2,154 research outputs found

    Detecting Symmetries of Rational Plane and Space Curves

    Get PDF
    This paper addresses the problem of determining the symmetries of a plane or space curve defined by a rational parametrization. We provide effective methods to compute the involution and rotation symmetries for the planar case. As for space curves, our method finds the involutions in all cases, and all the rotation symmetries in the particular case of Pythagorean-hodograph curves. Our algorithms solve these problems without converting to implicit form. Instead, we make use of a relationship between two proper parametrizations of the same curve, which leads to algorithms that involve only univariate polynomials. These algorithms have been implemented and tested in the Sage system.Comment: 19 page

    Detecting Similarity of Rational Plane Curves

    Full text link
    A novel and deterministic algorithm is presented to detect whether two given rational plane curves are related by means of a similarity, which is a central question in Pattern Recognition. As a by-product it finds all such similarities, and the particular case of equal curves yields all symmetries. A complete theoretical description of the method is provided, and the method has been implemented and tested in the Sage system for curves of moderate degrees.Comment: 22 page

    Symmetry Detection of Rational Space Curves from their Curvature and Torsion

    Full text link
    We present a novel, deterministic, and efficient method to detect whether a given rational space curve is symmetric. By using well-known differential invariants of space curves, namely the curvature and torsion, the method is significantly faster, simpler, and more general than an earlier method addressing a similar problem. To support this claim, we present an analysis of the arithmetic complexity of the algorithm and timings from an implementation in Sage.Comment: 25 page

    Involutions of polynomially parametrized surfaces

    Full text link
    We provide an algorithm for detecting the involutions leaving a surface defined by a polynomial parametrization invariant. As a consequence, the symmetry axes, symmetry planes and symmetry center of the surface, if any, can be determined directly from the parametrization, without computing or making use of the implicit representation. The algorithm is based on the fact, proven in the paper, that any involution of the surface comes from an involution of the parameter space (the real plane, in our case); therefore, by determining the latter, the former can be found. The algorithm has been implemented in the computer algebra system Maple 17. Evidence of its efficiency for moderate degrees, examples and a complexity analysis are also given

    Detecting Similarity of Plane Rational Curves

    Get PDF
    A novel and deterministic algorithm is presented to detect whether two given planar rational curves are related by means of a similarity, which is a central question in Pattern Recognition. As a by-product it finds all such similarities, and the particular case of equal curves yields all symmetries. A complete theoretical description of the method is provided, and the method has been implemented and tested in the SAGE system.Ministerio de EducaciĂłn, Cultura y DeporteUniversidad de Alcal

    Affine equivalences of surfaces of translation and minimal surfaces, and applications to symmetry detection and design

    Get PDF
    We introduce a characterization for affine equivalence of two surfaces of translation defined by either rational or meromorphic generators. In turn, this induces a similar characterization for minimal surfaces. In the rational case, our results provide algorithms for detecting affine equivalence of these surfaces, and therefore, in particular, the symmetries of a surface of translation or a minimal surface of the considered types. Additionally, we apply our results to designing surfaces of translation and minimal surfaces with symmetries, and to computing the symmetries of the higher-order Enneper surfaces.publishedVersio
    • …
    corecore