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Static representations of protein interactions networks or PIN reflect measurements referred to a variety of conditions, including
time. To partially bypass such limitation, gene expression information is usually integrated in the network to measure its “activity
level.” In general, the entire PIN modular organization (complexes, pathways) can reveal changes of configuration whose functional
significance depends on biological annotation. However, since network dynamics are based on the presence of different conditions
leading to comparisons between normal and disease states, or between networks observed sequentially in time, our working
hypothesis refers to the analysis of differential networks based on varying modularity and uncertainty. Two popular methods were
applied and evaluated, k-core and Q-modularity, over a reference yeast dataset comprising a PIN of literature-curated data obtained
from the fusion of heterogeneous measurements sources. While the functional aspect of interest is cell cycle and the corresponding
interactions were isolated, the PIN dynamics were externally induced by time-course measured gene expression values, which
we consider one of the “modularity drivers.” Notably, due to the nature of such expression values referred to the “just-in-time
method,” we could specialize our approach according to three constrained modular configurations then comparatively assessed
through local entropy measures.

1. Introduction

Despite the fact that research on PIN [1] is quite mature
at both methodological (systems biology) and applied
(biomedical and clinical bioinformatics) levels, there are still
some domains that remain partially unexplored, in particular
from an integrative dynamic standpoint. The first attribute,
that is, integrative, includes the consideration of complemen-
tary omic layers that provide information on causality, for
instance (through gene coexpression, transcription factors,
microRNAs, etc.). The second attribute, that is, dynamic,
aims at investigating differential properties of networks, and
it is based on the assessment of the effects of different
conditions at which network properties are measured.

The field of “differential network biology” has been
already explored from a variety of differential conditions,
such as expression during drug and stress response [2] or
condition-responsive subnetwork identification [3]. Recent-
ly, Ideker and Krogan [4] reviewed the field, suggesting new
interesting directions. Currently, some of the main limita-
tions that are encountered can be summarized as follows.

(i) The available interactome coverage [5] varies be-
tween organisms and depends on the technologies,
but is in general quite limited [6]. Consequently, a
relevant role can be played by data integration to
ensure control of data uncertainty and validation
quality.

(ii) The accuracy of measurements (experimental and
predictive) is limited too. Evidence provided by [7]
showed that literature-curated interactome data need
quality control filters for reliable inference.

(iii) The inherent reliability of modular configurations is
also limited, and leads to just approximate solutions
(see [8]). In particular, all methods suffer from the
“network resolution limit” [9, 10] problem that binds
the detection power.

Various types of errors thus influence the accuracy of PIN
maps to a degree that remains difficult to quantify. The fact
that both positive and negative interactions include many
false entries allows for the association of PINs to samples
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taken from a quite sparse interactome space. However, due
to the presence of modular organizations, local densities
identify “modules” that may drive inference despite the
limitations.

Modules represent a sort of static entity when they are
computed for networks measured at certain specific (includ-
ing temporal) conditions. When the conditions change, the
effects of the network-induced dynamics should be assessed,
and the uncertainty inherent to the resulting configurations
should be quantified to establish robustness and reliability
aspects.

A common strategy to control the uncertainty level is
that of data integration. For instance, in PIN applications the
use of gene coexpression and pathway information sources
can complement the information underlying the constituent
interactions by allowing for extensive quality annotation.

Another standard strategy involves the analysis of top-
ological properties [11, 12], which may characterize intra-
and intermodular architectures. Further refinement of inter-
actome data can be expected from the analysis of global
similarity (dissimilarity) measures useful to perform differ-
ential network analysis and to assign confidence scores to
the interactions depending on both biological and compu-
tational features.

The implementation of the novel paradigm of differential
network biology characterizes this work, which leverages on
comparing a variety of modular configurations produced
by different algorithms applied to PINs. In particular, the
structure of the paper is as follows. We describe in Section
2 our methodological approach; then, we present our results
in Section 3; finally, we report concluding remarks with a
discussion in Section 4.

2. Methods

2.1. Data Generation Approaches. For the purpose of our
work, the reference dataset is the yeast interactome available
from Reguly et al. [13] through a series of disaggregated
interactomes. We have considered in particular the literature-
curated interactome (LIT-Int) obtained from small-scale
experiments. We refer to this data sets as rPIN, from which
we have built another series of interactomes based on the
observation that heterogeneous entities like biological pro-
cesses are comprised, and each of such processes determines
a subset of interactive protein dynamics (specific ones, in
particular, when referred to the process itself).

Given such a hypothesis, we have attempted to sep-
arate the individual contributions of biological processes
and generated subnetworks from a “PIN fragmentation”
approach. The latter consists of filtering the original PIN
according to the biological process of interest in order to
obtain differentiated subinteractomes. The idea of multiple
analysis from the same PIN source can be found in Durek
and Walther [14], and Huthmacher et al. [15, 16] for
comparisons between topological characteristics of protein
and metabolic interactomes from E.coli and S.cerevisiae
model organisms.

The general advantage of such decomposition is a
reduction of the overall dimensionality when each individual

“fragment” is considered. In terms of differential analysis,
PIN fragmentation interestingly builds a sequence of “con-
strained” subinteractomes that are functionally specialized,
depending on the biological process that has been selected.
Changing the interactome scale, pathway isolation could also
be achieved following the same strategy, but this step is not
pursued in the present work. We instead have focused on
extracting the cell cycle sub-interactome, thus inducing a
specific functional constraint. In order to embed the PIN
with dynamic information, and further constraining our
network, extra work was needed.

Gene coexpression and physically interacting proteins
tend to correlate, in addition to the coupling of colocalization
and coexpression observed at the transcriptional level. Thus,
network integration of gene expression values is expected
to improve module detection power by computational algo-
rithms and further corroborate the protein modularity maps
[17]. Evidence for interacting protein pairs in a complex
that show mRNA coexpression was for instance provided by
Dezso et al., and is also available from human interactome
experimental work [18] and tissue-specific interactome
analysis [19].

The functionally constrained PIN was thus further
perturbed by gene expression generated dynamics. In par-
ticular, the yeast cell cycle study of de Lichtenberg et al.
offers experimentally validated instruments for this type of
analysis through the characterization of mRNA transcripts
by time-course expression peaks achieved during their
observed periodical variation. Consequently, a functionally
and dynamically constrained PIN is obtained, and pro-
tein interactions are monitored in terms of pairwise or
partial (just one of the interactors) association with the
corresponding gene expression measurement peaks. From a
variety of constrained network configurations the influence
exerted by modularity drivers could be assessed. After the
rPIN fragmentation, the following sub-interactome list is
available:

(i) rPIN: proteins = 3289, interactions = 11333. It rep-
resents the LIT-Int reference PIN.

(ii) cePIN: protein = 190, interactions = 381. This is
the maximally constrained cell cycle PIN built from
the following two-step procedure. (a) The gene
expression profiles obtained from the time course
experiments, and based on the “expression peaks”
(maximal expression levels observed during the cell
cycle phases) generated the gene signatures. (b)
Mapping of such values onto rPIN yielded “peak-
to-peak” protein interactions (i.e., only proteins with
related gene expression peaks are considered, thus
making maximally constrained the network).

(iii) cePIN-1: proteins = 444, interactions = 977. This
is a less constrained cell cycle PIN whose constituent
interactions depends only on a peak signature asso-
ciated with one of the interacting proteins (i.e., the
other interactor may represent any other cell cycle
protein whose related gene may have any expression
level).
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(iv) cePIN-2: proteins = 1193, interactions = 2254. Thus
it is the minimally constrained cell cycle PIN due to
interacting proteins with a peak signature linking to
any other protein not necessarily related to the cell
cycle.

In terms of biological annotation of the modules, a
comparison between cePIN-2, cePIN-1, and cePIN maps
was recently proposed by Travaglione et al. [20] through
multiple steps involving protein complexes, GO categories,
and pathways. The novelty in the present work compared
to that companion paper is represented by the analysis of
the uncertainty of such configurations through the classical
instrument of entropy.

2.2. Modularity Structures. Modular structures underlying
PIN [21] can be retrieved by algorithms inspired by different
principles (see [22] for a wide review and examples). For
example, some strategies may direct deterministically (divi-
sive and greedy algorithms) or stochastically (random walk)
the search. The different module structures can be charac-
terized by topological properties, but the modules present
differences that depend on the generating algorithms.

We applied two popular methods to retrieve module
structures represented by communities and cores. The com-
munity finding method works through the maximization of
a Q-Modularity function, and is based on a greedy optimiza-
tion algorithm [23]. This very popular procedure iteratively
merges module pairs originated by seeds and continues to
expand by monitoring a modularity index that keeps increas-
ing until a gain is detected, otherwise it stops. Q-Modularity
maximization is simply defined as a difference between
links modularized in a network versus those expected to
be modularized in a network of equivalent size but with
randomly placed vertices.

In particular, a network partition in N modules with mi

and mj linked by ei j appears in the modularity function as
follows:

Q =
∑

i

⎡
⎢⎣eii −

⎛
⎝
∑

j

ei j

⎞
⎠

2
⎤
⎥⎦. (1)

Links that connect nodes within a module i are compared
with all links from any other module j connected to module
i. A good partition into modules leads to Q ∼ 1, while
random (i.e., poor modularity) would deliver Q ∼ 0, thus
meaning that the fraction of modular and randomized links
is not significantly different. A generally accepted rule is
that values Q > 0.3 may already suggest the presence of
modular structure. Overall, modular partitions obtained by
this procedure show relatively dense intramodular links and
sparse intermodular links, which reflects the presence of few
local maxima capturing the most relevant information about
the internal network organization.

MCODE [24] is another well-known method that
exploits network local density areas to identify clusters
supposed to match protein complexes. In particular, the
dependence between nodes is represented by structures
called “cliques”, and a hierarchy of modules of different

Table 1: Detected communities (relatively small ones).

rPIN cePIN cePIN-1 cePIN-2

67 (48) 31 (13) 26 (17) 43 (30)

Table 2: Bolded numbers of MCODE-detected k-cores at k ranging
between a minimum of 2 and maximum of 13 across PIN.

rPIN cePIN cePIN-1 cePIN-2

2-core 85 2-core 7 2-core 6 2-core 13

3-core 39 3-core 2 3-core 2 3-core 4

4-core 26 4-core 1 4-core 2

5-core 12

6-core 12

7-core 8

8-core 6

9-core 5

10-core 3

11-core 1

clique sizes is obtained at the end. A clique is a maximally
connected structure, that is, a network in which every pair
of distinct node is connected by a link. MCODE starting
its exploration from locally dense regions from a clustering
coefficient computed a given node, that is CCi = 2n/ki(ki −
1), where ki is the size of the neighborhood of node i, and n is
the number of edges in it. A k-core is delivered by the method
based on the clique benchmark, and represents a network of
minimal degree k after which all the nodes with degree less
than k have been successively eliminated. As several groups
are formed at each k, an internal ranking through scores
based on node weighting is obtained.

3. Results

3.1. Module Maps. The implementation of MCODE requires
that some parameters are set in order to compute the
network scoring values. For instance, we set degree cutoff = 2
and node score cutoff = 0.2, and then proceeded by fixing
other values, such as haircut = true, fluff = false; k-Core = 2;
max. depth from seed = 100. The output for our PIN list
is reported in Table 1 for the retrieved communities, and in
Table 2 for the various cores computed at different k values.
The relevance of each module can finally be biologically
validated against known protein complexes.

Notably, both strategies consider modules that have an
inherent resolution structure (see [25]). Overall, the interest
here is to establish how modules are influenced by both
drivers, both functionally and dynamically. While the com-
parative constrained PIN analysis provides some evidence,
the uncertainty of modularity remains an open problem.
We thus turn to the consideration that the probability
distribution of accessible states of a constrained system both
in equilibrium and far from equilibrium can be referred to
an entropy, and develop this part in the next section.
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3.2. Entropy. Shannon Entropy is considered in a context of
measure-preserving transformations [26–28], where it may
address information and uncertainty. As such, it can be seen
as an ex-post measure, based on the information gained from
a finite number of experimental outcomes, and also as an ex-
ante measure, based on the uncertainty about such outcomes
before performing the experiment.

The equilibrium and disequilibrium conditions are
important factors, especially for the complexity involved in
the latter conditions. The entropy E for a certain number “n”
of accessible states is thus:

E = −c
n∑

i=1

pi log pi (2)

for c positive real constant and pi normalized probabilities
(i.e.,

∑
i pi = 1).

A system in equilibrium would have pi = 1/n, for all
its accessible states, thus reaching a condition of maximal
entropy c logn. Instead, a system far from equilibrium would
have additional terms to be considered, characterizing the
disequilibrium in terms of distance from the equilibrium,
that is the equiprobable configuration.

In the network context, entropy is a measure of uncer-
tainty that adapts to PIN at both global and local scales (see
[29]). In particular, when local dynamics are investigated,
entropy allows to assess the uncertainty of all the constituent
modules of the map. This measure thus also applies to both
cores and communities computed in our examples.

Additionally, comparing modularity configurations in
entropy terms allows to assess the influence exerted by the
PIN constrains. Even if estimating the entropies from finite
samples remains a complicated task due to the presence of
statistical fluctuations, and such limitation holds also for any
sampled PIN, nevertheless it represents a practical approach
adaptive to any network scale, for example, in principle
approximating the steady state conditions that deliver the
ensemble entropy E associated with the network distribution
p:

E = −
∞∑

i=1

pi log pi. (3)

3.3. Graphical Evidence. Applied to the retrieved cores and
communities characterizing the constrained subinterac-
tomes, the entropy landscapes for cores (red) and communi-
ties (blue) of the three constrained PINs are shown in Figures
1, 2, and 3. In particular, the maximally constrained PIN
appears in Figure 1 (referred to cePIN) and the minimally
constrained PIN appears in Figure 3 (referred to cePIN2).

The top plots report entropies as circles for each module
(in sorted order in the X axis). The observed entropy sizes
(with value reported in the Y axis) depend on the presence
of hubs (as reported) in both communities and cores (they
are indicated apart for Figure 3 due to a long list).

The individual contributions of each module to the
overall entropy may be observed from such plots. The
bottom plots show circles not differentiated by size but by the
number of included nodes (as reported in the X axis). Again,
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Figure 1: cePIN entropies. Hubs (a) and number of nodes (b)
shown.

both core and community modules can be compared with
the entropy value for the global PIN (based on their value on
the Y axis).

Interestingly, Figure 1 with the maximally constrained
PIN shows especially the entropy contributions from com-
munities, while quite similar contributions between cores
and communities can be observed from the distribution of
the nodes (bottom plots). Overall, no substantial redundancy
appears from such a system. In Figure 2 the communi-
ties show instead substantial additional redundancy, and
similarly cores, even if to a lesser extent. Communities
remain larger than cores as far as concerning module size.
We checked the complementary plots too: by considering
module sizes of up to 40 proteins, communities and cores
behave similarly even with less constraints, while for bigger
sizes the community redundancy appears. Finally, Figure 3
represents an exceedingly redundant system given minimal
constraints, as reflected at both community and core levels
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Figure 2: cePIN1 entropies. Hubs (a) and number of nodes (b)
shown.

in all dimensions (entropy value, number of modules, and
number of included nodes).

Overall, the cell cycle dynamics may be monitored by
measuring entropy in relation to the module sizes, and the
evidence reflects the expected fact that randomness plays a
major role under relaxed conditions or no constraints.

3.4. Discussion. A careful exam of the modular space repre-
sented in the plots reveals that for the maximally constrained
PIN there is a prevalence of small-entropy communities over
cores, and this intensifies for less constrained PIN with a
module entropy increase by communities. The minimally
constrained PIN that is functionally more relaxed than the
previous PIN, amplifies to an extreme the previous feature.

Overall entropy is substantially controlled in constrained
networks due to a certain stability in the system obtained
through the modules, regardless of whether they are com-
puted by either hierarchically agglomerative (bottom-up
merging) or divisive (top-down split) algorithms. Under less
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Figure 3: cePIN2 entropies for both cores and communities, and
sorted by size (b).

stringent constraints, the equilibrium is broken in terms of
strength of the connectivity links (less stringent dynamics
exert their influence) and of functional characterization
(extra cell cycle links allowed). As a result of such disequi-
librium, a bigger number of high-entropy modules appears
to reflect the unknown uncertainty of the system.

It is known that modularity suffers from a resolution
limit, and for such a reason it might be hard to detect small
functional modules. Equivalently, the interactome space is
expansive in entropy terms, which justifies moving away
from the resolution limit when less constraints apply. Despite
cores and communities showing a different sensitivity to
the presence of constrains, communities participate quite
heavily in the observed expansion, while cores instead appear
more stable structures. Following this line of reasoning, a
possible future direction of study would look at extensive and
nonextensive entropies to capture the complexities appearing
in form of dependencies and convolutions in cores and
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communities that are difficult to represent by the above
entropies.

The observed evidences would suggest that core rather
than communities would be non-extensive structures. In
other terms, nonextensivity implies a different form of com-
plexity embedded by the entropy, while extensivity that is
observed in communities suggests that redundant dynamics
prevail. Similarly, since communities simply reflect assigned
internal links in the given network relatively to an equivalent
(in node degree distribution) random network, it is possible
that with constraints the overall impact of network random-
ness can be reduced.

4. Concluding Remarks and Future Directions

The proposed approach started with PIN fragmentation
to offer the possibility of building a compilation of PINs
was selected according to specific biological criteria. An
immediate advantage is the possibility to comparatively
evaluate both general topological features and modularity
of multiple PINs with reference to a common source.
In order to explore PIN dynamical aspects, time-course
experiments were considered together with their associated
gene expression signatures. Thus, we could center the rest of
the analysis on the influence on modularity by functional
drivers, that is, through the cell cycle, and by expression
drivers, that is, through the integrated gene measurements.

Modularization has been mainly investigated from struc-
ture based on clique-centric methods. The comparison
between community and core maps offers therefore an initial
coarse-grained analysis useful to verify what complexes
are matched by modules and up to what extent, together
with the involved pathways. The module characterization
pursued here aims at including dynamic conditions, and then
measuring the uncertainty associated to it and reflected in
the modular configurations. This last aspect is almost always
overlooked in network studies, as usually methods to assign
scores or confidence measures focus more on the individual
network entities rather than the modular structures to which
they participate.

Two final notes for future follow-up work: one specific
and one more general. The modularization induced by the
employed methods remains conditioned on the resolution
allowed, which determines the configuration to be uncov-
ered. However, we showed that differential modularity is an
integrative approach that through the combined biological
process-driven interactions and coexpression dynamics elu-
cidates in part the corresponding complexities. Then, the
proposed approach for PIN could be extended to biological
contexts where a crucial goal is establishing a role for
biological processes involved in disease. But also other
applications could be examined through our approach. For
instance, a clinical context characterized by co-morbidity
could be interestingly investigated in order to remodularize
the network after the occurrence of an acute phase in one of
the pathologies. Also, drug-target networks could be studied
to establish the effects of treatments on the variation of
modularity when they are acting selectively (e.g., through

activation of some pathway), thus specifically constraining
the network.
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