
Detecting tampered videos with multimedia
forensics and deep learning

Markos Zampoglou1, Foteini Markatopoulou1, Gregoire Mercier2, Despoina
Touska1, Evlampios Apostolidis1,3, Symeon Papadopoulos1, Roger Cozien2,

Ioannis Patras3, Vasileios Mezaris1, and Ioannis Kompatsiaris1

1 Centre for Research and Technology Hellas, Thermi-Thessaloniki, Greece
{markzampoglou, markatopoulou, apostolid, papadop, bmezaris, ikom}@iti.gr

https://mklab.iti.gr/
2 eXo maKina, Paris, France

{gregoire.mercier, roger.cozien}@exomakina.fr
http://www.exomakina.fr

3 School of EECS, Queen Mary University of London, London, UK
I.Patras@qmul.ac.uk

Abstract. User-Generated Content (UGC) has become an integral part
of the news reporting cycle. As a result, the need to verify videos collected
from social media and Web sources is becoming increasingly important
for news organisations. While video verification is attracting a lot of at-
tention, there has been limited effort so far in applying video forensics to
real-world data. In this work we present an approach for automatic video
manipulation detection inspired by manual verification approaches. In a
typical manual verification setting, video filter outputs are visually in-
terpreted by human experts. We use two such forensics filters designed
for manual verification, one based on Discrete Cosine Transform (DCT)
coefficients and a second based on video requantization errors, and com-
bine them with Deep Convolutional Neural Networks (CNN) designed
for image classification. We compare the performance of the proposed
approach to other works from the state of the art, and discover that,
while competing approaches perform better when trained with videos
from the same dataset, one of the proposed filters demonstrates superior
performance in cross-dataset settings. We discuss the implications of our
work and the limitations of the current experimental setup, and propose
directions for future research in this area.

Keywords: Video forensics · video tampering detection · video verifi-
cation · video manipulation detection · user-generated video.

1 Introduction

With the proliferation of multimedia capturing devices during the last decades,
the amount of video content produced by non-professionals has increased rapidly.
Respectable news agencies nowadays often need to rely on User-Generated Con-
tent (UGC) for news reporting. However, the videos shared by users may not be
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authentic. People may manipulate a video for various purposes, including pro-
paganda or comedic effect, but such tampered videos pose a major challenge for
news organizations, since publishing a tampered video as legitimate news could
seriously hurt an organization’s reputation. This creates an urgent need for tools
that can assist professionals to identify and avoid tampered content.

Multimedia forensics aims to address this need by providing algorithms and
systems that assist investigators with locating traces of tampering and extracting
information on the history of a multimedia item. Research in automatic video
verification has made important progress in the recent past; however, state-
of-the-art solutions are not yet mature enough for use by journalists without
specialized training. Currently, real-world video forensics mostly rely on expert
verification, i.e. trained professionals visually examining the content under var-
ious image maps (or filters4) in order to spot inconsistencies.

In this work, we explore the potential of two such novel filters, originally
designed for human visual inspection, in the context of automatic verification.
The filter outputs are used to train a number of deep learning visual classifiers,
in order to learn to discriminate between authentic and tampered videos. Be-
sides evaluations on established experimental forensics datasets, we also evaluate
them on a dataset of well-known tampered and untampered news-related videos
from YouTube to assess their potential in real-world settings. Our findings high-
light the potential of adapting manual forensics approaches for automatic video
verification, as well as the importance of cross-dataset evaluations when aiming
for real-world application. A third contribution of this work is a small dataset of
tampered and untampered videos collected from Web and social media sources
that is representative of real cases.

2 Related Work

Multimedia forensics has been an active research field for more than a decade. A
number of algorithms (known as active forensics) work by embedding invisible
watermarks on images which are disturbed in case of tampering. Alternatively,
passive forensics aim to detect tampering without any prior knowledge [12]. Im-
age forensics is an older field than video forensics, with a larger body of proposed
algorithms and experimental datasets, and is slowly reaching maturity as cer-
tain algorithms or algorithm combinations are approaching sufficient accuracy
for real-world application. Image tampering detection is often based on detect-
ing local inconsistencies in JPEG compression information, or – especially in the
cases of high-quality, low-compression images – detecting local inconsistencies
in the high-frequency noise patterns left by the capturing device. A survey and
evaluation of algorithms focused on image splicing can be found in [23].

The progress in image forensics might lead to the conclusion that similar
approaches could work for tampered video detection. If videos were simply se-
quences of frames, this might hold true. However, modern video compression

4 While not all maps are technically the result of filtering, the term filters is widely
used in the market and will also be used here.
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is a much more complex process that often removes all traces such as camera
error residues and single-frame compression traces [14]. Proposed video forensics
approaches can be organized in three categories: double/multiple quantization
detection, inter-frame forgery detection, and region tampering detection.

In the first case, systems attempt to detect if a video or parts of it have been
quantized multiple times [16, 21]. A video posing as a camera-original User-
Generated Content (UGC) but exhibiting traces of multiple quantizations may
be suspicious. However, with respect to newsworthy UGC, such approaches are
not particularly relevant since in the vast majority of cases videos are acquired
from social media sources. As a result, both tampered and untampered videos
typically undergo multiple strong requantizations and, without access to a pur-
ported camera original, they have little to offer in our task.

In the second category, algorithms aim to detect cases where frames have
been inserted in a sequence, which has been consecutively requantized [20, 24].
Since newsworthy UGC generally consists of a single shot, such frame insertions
are unlikely to pass unnoticed. Frame insertion detection may be useful for videos
with fixed background (e.g. CCTV footage) or for edited videos where new shots
are added afterwards, but the task is outside the scope of this work.

Finally, the third category concerns cases where parts of a video sequence (e.g.
an object) have been inserted in the frames of another. This the most relevant
scenario for UGC, and the focus of our work. Video region tampering detection
algorithms share many common principles with image splicing detection algo-
rithms. In both cases, the assumption is that there exists some invisible pattern
in the item, caused by the capturing or the compression process, which is dis-
tinctive, detectable, and can be disturbed when foreign content is inserted. Some
approaches are based solely on the spatial information extracted independently
from frames. Among them, the most prominent ones use oriented gradients [17],
the Discrete Cosine Transform (DCT) coefficients’ histogram [6], or Zernike mo-
ments [2]. These work well as long as the video quality is high, but tend to fail at
higher compression rates as the traces on which they are based are erased. Other
region tampering detection strategies are based on the motion component of the
video coding, modeling motion vector statistics [19, 7] or motion compensation
error statistics [1]. These approaches work better with still background and slow
moving objects, using motion to identify shapes/objects of interest in the video.
However, these conditions are not often met by UGC.

Other strategies focus on temporal noise [9] or correlation behavior [8]. The
noise estimation induces a predictable feature shape or background, which im-
poses an implicit hypothesis such as a limited global motion. The Cobalt filter we
present in Section 3 adopts a similar strategy. The Motion Compensated Edge
Artifact is another alternative to deal with the temporal behavior of residuals
between I, P and B frames without requiring strong hypotheses on the motion
or background contents. These periodic artifacts in the DCT coefficients may
be extracted through a thresholding technique [15] or spectral analysis [3]. This
approach is also used for inter-frame forgery detection under the assumption
that the statistical representativeness of the tampered area should be high.
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Recently, the introduction of deep learning approaches has led to improved
performance and promising results for video manipulation detection. In [22],
the inter-frame differences are calculated for the entire video, then a high-pass
filter is applied to each difference output and the outputs are used to classify
the entire video as tampered or untampered. High-pass filters have been used
successfully in the past in conjunction with machine learning approaches with
promising results in images [4]. In a similar manner, [13] presents a set of deep
learning approaches for detecting face-swap videos created by Generative Adver-
sarial Networks. Besides presenting a very large-scale dataset for training and
evaluations, they show that a modified Xception network architecture can be
used to detect forged videos on a per-frame basis.

In parallel to published academic work, a separate line of research is con-
ducted by private companies, with a focus on the creation of filters for manual
analysis by trained experts. These filters represent various aspects of video con-
tent, including pixel value relations, motion patterns, or compression parame-
ters, and aim at highlighting inconsistencies in ways that can be spotted by a
trained person. Given that tools based on such filters are currently in use by
news organizations and state agencies for judiciary or security reasons, we de-
cided to explore their potential for automatic video tampering detection, when
using them in tandem with deep learning frameworks.

3 Methodology

The approach we explore is based on a two-step process: forensics-based fea-
ture extraction and classification. The feature extraction step is based on two
novel filters, while the classification step is based on a modified version of the
GoogLeNet and ResNet deep Convolutional Neural Networks (CNN).

3.1 Forensics-based filters

The filters we used in our experiments, originally designed to produce visible
output maps that can be analyzed by humans, are named Q4 and Cobalt. The
Q4 filter is used to analyze the decomposition of the image through the Discrete
Cosine Transform (DCT). It is applied on each individual video frame, irrespec-
tive of whether they are I, P, or B frames. Each frame is split into N ×N blocks
(typically N = 8), and the two-dimensional DCT is applied to transform each
image block into a block of the same size in which the coefficients are identi-
fied based on their frequency. The first coefficient (0,0) represents low frequency
information, while higher coefficients represent higher frequencies. JPEG com-
pression takes place in the YCbCr color spectrum, and we then use the Y channel
(luminance) for further analysis.

If we transform all N×N blocks of a single image band with the DCT, we can
build N×N (e.g. 64 for JPEG) different coefficient arrays, each one using a single
coefficient from every block - for example, an image of the coefficients (0,0) of
each block, and a different one using the coefficients (0,1). Each one of the N×N
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coefficient arrays has size equal to 1/N of the original image in each dimension.
An artificially colorized RGB image may then be generated by selecting 3 of
these arrays and assigning each to one of the three RGB color channels. This
allows us to visualize three of the DCT coefficient arrays simultaneously, as
well as the potential correlation between them. Combined together, the images
from all frames can form a new video of the same length as the original video,
which can then be used for analysis. The typical block size for DCT (e.g. in
JPEG compression) is 8 × 8. However, analysis in 8 × 8 blocks yields too small
coefficient arrays. Instead, 2 × 2 blocks are used so that the resulting output
frame is only half the original size. A selection of coefficients (0, 1), (1, 0) and
(1, 1) generates the final output video map of the Q4 filter.

The second filter we use is the Cobalt filter. This compares the original video
with a modified version of it, re-quantized using MPEG-4 at a different quality
level (and a correspondingly different bit rate). If the initial video contains a
(small) area that comes from another stream, this area may have undergone
MPEG-4 quantization at a level which is different from the original one. This area
may remain undetectable by any global strategy attempting to detect multiple
quantization. The principle of the Cobalt filter is straightforward: We requantize
the video and calculate the per-pixel values, creating an Error Video, i.e. a
video depicting the differences. In theory, if we requantize using the exact same
parameters that were used for the original video, there will be almost no error
to be seen. As the difference with the original increases, so does the intensity
of the error video. In designing Cobalt, a “compare-to-worst” strategy has been
investigated, i.e. if a constant quality encoding is done, the comparison will be
performed with the worst possible quality, and conversely, if a constant bit rate
encoding is done, the comparison is performed with the worst possible bit rate.
This induces a significantly contrasted video of errors when the quantization
history of the initial video is not homogeneous.

3.2 Filter output classification

Both filters produce outputs in the form of RGB images. Following the idea that
the filter maps were originally intended to be visually evaluated by a human
expert, we decided to treat the problem as a visual classification task. This
allows us to combine the maps with Convolutional Neural Networks pre-trained
for image classification. Specifically, we take an instance of GoogLeNet [18] and
an instance of ResNet [5], both pre-trained on the ImageNet classification task,
and adapt them to the needs of our task. The image outputs from the filtering
process are scaled to match the default input size of the CNNs, i.e. 224 × 224
pixels. In contrast to other forensics-based approaches, where rescaling might
destroy sensitive traces, the filters we use are aimed for visual interpretation
by humans, so -as in any other classification task- rescaling should not cause
problems.

To improve classification performance, the networks are extended using the
method of [11], according to which adding an extra Fully Connected (FC) layer
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prior to the final FC layer can improve performance when fine-tuning a pre-
trained network. In this case, we added a 128-unit FC layer to both networks,
and also replaced the final 1000-unit FC layer with a 2-unit layer, since instead
of the the 1000-class ImageNet classification task, here we are dealing with a
binary (tampered/untampered) task. As the resulting networks are designed for
image classification, we feed the filter outputs to each network one frame at a
time, during both training and classification.

4 Experimental Study

4.1 Datasets and Experimental Setup

The datasets we used for our study came from two separate sources. One com-
prised the Development datasets provided by the NIST 2018 Media Forensics
Challenge5 for the Video Manipulation Detection task. There are two separate
development datasets, named Dev1 and Dev2, the first consisting of 30 video
pairs (i.e. 30 tampered videos and their 30 untampered sources), and the second
of 86 video pairs, containing approximately 44K and 134K frames respectively.
The task also included a large number of distractor videos, which were not in-
cluded in our experiments. These two datasets, Dev1 and Dev2, are treated
as independent sets, but since they originate from the same source, they likely
exhibit similar features.

The second source of videos was the InVID Fake Video Corpus [10], developed
over the course of the InVID project. The Fake Video Corpus (FVC) contains 110
real and 117 fake newsworthy videos from social media sources, which include
not only videos that have been tampered but also videos that are contextually
false (e.g. whose description on YouTube contains misinformation about what
is shown). Out of that dataset, we selected 35 real videos that comprise single-
shot, unedited videos, and 33 fake videos that include tampered UGC, but no
explicit edit effects such as cuts or text overlay because these would be easy
to detect compared to the single-shot untampered videos. This dataset contains
163K frames, equally split between tampered and untampered videos.

The temporal annotation of the datasets is incomplete, i.e. we do not always
know where and when the tampering takes place, only that a video contains
a tampered part. For our experiments, we treated all frames originating from
untampered videos as untampered, and all frames originating from tampered
videos as tampered. This is a weak assumption that will surely also lead to erro-
neous annotations. Based on manual inspection, we found that this assumption
does hold true for the majority of videos, and thus we consider the quality of
annotations adequate for the task.

Experimental Setup. In order to evaluate the proposed approaches, the two
filters, Q4 and Cobalt, were applied to all frames of the videos, and then each of

5 https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018
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Fig. 1. Indicative videos from the FVC dataset. Top (tampered videos): “Bear at-
tacks cyclist”, “Lava selfie”, “Bear attacks snowboarder”, “Eagle drops snake”. Bottom
(untampered videos): “Stockholm attack”, “Hudson landing”, “Istanbul attack” and
“Giant aligator in golf field”.

the two networks was trained with each filter output independently on the task
of distinguishing between tampered and untampered frames. For comparison,
we also implemented the following video features from the state of the art:

– rawKeyframes [13]. The video is decoded into its frames and the raw keyframes
(without any filtering process) are given as input to the deep network.

– highPass frames [4]. The video is decoded into its frames, each frame is
filtered by a high-pass filter and the filtered frame is given as input to the
deep network.

– frameDifference [22]. The video is decoded into its frames, the frame differ-
ence between two neighboring frames is calculated, the new filtered frame is
also processed by a high-pass filter and the final filtered frame is given as
input to the deep network.

The filter outputs are used to train the networks. During evaluation, for each
video the arithmetic mean of the classification scores for all of its frames is cal-
culated separately for each class (tampered, untampered). The video is classified
as tampered if the average score for the tampered class is larger than the aver-
age score for the untampered class. Experiments were run both by training and
evaluating on the same dataset (using 5-fold cross-validation) and by training
and testing on different datasets to evaluate each algorithm’s ability to general-
ize. In all cases, we used three performance measures: Accuracy, Mean Average
Precision (MAP), and Mean Precision for the top-20 retrieved items (MP@20).

4.2 Within-dataset Experiments

Preliminary evaluations of the proposed approach took the form of within-
dataset evaluations, using five-fold cross-validation. We used the two datasets
from the NIST Challenge (Dev1 and Dev2), as well as their union, for these runs.
The results are presented in Table 1.

The results show that, for all filters and models, Dev1 is significantly more
challenging. Accuracy for all cases ranges between 0.58 and 0.68, while the same
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Table 1. Within-dataset evaluations

Dataset Filter-DCNN Accuracy MAP MP@20

Dev1

cobalt-gnet 0.6833 0.7614 -
cobalt-resnet 0.5833 0.6073 -
q4-gnet 0.6500 0.7856 -
q4-resnet 0.6333 0.7335 -

Dev2

cobalt-gnet 0.8791 0.9568 0.8200
cobalt-resnet 0.7972 0.8633 0.7600
q4-gnet 0.8843 0.9472 0.7900
q4-resnet 0.8382 0.9433 0.7600

Dev1
+
Dev2

cobalt-gnet 0.8509 0.9257 0.9100
cobalt-resnet 0.8217 0.9069 0.8700
q4-gnet 0.8408 0.9369 0.9200
q4-resnet 0.8021 0.9155 0.8700

measure for Dev2 ranges from 0.79 to 0.88. Mean Average Precision follows a
similar pattern. It should be noted that the MP@20 measure does not apply to
Dev1 cross-validation due to its small size (the test set would always contain less
than 20 items).

Merging the two datasets gives us the largest cross-validation dataset set from
which we can expect the most reliable results. In terms of Accuracy and MAP,
for Dev1+Dev2 the results are slightly worse than Dev2, and significantly better
than Dev1. MP@20 is improved compared to Dev2 but this can be attributed
to the relatively small size of Dev2. Overall, the results appear encouraging,
reaching a Mean Average Precision of 0.94 for the Dev1+Dev2 set. GoogLeNet
seems to generally perform better than ResNet. In terms of performance, the two
filters appear comparable, with Cobalt outperforming Q4 at some cases, and the
inverse being true for others.

4.3 Cross-dataset Experiments

Using the same dataset or datasets from the same origin for training and test-
ing is a common practice in evaluations in the field. However, as in all machine
learning tasks, the machine learning algorithm may end up picking up features
that are characteristic of the particular datasets. This means that the resulting
model will be unsuitable for real-world application. Our main set of evaluations
concerns the ability of the proposed algorithms to deal with cross-dataset clas-
sification, i.e. training the model on one dataset and testing it on another. We
used three datasets: Dev1, Dev2, and FVC. We run three sets of experiments us-
ing a different dataset for training each time. One set was run using Dev1 as the
training set, the second using Dev2, and the third using their combination. Dev1
and Dev2 originate from the same source, and thus, while different, may exhibit
similar patterns. Thus, we would expect that training on Dev1 and evaluating
on Dev2 or vice versa would be easier than evaluating on FVC.
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Table 2. Cross-dataset evaluations (Train: Dev1)

Training Testing Filter-DCNN Accuracy MAP MP@20

Dev1

Dev2

cobalt-gnet 0.6033 0.8246 0.9000
cobalt-resnet 0.6364 0.8335 0.9000
q4-gnet 0.5124 0.8262 0.9000
q4-resnet 0.5041 0.8168 0.9000
rawKeyframes-gnet [13] 0.5868 0.8457 0.8500
rawKeyframes-resnet [13] 0.2893 0.6588 0.4000
highPass-gnet [4] 0.5620 0.8134 0.8500
highPass-resnet [4] 0.5537 0.7969 0.8000
frameDifference-gnet [22] 0.6942 0.8553 0.9000
frameDifference-resnet [22] 0.7190 0.8286 0.8500

FVC

cobalt-gnet 0.4412 0.3996 0.3000
cobalt-resnet 0.4706 0.5213 0.5000
q4-gnet 0.58824 0.6697 0.6000
q4-resnet 0.6029 0.6947 0.7000
rawKeyframes-gnet [13] 0.5294 0.5221 0.5000
rawKeyframes-resnet [13] 0.5147 0.4133 0.2500
highPass-gnet [4] 0.5441 0.5365 0.5000
highPass-resnet [4] 0.5000 0.5307 0.6000
frameDifference-gnet [22] 0.5735 0.5162 0.4500
frameDifference-resnet [22] 0.5441 0.4815 0.5000

The results are shown in Tables 2, 3, and 4. As expected, evaluations on the
FVC dataset yield relatively lower performance than evaluations on Dev1 and
Dev2. In terms of algorithm performance, a discernible pattern is that, while the
state of the art seems to outperform the proposed approaches on similar datasets
(i.e. training on Dev1 and testing on Dev2 or vice versa), the Q4 filter seems to
outperform all other approaches when tested on FVC. Specifically, frameDiffer-
ence from [22] clearly outperforms all competing approaches when cross-tested
between Dev1 and Dev2. However, its performance drops significantly when eval-
uated on the FVC dataset, indicating an inability to generalize to different, –and
in particular, real-world– cases. This is important, since in real-world application
and especially in the news domain, the data will most likely resemble those of
the FVC dataset (i.e. user-generated videos). It is unlikely that we will be able
to collect enough videos to train a model so that it knows the characteristics of
such videos beforehand.

The Q4 filter reaches a MAP of 0.71 when trained on the combination of
the Dev1 and Dev2 datasets, and tested on the FVC dataset. This performance,
while significantly higher than all alternatives, is far from sufficient for applica-
tion in newsrooms. It is, however, indicative of the potential of the specific filter.
Another observation concerns the choice of networks. While in most experiments
there was no clear winner between GoogLeNet and ResNet, it seems that the
former performs better on average, and consistently better or comparably to
ResNet when tested on the FVC dataset.
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Table 3. Cross-dataset evaluations (Train: Dev2)

Training Testing Filter-DCNN Accuracy MAP MP@20

Dev2

Dev1

cobalt-gnet 0.6167 0.6319 0.6500
cobalt-resnet 0.5333 0.7216 0.6000
q4-gnet 0.6500 0.7191 0.7000
q4-resnet 0.5833 0.6351 0.6000
rawKeyframes-gnet 0.6500 0.6936 0.6500
rawKeyframes-resnet 0.6333 0.6984 0.6500
highPass-gnet [4] 0.5667 0.6397 0.6500
highPass-resnet [4] 0.6500 0.6920 0.7000
frameDifference-gnet [22] 0.6167 0.7572 0.7000
frameDifference-resnet [22] 0.6500 0.7189 0.7000

FVC

cobalt-gnet 0.5588 0.5586 0.5500
cobalt-resnet 0.5000 0.4669 0.4000
q4-gnet 0.6177 0.6558 0.7000
q4-resnet 0.5147 0.4525 0.4000
rawKeyframes-gnet [13] 0.5147 0.6208 0.7000
rawKeyframes-resnet [13] 0.5735 0.6314 0.6500
highPass-gnet [4] 0.4706 0.5218 0.4500
highPass-resnet [4] 0.5588 0.5596 0.6000
frameDifference-gnet [22] 0.5000 0.5652 0.6000
frameDifference-resnet [22] 0.5000 0.5702 0.6500

5 Conclusions and Future Work

We presented our efforts in combining video forensics filters, originally designed
to be visually examined by experts, with deep learning models for visual classi-
fication. We explored the potential of two forensics-based filters combined with
two deep network architectures, and observed that, while for training and testing
on similar videos the proposed approach performed comparably or worse than
various state of the art filters, when evaluated on different datasets than the ones
used for training, one of the proposed filters clearly outperformed all others. This
is an encouraging result that may reveal the potential of such an approach to-
wards automatic video verification, and especially for content originating from
web and social media.

However, the current methodology has certain limitations that should be
overcome in the future for the method to be usable in real settings. One is the
problem of annotation. During our experiments, training and testing was run
on a per-frame basis, in which all frames from tampered videos were treated as
tampered, and all frames from untampered videos as untampered. This assump-
tion is problematic, as a tampered video may also contain untampered frames.
However, as we lack strong, frame-level annotation, all experiments were run
using this weak assumption. For the same reason, the final classification of an
entire video into “tampered” or “untampered” was done by majority voting.
This may also distort results, as it is possible that only a few frames of a video
have been tampered, and yet this video should be classified as tampered.
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Table 4. Cross-dataset evaluations (Train: Dev1+Dev2)

Training Testing Filter-DCNN Accuracy MAP MP@20

Dev1
+

Dev2
FVC

cobalt-gnet 0.4706 0.4577 0.4000
cobalt-resnet 0.4853 0.4651 0.4500
q4-gnet 0.6471 0.7114 0.7000
q4-resnet 0.5882 0.6044 0.6500
rawKeyframes-gnet 0.5882 0.5453 0.5000
rawKeyframes-resnet 0.5441 0.5175 0.5500
highPass-gnet 0.5294 0.5397 0.5500
highPass-resnet 0.5441 0.5943 0.6000
frameDifference-gnet 0.5441 0.5360 0.6000
frameDifference-resnet 0.4706 0.5703 0.5500

The limitations of the current evaluation mean that the results can only be
treated as indicative. However, as the need for automatic video verification meth-
ods increases, and since the only solutions currently available on the market are
filters designed for analysis by experts, the success of such filters using automatic
visual classification methods is strongly encouraging. In the future, we aim to
improve the accuracy of the approach in a number of ways. One is to improve
the quality of the dataset by adding temporal annotations for tampered videos,
in order to identify which frames are the tampered ones. Secondly, we intend
to develop a larger collection of state-of-the-art implementations on video tam-
pering detection, to allow for more comparisons. Finally, we will explore more
nuanced alternatives to the current voting scheme where each video is classified
as tampered if more than half the frames are classified as such.
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