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Abstract

Video tampering methods have witnessed considerable progress in recent

years. This is partly due to the rapid development of advanced deep learning

methods, and also due to the large volume of video footage that is now in the

public domain. Historically, convincing video tampering has been too labour

intensive to achieve on a large scale. However, recent developments in deep

learning-based methods have made it possible not only to produce convincing

forged video but also to fully synthesize video content. Such advancements pro-

vide new means to improve visual content itself, but at the same time, they raise

new challenges for state-of-the-art tampering detection methods. Video tam-

pering detection has been an active field of research for some time, with periodic

reviews of the subject. However, little attention has been paid to video tam-

pering techniques themselves. This paper provides an objective and in-depth

examination of current techniques related to digital video manipulation. We

thoroughly examine their development, and show how current evaluation tech-

niques provide opportunities for the advancement of video tampering detection.

A critical and extensive review of photo-realistic video synthesis is provided with

emphasis on deep learning-based methods. Existing tampered video datasets

are also qualitatively reviewed and critically discussed. Finally, conclusions are

drawn upon an exhaustive and thorough review of tampering methods with
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discussions of future research directions aimed at improving detection methods.

Keywords: video tampering, video synthesis, deep learning, video forgery

1. Introduction

The synthesis of convincing fake video content has increased recently due

to the development of intelligent models [1, 2, 3]. Selective modification of

image content has been possible for some years, but the application of similar

techniques to video has been too labour intensive to see mass use. If each5

frame in a video is treated as an independent image, there are simply too many

images to process efficiently. This has changed with increased computing power

and the advent of deep neural networks. Deep learning techniques have seen

great success in many applications recently. Generative Adversarial Networks

(GANs) in particular have been used to alter source video: to re-enact human10

facial expressions [4], change the weather [5] and to apply face-swapping [6].

Human facial re-enactment is a relatively new but common area of research

where a simple, talking head is visually altered to mimic the facial expressions

of a second actor [4, 7, 8] or to match a different audio track [9, 10]. This may

have innocent applications such as re-dubbing a film in a different language or15

creating new movie scenes using old footage of an iconic actor, but it can also be

used to produce convincing fake content. In some circumstances, fake content

is convincing enough to reliably fool human eyes. The authors of [8] even found

that human viewers performed little better than random guessing when trying

to ascertain whether facial re-enactment footage was authentic or synthesised.20

A deep neural network, however, could distinguish between the authentic and

forged footage with ease.

Research into data-driven machine learning has also prompted the gathering

of large image and video datasets such as ImageNet [11], Youtube-8m [12] and

CelebA [13]. These datasets are a valuable resource for further research into25

convincing image and video forgery and in some cases, [8], a library of resources

available for use in tampered datasets. The influence of these datasets has
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led to an increase in the application of deep neural networks to tampering.

Spatially localised changes in video footage, such as face swapping, can change

the entire context of a news story or film and can have repercussions for the30

people portrayed. Already, videos which have been cleverly edited to change

the context of what was said by influential people have gone viral 1 . If that can

be done with unsophisticated editing techniques, it is worth considering what

more could be achieved with modern techniques.

There are already a number of recent surveys which review tampering de-35

tection methods [14, 15, 16, 17, 18]. Tampering detection methods are broadly

categorised as active or passive, with more focus on passive tampering detec-

tion methods. A review of passive tampering detection in video is provided in

[16, 18] and, more recently, [14]. Inter-frame tampering detection is covered in

[15]. Pandey et al [17] cover tampering detection through noise in images as40

well as video. There are, however, far fewer reviews on tampering itself. This

paper aims to help redress the balance. The work in [19] provides an overview of

personation, specifically how a person’s likeness in appearance and voice can be

forged in videos either physically or digitally. However it is important to objec-

tively catalogue current known techniques that can be used for video tampering45

in order that they can be identified and, ultimately, detected or countered. Many

detection techniques are explicitly tailored to specific tampering methods. For

example, the authors of [8] trained a deep neural network to detect their own

video content changes in order to assess the quality of their content-altering

techniques; [20, 21] focused on inter-frame tampering; [22] created tampered se-50

quences using established in-painting techniques [23, 24] to assess their detector.

All of these techniques worked well, but all of them required prior knowledge of

the type of tampering. As tampering methods multiply, it becomes important to

fully assess new detection methods, and to appreciate which types of tampering

1“Video of Barack Obama speech circulating on the Internet was edited to change

his meaning”: https://www.politifact.com/truth-o-meter/statements/2014/jun/23/chain-

email/video-barack-obama-speech-circulating-internet-was/ Accessed 2019-1-24
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techniques they can feasibly detect and which they are blind to. This review55

exposes new research directions by cataloguing known tampering algorithms to

aid development of automated, universal detection techniques.

Wang and Farid [25] noted that, at the time of their 2007 publication, there

were very few video tampering detection techniques. This is no longer the case,

however, many published techniques, specific to particular types of tampering60

or source authentication, were assessed on proprietary datasets which remain

unreleased [21, 26, 27, 28, 29]. In some cases, [30], datasets are detailed suffi-

ciently in the literature so that they can be replicated, provided the sequences

used for dataset synthesis are available. This serves to evidence the fragmen-

tation of the tampering detection field. In reality, a tampered video may be65

subject to a variety techniques, including combinations. For tampering detec-

tion to be effective, individual detectors must be analysed and matched with

an appropriate type of tampering. In order for that to happen, we must review

and differentiate types of tampering.

Here, we catalogue and analyse the current trends in digital video manip-70

ulation techniques from simple edits to fully synthetic video. This allows for

work towards a method of universal video tampering detection. We list avail-

able tampered datasets and identify their potential challenges. We thoroughly

examine problems in dataset gathering and dissemination, including challenges

created by compression.75

This review opens up a new field of research in the form of tampering classi-

fication. If video tampering is, by its nature, designed to be invisible to human

eyes, then tampering classification will necessarily be done by algorithms and

machines. As a first step in this process, we analyse the current classes of video

tampering. Future tampering detection methods may maximise their impact80

by identifying and targeting tampering classes instead of individual algorithms.

The purpose of this paper is to provide an in-depth analysis and review of

existing methods of digital video tampering, to understand the current state-

of-the-art, how it may progress in future and how this can be used to inform

future development of tampering detection techniques. Our contributions are85
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as follows:

• A thorough examination of how video tampering techniques have been

categorised in the past and how these have influenced development of

tampering detection.

• An in depth, original review of how video tampering has evolved in recent90

times with discussion of the latest deep learning techniques.

• A qualitative evaluation of existing tampered video datasets. This includes

critical analysis of large, tampered image datasets, which is used to assess

the challenges associated with creating and distributing video datasets

and propose effective methods for overcoming these.95

The paper is structured as follows: Section 2 critically analyses traditional

types of video tampering and how these have been augmented by the latest

developments to form a spectrum of video tampering from fully authentic video

through to fully synthesised video; Section 3 examines some state-of-the-art

tampering/anti-forensic detection methods and discusses how these reveal un-100

derlying information about datasets used for training; Section 4 examines exist-

ing tampered video datasets and highlights good lessons that can inform future

dataset compilation; Section 5 concludes the paper and gives new research di-

rections.

2. Overview105

In [14] video tampering was defined as “a process of malicious alteration

of video content, so as to conceal an object, an event or change the meaning

conveyed by the imagery in the video”. Similarly, [31] described image forgery

as “the digital manipulation of pictures with the aim of distorting some infor-

mation in these images”. In this paper, video tampering is regarded as any110

technique which is intended to produce manipulated, photo-realistic content us-

ing authentic sources. There is no defined limit as to when authentic video

becomes tampered video. Similarly, malicious intent is difficult to quantify,
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and so tampering detection and video authentication techniques must focus on

forensic analysis, providing objective localisation of inconsistencies within digi-115

tal footage that may imply content alteration.

It is important to note that this paper examines only digital video tampering:

video content can also be “staged” whereby the video file is an authentic record

of events, but the events themselves were contrived or unnatural during filming.

Detection of staged video involving natural ballistic trajectories is examined in120

[32], and [19] details how plausible audiovisual personation is achieved in front

of the camera. Digital video forgery can take a number of forms [14] and Figure

1 gives an overview of the classical interpretation.

Video Forgery

Inter Frame Intra Frame

Frame Insertion Frame Deletion Copymove SplicingFrame Shuffling Retouching

Figure 1: Traditional video forgery categories

In the past, video tampering methods have been simply classified as inter-

or intra- frame [14, 15] (Figure 1). The terms inter- and intra- frame primarily125

distinguish temporal tampering from spatial tampering. Inter-frame tampering

is performed on a sequence-level: the pixels of individual frames are unaltered,

but the sequence as a whole is changed. Intra-frame tampering is performed on

a pixel-level: some spatial regions are altered, but alterations temporally cor-

related to form a convincing forged region. The term “inter-video tampering”130

can also be used to describe the merging of content from two different videos

[33]. Traditionally, this has been a form of splicing, where chroma-keyed objects

taken from one sequence are inserted into another, as in [34]. Recent develop-
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ments, however, mean that convincing synthetic regions [4, 6, 35] or even whole

videos [2] can be synthesised automatically from authentic content. This devel-135

opment means that we must now consider different levels and categories of video

tampering. It is important to be aware of the different categories because video

tampering is designed to be invisible to human eyes, and detection techniques

often address only one type of tampering.

2.1. The spectrum of video content140

The current field of video tampering may be viewed as a spectrum, as in

Figure 2, where different types of video tampering are ordered according to

potential to deviate from authentic source. Whereas the traditional view in

Figure 1 provides only two categories of video tampering, the spectrum in Fig-

ure 2 demonstrates that there are now multiple ways to produce convincing,145

falsified content. This distinction is important because detection methods of-

ten address one particular type of video tampering such as object forgery or

inter-frame tampering. In [14] tampering detection methods are categorised as

recompression, inter-frame forgery or region tampering detection. With cur-

rent tampering techniques, the distinction is less clear cut. Moreover, multiple150

tampering techniques can be applied to the same sequence.

Figure 2: Video tampering spectrum

Figure 2 summarises the current categories of video tampering. Video edit-

ing compiles single camera shots into full films complete with scene cuts. Al-

though clever editing may change the context of a video, scene cuts are not
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usually deliberately concealed. Video clips of maliciously edited content exist155

in mainstream media and are surprisingly effective at disseminating misinfor-

mation through social media. Traditional inter-frame tampering, where edits

are concealed, may reorder events or even remove or insert events into the time-

line, but its content-altering effects are self-limiting. Retouching temporally

or spatially upscaled content, or applying global filters to improve perceptual160

quality may affect every pixel in a video sequence and can cosmetically alter con-

tent. Retouching can also be applied to specific regions. Intra-frame tampering

and other object forgeries such as inpainting can alter content and context, as

can motion transfer. Finally, fully synthetic video or synthetic regions can be

produced. Unlike historical animations, the synthetic content of today looks165

convincingly realistic. The following subsections 2.2 to 2.6 detail examples from

each of these types of video manipulation.

Table 1 shows how motion transfer and video synthesis techniques have be-

come common in recent years and demonstrates how methods of evaluation

remain relatively underdeveloped. Evaluation techniques are difficult to define170

since there is no pre-defined ground truth for tampered video data. Every new

method can be assessed qualitatively. Methods which seek to imitate authentic

video, such as frame interpolation, can use full reference quality metrics such

as SSIM and PSNR. As can be seen in Table 1, video manipulation methods

use user studies to evaluate their output or simply publish examples of their175

methods for future evaluation. However, even user studies can vary. Some ask

users to classify frames as tampered or authentic. Some request a user prefer-

ence between the published method and other, similar methods. In a related

field, image inpainting evaluation techniques are reviewed in [36] and these can

all be used to assess the spatial features of inpainted video or indeed, any form180

of tampering which affects individual frames. No-reference video quality assess-

ment is a large and open field and although we do not cover this here, we point

to this field to at least partially inform on tampered video evaluation.
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Table 1: Video Tampering and Evaluation Methods: Qual= qualitative analysis; PSNR=Peak

Signal to Noise Ratio; SSIM=Structural SIMilarity; UP=User preference to previous methods;

UR=User comparison with real video; Rel=Released Sequences

Reference Year Type of Tamper-

ing

Qual PSNR/

SSIM

UP UR Rel Other

ETS [24] 2004 inpainting X

Ha et al [37] 2004 frame interpola-

tion

X PSNR

Patwardhan et al

[23]

2007 inpainting via

temporal copy-

move

X

Wexler et al [38] 2007 inpainting, frame

interpolation

X X

Shih et al [39] 2011 object forgery X X

SULFA forged

[40]

2012 object forgery X X detection

SULFA supple-

mental [41]

2013 object forgery X X detection

Newson et al [42] 2014 inpainting X X

Ardizzone and

Mazzola [33]

2015 copy-move X X

Ebdelli et al [43] 2015 inpainting X PSNR X

Lotter et al [44] 2015 frame prediction X error

Dar and Bruck-

stein [45]

2015 frame interpola-

tion

X PSNR

Face2Face [7] 2016 motion transfer X X

Le et al [1] 2017 inpainting X X

Suwajanakorn et

al [4]

2017 motion transfer X

Liu et al [5] 2017 style transfer X X

Niklaus et al [46] 2017 frame interpola-

tion

X PSNR

MoCoGAN [47] 2017 motion transfer X X ACD

Walker et al [48] 2017 frame prediction X Inception

FaceForensics [8] 2018 motion transfer X X X detection

Recycle-GAN [3] 2018 video synthesis X X X

Wang et al [2] 2018 video synthesis

(sketch)

X X

Chan et al [35] 2018 motion transfer X SSIM LPIPS

Jiang et al [49] 2018 video synthesis

(blurred image)

X PSNR

Wang et al [50] 2018 video synthesis

(smile)

X X

Xiong et al [51] 2018 video synthesis

(time-lapse)

X X X

Babaeizadeh et

al [52]

2018 frame prediction X X

Zhao et al [53] 2018 frame prediction X PSNR X ACD

SCGAN [54] 2018 video synthesis

(human pose)

X X pose eval.

SDC-Net [55] 2018 frame prediction X X

Cai et al [56] 2018 frame predic-

tion/interpolation

X X Inception
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2.2. Editing and Inter-frame Tampering

Editing and inter-frame tampering both change the order of the frames in185

the video without changing the contents of each frame. In the case of editing,

the goal is to turn a series of single camera shots into a coherent story. Clever

edits can be used to turn innocent footage into propaganda,2 but scene cuts are

not hidden and such videos are not above suspicion. In inter-frame tampering,

the goal is to invisibly remove, re-order or alter events.190

Edits in inter-frame tampering are deliberately concealed so as to be invisible

to the human eye. Detection of visible scene cuts in video has been studied

extensively so that key frames can be identified for efficient compression and or

used to condense/index the sequence [57]. Invisible scene cuts are studied in

the context of inter-frame tampering detection [58, 59, 60].195

Such is the theoretical simplicity of generating an inter-frame tampered se-

quence, that many tampering detection methods, such as [20, 21, 61, 62] gen-

erate their own datasets from single-camera video sequences such as SULFA

[40] or Derf’s media collection [63] or even film their own sequences as in [29].

SULFA [40] replicates single camera sequences as obtained from CCTV footage,200

and, therefore may be representative of the most likely application of inter-

frame tampering: altering CCTV evidence. Derf’s media collection [63], on the

other hand, provides publically available uncompressed sequences and allows

researchers complete control over the forensic history of synthesised tampered

sequences [62].205

It remains unclear how widespread inter-frame tampering is in the wild be-

cause, if it is done correctly, it will be undetectable by human eyes and remain

above suspicion. Meanwhile, it is important that synthesised datasets are as high

quality as possible. In creation of inter-frame tampered datasets, [29, 30, 64]

2“Israeli army edits video of Palestinian medic its troops shot dead to

misleadingly show she was ’human shield’ for Hamas”, The Independent,

https://www.independent.co.uk/news/world/middle-east/gaza-protests-latest-idf-

condemned-edited-video-angel-of-mercy-medic-razan-al-najjar-a8389611.html
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simply removed pre-determined frame numbers from each sequence, and it is210

unclear if this caused visible effects. In [62] frame addition and removal was

limited to the beginning of each sequence, but again it is unclear if the addi-

tions were visible: simply reversing the sequence from the point of tampering

may effectively locally conceal the edit. Recent developments in video quality

assessment mean that temporal glitches in video can be objectively quantified215

[65] and also smoothed [66] to achieve temporal consistency. Future datasets for

inter-frame tampering can use this to improve such that inter-frame tampering

techniques can be deployed in the wild.

As noted in the review in [14], many inter-frame tampering detection meth-

ods suffer from limitations which are often related to consistencies within the220

dataset which may not translate to other video data. These consistencies are

often related to video compression. The authors of [67] note that some tamper-

ing detection techniques are tied into the fixed Group of Pictures (GOP) size,

commonly used in MPEG2 [68] to minimise error accumulation due to non-

integer frequency domain transforms. Later video compression standards, such225

as H.264/AVC [69], use integer-based transforms so error accumulation drift

between encoder and decoder is no longer an issue, and therefore key frames are

used only as access points into the stream or efficient compression of cut scenes.

Moreover, sequences compressed using [69] no longer exhibit visible evidence of

key frames.230

Although inter-frame tampering detection is widely studied in the literature,

effects similar to inter-frame tampering can be achieved using a spatio-temporal

copy-move. Rather than replacing complete frames in the sequence, only partial

frames containing motion or objects to be concealed are replaced. With a static

camera and consistent lighting, this is visually effective, and video edits prove235

near invisible to the naked eye. Indeed, some sequences which initially look

like inter-frame tampering [41] are actually spatio-temporal copy-moves, as can

be revealed by examining pixel-by-pixel difference between the authentic and

tampered sequences (see Figure 3d).
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2.3. Retouching and Resampling240

Retouching involves adjusting pixels within an image using transforms or

filters applied to the pixels themselves which may only have a low-level inter-

pretation of video content. As the name suggests, retouching is less invasive

to content than other types of forgery but may still change the context of a

video. Moreover, retouching can be used on tampered video specifically as an245

anti-forensic device.

A retouching function R can affect specific pixels according to a binary mask,

M:

Vretouched = R(M � Voriginal) + ((I −M)� Voriginal) (1)

Here, I represents a matrix of ones and all matrices have equal size. Re-

touching can also be applied globally as in:250

Vretouched = R(Voriginal) (2)

Colour correction methods such as those available in Adobe After Effects

may normalise lighting in a sequence of shots taken on different days under

different weather conditions to create a convincing narrative. Similarly, colour

grading can also be used to add effects or make video filmed during daylight

hours appear to have been filmed during twilight. A typical colour correc-255

tion model works by adjusting the histogram of colour over a specified region,

however the authors of [70] found that gamma correction (a form of colour cor-

rection) was particularly difficult to detect using a deep neural network. Where

median filtering and Gaussian blurring could be detected reliably with over 91%

accuracy, detection of gamma correction was only 57.6% .260

Compression is often a necessary part of video processing but it can also be

used as an anti-forensic method. Video compression standards such as [68, 69]

reduce video file size with no explicit understanding of video content. Compres-

sion has been found to reduce the efficacy of tampering detectors [8, 41, 64, 71]

and has also been shown to reduce the classification accuracy of convolutional265
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neural network (CNN) based classifiers [72]. The authors of [8] found that video

compression [69] reduced the accuracy of deep neural networks trained to de-

tect human facial re-enactment. Of seven different forgery detectors tested,

the Xception network [73] was the most robust against compression, achieving

87.81% accuracy, compared with 99.93% accuracy on uncompressed sequences.270

Other methods [74] performed less well for forgery detectors on the compressed

dataset with performance for some [75] dropping as low as 55.77%. This may

be attributed to the depth of the Xception network. The authors of [71] also

account for compression in their SYSU-OBJFORG dataset. In benchmarking it

using seven common steganographic features, they, too, found a drop in accu-275

racy on the reduced bitrate video. While their ensemble-based detector achieved

precisions in the range 78.9-93.15%, this reduced to 61.85-79.34% when bitrate

of the video data was halved. Halving height and width of the video sequences

also reduced precision to the range 73.02-90.28%, which was not as significant

as bitrate reduction. In detection of frame deletion, it was found in [64] that280

an SVM conditioned on uncompressed data to detect dropped frames did not

perform well on compressed data taken from YouTube, with accuracy dropping

below 37%. It is clear from this that standard video compression can reduce

some of the features associated with tampering. This is most likely down to the

way video compression quantises data in the frequency domain.285

Compression artifact removal is another example of retouching and methods

such as [76, 77, 78] have been applied to JPEG images. The authors of [79] used

a deep residual network to reduce artifacts in a BPG [80] compressed frame.

More recently compression artifacts have been removed in the video domain

[81], where videos compressed using HEVC and H.264/AVC were retouched to290

increase Peak Signal to Noise Ratio (PSNR). PSNR is defined as:

PSNR = 20log10(
255√
MSE

) (3)

where MSE is Mean Squared Error, and it is a very common full reference

quality metric where processed pixels are compared directly to unprocessed

13
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pixels. It is useful for measuring pixel fidelity and is often used alongside the

full reference quality metric Structural Similarity (SSIM) [82], but may not295

directly reflect perceptual quality. Although [81] achieved overall improvement

in PSNR, it was unclear if this resulted in a gain in perceptual quality at specific

bit rates. Given that some tampering detection methods, such as [83], actively

utilise compression structures, methods which alter the underlying patterns of

compression in video frames could be used as anti-forensics in the future.300

Artificially upscaling video frame size [84], frame rate [85, 86, 87] or bitrate

can be a form of video tampering. High quality video content is more desirable to

consumers, and larger file sizes for the same film/footage are often indicative of

higher quality, with bitrate often taking the place of quality in common parlance.

Compression encoders utilise a specified bitrate, even if this means compressing305

existing compression artifacts. Bitrate upscaling can be done innocently as

researchers seek to provide high quality, “uncompressed” datasets and either

overlook or deliberately replicate compression artifacts in the pixels of mined

data.

Artificially increasing the spatial dimensions of video has been commonly310

done historically as Standard Definition (SD) content is displayed on High Defi-

nition (HD) screens. More recently, super-resolution has evolved from an image

enhancement technique to use within videos [84, 88, 89], and the metrics com-

monly used for evaluation are, again, PSNR and SSIM: full reference quality

metrics. It is important for spatially upscaled video to demonstrate temporal315

coherence. The authors of [84, 88], also assessed the temporal coherence of their

super-resolution sequences using a technique called “temporal profile”. This is

where single rows of pixels are viewed along with their temporal neighbours

from different frames, and temporal inconsistencies or video “flicker” shows up

as hard edges in the resultant image. The work in [65] is also a method of320

assessing temporal consistency.

Video deblurring [90] is another example of retouching and a dataset exists

to facilitate the development of this [91]. The dataset was filmed using a Go-

Pro camera at 240fps and then downsampled and blurred so that a non-blurred

14
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ground truth can be supplied for each blurred frame, thus enabling deblurrers325

to be assessed using full reference quality measures such as PSNR. Super slow

motion has recently become a strong field of research with many new techniques

for temporally upsampling video [46, 85, 92] to create a slow motion effect in

the absence of a high speed camera. Previously, upsampled video would simply

involve frame repetition or averaging. The field of motion compensated inter-330

polation improved upon this [37, 45, 46] so that interpolated frames were less

obvious. The work in [37] is an early example of motion compensated inter-

polation, and the authors used block-based motion estimation similar to that

used in video compression [68] to inform interpolation and create sophisticated

intermediate frames. The frame rate upconversion algorithm was objectively335

assessed by downscaling some publicly available uncompressed sequences and

then comparing the original sequence with the computed upscaled version using

PSNR. In [45], the authors showed how their work in frame rate upscaling could

be used to improve low bitrate video compression. In [46], a CNN was used to

interpolate between frames. The authors obtained their training data from high340

quality YouTube channels and downsampled from 1080p to 720p in order to

reduce the effects of compression. A user study confirmed that their interpo-

lated frames were better than previous state-of-the-art. Objective assessment

of results used sampled alternate frames from a popular YouTube video and

used PSNR to compare interpolated frames with actual frames. In [85], multi-345

ple frames were synthesised between two authentic frames using a CNN trained

on high frame-rate (720p, 240fps) video from YouTube and a high frame-rate

dataset [93]. The synthesised frames were assessed using high frame-rate video

and it was found that PSNR between interpolated frames and ground truth was

improved upon previous state-of-the-art. As noted in [94], inpainting or video350

completion (Section 2.4) can be used to resample a video, and entire frames

inpainted.

Retouching might be one step of many in tampering, and although it does not

necessarily alter context, it can be used to make tampering detection much more

difficult. Countermeasures for anti-forensics are well studied in the literature355
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(a) Auth. 34 (b) Auth. 236 (c) Tamp. 236 (d) Difference

Figure 3: An intra-frame tampering example from [41]. 3a and 3b show authentic content. 3c

shows the spatio-temporal copy-move and 3d shows the difference between 3b and 3c

[70, 74, 95], and datasets can be generated easily. In [74], a CNN was used

to classify an image in terms of its anti-forensic processing. The labels used

were: original (no processing), Gaussian blurring, additive white noise, median

filtering and resampling. The CNN accurately detected the presence of each

process over with over 98% accuracy using only the green colour channel. A new360

type of convolutional layer was designed to prevent the network from learning

typical image features. The authors of [95] showed how their median filter

detector could be used to localise median filtering within a spliced image and

hence localise image tampering. Although retouching does not always correlate

with tampering, localised retouching can be a strong indicator of splicing or365

other object forgery.

2.4. Intra-frame Tampering

Intra-frame tampering is where spatial content of individual frames is changed,

that is, individual objects are added or concealed/removed. Intra-frame tam-

pering is also known as “region tampering” [18] and applies equally to video370

and still images, although the video application is more complex. Care must be

taken to ensure that spatial tampering across individual frames is coherent and

does not cause visual jarring in the video. Intra-frame tampering methods in

images were classified as spatio-temporal copy-move, splicing and retouching in

[96], but here we discuss retouching separately (Section 2.3).375
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A spatio-temporal copy move can be defined by:

V Lj
t = ((I −M)� V Lj

o ) + (M � V Lk
o ) (4)

where I is the matrix of ones, M is a binary mask to localise tampering,

V Lj
o is an authentic sequence of L frames starting on frame j, V Lk

o is the same

sequence but starting on frame k where j 6= k. The frames/mask can be re-

aligned or cropped so that any object or region of pixels from any spatial or

temporal location can be copied to any location. V Lj
t is a tampered video

sequence:

V Lj
t = [vj , ..., vj+L−1] (5)

In spatio-temporal copy-move attacks, all the data used in the video forgery

Vt comes from within the same video sequence Vo. For example, complete

objects from frame k in the sequence are inserted into frame j using mask

M . Figure 3 shows an example. This is similar to image-based copy-move380

where the pixels involved in the tampered region come from within the image

itself. Although this reduces the range of potential content, it helps to minimise

differences between legitimate and tampered regions. There is less need to

alter the colour histogram or adjust the frame rate to make tampered content

consistent with authentic content if both share the same source. Using a copy-385

move attack, objects can be added to a sequence by adding foreground objects,

or concealed/removed from a sequence by duplicating background regions from

within the same frame or from within a different frame in the same sequence.

Some versions of copy-move attacks simply duplicate a still background re-

gion, [40], and these can be detected with relative ease by high coherence or390

abnormally low motion within the tampered region, [41]. Other methods [41]

duplicate an entire spatio-temporal region, and this is more difficult to detect.

Although duplicates can be detected by matching copied region to original data,

this becomes more difficult in the presence of compression [41]. A copy-move

attack can be detected in images by identifying and locating duplicated regions,395

and this has been done using search based on brute-force pixel matching, region
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Figure 4: Forging a video (best viewed in colour), Red borders/dots indicate key frames in

the sequence. Blue borders (no dots) indicate predicted frames. The hybrid frame is shaded

red where the pixels have come from a key frame, and unshaded where the donor frame was

a predicted frame

matching or key point matching [96, 97]. While this type of copy-move detec-

tion is feasible in images, video adds another dimension and searches become an

order of magnitude more complex. Previous video inpainting attempts such as

Temporal Copy-Paste (TCP), where identical pixels are used frame after frame400

to conceal an object within a video [40], or Exemplar-based Texture Sythesis

(ETS) [24] were detected by [22] where detection was based on correlation be-

tween adjacent frames which was either too strong or not strong enough to be

authentic video.

Splicing is an extension of spatio-temporal copy-move. In a splicing attack,405

two sets of pixels from different sources are combined as in Figure 4. The sources

can be videos or even still images (as shown in Figure 5). Equation 6 defines

splicing:

V Lj
t = ((I −M)� V Lj

s1 ) + P (M � V Lk
s2 ) (6)

Where video sequences are defined as in Equations 4 and 5, s1 means se-

quence 1, s2 means sequence 2 and P is an optional processing step which can410

be applied to aid blending between different source videos. The frames/masks

of the two sources can be re-aligned or cropped so that any object or region of

pixels from any location from source 2 can be pasted into any location in source

1.

Splicing has large potential for context-changing edits because two entirely415
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(a) authentic (b) tampered

(c) authentic (d) tampered (e) mask

Figure 5: An example of spliced content. 5a and 5b are from VTD [98] and the spliced content

(a picture on the wall) comes from a static image. 5c, 5d and 5e come from D’Avino et al [34]

where the spliced content comes from a chroma-keyed video

different subjects can be spliced together. Any source sequences involved can be

retouched (see Section 2.3) using colour correction or temporal synchronisation

before or after a video splice in order to visually camouflage spliced content,

or even to launder the splicing operation to make it undetectable to existing

forensic tools.420

Copy-move and splicing are also known as “object forgery” [71] because they

often involve removing or adding complete objects to videos. Introduction of an

object to a video can be done using chroma-keying techniques, as in the field

of video special effects [99]. Chroma-keying requires filming against a single

colour background under specific lighting conditions to facilitate segmentation425

of foreground objects. An example of object forgery using chroma-keyed sources

is shown in Figure 5d. Other segmentation methods such as [100, 101] may be

used in place of chroma-keying so that foreground objects can come from any

sequence without the need for special green-screen filming. The authors of

[100] applied segmentation to the optical flow of videos in order to distinguish430
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foreground and background objects in sequences with moving cameras. In [101],

segmentation was achieved using supervoxels, using spatiotemporal uniformity

in pixels to group them into voxels and supervoxels to represent different objects

in the sequence. Masks produced by [100, 101] could be used in place of specially

filmed green-screen sequences, thus rendering any video susceptible to use in435

object forgery.

Inpainting or video completion [23, 38, 42, 43, 94] allows removal of objects

from an image by interpolating remaining pixels to conceal a “hole” left by a

removed object or corrupt section of video. It is useful for error concealment

when streaming video over an unreliable channel and can be used to restore440

old film, but it can also be used to deliberately remove objects or even frames

from a sequence. Video in-painting techniques were surveyed recently in [94],

where it was noted that many methods of video in-painting rely on patch com-

pletion where the missing spatio-temporal volume is filled using small patches

from within the same video sequence. This is evident in early video in-painting445

methods such as [23, 38]. In [23], static background and dynamic foreground

were assumed, thus highlighting one of the challenges associated with video com-

pletion: motion. This was handled by first registering or aligning the frames of

the sequence. Background mosaics of the video sequence were then constructed

by removing all non-static objects, and foreground mosaics contained all the450

moving objects. Missing data was then inpainted by finding close matches in

the mosaics and interpolation with texture synthesis between the matched seg-

ments. The authors of [38] used space-time volumes of 5x5x5 pixels taken from

other areas of video sequences to fill in the space left behind be a removed ob-

ject. Motion was accounted for by representing each pixel not only in terms of455

its RGB components but also two components based on the derivation along the

x-, y- and t- dimensions. This method also allowed temporal and spatial upsiz-

ing as spatio-temporal holes had varying dimensions in the spatial and temporal

axes. More recently, the work in [42] realigned source patches to create closer

matches and less warping of synthesised video content. Initial values for missing460

pixel data were also explicitly defined in [42].
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The assessment of inpainting quality in the image domain was critically

reviewed in [36], and user survey to assess the visibility of inpainted regions re-

mains the gold standard. The authors also noted that Video Inpainting Quality

Assessment remains an important, open area of research. Indeed, in the absence465

of an accepted video completion quality assessment, authors [1, 42, 43] simply

publish videos of their inpainting techniques applied to standard sequences on-

line and [94] notes this as a trend. The authors of [43] also provided their original

sequences along with defined masks so that future inpainting techniques can be

applied to precisely the same data for comparison. The existence of these in-470

painted sequences provides a good source of data for video tampering detection

research.

Inpainting can be used in conjuction with spatio-temporal copy move to

create complex forgeries. An early example of this can be found in [39] where

the authors changed the winner of a 100m race. The authors considered the475

video as a series of layers. They applied in-painting using unoccluded areas

of background and interpolated/sampled the motion of forged runners to make

them move slower/faster relative to other objects in the video. While individual

frames taken from the forged sequences looked visually convincing, full video

sequences are not currently available for full analysis. Indeed, assessment of480

tampered video remains an open problem, one which the authors of [39] suggest

is best tackled by forgery detection methods. Although the subject matter of

this video was somewhat ambitious for its time, and the authors explicitly target

the field of video special effects, it gives a good idea of how tampering can be

used to court controversy.485

2.5. Style and Motion Transfer

Style transfer is a new method of image and video manipulation which has

been facilitated by the advent of Generative Adversarial Nets (GANs), which

were first established in [102] and extended to conditional GANs in [103]. Style

transfer can completely change the context of an image or the subject of a490

video. It is strongly related to motion transfer because the resultant video is
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a combination of motion from one source video and content or subjects from

another. Combining the two can be viewed as a style transfer when the style

of the content source is mapped to the motion source or it can be considered

motion transfer when motion is mapped to the content source.495

Examples of style transfer in the image domain include [104] where features

from one object are mapped to a similar object: a scene can be changed from

a summer scene to a winter scene; a horse can be exchanged for a zebra [105];

Google Street View House Numbers can be translated into MNIST-style digits

[5] and evaluated using accuracy on a CNN trained to classify MNIST. Examples500

in the video domain include motion transfer [4, 7] as well as style transfer.

An example of a conditional GAN used to perform style transfer can be

found in the seminal Pix2Pix [104], which performs image to image translation.

A GAN consists of a generator network and a discriminator network. In Pix2Pix,

the generator network maps an observed image and a random noise vector to505

a generated image. The discriminator network then uses both the mapped

image and the observed image to classify the mapped image as an example from

the authentic dataset or one from the generator. Authentic examples given to

the discriminator dictate the “style”. This architecture is distinct from a non-

conditional GAN where the discriminator network sees only the mapped image.510

The authors of Pix2Pix noted that they could achieve very good results based

on small datasets of only 400 authentic images and so the GAN can be trained

for a multitude of applications. For example, the input image can be a sketch

or a semantic segmentation mask and the mapped image can be photorealistic,

or vice versa; daytime scenes can be mapped to night; the mapping process can515

even perform inpainting or background removal. The versatility of [104] has

also spawned further applications in the video domain including [3, 47].

Motion transfer is similar to style transfer where the motion of one object

is passed on to another object. Early applications were mostly specific to hu-

man facial re-enactment such as lip synchronisations and expression translation520

between talking heads [4, 7]. Thies et al [7] presented the first real-time facial

re-enactment system that used only RGB as input. The method used authentic
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frames from a target video and transformed them to match the facial expres-

sions and mouth motions from a source video. In [4], the authors added video

re-timing for realistic head motion to fit the context of the spoken word and525

used a recurrent neural network (RNN) trained on many hours of footage of

the particular subject to transform an audio track into mouth shapes. While

[4] was not real time, and required many hours of video footage to train the

RNN, it was capable of producing a representative video from audio and stock

footage, whereas [7] required video for both source and target. More recently,530

motion transfer has been achieved using models based on style transfer.

MoCoGAN [47], used GANs in a similar way to Pix2Pix [104]. Content and

motion were treated independently in MoCoGAN and video sequences expressed

as:

Zi = Zc × Zm (7)

Every frame in Zi has a content vector, Zc, and a motion vector, Zm, associ-535

ated with it. In order to perform motion transfer, the content of one sequence

was substituted with the content of another. The architecture consisted of two

distinct discriminator networks: one to classify real and generated images (or

frames), and one to distinguish real and generated video. The video discrim-

inator was responsible for smooth video generation. Similarly, there were two540

connected generator networks: one to generate motion, the output of which was

used to condition the content generator which produced video frames. The mo-

tion generator network was a recurrent neural network (RNN) which modelled

motion through time. Motion content could also be extracted from a different

sequence and hence motion can be transferred between two similar videos. The545

authors of [3] also applied motion transfer to videos, successfully replicating

lip motions. Because [3, 47] are both based on style transfer, they can also be

used to create photo-realistic synthetic video from semantic segmentation masks

(Section 2.6).

The assessment of GAN-produced images and videos remains an open prob-550
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lem. In [5, 104], translated images were objectively assessed using the accuracy

of CNNs pre-trained on authentic images in the output-style classifying the

translated images. It was found that the CNNs classified the translated image

of [5] with more than 90% accuracy. Image translation methods from [5] were

also applied to some street driving video sequences, and qualitative analysis555

of the results showed a convincing, low frame rate video where the weather

had been translated from sunny to snowy or the lighting mapped from day

to night. The authors of [106] applied neural style transfer to photographed

objects spliced into images of paintings, thus reducing the visibility of the tam-

pered object. A user study found that their edited image set achieved similar560

user scores to an unedited image set meaning people could not reliably localise

such processed image edits. Although [5, 104, 105, 106] show a method to alter

image content, they do not assess whether there is a counter method which can

detect these alterations. Since all of these methods employ the use of GANs,

it is implicit that there already exists a network which has been trained to dis-565

criminate between authentic examples of the style and synthesised content, but

due to GAN convergence, this network may not be optimal for detection. In the

video domain, the authors of [4, 7] have released examples of their work to the

public. In [9], the authors used a user study to compare their audio-to-video

speech synthesiser to both a previous model and a motion capture solution. The570

study showed that their work advanced the state-of-the-art as their examples

were preferrable to human eyes when compared to previous speech synthesis,

but not when compared to motion capture generated video. The authors of [8]

performed a user study on their tampered dataset and found that, when asked to

differentiate between tampered and authentic videos, humans achieved no bet-575

ter than random guessing. Generic motion re-enactment and video generation

has also been studied in [47] however state-of-the-art is not yet of a standard

where such tampered videos are high quality content.

Image to image style translation can be applied to video frames to universally

change the overall context of the video. Complimentary work can be found in580

[66] where the authors examined the removal of flicker from a sequence of frames.
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They specifically aimed to allow the use of image style transfer on individual

frames to produce a temporally coherent video sequence, independent of the

style transfer method. In [35] the authors used style translation on videos to

synthesise video content of people performing dance moves they had never done.585

Pose estimation was used as an intermediate step. A conditional GAN was

trained to map a stick-man pose estimation to a photo-realistic video frame

using the previous frame to condition the GAN. They then applied a spatio-

temporal smoothing to generate convincing videos that showed a target actor

dancing in a manner defined by a source actor from a different video. The video590

sequences were assessed by extracting a pose from the mapped sequence and

comparing it to the pose used to generate the sequence, and manual qualitative

analysis of temporal qualities including some publicly released sequences. The

authors conceded that there were still a number of challenges to overcome in

this field, such as loose clothing and cluttered background, but it is easy to see595

that motion transfer can already be convincingly applied to human faces and

bodies.

2.6. Photo-realistic Synthetic Video

Although purely synthetic video in the form of animation has been around for

a long time, more recently synthetic video has been generated which is so photo-600

realistic that it could be mistaken for authentic, filmed content. In this section,

we examine the most recent techniques in photo-realistic video synthesis and

discuss their evaluation. Although video synthesis is not explicitly tampering an

existing video, full convincing, photo-realistic video synthesis has the potential

to be just as damaging as motion transfer or inpainting. It is important to605

examine it with a view to detecting it as a future research direction. Current

trends in top international conferences on computer vision show that video frame

prediction is a strong trend.

A short video sequence was extrapolated from the motion blur of a single

image in [49]. The authors noted that the main challenge of this is temporal610

ordering. While the central frame of the synthesised sequence corresponds to
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the de-blurred image, the motion of individual objects in frames before and

after is ambiguous. The authors proposed a pair-wise ordering invariant loss to

aid convergence of their CNN, which was based on pairs of frames at an equal

temporal distance from the middle frame. Although the de-blurring aspect of the615

technique improved on the previous method [91] for moderate blur, evaluation

of the short synthetic sequences proved difficult. The ambiguity in temporal

ordering could be resolved when the process is constrained to temporal super-

resolution. Video generation from a single image was also covered in [50] where

Wang et al detailed a method to produce a short photo-realistic video of a620

smile from a single aligned face image. The method use a series of conditional

Long Short Term Memories (LSTMs) to produce a sequence of facial landmarks

moving from a neutral expression to a smile. A network similar to [104] was then

used to translate the facial landmarks into a realistic video. A comparative user

study found that the resulting sequences looked more realistic than a previous625

method, but the authors noted that it was difficult to evaluate such a method

as there were no directly comparable existing methods. Both [49] and [50]

extrapolated short synthetic video sequences based on a single image, and both

noted challenges in evaluation. Xiong et al [51] produced short, realistic time-

lapse videos of skyscapes, up to 32 frames from a single image using a two-630

stage GAN architecture. The first stage produced a sequence of frames and the

second stage refined it to produce a coherent video. They also gathered a large

dataset of real time-lapse videos from YouTube for the purposes of training.

Again, there was no previous work available for direct comparison, but the

authors were able to repurpose other network architectures to synthesise time-635

lapse videos. Evaluation was by user study where users were asked to identify the

more realistic of two sequences. Although the proposed method outperformed

all other synthetic videos, when comparing synthetic video with real video, only

16% of synthetic video tests were preferred.

In [44], a CNN, LSTM and deconvolutional neural net were used together640

to predict the next frame in a video sequence. The authors noted that natural

images were much more challenging than simple moving circle animations, and
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that, in predicting the next frame in a face rotation sequence, the network al-

tered sufficient features so as to change the perceived identity of the face. The

work in [52] followed this, using a variational autoencoder to predict the next 10645

frames from a 10 frame sequence. The authors tested their sequences on [107]

among others where they compared their predicted frames with ground truth

frames using PSNR and SSIM. They conceded that assessing the quality of the

predicted frames was difficult, and that the prediction yielding the worst PSNR

was sometimes qualitatively the best. They also publicly released many exam-650

ples of predicted sequences. In [108], the authors used a two stream structure

and RNN to perform frame prediction. The authors of [56] viewed frame pre-

diction as analogous to frame interpolation and fully synthetic video generation.

They successfully produced short video sequences which interpolated between

two frames as well as predicting short sequences given only the first frame of655

each sequence. Evaluation used PSNR and SSIM for interpolated sequences and

Inception scores for generated sequences with no ground truth. Frame predic-

tion was also covered in [53, 55, 109], and evaluation also involved full reference

quality metrics. Although methods were evaluated using full reference quality

metrics, there is no guarantee that frame prediction as opposed to interpolation660

will predict a frame that matches the original sequence, but it may yet produce

a valid, realistic frame.

Some methods create synthetic video data specifically for machine learning

datasets. In [110], a dataset of synthetic videos was created from motion capture

data. The motion capture data was used to generate 3D models of human665

bodies which were combined with a texture map to add clothes and skin, and

a static background image. The synthetic videos, rendered using Blender, were

found to improve body part and foreground background segmentation. The

Human3.6M dataset [107], includes some mixed reality videos which consist of

a moving synthetic human model combined with a real video sequence. The670

real backgrounds included annotated occluding items so that synthetic human

models could realistically interact with authentically filmed objects. Neither

[110] nor [107] are specifically designed to fool human eyes, but instead intended
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to aid development of human pose estimation and body segmentation. Rather

than annotate thousands of frames of authentic video, the synthetic human675

model is already annotated. This is an example of a non-malicious application

of synthetic video, although the detection of the synthetic parts is often trivial

to human eyes.

Wang et al [2] have already synthesised coherent, photo-realistic video se-

quences of up to 30 seconds from semantic segmentation mask or pose model680

sequences. A GAN was used, and a discriminator part of the GAN used to clas-

sify the content as an authentic video or not, similar to MoCoGAN [47]. Using

a discriminator in this way ensured temporally coherent video. The authors

conceded that significant changes in an object’s appearance is still a substantial

challenge and that their model was also prone to colour drift over time, however685

a user study showed that [2] produced video that was preferable to human eyes

than that produced by MoCoGAN [47]. SCGAN [54] also performed a user

study which put their synthetic video content at a higher level of realism than

MoCoGAN. Recycle-GAN [3] was also used to generate photo-realistic video

from semantic segmentation mask sequences and assessed their method’s accu-690

racy by asking users to classify videos as synthetic or real as well as comparison

with existing state-of-the-art. Users were fooled into thinking synthetic video

was real 28.3% of the time. Quantitative results were also obtained using the

Viper dataset [111] which supplies pixel-level segmentation masks for computer

game scenes with a high level of realism.695

Methods of evaluation for synthetic video remains an open field. It can be

seen in Table 1 that the main methods include full reference quality metrics

PSNR and SSIM as well as a variety of others such as Average Content Dis-

tance (ACD) [47, 53], Learned Perceptual Image Patch Similarity (LPIPS) [35]

and tampering detection methods. Many of the techniques for synthetic video700

generation also utilise user surveys to assess the quality of synthetic video, and

in many cases, evaluation is relative to previous related work (Table 1). It can

be inferred from this that although current methods do not yet reliably gener-

ate video that is photo-realisitic enough to fool human eyes, improvements are
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continuous and incremental. It is simply a matter of time before photo-realistic705

synthetic video becomes mainstream. As [8] showed, some techniques are al-

ready indistinguishable from authentic video for human viewers. This raises the

problem that, in future, not only will humans be unable to detect tampered or

even photo-realistic synthetic video, they will also be blind to whatever tam-

pering technique has been applied. When this is the case, universal tampering710

detection systems will be required to fill the gap in human perception, and these

must be developed urgently if detection systems are to keep pace with tampering

methods. For this, datasets are required.

3. Image Tampering Detection

To advance the field of universal video tampering detection, it is vital to715

gather datasets of independent examples of video tampering techniques. In

this section, we look at the lessons relating to tampered image datasets that

can be learned from the application of deep neural networks to the problem of

tampering detection.

As machine learning techniques come to the fore in tampering detection,720

the collation of large datasets to train and test networks becomes desirable.

However it is important to realise that any consistencies within labelled classes

may be exploited as features by deep learning techniques, including any features

arising during dataset generation that are unrelated to actual tampering. In

2011 Torralba and Efros [112] discussed how bias is ubiquitous within computer725

vision datasets. Images from the same dataset exhibit characteristics specific to

that dataset, so much so that a basic support vector machine (SVM) classifier

trained to label a given image with its associated dataset achieved reasonable

accuracy of 39% over 12 datasets. Each dataset has its own inherent distribution

which may be irrelevant to the real world situation, and may be overlooked by730

human eyes. This problem is subtly highlighted by the advance of deep learning,

particularly in the field of image forensics.

A good example of unintentional features comes in the CASIA2 TIDE dataset
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[113]. This large dataset consists of 7491 authentic and 5123 tampered images

which use splicing or copy-move techniques. The size of this dataset makes it an735

attractive option for deep learning and over 97% classification accuracy has been

achieved by [114]. However, as noted in [115], compression applied to tampered

images of the dataset differs from that applied to authentic images. Put simply,

during dataset generation, tampered images were compressed twice, authentic

images were compressed only once. There were also patterns in the colour space740

resolutions with tampered images more likely to have lower colour channel res-

olution. This means that classifying a CASIA2 image as tampered or authentic

can be accurately achieved using features of compression, recompression and

colour resolution. The recompression step may have arisen from the tools used

to tamper the images, but it is independent of the tampering task itself. There745

is no reason that an authentic image cannot be innocently recompressed.

In [116], dataset weaknesses such as those in CASIA-2 were used as an expla-

nation for the sharp drop off in CNN classification accuracy whenever the test

images were compressed. Classification accuracy dropped from 97.44% on un-

processed CASIA-2 image patches to 68.11% when the images were compressed750

with JPEG quality factor 90, a fairly light compression. The authors proposed

a means to circumvent this dataset flaw by extracting authentic patches from

tampered images, however they did not report whether this reduced the drop-

off in accuracy when the source dataset was compressed, nor did they report

on a CNN trained using compressed image patches. Maliciously tampered im-755

ages in the wild are not necessarily recompressed, and authentic images are not

necessarily compressed only once. Tampered and authentic patches may be ex-

tracted from only the tampered data but only if reliable localisation masks exist

to differentiate tampered and authentic pixels.

High levels of classification accuracy were also achieved by a deep neural net-760

work on the large rebroadcast dataset presented in [117]. This dataset comprises

over 29000 images, half authentic and half rebroadcast in some way. Rebroad-

cast techniques included printing out and rescanning/photographing the images,

screen grabs and screen photography. While some traditional techniques [118]
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demonstrated poor accuracy on this new dataset, a CNN trained on 60% of the765

images and tested on the remainder achieved over 97% accuracy. In this case,

recompression is very likely a necessary feature of retransmission, so features

that emerged during CNN training are a true reflection of the real process of re-

transmission. One way to objectively assess this is to check the performance on

a rebroadcast test set gathered independently. If a deep neural network exploits770

unintentional weaknesses inherent in a particular dataset, then the learning will

not transfer well to other, similar datasets unless they exhibit the same features.

Table 2: CNNs for image anti-forensics detection

Reference Detection of: Dataset Accuracy

Bayar and Stamm [74] Gaussian blurring, additive white noise, me-

dian filter, resampling

proprietary 99%

Choi et al [70] all combinations of Gaussian blurring, Median

filtering

[119], [120] >91%

Choi et al [70] Gamma correction [119], [120] 57.6%

Amerini et al [121] double compression level [122] 83.5% - 99.9%

Boroumand and Fridrich

[123]

low-pass-, high-pass-, denoising- filters and

tonal sharpening

[119] >95%

Agarwal [117] rebroadcast public [117] >97%

Table 2 shows how CNNs excel in detection of image anti-forensics. A de-

tection or classification accuracy of over 95% is a common occurrance. Anti-

forensics are methods designed to “launder” tampering and thus fool tampering775

detectors. Laundering techniques include general filtering methods such as com-

pression, median filter and Gaussian blur. This field is emerging rapidly because

large datasets can be synthesised with relative ease, and this makes it particu-

larly appropriate for machine learning. Datasets such as BOSSBase [119], UCID

[122] and Dresden image database [120] provide a large variety of unprocessed780

images to which known anti-forensic techniques can be universally applied and

subsequently detected.

In [123], a CNN was trained to identify laundering techniques applied to

an image. The laundering techniques, applied singly, were: low-pass-, high-

pass- and denoising- filters and tonal sharpening. The authors first compressed785

the images of the dataset, then applied a single laundering technique and then
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rescaled, cropped and recompressed the resulting images. Compression was

JPEG with a Quality Factor (QF) ranging from 75-95. They achieved over

95% accuracy in identification of the laundering technique used regardless of

the image compression level, provided the CNN was trained on images with a790

QF similar to that of the test dataset. The idea that a training dataset must

be well matched to the test data in terms of compression is also supported in

[72]. All of these high accuracies show that machines are adept at detecting

patterns in visual data which are invisible to humans. This makes designing a

dataset which is representative of the problem of video tampering but immune795

to unintentional side effects especially important.

4. Tampered Video Datasets

With so many different methods of tampering already available, and the field

progressing at an unprecedented rate, it is important for tampering detection

techniques to keep pace. Unfortunately this is challenging because there are few800

large, diverse tampered video datasets. Pandey et al [17] noted that tampered

video datasets lag far behind tampered image datasets in terms of maturity. In

this section, we examine existing video datasets and give recommendations for

the design of new datasets. Table 3 provides a list of video tampering datasets,

specifying the type of tampering applied and the size of the datasets.805

A number of tampered video datasets already exist, but these vary both in

terms of processing and parameters. In [34] the authors supply tampered video

along with an explicit pixel level binary mask detailing the chroma-keyed addi-

tion. Some video tampering datasets come complete with original and tampered

videos, thus providing a means to calcualte all masks and labels associated with810

tampering [41, 98]. This allows for tampering detection and localisation in spa-

tial and temporal domains. It also allows for any differences in distribution

between tampered and authentic sequences to be overcome by extracting au-

thentic patches from tampered sequences. However, an accurate mask can only

be extracted where videos can be synchronised and are identically processed815
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Table 3: Tampered Video Datasets

Name, Date, Ref. Type of Tampering Size Details

VTD 2016 [98] splicing; copy-move;

frame-shuffling

26 tampered +

related authentic

Distribution on YouTube means all

videos affected by varying compression

FaceForensics

2018 [8]

motion transfer ([7]) 1004 tampered

x2

Taken from Youtube-8m [12], one set

self-re-enactment, one set source-target

translation

SYSU-

OBJFORG

2016 [71]

object forgery 100 authentic,

100 tampered

No source for public download

D’Avino et al

2017 [34]

splicing 10 tampered Binary masks provided, tampering is

easily seen.

SULFA forged

2012 [40]

spatio-temporal copy-

move

5 tampered Static camera, background duplicated

to conceal objects. Part of a larger

database including untampered video for

camera identification

SULFA sup-

plemental 2013

[41]

spatio-temporal copy-

move

10 tampered Duplicate spatio-temporal regions to

conceal/introduce objects

Lin et al 2014

[22]

inpainting (TCP and

ETS)

18 tampered x2 Only 4 sequences available for direct

download

VISION 2017

[124]

source/social media

platform identification

1914 sequences 648 straight-from-device videos, 622

YouTube and 644 WhatsApp. Future

dataset extension planned via ”MOSES”

application [125]

Ardizzone and

Mazzola 2015

[33]

copy-move 160 sequences Sequences synthesised from [40] and

CANTATA datasets

Newson et al

2014 [42]

inpainting 3 tampered Masks supplied for two sequences,

demonstration of inpainting rather than

explicit tampering detection dataset

Le et al 2017 [1] inpainting 53 sequences Both object removal and object recon-

struction, demonstration of inpainting

rather than explicit tampering detection

dataset

post-tampering. Any recompression during distribution allows compression er-

rors to creep in and increases the difficulty of extracting a bit-accurate tamper

mask (as in Figure 6). Moreover, some pixels may be part of the tampered

region but remain unchanged in value, and this makes for noisy masks in need

of post processing.820

Using differences between original and tampered videos may be inappropri-

ate for temporally tampered videos [98], where a frame-by-frame label might

provide more information. This can be achieved when unprocessed original and

tampered sequences are provided. Indeed, public inter-frame tampered video

datasets are in short supply, with many inter-frame tampering detectors simply825
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building their own datasets from available sequences (see Section 2.2).

As can be seen in Table 3, most tampered video datasets focus on a single

tampering method, such as splicing or object forgery or inpainting. Only VTD

[98] demonstrates a variety of types. Variety is vital to accurately assess perfor-

mance of video tampering detectors and support work towards universal video830

tampering detection. As discussed in [112], an approach using a combination of

datasets will ensure more generalisable results with little need for specific do-

main adaptation. It is also important that tampered sequences are independent

of tampering detection, so techniques such as [1, 33, 42] which publicly release

their results are important to move forward both tampering AND tampering835

detection.

A number of datasets are produced and benchmarked with an existing de-

tection technique [8, 22, 124] and many achieve high levels of precision on their

selected dataset, often over 90% accuracy. This tends to portray tampering

detection as a solved problem on that particular dataset, which discourages re-840

searchers from publishing lower results. A tampering detection method based

on motion residue was presented in [126], and the experimental dataset was

gathered from several previous object forgery works [23, 39, 127]. Accuracy was

lower than 90%. This contrasts with over 90% in [127] and over 99% bench-

marked in uncompressed FaceForensics [8]. However, in a real world situation,845

the original method of tampering will be unknown, therefore, it is worth col-

lating results on several different datasets such that work towards a universal

tampering detection can be realised.

Methods of dataset dissemination are an important consideration as this

can cause unintentional post-processing of video data. Although video sharing850

websites such as YouTube may seem like an attractive distribution option, [98],

any processing applied during publishing must be taken into account. It is

possible to apply social media platform processing by uploading/downloading a

video to/from a social media website, however the effects on the video are then

irreversible. While researchers may add processing to an unprocessed video,855

they cannot remove it. Indeed, the effects of video processing by social media
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(a) Vo (b) M (c) Vs (d) Diff (6a, 6c)

(e) C(Vo) (f) C(M) (g) C(Vs) (h) Diff (6e, 6g)

Figure 6: The problems with recompression in the distribution of tampered datasets: Left

column shows uncompressed data, right column has been lightly compressed. Figs 6e, 6f, 6g

are the compressed versions of 6a, 6b, 6c respectively. Figs 6d and 6h are both uncompressed

and show binarised differences.

platforms on video are represented in isolation in a dataset provided by [124]

who found that sensor noise pattern used for camera source identification was

adversely affected by processing on FaceBook, YouTube and WhatsApp, even

when using high quality settings. These results are important in themselves as860

they show how tampering detection methods which rely on sensor noise, such

as [26], can be defeated by virtue of the distribution platform alone. They also

emphasise how post-processing can be easily overlooked.

Figure 6 illustrates some of the complications associated with recompression.

Starting with uncompressed data, a binary mask was created based on segmen-865

tation of static and non-static content, and two uncompressed sequences simply

spliced together. Figure 6d shows which pixels differ between Figures 6a and 6c

and it can be seen that it is almost the perfect inverse of the mask (Fig 6b), with

a few pixels that are identical between the original and spliced content. Figs

6e, 6f, 6g show the visual effects of compression on Figs 6a, 6b, 6c respectively.870

Figure 6h shows how compression has introduced tiny inaccuracies between the

pixels of the original and spliced sequences so that the difference between them
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no longer provides a mostly accurate inverse of the mask. With some thresh-

olding and morphological processing, the difference sequence could still be used

to infer a mask, but the degree of accuracy suffers even under slight compres-875

sion. A compressed mask, as shown in Fig 6f provides a more accurate ground

truth than deriving the mask from the compressed tampered/untampered pair.

Moreover, official mask provision rather than frame difference inference removes

the philosophical debate over whether a pixel, fully within the tampered region

but by chance unchanged by the tampering process, is labelled tampered or not.880

5. Conclusion

Many modern techniques of video tampering simply do not fit neatly into the

traditional categories of inter- and intra- frame tampering. In particular, there

is significant overlap between the recent categories of motion/style transfer and

synthetic video generation. Changing the style of a video sequence from seman-885

tic segmentation masks to photo-realistic generates a purely synthetic video, but

the same techniques can be used to perform digital puppetry and transfer mo-

tion from one mouth to another. This means that detection of synthetic video

should be viewed as an extension of tampering detection. Given the current

trend of using full reference quality measures in the evaluation of retouching,890

frame interpolation and in video frame prediction, it is clear that one of the

current goals is to replicate authentic video. What remains unclear, however, is

whether these methods will deviate from authentic content as evaluation meth-

ods emerge or even help to launder video tampering evidence in the same way

as video compression.895

One important new research direction in digital video manipulation is an

accepted method of evaluation. Many existing methods rely on only qualitative

evaluation and while this is an important first step, adoption of existing video

quality techniques, including no reference quality metrics will speed up devel-

opment. Until then, user studies and public release of manipulated video clips900

remains the gold standard. In the absence of elegant quality measures, altered
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video and the associated methods are often publicly released for analysis, and

video tampering detectors should look to utilise this provision where possible to

create realistic detection methods. To facilitate this, video tamperers should re-

lease either sufficient data to simplify the creation of accurate tampering masks905

or release the masks themselves. Furthermore, video data should be distributed

in such a way as to minimise further processing. Video processing, such as

compression and retouching can effectively conceal tampering. While detection

of such anti-forensics is an important research direction, processing can be ap-

plied to video independently after dataset publication, but only if the original910

dataset is published in such a way as to avoid unnecessary processing. With

the increasing application of deep learning methods to tampering detection, any

future dataset gatherers must take care to avoid potential pitfalls which cause

datasets to reflect their own specific features relating to publishing platform or

tool use, rather than those legitimately tied to the tampering technique.915

As the variety of video manipulation techniques expands and advances, tam-

pered and synthetic video will become indistinguishable from authentic video to

human eyes. Therefore, new techniques are required which either classify tam-

pered video according to its tampering type or perform tampering detection

irrespective of the type of tampering. To maintain confidence in the authen-920

ticity of video content in future, it is crucial to develop techniques which can

identify and localise video processing and manipulation. Universal video manip-

ulation detection and localisation is essential if tampering detection is to keep

pace with tampering methods.

This research did not receive any specific grant from funding agencies in the925

public, commercial, or not-for-profit sectors.
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