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Abstract This chapter presents the techniques researched and developed within In-
VID for the forensic analysis of videos, and the detection and localization of forg-
eries within User-Generated Videos (UGVs). Following an overview of state-of-
the-art video tampering detection techniques, we observed that the bulk of current
research is mainly dedicated to frame-based tampering analysis or encoding-based
inconsistency characterization. We built upon this existing research, by designing
forensics filters aimed to highlight any traces left behind by video tampering, with
a focus on identifying disruptions in the temporal aspects of a video. As for many
other data analysis domains, deep neural networks show very promising results in
tampering detection as well. Thus, following the development of a number of analy-
sis filters aimed to help human users in highlighting inconsistencies in video content,
we proceeded to develop a deep learning approach aimed to analyse the outputs of
these forensics filters and automatically detect tampered videos. In this chapter we
present our survey of the state of the art with respect to its relevance to the goals of
InVID, the forensics filters we developed and their potential role in localizing video
forgeries, as well as our deep learning approach for automatic tampering detection.
We present experimental results on benchmark and real-world data, and analyse the
results. We observe that the proposed method yields promising results compared to
the state of the art, especially with respect to the algorithm’s ability to generalise to
unknown data taken from the real world. We conclude with the research directions
that our work in InVID has opened for the future.

1.1 Introduction

Among the InVID requirements, a prominent one has been to provide state-of-the-
art technologies to support video forensic analysis, and in particular manipulation
detection and localization. Video manipulation detection refers to the task of using
video analysis algorithms to detect whether a video has been tampered with video
processing software, and if yes, to provide further information on the tampering
process (e.g. where in the video the tampering is located and what sort of tampering
took place).

InVID deals with online content, primarily User-Generated Content (UGC). The
typical case concerns videos captured with hand-held devices (e.g. smartphones)
by amateurs, although it is not uncommon to include semi-professional or profes-
sional content. These videos are presented as real content captured on the scene
of a newsworthy event, and usually do not contain any shot transitions but instead
consist of a single shot. This is an important aspect of the problem, as a video that
contains multiple shots has by definition already been edited, which may lessen its
value as original eyewitness material. The videos are typically uploaded on social
media sharing platforms (e.g. Facebook, YouTube), which means that they are typ-
ically in H.264 format, and often suffer from low resolution, and relatively strong
quantization.
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When considering the task, we should keep in mind that image modifications
are not always malicious. Of course such cases are possible, such as the insertion
or removal of key people or objects, which may alter the meaning of a video, and
these are the cases that InVID video forensics was mostly aimed at. However, there
are many more types of tampering that can take place on a video, which can be
considered innocuous. These may include for example whole-video operations such
as sharpening or color adjustments for aesthetic reasons, or the addition of logos
and watermarks on the videos. Of course, contextually such post-processing steps
do partly diminish the originality and usefulness of a video, but in the case that such
videos are the only available evidence on a breaking event, they become important
for news organisations.

The detection of manipulations in video is a challenging task. The underlying ra-
tionale is that a tampering operation leaves a trace on the video -usually invisible to
the eye and pertaining to some property of the underlying noise or compression pat-
terns of the video- and that trace may be detectable with an appropriate algorithm.
However, there are multiple complications in this approach. Overall, there are many
different types of manipulation that can take place (object removal, object copy-
paste from the same scene or from another video, insertion of synthetic content,
frame insertion or removal, frame filtering or global color/illumination changes,
etc.), each potentially leaving different sorts of traces on the video. Furthermore,
we are dealing with the fact that video compression consists of a number of differ-
ent processes, all of which may disrupt the tampering traces. Finally, especially in
the case of online UGVs, these are typically published on social networks, which
means that they have been repeatedly re-encoded and are often of low quality, either
due to the resulting resolution or due to multiple compression steps. So, in order to
succeed, detection strategies may often need to be able to detect very weak and frag-
mented traces of manipulation. Finally, an issue that further complicates the task is
non-malicious editing. As mentioned above, occasionally videos are published with
additional logos or watermarks. While these do not constitute manipulation or tam-
pering, they are the result of an editing process identical to that of tampering and
thus may trigger a detection algorithm, or cover up the traces of other, malicious
modifications.

With these challenges in mind, we set out to implement the InVID video foren-
sics component, aiming to contribute a system that could assist professionals in
identifying tampered videos, or to advance the state of the art towards this direction.
We began by exploring the state of the art in image forensics, based on the previous
expertise of some of InVID partners (CERTH-ITI, eXo maKina) in this area. We
then extended our research into video forensics, and finally proceeded to develop
the InVID video forensics component. This consists of a number of algorithms, also
referred to as Filters, aimed to process the video and help human users localise
suspect inconsistencies. These filters are integrated in the InVID Verification Appli-
cation and their outputs made visible to the users, to help them visually verify the
videos. Finally, we tried to automate the detection process by training a deep neural
network architecture to spot these inconsistencies and classify videos as authentic
or tampered.
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This chapter focuses on video tampering detection and does not deal with other
forms of verification, e.g. semantically analyzing the video content, or considering
metadata or contextual information. It is dedicated to the means that are adopted to
track weak traces (or signatures) left by the tampering process in the encoded video
content. It accounts for encoding integrity, space, time, color and quantization co-
herence. Two complementary approaches are presented, one dealing with tampering
localization, i.e. using filters to produce output maps aimed to highlight where the
image may have been tampered, and designed to be interpreted by a human user,
and one dealing with tampering detection, aiming to produce a single-value output
per video indicating the probability that the video is tampered.

The rest of the chapter is organised as follows. Section 1.3 briefly presents the
necessary background, Section 1.3 presents an overview of the most relevant ap-
proaches that can be found in the literature. Section 1.4 details the methodologies
developed in InVID for detecting tampering in videos. Specifically, subsection 1.4.1
presents the filters developed for video tampering localization, while subsection
1.4.2 presents our approach for automatic video tampering detection. Section 1.5
then presents and analyses the evaluation results from the automatic approach over
a number of experimental datasets. Finally, section 1.6 presents our conclusions
from our work in video forensics during the InVID project.

1.2 Background

Image and Video forensics are essentially sub-fields of image and video processing,
and thus certain concepts from these fields are particularly important to the tasks at
hand. In this section we will briefly go over the most relevant of these concepts, as
necessary background for the rest of the chapter.

While an image (or video frame) can in our case be treated as a 2D array of
(R,G,B) values, the actual color content of the image is often irrelevant for foren-
sics. Instead, we are often interested in other less prominent features, such as the
noise, luminance-normalised color, or acuity of the image.

The term image noise refers to the random variation of brightness or color infor-
mation, and is generally a combination of the physical characteristics of the captur-
ing device (e.g. lens imperfections) and the image compression (in the case of lossy
compression which is the norm). One way to isolate the image noise is to subtract
a low-pass filtered version of the image from itself. The residue of this operation
tends to be dominated by image noise. In cases where we deal with the luminance
rather than the color information of the image, we call the output luminance noise.
Another high-frequency aspect of the image is the acuity or sharpness, which is
is a combination of focus, visibility, and image quality, and can be isolated using
high-pass filtering.

With respect to video, certain aspects of MPEG compression are important for
forensics and will be presented in short here. MPEG compression in its variants
(MPEG-1, MPEG-2, MPEG-4 Part 2, and MPEG-4 part 10, also known as AVC
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Fig. 1.1: Two example GOPs with I, P, and B frames. The GOP size in this case is 6
for both GOPs.

or H.264) is essentially based on the difference between frames that are encoded
using only information contained within them, also known as intra-frame compres-
sion, and frames that are encoded using information from other frames in the video,
known as inter-frame compression. Intra-frame compression is essentially image
compression, and in most cases is based on algorithms that resemble JPEG encod-
ing. The concept of inter-frame encoding is more complicated. Given other frames
in the sequence, the compression algorithm performs block-matching between these
frames and the frame to be encoded. The vectors linking these blocks are known as
motion vectors and, besides providing a way to reconstruct a frame using similar
parts from other frames, can also provide a rough estimate of the motion patterns in
the video, by studying the displacements of objects through time. The reconstruction
of a frame is done by combining the motion-compensated blocks from the reference
frames, with a residue image which is added to it to create the final frame.

Frames in MPEG-encoded videos are labelled I, P, or B frames, depending on
their encoding. I signifies intra-frame encoding, P signifies inter-frame encoding
using only data from previous frames, while B signifies bi-directional inter-frame
encoding using data from both previous and future frames. Within a video, these are
organised in Groups of Pictures (GOPs), starting with an I-frame and containing
P- and B- frames (Fig. 1.1). The distance between two I-frames is the GOP length,
which is fixed in earlier encodings but can vary in the modern formats. Similarly,
modern formats allow much more flexibility in other aspects of the encoding, such
as the block size and shape, which means that algorithms with strict assumptions on
the workings of the algorithm (e.g. expecting a fixed GOP size) will not work on
modern formats.

1.3 Related Work

1.3.1 Image Forensics

Multimedia forensics is a field with a long research history, and much progress
has been achieved in the last decades. However, most of this progress concerned
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the analysis of images rather than videos. Image forensics methods are typically
organised in one of two categories: active forensics, where a watermark or similar
(normally invisible) piece of information is embedded in the image at the time of
capture, of which the integrity ensures that the image has not been modified since
capture [38, 39, 43], and passive forensics, where no such prior information exists,
and the analysis of whether an image has been tampered depends entirely on the
image content itself. While the latter is a much tougher task, it is also the most
relevant in the majority of use cases, where we typically have no access to any
information about the image capturing process.

One important distinction in image forensics algorithms is between tampering
detection and tampering localization. In the former case, the algorithm only reports
knowledge on whether the image has been tampered or not, and typically returns
a scalar likelihood estimate. In the latter case, the algorithm attempts to inform the
user where the tampering has taken place, and returns a map corresponding to the
shape of the image and highlighting the regions of the image that are likely to have
been tampered -ideally, a per-block or per-pixel probability estimate.

Passive image forensics approaches can be categorised with respect to the type
of modification they intend to detect and/or localise. Three main groups of mod-
ifications are copy-moving, splicing or in-painting, and whole-image operations.
In the first case, a part of the image is replicated and placed elsewhere in it -for
example, the background is copied to remove an object or person, or a crowd is
duplicated to appear larger. Copy-move detection algorithms attempt to capture the
forgery by looking for self-similarities within the image [56, 46]. In the case of
splicing, a part of one image is placed within another. Splicing detection and local-
ization algorithms are based on the premise that, on some possibly invisible level,
the spliced area will differ from the rest of the image due to their different capturing
and compression histories. The case with in-painting, i.e. when part of the image
is erased and then automatically filled using an in-painting algorithm is in princi-
ple similar, since the computer-generated part will carry a different profile than the
rest of the image. Algorithms designed to detect such forgeries may exploit incon-
sistencies in the local JPEG compression history [18, 25], in local noise patterns
[29, 11], or in the traces left by the capturing devices’ Color Filter Array (CFA)
[15, 19]. It is interesting to note that, in many cases, such algorithms are also able
to detect copy-move forgeries, as they also often cause detectable local disruptions.
For cases where localization is not necessary, tampering detection algorithms com-
bining filtering and machine learning have been proposed in the past, reaching very
high accuracy within some datasets [10, 32]. Finally, whole-image operations such
as rescaling, recompression, or filtering cannot be localised and thus are generally
tackled with tampering detection algorithms [65, 6, 52].

Recently, with the advent of deep learning, new approaches began to appear,
attempting to leverage the power of convolutional neural networks for tampering
localization and detection. One approach is to apply a filtering step on the image,
and then use a Convolutional Neural Network to analyse the filter output [7]. Other
methods have attempted to incorporate the filtering step into the network, through
the introduction of a Constrained Convolutional Layer, of which the parameters are
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normalised at each iteration of the training process. This ensures that the first layer
always operates as a high-pass filter, but is still trained alongside the rest of the
network. Networks having this layer as their first convolutional layer were proposed
for tampering detection [4] and resampling detection [5] with promising results,
while a multi-scale approach was proposed in [28]. Recently, an integrated model
was proposed, re-implementing an approach similar to [20], but exclusively using
deep learning architectures [12].

A major consideration with image forensics, and especially in the use cases tack-
led through InVID, where we deal with online content from Web and social media
sources, is the degradation of the tampering traces as the content circulates from
platform to platform. The traces that most algorithms look for are particularly frag-
ile, and are easily erased through resampling or recompression. Since most online
platforms perform such operations on all images uploaded to them, this is a very
important consideration for news-related multimedia forensics, and a recent study
attempted to evaluate the performance of splicing localization algorithms in such
environments [64].

1.3.2 Video Forensics

With respect to video-related disinformation, the types of tampering that we may
encounter are, to an extent, similar to the ones encountered in images. Thus, we
may encounter copy-moving, splicing, in-painting, or whole-video operations such
as filtering or illumination changes. An important difference is that such operations
may have a temporal aspect, e.g. splicing is typically the insertion of a second video
consisting of multiple green-screen frames depicting the new object in motion. Simi-
larly, a copy-move may be temporally displaced, i.e. an object of a video from some
frames reappearing in other frames, or spatially displaced, i.e. an object from a
frame reappearing elsewhere on the same frame. Furthermore, there exists a type of
forgery that is only possible in videos, namely inter-frame forgery, which essentially
consists of frame insertion or deletion.

Inter-frame forgery is a special type of video tampering, because it is visually
identifiable in most cases as an abrupt cut or shot change in the video. There exist
two types of videos where such a forgery may actually succeed to deceive viewers:
One is the case of a video that already contains cuts, i.e. edited footage. There,
a shot could be erased or added among the existing shots, if the audio track can
be correspondingly edited. The other is the case of CCTV video or other video
footage taken from a static camera. There, frames could be inserted, deleted, or
replaced without being visually noticeable. However, the majority of InVID use
cases concern UGV, which is usually taken by hand-held capturing devices and
consists of unedited single shots. In those cases, inter-frame forgeries cannot be
applied without being immediately noticeable. Thus, inter-frame forgery detection
was not a high priority for InVID.
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When first approaching video forensics, one could conceptualise the challenge as
an extension of image forensics, which could be tackled with similar solutions. For
example, video splicing could be detected based on the assumption that the inserted
part carries a different capturing and compression history than the video receiving it.
However, our preliminary experimentation showed that the algorithms designed for
images do not work on videos, and this even applies to the most generic noise-based
algorithms. It goes without saying that algorithms based specifically on the JPEG
image format are even more inadequate to detect or localise video forgeries. The
main reason for this is that a video is much more than a sequence of images. MPEG
compression -which is the dominant video format today- encodes information by
exploiting temporal interrelations between frames, essentially reconstructing most
frames by combining blocks from other frames with a residual image. This process
essentially destroys the traces that image-based algorithms aim to detect. Further-
more, the requantization and recompression performed by online platforms such
as YouTube, Facebook, and Twitter is much more disruptive for the fragile traces of
tampering than the corresponding recompression algorithms for images. Thus, video
tampering detection requires the development of targeted, video-based algorithms.
Even more so, algorithms designed for MPEG-2 will often fail when encountered
with MPEG-4/H.264 videos [45], which are the dominant format for online videos
nowadays. Thus, when reviewing the state of the art, we should always evaluate the
potential robustness of the algorithm with respect to online videos.

When surveying the state of the art, a similar taxonomy that we used for image
forensics can be used for videos-based algorithms. Thus, we can find a large number
of active forensics approaches [44, 67, 17, 51, 47], which however are not applicable
in most InVID use cases, where we have no control of the video capturing process.
As mentioned above, passive video forensics can be organised in a similar structure
as passive image forensics, with respect to the type of forgery they aim to detect:
splicing/object insertion, copy-moving/cloning, whole-video operations, and inter-
frame insertion/deletion. The following subsections present an overview of these
areas, while two comprehensive surveys can be found in [37, 45].

1.3.2.1 Video splicing and in-painting

Video splicing refers to the insertion of a part of an image or video in some frames
of a recipient video. Video in-painting refers to the replacement of a part of the
video frames with automatically generated content, presumably to erase the objects
depicted in those parts of the frame. In principle, video splicing detection algorithms
operate similarly to image splicing detection algorithms, i.e. by trying to identify
local inconsistencies in some aspect of the image, such as the noise patterns or
compression coefficients.

Other strategies focus on temporal noise [33] or correlation behavior [27]. It is
not clear if those methods could process video encoded in a constant bit rate strat-
egy, since imposing a constant bit rate compression induces a variable quantization
level over time, depending on the video content. Nevertheless, the noise estimation
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induces a predictable feature shape or background, which imposes an implicit hy-
pothesis such as a limited global motion (the fact is that those methods work better
with still background). The Motion Compensated Edge Artifact is an interesting
alternative to deal with temporal behavior of residuals between I, P and B frames
without requiring strong hypotheses on the motion or background contents. Those
periodic artifacts in the DCT coefficients may be extracted through a thresholding
technique [48] or spectral analysis [16].

1.3.3 Detection of Double/Multiple Quantization

When we detect that a video has been requantised more than once, it does not mean
that the video was tampered between the two compressions. In fact, it may well
be possible that the video was simply re-scaled, or changed format, or was simply
uploaded on a social media platform which re-encoded the video. Thus, detection of
double/multiple quantization does not give tampering information as such, but gives
a good indication that the video has been reprocessed and may have been edited. Of
course, as InVID primarily deals with social media content, all analysed videos will
have been quantised twice. Thus, from our perspective it is more important to know
if the video has been quantised more than two times, and if yes, to know the exact
number of quantizations it has undergone.

Video multiple quantization detection is often based on the quantization analysis
of I frames. This is similar to techniques used for recompression analysis of JPEG
images, although, as explained above, it should be kept in mind that an I frame
can not always be treated as a JPEG image, as its compression is often much more
complex, and a JPEG-based algorithm may be inadequate to address the problem.

In JPEG compression, the distribution of DCT coefficients before quantization
follows the Generalised Gaussian distribution, thus its quantised representation is
given by Benford’s law and its generalised version [21]. The degree to which the
DCT coefficient distribution conforms with Benford’s law may be used as an indi-
cation on whether the image has been requantised or not. In a more video-specific
approach, the temporal behavior of the parameters extracted from Benford’s law
may also be exploited to detect multi-compression of the video [31, 59].

Other approaches propose to detect multiple quantization of a video stream by
considering the link between the quantization level and the motion estimation error,
especially on the first P frame following a (requantised) I frame [54, 49]. However,
such approaches are designed to work with fixed-size GOPs, which is more relevant
for MPEG-2 or the simpler Part 2 of MPEG-4, rather than the more complex modern
formats such as H.264/AVC/MPEG-4 Part 10.
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1.3.4 Inter-frame Forgery Detection

This kind of tampering is characterised by the insertion (or removal) of entire frames
in the video stream. Such cases arise for instance in video surveillance systems
where, due to the static background, frames can be inserted, deleted, or replaced
without being detectable, with malicious intent. Many approaches are based on the
detection of inconsistencies in the motion prediction error along frames, the mean
displacement over time, the evolution of the percentage of intra-coded macro blocks,
or the evolution of temporal correlation of spatial features such as Local Binary
Patterns (LBP) or velocity fields [42, 66, 22, 57].

However, inter-frame forgery is generally not very common in UGVs, as we
have found through the InVID use cases. The Fake Video Corpus [34], a dataset
of fake and real UGC videos collected during InVID shows that, on the one hand,
most UGV content presented as original is typically unedited and single-shot, which
means that it is hard to insert frames without them being visually detectable. On the
other hand, multi-shot video by nature includes frame insertions and extractions,
without this constituting some form of forgery. Thus, for InVID such methods are
not particularly relevant.

1.3.5 Video Deep Fakes and their Detection

Recently, the introduction of deep learning approaches has disrupted many fields
including image and video classification and synthesis. Of particular relevance has
been the application of such approaches for the automatic synthesis of highly realis-
tic videos with impressive results. Among them, a popular task with direct implica-
tions on the aims of InVID is face swapping, where networks are trained to replace
human faces in videos with increasingly more convincing results [8, 2]. Other tasks
include image-to-image translation [3, 26], where the model learns to convert im-
ages from one domain to another (e.g. take daytime images and convert them to look
as if they were captured at night), and image in-painting [55, 62], where a region
of the image is filled by automatically generated content, presumably with erasing
objects and replacing them with background.

Those approaches are bringing new challenges in the field of video forensics,
since in most of these cases the tampered frames are synthesised from scratch by the
network. As a consequence, in these cases it is most likely that content inconsisten-
cies are no longer relevant with respect to tampering detection. Thus, all strategies
based on the statistical analysis of video parameters (such as quantization param-
eters, motion vectors, heteroscedasticity, etc.) may have been rendered obsolete.
Instead, new tampering detection strategies need to account for scene, color and
shape consistencies, or to look for possible artifacts induced by forgery methods.
Indeed, detecting deep fakes may be a problem more closely linked to the detec-
tion of computer generated images (a variant of which is the detection of computer
graphics and 3D rendered scenes) [13, 14, 53] than to tampering detection. Face
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swaps are an exception to this, as in most cases the face is inserted on an exist-
ing video frame, thus the established video splicing scenario still holds. Recently,
a study on face swap detection was published, testing a number of detection ap-
proaches against face swaps produced by three different algorithms, including one
based on deep learning [41]. This work, which is an extension of a previous work
on face swap detection [40], shows that in many cases image splicing localization
algorithms such as XceptionNet [9] and MesoNet [1] can work, at least for the raw
images and videos having undergone one compression step. During the course of
the InVID project, the discourse on the potential of deep fakes to disrupt the news
cycle and add to the amount of online disinformation has risen from practically non-
existent in 2016 to central in 2018. The timing and scope of the project did not allow
to devote resources to tackling the challenge. Instead, the InVID forensics compo-
nent was dedicated to analyzing forgeries committed using more traditional means.
However, as the technological capabilities of generative networks increase, and their
outputs become more and more convincing, it is clear that any future ventures into
video forensics would have to take this task very seriously as well.

1.4 Methodology

1.4.1 Video Tampering Localization

The first set of video forensics technologies developed within InVID concerned a
number of forensics filters aimed to be interpreted by trained human investigators
in order to spot inconsistencies and artifacts, which may highlight the presence of
tampering. In this work, we followed the practice of a number of image tampering
localization approaches [29, 61] that do not return a binary map or a bounding box
giving a specific answer to the question, but rather a map of values that need to be
visualised and interpreted by the user in order to decide if there is tampering, and
where.

With this in mind, eXo maKina developed a set of novel filters aimed at gener-
ating such output maps by exploiting the parameters of the MPEG-4 compression,
as well as the optical and mathematical properties of the video pixel values. The
outputs of these filters are essentially videos themselves, with the same duration as
the input videos, allowing temporal and spatial localization of any highlighted in-
consistencies in the video content. In line with their image forensics counterparts,
these filters do not include direct decision making on whether the video is tampered
or not, but instead highlight various aspects of the video stream that an investiga-
tor can visually analyse for inconsistencies. However, since these features can be
used by analysts to visually reach a conclusion, we deduce that it is possible for
a system to be trained to automatically process these traces and come to a similar
conclusion without human help. This reduces the need for training investigators to
analyse videos. Therefore, in parallel to developing filters for human inspection, we
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also investigated machine learning processes that may contribute to decision mak-
ing based on the outputs of those filters. Subsection 1.4 presents these filters and the
type of tampering artifacts they aim to detect, while subsection 1.4.2 presents our
efforts to develop an automatic system that can interpret the filter outputs in order
to assist investigators.

The filters developed by eXo maKina for the video forensics component of In-
VID are organised in three broad groups: Algebraic, optical, and temporal filters.

1. Algebraic filters: The term algebraic filters refers to any algebraic approaches
that allow projecting information into a sparse feature space that makes forensic
interpretation more easy.

• The Q4 filter is used to analyse the decomposition of the image through
the Discrete Cosine Transform. The 2D DCT converts an N×N block of
an image into a new N×N block in which the coefficients are calculated
based on their frequency. Specifically within each block, the first coefficient
situated at position (0,0) represents the lowest frequency information and
its value is therefore related to the average value of the entire block, the
coefficient (0,1) next to it characterises a slow evolution from dark to light
in the horizontal direction, etc.
If we transform all N×N blocks of an image with the DCT, we can build
for example a single-channel image of the coefficients (0,0) of each block.
This image will then be N times smaller per dimension. More generally, one
can build an image using the coefficients corresponding to position (i, j) of
each block for any chosen pair of i and j. Additionally, one may create false
color images by selecting three block positions and using the three resulting
arrays as the red, green, and blue channel of the resulting image, as shown
in the following equation: red

green
blue

=

coefficients #1
coefficients #2
coefficients #3

 . (1.1)

For the implementation of the Q4 filter used in InVID we chose to use
blocks of size 2× 2. Since the coefficient corresponding to block position
(0,0) is not relevant for verification and only returns a low-frequency ver-
sion of the image, we have the remaining three coefficients with which we
can create a false color image. Thus, in this case the red channel corre-
sponds to horizontal frequencies (0,1), the green channel corresponds to
vertical frequencies (1,0), and the blue corresponds to frequencies along
the diagonal direction (1,1).

• The Chrome filter is dedicated to analyzing the luminance noise of the
image. It highlights noise homogeneity, which is expected in a normal and
naturally illuminated observation system. It is mainly based on a non-linear
filter in order to capture impulsive noise. Hence, the Chrome filter is mainly
based on the following operation applied on each frame of the video:
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(a) (b)

Fig. 1.2: Output of the Q4 filter on the edited tank video. (a) edited frame, (b) filter
output. According to Equation (1.1), the image in (b) shows in red the strength of
vertical transition (corresponding to transitions along the lines), in green the hori-
zontal transitions and in blue the diagonal transitions (which can be mainly seen in
the leafs of the trees).

(a) (b)

Fig. 1.3: Output of the Chrome filter on the edited tank video. (a) edited frame, (b)
filter output. The image in (b) appears to be black and white but remains with color
information. As it comes from Equation (1.2), it shows that the noise is of the same
level independent of the input color bands.

IChrome(x) = |I(x)−median(W (I(x)))| , (1.2)

where I(x) signifies an image pixel, and W (I(x)) stands for a 3×3 window
around that pixel.
This filter resembles the Median Noise algorithm for image forensics, im-
plemented in the Image Forensics Toolbox1, where the median filter residue
image is used to spot inconsistencies in the image. Essentially, as it isolates
high-frequency noise, this approach gives an overview of the entire frame
where items with different noise traces can be spotted and identified as
standing out from the rest of the frame.

2. Optical filters: Videos are acquired from an optical system coupled with a sen-
sor system. The latter has the sole purpose of transforming light and optical
information into digital data in the form of a video stream. A lot of information

1 https://github.com/MKLab-ITI/image-forensics
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Fig. 1.4: Projection principle performed by the Fluor filter.

directly related to the light and optical information initially captured by the de-
vice is hidden in the structure of the video file. The purpose of optical filters is
to extract this information and to allow the investigator to look for anomalies in
the optical information patterns. It must be kept in mind that these anomalies
are directly related to optical physics. Some knowledge of these phenomena is
therefore required for an accurate interpretation of the results.

• The Fluor filter is used to study the colors of an image regardless of its
luminance level. The filter produces a normalised image where the colors
of the initial image have been restored independently of the associated lu-
minance. The underlying transformation is the following: red

green
blue

=


red

red+green+blue
green

red+green+blue
blue

red+green+blue

 (1.3)

As shown in Fig. 1.4, in 2D or 3D, colored pixels with Red, Green, and
Blue components are projected on the sphere centered on the black color so
that the norm of the new vector (red, green, blue) is always equal to 1.
We see on the 2D image that the points in black represent different colors
but their projections on the arc of a circle are located in the same region
which induces the same hue of the image Fluor. On the other hand, dark
pixels, drawn as points in gray in the image, may appear similar to the
eye, but may actually have a different hue and their projection on the arc
enhances these differences and may allow the user to distinguish between
them. This normalization performed by the Fluor filter makes it possible to
break the similarity of colors as it is perceived by the human visual system
and to highlight colors with more pronounced differences based on their
actual hue.
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(a) (b)

Fig. 1.5: Output of the Fluor filter on the edited tank video. (a) edited frame, (b)
filter output. Image on (b) shows the colors of the original according to Equation
(1.3).

(a) (b)

Fig. 1.6: Output of the Focus filter on the edited tank video. (a) edited frame, (b)
filter output. In the (b) image, vertical sharpness is shown in red and horizontal
sharpness in green.

• The Focus filter is used to identify and visualise the sharp areas in an image
or areas of stronger acuity. When an image is sharp, it has the characteristic
of containing abrupt transitions as opposed to a smooth level evolution of
color at the boundaries of an object. An image with high acuity contains a
higher amount of high frequencies, while in contrast the high frequencies
are insignificant when the object is blurred or out of focus. This sharpness
estimation for the Focus filter is performed through the wavelet transform
[30]. The Focus filter considers the wavelet coefficients only through a non-
linear filtering based on the processing of the three RGB planes of each
frame. It yields a false color composition where blurred low frequency areas
remain in grey and the sharp contours appear in color.

• The Acutance filter refers to the physical term for the sharpness in pho-
tography. Normally, it is a simple measure of the slope of a local gradient
but here it is normalised with the local value of the gray levels, which dis-
tinguishes it from the Focus filter. The Acutance filter is computed as the
ratio between the outputs of a high-pass filter and a low-pass filter. In prac-
tice, we use two Gaussian filters with different sizes. Hence, the following
equation characterises the Acutance filtering process:
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(a) (b)

Fig. 1.7: Output of the Acutance filter on the edited tank video. (a) edited frame,
(b) filter output. The image (b) stresses that the tank appears much more sharp than
the rest of the image.

frameAcutance =
frameHighPass

frameLowPass
. (1.4)

3. Temporal filters: These filters aim at highlighting the behavior of the video
stream over time. MPEG-4 video compression exploits temporal redundancy
to reduce the compressed video size. This is the reason a compressed video is
much more complex than a sequence of compressed images. Moreover, in many
frames MPEG-4 mixes up the intra/inter predictions in one direction or in a for-
ward/backward strategy, so that the frame representation is highly dependent
on the frame contents and the degree of quantization. Thus, the analysis of the
temporal behavior of the quantization parameters may help us detect inconsis-
tencies in the frame representation.

• The Cobalt filter compares the original video with a modified version of the
original video re-quantised by MPEG-4 with a different quality level (and
a correspondingly different bit rate). The principle of the Cobalt filter is
simple. One observes the video of errors2 between the initial video and the
video re-quantised by MPEG-4 with a variable quality level or a variable bit
rate level. If the quantization level coincides with the quality level actually
used on the small modified area, there will be no error right there. This prac-
tice is quite similar to the JPEG Ghosts algorithm [18] where a JPEG image
is recompressed and the new image is subtracted from the original, to lo-
cally highlight inconsistencies (“ghosts”) that correspond to added objects
from images of different qualities. The ELA algorithm3 follows a similar
approach.

• The Motion Vectors filter yields a color-based representation of block-
motions as encoded into the video stream. Usually, this kind of representa-
tion uses arrows to show block displacements. It is worth noting that the en-
coding system does not recognise ‘objects’ but handles blocks only (namely

2 Video of errors: a video constructed by per-pixel differences of frames between the two videos.
3 https://fotoforensics.com/tutorial-ela.php
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(a) (b)

Fig. 1.8: Output of the Cobalt filter on the edited tank video. (a) edited frame, (b)
filter output.

(a) (b)

Fig. 1.9: Output of the Motion Vectors filter on the edited tank video. (a) edited
frame, (b) filter output. Instead of a usual arrow-based representation of the motion
vectors, image (b) shows macro-blocks displacements according to a vector orienta-
tion definition that uses the Hue angular definition of the HLS color representation.
This representation allows better visualization for human investigators, and poten-
tial processing by automatic systems.

macro-blocks). The motion vectors are encoded in the video stream to re-
construct all frames which are not keyframes (i.e. not intra-coded frames
but inter-coded frames that are essentially encoded by using information
from other frames). Then, an object of the scene has a set of motion-vectors
associated to each macro-block inside it. These motions as represented by
the Motion Vectors filter have to be homogeneous and coherent, otherwise
there is a high likelihood that some suspicious operation has taken place.

• The Temporal Filter is used to apply temporal transformation on the video,
such as smoothing or temporal regulation. It should also be used to make
a frame-to-frame comparison to focus on the evolution of the luminance in
time only. The Temporal Filter is computed as the frame-to-frame differ-
ence over time as stated by the following equation:

frameTemporal Filter(t) = frame(t)− frame(t−1)

which is applied on each color channel of the frames so that the output of
the filter is also a color image.
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(a) (b)

Fig. 1.10: Output of the Temporal Filter on the edited tank video. (a) edited frame,
(b) filter output. The frame-to-frame difference shown in image (b) highlights the
tank displacement as well as the light shift of the camera.

1.4.2 Tampering Detection

Besides the development of video-specific forensic filters, we also dedicated effort
towards developing an automatic detection system, which would be able to assist
investigators in their work. Similar to other tampering detection approaches, our
methodology is to train a machine learning system using a set of input features to
distinguish between tampered and non-tampered items. The approach, presented in
[63], is based on image classification. Since the filters produce colorised sequences
of outputs in the form of digital videos, we decided to use image classification net-
works in order to model the way a human investigator would look for inconsistencies
in the filter outputs.

Deep networks generally require very large training sets. This is the reason the
authors of [40] resorted to (semi-)automatically generated face-swap videos for
training and evaluation. However, for the general case of video tampering, such
videos do not exist. On the other hand, in contrast to other methods which are based
on filter outputs that are not readable by humans, the outputs produced by our fil-
ters are designed to be visually interpreted by users. This means that we can treat
the task as a generic image classification task, and refine networks that have been
pre-trained on general image datasets.

Even in this case, there is need for a large number of items, which was not avail-
able. Similar to [41], we decided to deal with the problem at the frame level. Thus,
each frame was treated as a separate item, and accordingly the system was trained to
distinguish between tampered and untampered frames. There are admittedly strong
correlations between consecutive video frames, which reduces the variability in the
training set, but operating at the frame level remains the only viable strategy given
the limited available data. Of course, during training and evaluation, caution needs
to be applied so as to ensure that all the frames from the same video remain exclu-
sively either in the training or test set, and that no information leak takes place.

For classification, we chose Convolutional Neural Networks (CNNs) which
are currently the dominant approach for this type of task. Specifically, we chose
GoogLeNet [50] and ResNet [24], which are two very successful models for image
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classification. In order to apply them to tampering detection, we initialise the mod-
els with pre-trained weights from the ImageNet dataset, and fine-tune them using
annotated filter outputs from our datasets.

To produce the outputs, we chose the Q4 and Cobalt filters for classification,
which represent two complementary aspects of digital videos: Q4 provides us with
frequency analysis through the DCT transform, and Cobalt visualises the requan-
tization residue. The CNNs are designed to accept inputs in a fixed resolution of
224×224 pixels. We thus rescaled all filter outputs to match these dimensions. Gen-
erally, in multimedia forensics, rescaling is a very disruptive operation that tends to
erase the -usually very sensitive- traces of tampering. However, in our case, the
forensic filters we are using are designed to be visually inspected by humans and,
as a result, exhibit no such sensitivities. Thus, we can safely adjust their dimensions
to the CNNs.

One final note on the CNNs is that, instead of using their standard architecture,
we extend them using the proposed approach of [36]. The work of [36] shows that,
if we extend the CNN with an additional Fully Connected (FC) layer before the final
FC layer, the network classification performance is improved significantly. We chose
to add an 128-unit FC layer to both networks, and we also replaced the final 1000-
unit layer, aimed at the 1000-class ImageNet task, with a 2-unit layer appropriate
for the binary (tampered/untampered) task.

1.5 Results

1.5.1 Datasets and Experimental Setup

This section is dedicated to the quantitative evaluation of the proposed tampering
detection approach. We drew videos from two different sources to create our train-
ing and evaluation datasets. One source was the NIST 2018 Media Forensics Chal-
lenge4 and specifically the annotated development datasets provided for the Video
Manipulation Detection task. The development videos provided by NIST were split
in two separate datasets, named Dev1 and Dev2. Out of those datasets, we kept all
tampered videos, plus their untampered sources, but did not take into account the
various distractor videos included in the sets, which would lead to significant class
imbalances, and also because we decided to train the video using corresponding
pairs of tampered videos and their sources, which are visually similar to a large
extent. The aim was to allow the network to ignore the effects of the visual content
-since it would not allow it to discriminate between the two- and focus on the impact
of the tampering.

In our experiments Dev1 consists of 30 tampered videos and their 30 untampered
sources, while Dev2 contains 86 tampered videos, and their 86 untampered sources.
The two datasets contain approximately 44,000 and 134,000 frames respectively,

4 https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018
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which are generally evenly shared between tampered and untampered videos. It
should be kept in mind that the two datasets originate from the same source (NIST),
and thus, while during our experiments we treat them as different sets, it is very
likely that they will exhibit similar feature distributions.

The other source was the InVID Fake Video Corpus [35], a collection of real and
fake videos developed in the course of the InVID project. The version of the FVC
used in these experiments consists of 110 “real” and 117 “fake” news-related, user-
generated videos from various social media sources. These are videos that convey
factual or counterfactual information, but the distinction between tampered and un-
tampered is not clear, since many “real” videos contain watermarks or logos, which
means they should be detected as tampered, and in contrast many “fake” videos are
untampered user-captured videos that were circulated out of context. Out of that
collection, we selected 35 “real”, unedited videos, and 33 “fake” videos that were
tampered with the aim of deceiving viewers, but with no obvious edits such as logos,
watermarks, or cuts/transitions. In total, the subset of the FVC dataset we created
contains 163,000 frames, which are approximately evenly shared between tampered
and untampered videos.

Fig. 1.11: Indicative videos from the FVC dataset. Top (tampered videos): “Bear
attacks cyclist”, “Lava selfie”, “Bear attacks snowboarder”, “Eagle drops snake”.
Bottom (untampered videos): “Stockholm attack”, “Hudson landing”, “Istanbul at-
tack” and “Giant aligator in golf field”.

One major problem with the dataset is that we do not have accurate temporal an-
notations for most videos. That is, in many cases where only part of the video con-
tains tampered areas, and the rest is essentially identical to the untampered version,
we do not have specific temporal or per-frame annotations. As an approximation in
our experiments, we labelled all the frames that we drew from tampered videos as
tampered, and all the frames we drew from untampered videos as untampered. This
is a weak assumption, and we can be certain that a percentage of our annotations
will be wrong. However, based on manual inspection, we concluded that it is indeed
true for the majority of videos -meaning, in most cases the tampering appears on the
frame from the beginning to the end of the video-, and thus we consider the quality
of annotations adequate for the task.
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1.5.2 Experimental Setup

For our evaluation experiments, we first applied the two chosen filters, namely Q4
and Cobalt, on all videos, and extracted all frames of the resulting output sequences
to use as training and test items. Then, each of the two chosen networks -GoogLeNet
and ResNet- was trained on the task using these outputs. For comparison, we also
implemented three more features from related approaches, to be used for classifica-
tion in a similar manner. These features are:

• rawKeyframes [40]. The video is decoded into its frames and the raw keyframes
(without any filtering process) are given as input to the deep network.

• highPass frames [20]. The video is decoded into its frames, each frame is fil-
tered by a high-pass filter and the filtered frame is given as input to the deep
network.

• frameDifference [60]. The video is decoded into its frames, the frame difference
between two neighboring frames is calculated, the new filtered frame is also
processed by a high-pass filter and the final filtered frame is given as input to
the deep network.

As explained, during training each frame is treated as an individual image. How-
ever, in order to test the classifier, we require a per-video result. To achieve this,
we extract the classification scores for all frames, and calculate the average score
separately for each class (tampered, untampered). If the average score for the “tam-
pered” class is higher than the average score for the “untampered” class, then the
video is classified as tampered.

We ran two types of experiments. In one case, we trained and evaluated the algo-
rithm on the same dataset, using 5-fold cross validation, and ensuring that all frames
from a video are placed either in the training or in the evaluation set to avoid infor-
mation leak. In the other case, we used one of the datasets for training, and the other
two for testing. These cross-dataset evaluations are important in order to evaluate
an algorithm’s ability to generalise, and to assess whether any encouraging results
we observe during within-dataset evaluations are actually the result of overfitting
on the particular dataset’s characteristics, rather than a true solution to the task. In
all cases, we used three performance measures: Accuracy, Mean Average Precision
(MAP), and Mean Precision for the top-20 retrieved items (MP@20). A preliminary
version of these results has also been presented in [63].

1.5.2.1 Within-dataset Experiments

For the within-dataset evaluations, we used the two NIST datasets (Dev1, Dev2) and
their union. This resulted in three separate runs, the results of which are presented
in Table 1.1.

As shown on the Table 1.1, Dev1 consistently leads to poorer performance in
all cases, for all filters and both models. The reason we did not apply the MP@20
measure on Dev1 is that the dataset is so small that the test set in all cases contains
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Table 1.1: Within-dataset evaluations

Dataset Filter-DCNN Accuracy MAP MP@20

Dev1

cobalt-gnet 0.6833 0.7614 -
cobalt-resnet 0.5833 0.6073 -
q4-gnet 0.6500 0.7856 -
q4-resnet 0.6333 0.7335 -

Dev2

cobalt-gnet 0.8791 0.9568 0.82
cobalt-resnet 0.7972 0.8633 0.76
q4-gnet 0.8843 0.9472 0.79
q4-resnet 0.8382 0.9433 0.76

Dev1
+
Dev2

cobalt-gnet 0.8509 0.9257 0.91
cobalt-resnet 0.8217 0.9069 0.87
q4-gnet 0.8408 0.9369 0.92
q4-resnet 0.8021 0.9155 0.87

less than 20 items, and thus is inappropriate for the specific measure. Accuracy is
between 0.58 and 0.68 in all cases in Dev1, while it is significantly higher in Dev2,
ranging from 0.79 to 0.88. MAP is similarly significantly higher in Dev2. This can
be explained by the fact that Dev2 contains many videos that are taken from the
same locations, so we can deduce that a degree of leakage occurs between training
and test data, which leads to seemingly more successful detections.

We also built an additional dataset by merging Dev1 and Dev2. The increased
size of the Dev1+Dev2 dataset suggests that cross-validation results will be more
reliable than for the individual sets. As shown in Table 1.1, Mean Average Precision
for Dev1+Dev2 falls between that for Dev1 and Dev2, but is much closer to Dev2.
On the other hand, MP@20 is higher than for Dev2, although that could possibly
be the result of Dev2 being relatively small. The cross-validation Mean Average
Precision for Dev1+Dev2 reaches 0.937 which is a very high value and can be
considered promising with respect to the task. It is important to note that, for this
set of evaluations, the two filters yielded comparable results, with Q4 being superior
in some cases and Cobalt in others. On the other hand, with respect to the two CNN
models there seems to be a significant difference between GoogLeNet and ResNet,
with the former yielding much better results.

1.5.2.2 Cross-dataset Experiments

Within-dataset evaluations using cross-validation is the typical way to evaluate au-
tomatic tampering detection algorithms. However, as we are dealing with machine
learning, it does not account for the possibility of the algorithm actually learning
specific features of a particular dataset, and thus remaining useless for general ap-
plication. The most important set of algorithm evaluations for InVID automatic tam-
pering detection concerned cross-dataset evaluation, with the models being trained
on one dataset and tested on another.
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Table 1.2: Cross-dataset evaluations (Training set: Dev1)

Training Testing Filter-DCNN Accuracy MAP MP@20

Dev1

Dev2

cobalt-gnet 0.5818 0.7793 0.82
cobalt-resnet 0.6512 0.8380 0.90
q4-gnet 0.5232 0.8282 0.90
q4-resnet 0.5240 0.8266 0.93
rawKeyframes-gnet [40] 0.5868 0.8450 0.85
rawKeyframes-resnet [40] 0.4512 0.7864 0.75
highPass-gnet [20] 0.5636 0.8103 0.88
highPass-resnet [20] 0.5901 0.8026 0.84
frameDifference-gnet [60] 0.7074 0.8585 0.87
frameDifference-resnet [60] 0.6777 0.8240 0.81

FVC

cobalt-gnet 0.5147 0.5143 0.48
cobalt-resnet 0.4824 0.5220 0.50
q4-gnet 0.5824 0.6650 0.64
q4-resnet 0.6441 0.6790 0.69
rawKeyframes-gnet [40] 0.5265 0.5261 0.49
rawKeyframes-resnet [40] 0.4882 0.4873 0.44
highPass-gnet [20] 0.5441 0.5359 0.51
highPass-resnet [20] 0.4882 0.5092 0.49
frameDifference-gnet [60] 0.5559 0.5276 0.46
frameDifference-resnet [60] 0.5382 0.4949 0.51

The training-test sets were based on the three datasets we described above,
namely Dev1, Dev2, and FVC. Similar to subsection 1.5.2.1, we also combined
Dev1 and Dev2 to create an additional dataset, named Dev1+Dev2. Given that Dev1
and Dev2 are both taken from the NIST challenge, although different, we would ex-
pect that they would exhibit similar properties and thus should give relatively better
results than when testing on FVC. In contrast, evaluations on the FVC correspond
to the most realistic and challenging scenario, that is training on benchmark, lab-
generated content, and testing on real-world content encountered on social media.
Given the small size and the extremely varied content of the FVC, we opted not to
use it for training, but only as a challenging test set.

The results are shown in Tables 1.2, 1.3, and 1.4. Using Dev1 to train and Dev2 to
test, and vice versa, yields comparable results to the within-dataset evaluations for
the same dataset, confirming our expectation that, due to the common source of the
two datasets, cross-dataset evaluation for these datasets would not be particularly
challenging. Compared to other approaches, it seems that our proposed approaches
do not yield superior results in those cases. Actually, the frameDifference feature
seems to outperform the others in those cases.

The situation changes in the realistic case where we are evaluating on the Fake
Video Corpus. In that case, the performance drops significantly. In fact, most al-
gorithms drop to an Accuracy of almost 0.5. One major exception, and the most
notable finding in our investigation, is the performance of the Q4 filter when used to
train a GoogLeNet model. In this case, the performance is significantly higher than
in any other case, and remains promising with respect to the potential of real-world
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Table 1.3: Cross-dataset evaluations (Training set: Dev2)

Training Testing Filter-DCNN Accuracy MAP MP@20

Dev2

Dev1

cobalt-gnet 0.5433 0.5504 0.55
cobalt-resnet 0.5633 0.6563 0.63
q4-gnet 0.6267 0.6972 0.71
q4-resnet 0.5933 0.6383 0.63
rawKeyframes-gnet 0.6467 0.6853 0.65
rawKeyframes-resnet 0.6200 0.6870 0.62
highPass-gnet [20] 0.5633 0.6479 0.66
highPass-resnet [20] 0.6433 0.6665 0.65
frameDifference-gnet [60] 0.6133 0.7346 0.70
frameDifference-resnet [60] 0.6133 0.7115 0.67

FVC

cobalt-gnet 0.5676 0.5351 0.58
cobalt-resnet 0.5059 0.4880 0.49
q4-gnet 0.6118 0.6645 0.70
q4-resnet 0.5000 0.4405 0.39
rawKeyframes-gnet [40] 0.5206 0.6170 0.66
rawKeyframes-resnet [40] 0.5971 0.6559 0.69
highPass-gnet [20] 0.4794 0.5223 0.47
highPass-resnet [20] 0.5235 0.5541 0.58
frameDifference-gnet [60] 0.4882 0.5830 0.64
frameDifference-resnet [60] 0.5029 0.5653 0.59

Table 1.4: Cross-dataset evaluations (Training set: Dev1+Dev2)

Training Testing Filter-DCNN Accuracy MAP MP@20

Dev1
+

Dev2
FVC

cobalt-gnet 0.5235 0.5178 0.54
cobalt-resnet 0.5029 0.4807 0.47
q4-gnet 0.6294 0.7017 0.72
q4-resnet 0.6000 0.6129 0.64
rawKeyframes-gnet 0.6029 0.5694 0.53
rawKeyframes-resnet 0.5441 0.5115 0.52
highPass-gnet 0.5147 0.5194 0.53
highPass-resnet 0.5294 0.6064 0.70
frameDifference-gnet 0.5176 0.5330 0.55
frameDifference-resnet 0.4824 0.5558 0.54

application. Being able to generalise into new data with unknown feature distribu-
tions is the most important feature in this respect, since it is very unlikely at this
stage that we will be able to create a large-scale training dataset to model any real
world case.

Trained on Dev1+Dev2, the Q4 filter combined with GoogLeNet yields a MAP
of 0.711. This is a promising result and significantly higher than all competing al-
ternatives. Still, however, it is not sufficient for direct real-world application, and
further refinement would be required to improve this.
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1.6 Conclusions and Future Work

We presented our efforts toward video forensics, and the development of the tamper-
ing detection and localization components of InVID. We explored the state of the
art in video forensics, identified the current prospects and limitations of the field,
and then proceeded to advance the technology and develop novel approaches.

We first developed a series of video forensics filters aimed to analyse videos from
various perspectives, and highlight potential inconsistencies in different spectrums
that may correspond to traces of tampering. These filters are aimed to be interpreted
by human investigators and are based on three different types of analysis, namely al-
gebraic processing of the video input, optical features, and temporal video patterns.

With respect to automatic video tampering detection, we developed an approach
based on combining the video forensics filters with deep learning models designed
for visual classification. The aim was to evaluate the extent to which we could au-
tomate the process of analyzing the filter outputs using deep learning algorithms.
We evaluated two of the filters developed in InVID, combined with two different
deep learning architectures. The conclusion was that, while alternative features per-
formed better in within-dataset evaluations, the InVID filters were more successful
in realistic cross-dataset evaluations, which are the most relevant in assessing the
potential for real-world application.

Still, more effort is required to reach the desired accuracy. One major issue is
the lack of accurate temporal annotations for the datasets. By assigning the “tam-
pered” label on all frames of tampered videos, we are ignoring the fact that tampered
videos may also contain frames without tampering, and as a result the labelling is
inaccurate. This may be resulting in noisy training, which may be a cause of reduced
performance. Furthermore, given the per-frame classification outputs, currently we
calculate the per-video score by comparing the average “tampered” score with the
average “untampered” score. This approach may not be optimal, and different ways
of aggregating per-frame to per-video scores.

Currently, given the evaluation results, we cannot claim that we are ready for
real-world application, nor that we have exhaustively evaluated the proposed au-
tomatic detection algorithm. In order to improve the performance of the algorithm
and run more extensive evaluations, we intend to improve the temporal annotations
of the provided datasets and continue collecting real-world cases to create a larger-
scale evaluation benchmark. Finally, given that the current aggregation scheme may
not be optimal, we will explore more alternatives in the hope of improving the algo-
rithm performance and should extend our investigations into more filters and CNN
models, in order to improve performance, including the possibility of using feature
fusion by combining the outputs of multiple filters in order to assess each video.
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