 1 1  

A023 android.app.SearchableInfo 3 1       1   

A041 android.content.ContextWrapper   2    2  1   

A052 android.content.pm.FeatureInfo       2   1 2 

A087 android.media.AudioTrack   1    1  1 2  

A113 android.net.TrafficStats   1    2  1 1  

A121 android.os.ConditionVariable       1  4   

A133 android.os.Messenger       2  1 1 1 

A150 android.preference.ListPreference   4      1   

A159 android.provider.SearchRecentSuggestions       1  1 2 1 

A164 android.speech.RecognitionListener       2  1 1 1 

A165 android.speech.SpeechRecognizer       2  1  2 

A168 android.support.v4.content        1 1 3  

A173 android.support.v4.util.DebugUtils       1  2 1 1 

A182 android.util.AndroidRuntimeException        4 1   

A193 android.util.MonthDisplayHelper       1  3  1 

A195 android.util.Patterns       2  3   

I081 ACTION_PACKAGE_FIRST_LAUNCH 1 1     1    1 

I143 CATEGORY_APP_MUSIC       1  2  1 

A011 android.app.backup       3    1 

A028 android.bluetooth       1  3   

A033 android.content.ClipboardManager       1  3   

A084 android.media.AsyncPlayer         3 1  

A089 android.media.ExifInterface       1  1 1 1 

A107 android.net.LocalSocket 1        1 2  

A155 android.provider.CalendarContract       1  2  1 

A106 android.net.LocalServerSocket       1  1 1 1 

I006 ACTION_APP_ERROR       1  2   

I074 ACTION_OPEN_DOCUMENT         3   

I082 ACTION_PACKAGE_FULLY_REMOVED       1  2   

I092 ACTION_POWER_CONNECTED         2  1 

I097 ACTION_QUICK_CLOCK         3   

I114 ACTION_TIME_CHANGED       1  1  1 

I146 CATEGORY_CAR_MODE       1  1  1 

A020 android.app.NativeActivity         3   

A027 android.app.TaskStackBuilder         3   

A034 android.content.ClipData       1  2   

A095 android.media.MediaScannerConnection 1 1       1   

A100 android.media.ToneGenerator         3   

A108 android.net.LocalSocketAddress 1        2   

A144 android.os.StrictMode         3   

A156 android.provider.CallLog.Calls       1   1 1 

A179 android.support.v7.app         3   

I007 ACTION_ASSIST         2   

I031 ACTION_DREAMING_STARTED         2   

I036 ACTION_FACTORY_TEST         2   

I110 ACTION_SHUTDOWN         2   

I116 ACTION_TRANSLATE         2   

I120 ACTION_UNINSTALL_PACKAGE 1        1   

I133 CATEGORY_APP_BROWSER         2   

I136 CATEGORY_APP_CONTACTS         2   

I140 CATEGORY_APP_MAPS         2   

I157 CATEGORY_LE_DESK_DOCK         2   

I259 FLAG_ACTIVITY_CLEAR_TOP         2   

I276 FLAG_ACTIVITY_SINGLE_TOP         2   

A017 android.app.ListFragment         2   

A029 android.content.AbstractThreadedSyncAdapter       1  1   

A048 android.content.Loader         2   

A077 android.hardware.GeomagneticField       1  1   

A086 android.media.AudioRecord         2   

A104 android.net.http.HttpResponseCache         2   
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A171 android.support.v4.os.ParcelableCompat         2   

A172 
android.support.v4.os.ParcelableCompatCreatorCallba
cks 

        2   

A187 android.util.EventLog         2   

I032 ACTION_DREAMING_STOPPED         1   

I084 ACTION_PACKAGE_NEEDS_VERIFICATION         1   

I089 ACTION_PASTE         1   

I121 ACTION_USER_BACKGROUND         1   

I123 ACTION_USER_INITIALIZE         1   

I135 CATEGORY_APP_CALENDAR         1   

I137 CATEGORY_APP_EMAIL         1   

I139 CATEGORY_APP_GALLERY         1   

I142 CATEGORY_APP_MESSAGING         1   

I152 CATEGORY_HE_DESK_DOCK         1   

I273 FLAG_ACTIVITY_REORDER_TO_FRONT         1   

A042 android.content.CursorLoader         1   

A090 android.media.FaceDetector         1   

A091 android.media.JetPlayer         1   

A092 android.media.MediaMetadataRetriever         1   

A152 android.preference.RingtonePreference         1   

A088 android.media.CamcorderProfile         1   

A190 android.util.JsonWriter         1   

A072 android.content.SyncResult            

A162 android.service.dreams.DreamService            

A175 android.support.v4.util.LruCache            

A178 android.support.v4.util.TimeUtils            

A189 android.util.JsonReader            

I122 ACTION_USER_FOREGROUND            

I134 CATEGORY_APP_CALCULATOR            
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Appendix E 

Dataset Evaluation by Feature Selection Method and Classifier 
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Appendix F 

Top 200 Permissions, Intents and API Calls 

# Feature Type Feature Name 

1 Permission INSTALL_SHORTCUT 

2 Permission RECEIVE_SMS 

3 Permission SYSTEM_ALERT_WINDOW 

4 Intent ACTION_PACKAGE_ADDED 

5 Intent ACTION_SENDTO 

6 Permission READ_SMS 

7 Intent ACTION_BOOT_COMPLETED 

8 API Call android.net.Proxy 

9 Intent CATEGORY_HOME 

10 API Call android.telephony 

11 Permission READ_PHONE_STATE 

12 API Call android.app.PendingIntent 

13 API Call android.content.Intent.ShortcutIconResource 

14 Permission READ_EXTERNAL_STORAGE 

15 Permission WRITE_EXTERNAL_STORAGE 

16 Permission ACCESS_FINE_LOCATION 

17 Permission ACCESS_WIFI_STATE 

18 Permission ACCESS_NETWORK_STATE 

19 API Call android.annotation.TargetApi 

20 API Call android.app.Service 

21 API Call android.content.pm.ApplicationInfo 

22 API Call android.content.pm.PackageInfo 

23 Permission ACCESS_COARSE_LOCATION 

24 Permission KILL_BACKGROUND_PROCESSES 

25 API Call android.provider.Browser 

26 Permission ACCESS_LOCATION_EXTRA_COMMANDS 

27 Permission RECEIVE_BOOT_COMPLETED 

28 Intent ACTION_WEB_SEARCH 

29 API Call android.content.IntentFilter 

30 API Call android.content.pm.ServiceInfo 

31 Permission READ_CONTACTS 

32 API Call android.content.pm.Signature 

33 API Call android.os.IBinder 

34 Permission RECEIVE_WAP_PUSH 

35 Intent ACTION_DELETE 

36 Intent ACTION_PACKAGE_CHANGED 

37 Intent ACTION_PACKAGE_INSTALL 

38 Intent ACTION_PICK 

39 API Call android.content.ContentUris 
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40 API Call android.net.wifi 

41 API Call android.os.Parcel 

42 API Call android.util.Log 

43 Permission BLUETOOTH_ADMIN 

44 Permission CALL_PHONE 

45 Permission CHANGE_WIFI_STATE 

46 Intent ACTION_PACKAGE_REMOVED 

47 Intent ACTION_PACKAGE_REPLACED 

48 API Call android.app.ActivityManager 

49 API Call android.content.BroadcastReceiver 

50 API Call android.os.Looper 

51 Permission RECEIVE_MMS 

52 Permission VIBRATE 

53 Intent ACTION_DEVICE_STORAGE_LOW 

54 Intent ACTION_DIAL 

55 Intent ACTION_SEND 

56 Intent CATEGORY_OPENABLE 

57 API Call android.util.Pair 

58 Permission EXPAND_STATUS_BAR 

59 Intent ACTION_INSERT_OR_EDIT 

60 Intent ACTION_USER_PRESENT 

61 Intent ACTION_VIEW 

62 Intent CATEGORY_BROWSABLE 

63 API Call android.app.SearchManager 

64 API Call android.content.UriMatcher 

65 API Call android.hardware.Camera 

66 API Call android.media.AudioManager 

67 API Call android.net.ConnectivityManager 

68 Permission SET_WALLPAPER_HINTS 

69 Permission WAKE_LOCK 

70 Intent ACTION_SCREEN_OFF 

71 API Call android.app.Notification 

72 API Call android.content.ActivityNotFoundException 

73 API Call android.content.IntentSender 

74 API Call android.content.res.AssetManager 

75 API Call android.os.CancellationSignal 

76 API Call android.os.Parcelable 

77 API Call android.preference.Preference 

78 API Call android.support.v4.util.SimpleArrayMap 

79 Permission BLUETOOTH 

80 Permission CHANGE_CONFIGURATION 

81 Permission CLEAR_APP_CACHE 

82 Permission INTERNET 

83 Permission MODIFY_AUDIO_SETTINGS 
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84 Intent ACTION_PICK_ACTIVITY 

85 Intent ACTION_WALLPAPER_CHANGED 

86 Intent CATEGORY_INFO 

87 Intent CATEGORY_MONKEY 

88 API Call android.content.ContentValues 

89 API Call android.content.res.XmlResourceParser 

90 API Call android.location.Geocoder 

91 API Call android.util.SparseBooleanArray 

92 Permission CHANGE_NETWORK_STATE 

93 Permission RECORD_AUDIO 

94 Intent ACTION_CREATE_SHORTCUT 

95 Intent ACTION_SCREEN_ON 

96 Intent ACTION_SET_WALLPAPER 

97 API Call android.content.pm.PackageManager 

98 API Call android.media.MediaPlayer 

99 API Call android.os.Handler 

100 API Call android.os.StatFs 

101 Permission BROADCAST_STICKY 

102 Permission GET_PACKAGE_SIZE 

103 Permission WRITE_SETTINGS 

104 Intent ACTION_BATTERY_LOW 

105 Intent ACTION_BATTERY_OKAY 

106 Intent ACTION_CALL 

107 Intent ACTION_CLOSE_SYSTEM_DIALOGS 

108 Intent ACTION_DATE_CHANGED 

109 Intent CATEGORY_DEFAULT 

110 API Call android.app.AlarmManager 

111 API Call android.app.AlertDialog 

112 API Call android.content.ContentProvider 

113 API Call android.net.NetworkInfo 

114 API Call android.os.Environment 

115 API Call android.util.DisplayMetrics 

116 API Call android.util.Xml.Encoding 

117 Permission SET_WALLPAPER 

118 Intent ACTION_MEDIA_BUTTON 

119 Intent ACTION_MEDIA_MOUNTED 

120 API Call android.content.pm.ResolveInfo 

121 API Call android.content.res.Configuration 

122 API Call android.location.Address 

123 API Call android.os.Message 

124 API Call android.os.PowerManager 

125 API Call android.preference.DialogPreference 

126 Permission DISABLE_KEYGUARD 

127 Permission NFC 
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128 Permission REORDER_TASKS 

129 Permission SET_ALARM 

130 Permission WRITE_SYNC_SETTINGS 

131 Intent ACTION_EDIT 

132 Intent ACTION_GET_CONTENT 

133 Intent ACTION_SEARCH 

134 Intent ACTION_SEARCH_LONG_PRESS 

135 Intent CATEGORY_EMBED 

136 Intent CATEGORY_LAUNCHER 

137 API Call android.app.IntentService 

138 API Call android.location.Criteria 

139 API Call android.location.Location 

140 API Call android.media.MediaRecorder 

141 API Call android.os.DeadObjectException 

142 API Call android.os.Process 

143 API Call android.os.Vibrator 

144 API Call android.provider.Contacts 

145 API Call android.provider.MediaStore 

146 API Call android.sax 

147 API Call android.util.Xml 

148 Permission CAMERA 

149 Permission READ_SYNC_SETTINGS 

150 Intent ACTION_MAIN 

151 Intent ACTION_MEDIA_SCANNER_SCAN_FILE 

152 API Call android.app.Application 

153 API Call android.content.AsyncQueryHandler 

154 API Call android.content.ContentResolver 

155 API Call android.content.DialogInterface 

156 API Call android.content.SharedPreferences 

157 API Call android.os.Binder 

158 API Call android.provider.Settings 

159 Permission BIND_INPUT_METHOD 

160 Permission CHANGE_WIFI_MULTICAST_STATE 

161 Intent ACTION_CHOOSER 

162 Intent ACTION_INSERT 

163 Intent ACTION_POWER_USAGE_SUMMARY 

164 Intent ACTION_PROVIDER_CHANGED 

165 Intent ACTION_SYNC 

166 API Call android.app.LocalActivityManager 

167 API Call android.content.pm.IPackageStatsObserver 

168 API Call android.content.res.AssetFileDescriptor 

169 API Call android.hardware.Sensor 

170 Permission BATTERY_STATS 

171 Permission GET_ACCOUNTS 
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172 Intent ACTION_MEDIA_EJECT 

173 Intent ACTION_MEDIA_SCANNER_STARTED 

174 Intent ACTION_PACKAGE_DATA_CLEARED 

175 Intent ACTION_SEND_MULTIPLE 

176 Intent ACTION_TIMEZONE_CHANGED 

177 Intent CATEGORY_ALTERNATIVE 

178 API Call android.content.res.Resources 

179 API Call android.os.ParcelFileDescriptor 

180 API Call android.os.ResultReceiver 

181 API Call android.support.v4.util.SparseArrayCompat 

182 API Call android.util.SparseArray 

183 API Call android.util.TypedValue 

184 Permission BIND_WALLPAPER 

185 Permission PROCESS_OUTGOING_CALLS 

186 Permission READ_CALENDAR 

187 Permission WRITE_CALENDAR 

188 Permission WRITE_CONTACTS 

189 Intent ACTION_VOICE_COMMAND 

190 Intent CATEGORY_PREFERENCE 

191 API Call android.app.LauncherActivity 

192 API Call android.content.Entity 

193 API Call android.media.Ringtone 

194 API Call android.net.MailTo 

195 API Call android.net.SSLCertificateSocketFactory 

196 API Call android.net.Uri 

197 API Call android.net.UrlQuerySanitizer 

198 API Call android.os.IInterface 

199 API Call android.os.RemoteCallbackList 

200 API Call android.os.RemoteException 
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