2,592 research outputs found

    Synthetic biology—putting engineering into biology

    Get PDF
    Synthetic biology is interpreted as the engineering-driven building of increasingly complex biological entities for novel applications. Encouraged by progress in the design of artificial gene networks, de novo DNA synthesis and protein engineering, we review the case for this emerging discipline. Key aspects of an engineering approach are purpose-orientation, deep insight into the underlying scientific principles, a hierarchy of abstraction including suitable interfaces between and within the levels of the hierarchy, standardization and the separation of design and fabrication. Synthetic biology investigates possibilities to implement these requirements into the process of engineering biological systems. This is illustrated on the DNA level by the implementation of engineering-inspired artificial operations such as toggle switching, oscillating or production of spatial patterns. On the protein level, the functionally self-contained domain structure of a number of proteins suggests possibilities for essentially Lego-like recombination which can be exploited for reprogramming DNA binding domain specificities or signaling pathways. Alternatively, computational design emerges to rationally reprogram enzyme function. Finally, the increasing facility of de novo DNA synthesis—synthetic biology’s system fabrication process—supplies the possibility to implement novel designs for ever more complex systems. Some of these elements have merged to realize the first tangible synthetic biology applications in the area of manufacturing of pharmaceutical compounds.

    SWIM: A computational tool to unveiling crucial nodes in complex biological networks

    Get PDF
    SWItchMiner (SWIM) is a wizard-like software implementation of a procedure, previously described, able to extract information contained in complex networks. Specifically, SWIM allows unearthing the existence of a new class of hubs, called "fight-club hubs", characterized by a marked negative correlation with their first nearest neighbors. Among them, a special subset of genes, called "switch genes", appears to be characterized by an unusual pattern of intra- and inter-module connections that confers them a crucial topological role, interestingly mirrored by the evidence of their clinic-biological relevance. Here, we applied SWIM to a large panel of cancer datasets from The Cancer Genome Atlas, in order to highlight switch genes that could be critically associated with the drastic changes in the physiological state of cells or tissues induced by the cancer development. We discovered that switch genes are found in all cancers we studied and they encompass protein coding genes and non-coding RNAs, recovering many known key cancer players but also many new potential biomarkers not yet characterized in cancer context. Furthermore, SWIM is amenable to detect switch genes in different organisms and cell conditions, with the potential to uncover important players in biologically relevant scenarios, including but not limited to human cancer

    Expression QTL Modules as Functional Components Underlying Higher-Order Phenotypes

    Get PDF
    Systems genetics studies often involve the mapping of numerous regulatory relations between genetic loci and expression traits. These regulatory relations form a bipartite network consisting of genetic loci and expression phenotypes. Modular network organizations may arise from the pleiotropic and polygenic regulation of gene expression. Here we analyzed the expression QTL (eQTL) networks derived from expression genetic data of yeast and mouse liver and found 65 and 98 modules respectively. Computer simulation result showed that such modules rarely occurred in randomized networks with the same number of nodes and edges and same degree distribution. We also found significant within-module functional coherence. The analysis of genetic overlaps and the evidences from biomedical literature have linked some eQTL modules to physiological phenotypes. Functional coherence within the eQTL modules and genetic overlaps between the modules and physiological phenotypes suggests that eQTL modules may act as functional units underlying the higher-order phenotypes

    How biologically relevant are interaction-based modules in protein networks?

    Get PDF
    By applying a graph-based algorithm to yeast protein-interaction networks we have extracted modular structures and show that they can be validated using information from the phylogenetic conservation of the network components. We show that the module cores, the parts with the highest intramodular connectivity, are biologically relevant components of the networks. These constituents correlate only weakly with other levels of organization. We also discuss how such structures could be used for finding targets for antimicrobial drugs

    Inferring modules from human protein interactome classes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The integration of protein-protein interaction networks derived from high-throughput screening approaches and complementary sources is a key topic in systems biology. Although integration of protein interaction data is conventionally performed, the effects of this procedure on the result of network analyses has not been examined yet. In particular, in order to optimize the fusion of heterogeneous interaction datasets, it is crucial to consider not only their degree of coverage and accuracy, but also their mutual dependencies and additional salient features.</p> <p>Results</p> <p>We examined this issue based on the analysis of modules detected by network clustering methods applied to both integrated and individual (disaggregated) data sources, which we call interactome classes. Due to class diversity, we deal with variable dependencies of data features arising from structural specificities and biases, but also from possible overlaps. Since highly connected regions of the human interactome may point to potential protein complexes, we have focused on the concept of modularity, and elucidated the detection power of module extraction algorithms by independent validations based on GO, MIPS and KEGG. From the combination of protein interactions with gene expressions, a confidence scoring scheme has been proposed before proceeding via GO with further classification in permanent and transient modules.</p> <p>Conclusions</p> <p>Disaggregated interactomes are shown to be informative for inferring modularity, thus contributing to perform an effective integrative analysis. Validation of the extracted modules by multiple annotation allows for the assessment of confidence measures assigned to the modules in a protein pathway context. Notably, the proposed multilayer confidence scheme can be used for network calibration by enabling a transition from unweighted to weighted interactomes based on biological evidence.</p

    Modular decomposition of protein-protein interaction networks

    Get PDF
    We introduce an algorithmic method, termed modular decomposition, that defines the organization of protein-interaction networks as a hierarchy of nested modules. Modular decomposition derives the logical rules of how to combine proteins into the actual functional complexes by identifying groups of proteins acting as a single unit (sub-complexes) and those that can be alternatively exchanged in a set of similar complexes. The method is applied to experimental data on the pro-inflammatory tumor necrosis factor-α (TNF-α)/NFÎșB transcription factor pathway

    Multiscale fragPIN Modularity

    Get PDF
    Modularity in protein interactome networks (PINs) is a central theme involving aspects such as the study of the resolution limit, the comparative assessment of module-finding algorithms, and the role of data integration in systems biology. It is less common to study the relationships between the topological hierarchies embedded within the same network. This occurrence is not unusual, in particular with PINs that are considered assemblies of various interactions depending on specialized biological processes. The integrated view offered so far by modularity maps represents in general a synthesis of a variety of possible interaction maps, each reflecting a certain biological level of specialization. The driving hypothesis of this work leverages on such network components. Therefore, subnetworks are generated from fragmentation, a process aimed to isolating parts of a common network source that are here called fragments, from which the acronym fragPIN is used. The characteristics of modularity in each obtained fragPIN are elucidated and compared. Finally, as it was hypothesized that different timescales may underlie the biological processes from which the fragments are computed, the analysis was centered on an example involving the fluctuation dynamics inherent to the signaling process and was aimed to show how timescales can be identified from such dynamics, in particular assigning the interactions based on selected topological properties

    Constrained Network Modularity

    Get PDF
    Static representations of protein interactions networks or PIN reflect measurements referred to a variety of conditions, including time. To partially bypass such limitation, gene expression information is usually integrated in the network to measure its "activity level." In general, the entire PIN modular organization (complexes, pathways) can reveal changes of configuration whose functional significance depends on biological annotation. However, since network dynamics are based on the presence of different conditions leading to comparisons between normal and disease states, or between networks observed sequentially in time, our working hypothesis refers to the analysis of differential networks based on varying modularity and uncertainty. Two popular methods were applied and evaluated, k-core and Q-modularity, over a reference yeast dataset comprising a PIN of literature-curated data obtained from the fusion of heterogeneous measurements sources. While the functional aspect of interest is cell cycle and the corresponding interactions were isolated, the PIN dynamics were externally induced by time-course measured gene expression values, which we consider one of the "modularity drivers." Notably, due to the nature of such expression values referred to the "just-in-time method," we could specialize our approach according to three constrained modular configurations then comparatively assessed through local entropy measures

    Characterizing regulatory path motifs in integrated networks using perturbational data

    Get PDF
    Pathicular – a Cytoscape plugin for analysing cellular responses to transcription factor perturbations is presente
    • 

    corecore