301 research outputs found

    Detecting Tampered Videos with Multimedia Forensics and Deep Learning

    Get PDF
    © 2019, Springer Nature Switzerland AG. User-Generated Content (UGC) has become an integral part of the news reporting cycle. As a result, the need to verify videos collected from social media and Web sources is becoming increasingly important for news organisations. While video verification is attracting a lot of attention, there has been limited effort so far in applying video forensics to real-world data. In this work we present an approach for automatic video manipulation detection inspired by manual verification approaches. In a typical manual verification setting, video filter outputs are visually interpreted by human experts. We use two such forensics filters designed for manual verification, one based on Discrete Cosine Transform (DCT) coefficients and a second based on video requantization errors, and combine them with Deep Convolutional Neural Networks (CNN) designed for image classification. We compare the performance of the proposed approach to other works from the state of the art, and discover that, while competing approaches perform better when trained with videos from the same dataset, one of the proposed filters demonstrates superior performance in cross-dataset settings. We discuss the implications of our work and the limitations of the current experimental setup, and propose directions for future research in this area

    Detecting Manipulations in Video

    Get PDF
    This chapter presents the techniques researched and developed within InVID for the forensic analysis of videos, and the detection and localization of forgeries within User-Generated Videos (UGVs). Following an overview of state-of-the-art video tampering detection techniques, we observed that the bulk of current research is mainly dedicated to frame-based tampering analysis or encoding-based inconsistency characterization. We built upon this existing research, by designing forensics filters aimed to highlight any traces left behind by video tampering, with a focus on identifying disruptions in the temporal aspects of a video. As for many other data analysis domains, deep neural networks show very promising results in tampering detection as well. Thus, following the development of a number of analysis filters aimed to help human users in highlighting inconsistencies in video content, we proceeded to develop a deep learning approach aimed to analyze the outputs of these forensics filters and automatically detect tampered videos. In this chapter, we present our survey of the state of the art with respect to its relevance to the goals of InVID, the forensics filters we developed and their potential role in localizing video forgeries, as well as our deep learning approach for automatic tampering detection. We present experimental results on benchmark and real-world data, and analyze the results. We observe that the proposed method yields promising results compared to the state of the art, especially with respect to the algorithm’s ability to generalize to unknown data taken from the real world. We conclude with the research directions that our work in InVID has opened for the future

    A review of digital video tampering: from simple editing to full synthesis.

    Get PDF
    Video tampering methods have witnessed considerable progress in recent years. This is partly due to the rapid development of advanced deep learning methods, and also due to the large volume of video footage that is now in the public domain. Historically, convincing video tampering has been too labour intensive to achieve on a large scale. However, recent developments in deep learning-based methods have made it possible not only to produce convincing forged video but also to fully synthesize video content. Such advancements provide new means to improve visual content itself, but at the same time, they raise new challenges for state-of-the-art tampering detection methods. Video tampering detection has been an active field of research for some time, with periodic reviews of the subject. However, little attention has been paid to video tampering techniques themselves. This paper provides an objective and in-depth examination of current techniques related to digital video manipulation. We thoroughly examine their development, and show how current evaluation techniques provide opportunities for the advancement of video tampering detection. A critical and extensive review of photo-realistic video synthesis is provided with emphasis on deep learning-based methods. Existing tampered video datasets are also qualitatively reviewed and critically discussed. Finally, conclusions are drawn upon an exhaustive and thorough review of tampering methods with discussions of future research directions aimed at improving detection methods

    Localization of JPEG double compression through multi-domain convolutional neural networks

    Get PDF
    When an attacker wants to falsify an image, in most of cases she/he will perform a JPEG recompression. Different techniques have been developed based on diverse theoretical assumptions but very effective solutions have not been developed yet. Recently, machine learning based approaches have been started to appear in the field of image forensics to solve diverse tasks such as acquisition source identification and forgery detection. In this last case, the aim ahead would be to get a trained neural network able, given a to-be-checked image, to reliably localize the forged areas. With this in mind, our paper proposes a step forward in this direction by analyzing how a single or double JPEG compression can be revealed and localized using convolutional neural networks (CNNs). Different kinds of input to the CNN have been taken into consideration, and various experiments have been carried out trying also to evidence potential issues to be further investigated.Comment: Accepted to CVPRW 2017, Workshop on Media Forensic
    • …
    corecore