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We introduce a characterization for affine equivalence of two surfaces of translation
defined by either rational or meromorphic generators. In turn, this induces a similar
characterization for minimal surfaces. In the rational case, our results provide algorithms
for detecting affine equivalence of these surfaces, and therefore, in particular, the
symmetries of a surface of translation or a minimal surface of the considered types.
Additionally, we apply our results to designing surfaces of translation and minimal
surfaces with symmetries, and to computing the symmetries of the higher-order Enneper
surfaces.
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1. Introduction

Surfaces of translation, also called translational surfaces (c.f. [1]) are surfaces generated by sliding one space curve along
another space curve. Due to their simplicity, these surfaces are used in Computer-Aided Geometric Design. In particular,
any two intersecting curves are interpolated by the surface of translation generated by these curves, and the bilinear
Coons patch interpolating four boundary curves can be expressed as a weighted linear combination of the translational
surfaces generated by the two curves at each corner. Efficient algorithms for computing µ-bases and implicitization are
known [2,3].

Minimal surfaces (c.f. [1,4] and [5, Chapters 16 and 22]) are surfaces whose mean curvature is identically zero. It was
already known by Sophus Lie that such surfaces are also surfaces of translation generated by complex conjugated curves.
Minimal surfaces have the remarkable property of spanning a given space curve with minimal area. Because of this
property, they arise frequently in nature, for instance in soap films, and are useful in architecture. In addition, minimal
surfaces have applications across the sciences, for instance in general relativity, molecular biology, and material science.

Two surfaces are affinely equivalent if there exists a nonsingular affine map transforming one of the surfaces onto the
other. Recognizing affine equivalence is of interest in computer-aided geometric design, in computer vision and in pattern
recognition. Two notable instances of affine equivalence are similarity and symmetry: two surfaces are similar when they
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are the same surface up to a scaling, translation, rotation and reflection; a surface is symmetric when it is invariant under
a nontrivial isometry.

Recently there have been several papers introducing methods for recognizing projective equivalences, affine equiva-
ences and symmetries for rational curves and surfaces. For rational curves the problem can be considered as essentially
olved; see for instance [6–8]. For rational surfaces the problem is more complicated, and the general case is still unsolved.
owever, progress has been made in special cases. Involutions of polynomially parametrized surfaces are addressed in [9],
hile symmetries of canal surfaces and Dupin cyclides were investigated in [10]. In [11], an algorithm for computing
rojective and affine equivalences for the case of rational parametrizations without projective base points is given. Affine
quivalences for ruled surfaces are considered in [12]. Projective equivalences of ruled surfaces are studied in [13], where
ome aspects of the case of implicit algebraic surfaces are also addressed.
In this paper we introduce a characterization for affine equivalence of two surfaces of translation, and therefore also of

wo minimal surfaces. We focus on rational surfaces, although our results extend also to the meromorphic case. For the
ational case, our results give rise to algorithms for detecting affine equivalence. We also apply our method to detecting
ymmetries in the considered types of surfaces, and to designing symmetric surfaces of translation and minimal surfaces.
unctionality for generating such results, as well as all the examples in this paper, are provided in Python and Sage,
vailable as a GitHub repository [14]; the repository also includes the files corresponding to two examples carried out in
aple.

. Background

.1. Affine equivalences and symmetries

A nonsingular affine map f of Rn takes the form f (x) = Mx + b, with b ∈ Rn a vector and M ∈ Rn×n a nonsingular
atrix. If M is orthogonal, i.e., MMT

= I , then f defines an isometry. Given two surfaces S1, S2, we say that S1, S2 are
ffinely equivalent if there exists a nonsingular affine map f such that f (S1) = S2. In this case we also say that f is an
ffine equivalence between S1, S2; similarly for two curves C,D. If S1 = S2 and f (x) = Mx + b with M orthogonal,
hen we say that f is a symmetry of the surface; similarly for a curve C. Although we will consider both real and
omplex curves, we will only consider affine equivalences and symmetries that are real. The identity map f = idRn

s referred to as the trivial isometry/symmetry. A curve or surface is called symmetric if it has a nontrivial symmetry.
otable symmetries are planar symmetries (i.e., reflections in a plane), axial symmetries (i.e., rotations about a line), central
ymmetries (i.e., symmetries with respect to a point), and rotoreflections (i.e., composition of a rotation about a line and a
eflection in a plane perpendicular to this line). Special cases of axial symmetries are the half-turn (rotation by angle π )
nd the quarter-turn (rotation by angle ±π/2).
For further information on nontrivial symmetries of Euclidean space, see [15] and [9, §2].

.2. Surfaces of translation

In this section we introduce two closely related concepts of surfaces of translation, namely those generated by real
urves and those generated by complex conjugated curves.

.2.1. Averaging operator
Let K be a field and Kn the corresponding n-dimensional affine space over K. In this paper we consider K = R,C.

ollowing [1], we equip Kn with the binary operation ⊕ defined by taking the average, i.e.,

⊕ : Kn
× Kn

−→ Kn, p ⊕ q :=
p + q
2

. (1)

By abuse of notation, we can also consider ⊕ as a binary operation on the space of rational (or meromorphic)
parametrizations,

⊕ : Hom(K,Kn) × Hom(K,Kn) −→ Hom(K2,Kn),
(f ⊕ g)(t, s) := f (t) ⊕ g(s),

(2)

where Hom(Km,Kn) denotes the space of rational (or meromorphic) maps Km 99K Kn.
Note that composition with an affine map f (x) = Mx + b is distributive with respect to ⊕, i.e.,

f ◦ (c1 ⊕ c2) = (f ◦ c1) ⊕ (f ◦ c2), (3)

because, for any t, s,

f ◦ (c1 ⊕ c2)(t, s) =
Mc1(t) + b + Mc2(s) + b

= (f ◦ c1)(t) ⊕ (f ◦ c2)(s).
2
2
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2.2.2. Real surfaces of translation
From its definition (1) on the pair of affine spaces Kn, the operator ⊕ can restrict to pairs of space curves C1, C2 ⊂ K3.

In this manner we arrive at a set S = C1 ⊕ C2 of averages of all pairs of points in C1, C2, called the surface of translation
generated by C1, C2. We will say that (C1, C2) is a generator pair of S. In particular, S contains two families of congruent
curves, which are translated copies of the curves C1, C2, scaled by a factor 1

2 .
Parametrizations of the curves C1, C2 induce a corresponding parametrization of the surface S through (2). In this paper

e consider (not necessarily distinct) parametrizations

c1(t) =
(
x1(t), y1(t), z1(t)

)
, c2(s) =

(
x2(s), y2(s), z2(s)

)
, t, s ∈ K, (4)

where x1, x2, y1, y2, z1, z2 are rational or meromorphic functions with coefficients in K, parametrizing the space curves
C1, C2 ⊂ K3. The surface S = C1 ⊕ C2 then has the corresponding parametrization

P := c1 ⊕ c2 : K2 99K S ⊂ K3, (t, s) ↦−→ c1(t) ⊕ c2(s). (5)

In particular, if c1, c2 are rational/meromorphic, then P is rational/meromorphic as well.
The focus of this paper is on real surfaces of translation, due to their applicability in computer-aided geometric design.

These are defined as nondegenerate (i.e., two-dimensional) real surfaces that are the real part ℜ(S) = S∩R3 of S = C1⊕C2
as defined above.

Can we obtain real parametrizations of real surfaces of translation? When c1, c2 have real coefficients, then (c1⊕c2)(t, s)
will be real for any real parameters t, s. However, the real surface of translation can contain an additional 1-dimensional
singular locus coming from complex conjugate points on C1, C2 with complex conjugate parameters.

If c1, c2 have complex coefficients, then it is in general difficult (and not always possible) to provide a parametrization
of S with real coefficients. However, a real parametrization of ℜ(S) can be obtained in the special case of complex
conjugate curves C1, C2. To be precise, let denote the map that takes the complex conjugation of complex numbers and
complex vectors (component-wise), as well as their sets (element-wise). Moreover, for scalar- or vector-valued rational
(or meromorphic) functions c, we let c denote the function resulting from conjugating the coefficients of c.

With c := c1 = c2 and K = C in (4), we have conjugated parametric curves

c = (x, y, z) : U ⊂ C −→ C ⊂ C3, (6)

c = (x, y, z) : U ⊂ C −→ C ⊂ C3. (7)

n this case c ⊕ c, restricted to complex conjugate parameters t = u + iv and s = u − iv, provides a real parametrization
n terms of u and v. More precisely, precomposing c ⊕ c with the embedding ι : (u, v) ↦−→ (u + iv, u − iv) of R2 into C2

ields a parametrization

P :=
(
c ⊕ c

)
◦ ι : R2

−→ ℜ(S) ⊂ R3, (8)

(u, v) ↦−→
c(u + iv) + c(u − iv)

2
= c(t) ⊕ c(t),

of (part of) the real part of S. Note that (8) is a parametrization with real coefficients. This case will be considered in
detail in Section 2.3.

2.2.3. Multitranslational surfaces
Note that a surface of translation does not have a unique generator pair. Indeed, if τv : x ↦−→ x + v denotes the

ranslation by a vector v and (C1, C2) is a generator pair of S , then

(D1,D2) :=
(
τv(Ci), τ−v(Cj)

)
, {i, j} = {1, 2}, v ∈ C3, (9)

lso has the property that D1 ⊕ D2 = S. Indeed, D1 ⊕ D2 is parametrized by

(ci + v) ⊕ (cj − v) =
(ci + v) + (cj − v)

2
=

ci + cj
2

= ci ⊕ cj, (10)

hich, since i ̸= j, parametrizes S. Notice that if v is nonreal and the parametrizations of C1, C2 are real or complex
onjugate, then the parametrizations of D1,D2 are no longer real or complex conjugate. Nevertheless, because of (10),
heir parametrizations still generate a real parametrization of the same real surface of translation S.

However, some surfaces of translation S possess more exotic alternative generator pairs for which (9) does not hold. In
hat case we say that S is multitranslational. This definition includes the class of double translational surfaces considered
y Sophus Lie and Poincaré (c.f. [16, §1]).
We will require the following technical assumptions. The first is that the generator curve parametrizations c1, c2

re proper, i.e., injective for all but finitely many values of the parameter. Secondly, we will assume that S is not
ultitranslational. Thirdly, we will assume that C1, C2 are not planar curves contained in the same plane or in parallel
lanes; in that case S would be a plane.
3
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2.3. Minimal surfaces

Minimal surfaces are surfaces with constant vanishing mean curvature. Minimal surfaces are sometimes defined as
surfaces of the smallest area spanned by a given closed space curve, with illustrative physical examples provided by
soap films spanning a given wireframe. For us, however, the most relevant fact about minimal surfaces is that they are
surfaces of translation with complex conjugate generating pair (c.f. [17, §5.4]). In particular, this follows from a classic
representation of minimal surfaces, called the Weierstrass form of the surface. Let U ⊂ C be a simply-connected domain,
and let t0 be a point in the interior of U . Weierstrass proved (see Theorem 1 in page 112 of [18, §3.3]) that any nonplanar
minimal surface S defined over a simply-connected parameter domain can be parametrized as the real part

P(u, v) = ℜ
(
c(t)

)
= ℜ

(
c(u + iv)

)
, (u, v) ∈ R2, (11)

of the complex curve C ⊂ C3 with parametrization

c = (x, y, z) : U ⊂ C −→ C3,

where, with i2 = −1,

c(t) =

(∫ t

t0

f (γ )
1 − g(γ )2

2
dγ , i

∫ t

t0

f (γ )
1 + g(γ )2

2
dγ ,

∫ t

t0

f (γ )g(γ )dγ
)

. (12)

ere f is holomorphic and g is meromorphic such that fg2 is holomorphic in U . This condition implies that, within U ,
any pole of g of order k is located at a zero of f of order at least 2k. In that case the integrands in (12) are holomorphic
in U , and the integrals are well-defined for any t ∈ U . In several cases the functions f , g are real functions which are
real analytic on an interval containing t0, and U is an open subset of C where the components of c(t) can be analytically
extended; some examples can be found, for instance, in Chapter 22 of [5]. A straightforward calculation shows that c is
an isotropic curve, i.e.,

x′(t)2 + y′(t)2 + z ′(t)2 = 0.

In the context of minimal surfaces, c is sometimes called a minimal curve. We will say that c generates the minimal
surface. Thus, any minimal surface S can be parametrized as (11), where c generates S . Notice that this is a real
parametrization of S , i.e., P(t, s) has real coefficients. Since the real part of a complex number is equal to the average
of itself and its complex conjugate, the parametrization (11) takes the form (8), and S = C ⊕ C is a surface of translation
ith complex conjugate generator pair (C, C).

3. Translational surfaces

3.1. Detecting affine equivalences and symmetries

In this subsection we will initially assume that the generator pairs are rational, and later we will provide an observation
(Remark 2) that allows us to extend our results to the meromorphic case. We start with the main result.

Theorem 1. Let S1 = C1 ⊕ C2, S2 = D1 ⊕ D2 be two rational surfaces of translation, which are not multitranslational. Then
(x) = Mx + b is an affine equivalence between S1 and S2 if and only if

1. there exists v ∈ K3 such that f (C1) = τv(D1) and f (C2) = τ−v(D2), or
2. there exists v ∈ K3 such that f (C1) = τv(D2) and f (C2) = τ−v(D1).

Proof. Let c1, c2, d1, d2 be the parametrizations of C1, C2,D1,D2. Let C̃1, C̃2 be the curves defined by the parametrizations
c̃1 := f ◦ c1, c̃2 := f ◦ c2.

‘‘H⇒’’: Since f is an affine equivalence between S1 and S2, any point of S2 can be written as
(
c̃1(t)+ c̃2(s)

)
/2, implying

S2 = C̃1 ⊕ C̃2. Thus, (C̃1, C̃2) and (D1,D2) are both generator pairs of S2. Since S2 is not multitranslational by hypothesis,
the result follows.

‘‘⇐H’’: We just prove Case 1; Case 2 is analogous. Since (D1,D2) is a generator pair of S2, then
(
f (C1), f (C2)

)
=(

τv(D1), τ−v(D2)
)
is also a generator pair of S2. Since f is distributive with respect to ⊕, we get

S2 = f (C1) ⊕ f (C2) = f (C1 ⊕ C2) = f (S1),

which proves the claim. □

Writing b1 = b − v and b2 = b + v, we can rephrase Theorem 1 as follows.

Corollary 2. Let S1 = C1 ⊕ C2, S2 = D1 ⊕ D2 be two rational surfaces of translation, which are not multitranslational. Then
S1 and S2 are affinely equivalent if and only if there exist two nonsingular affine maps (with identical matrix)

f 1(x) = Mx + b1, f 2(x) = Mx + b2

such that either
4
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Algorithm 1 Affine-Equiv-Trans
Require: Two surfaces of translation S1 = C1 ⊕ C2, S2 = D1 ⊕ D2, rationally parametrized by P1, P2 as in (5) in the

real case or (8) in the complex conjugate case, where the underlying generating curve pairs C1, C2 and D1,D2 are not
coplanar and given by proper, rational parametrizations.

nsure: The affine equivalences f (x) = Mx + b between S1 and S2, or the statement that S1 and S2 are not affinely
equivalent.

1: for i = 1, 2 and j = 1, 2 do
2: Determine the affine equivalences f ij : Ci −→ Dj.
3: end for
4: For any pair (f 11(x) = Mx + b11, f 22(x) = Mx + b22) with equal matrix,

return ‘‘f (x) = Mx + b11 ⊕ b22 is an affine equiv. between S1, S2’’
5: For any pair (f 12(x) = Mx + b12, f 21(x) = Mx + b21) with equal matrix,

return ‘‘f (x) = Mx + b12 ⊕ b21 is an affine equiv. between S1, S2’’
6: if no such affine equivalence pair with equal matrix is found then
7: return ‘‘S1 and S2 are not affinely equivalent’’
8: end if

1. f 1(C1) = D1, f 2(C2) = D2, or
2. f 1(C1) = D2, f 2(C2) = D1,

In that case f (x) = Mx + b1 ⊕ b2 is an affine equivalence between S1 and S2.

Thus, Corollary 2 allows to transfer the affine equivalence detection problem from surfaces of translation to their
generating space curves. In order to do this, we recall here the following result from [8]; the result uses the fact that the
only birational transformations of the complex line are the Möbius transformations [19], i.e., rational functions

ϕ : C 99K C, ϕ(t) =
at + b
ct + d

, ad − bd ̸= 0. (13)

roposition 3. Let C,D ⊂ C3 be two rational space curves, properly parametrized by c, d. Then C,D are affinely equivalent
if and only if there exists an affine map f (x) = Mx + b and a Möbius transformation ϕ such that

f ◦ c = d ◦ ϕ, (14)

In [8], it is shown how to use Proposition 3 to solve the affine equivalence problem for space curves (and in fact,
or projective equivalences between rational curves in any dimension). The rough idea is that (14) leads to a polynomial
ystem, linear in the entries of M and the components of b. Some of the equations of this system can be used to write the
ntries of M and the components of b in terms of the parameters of the Möbius transformation ϕ. When these expressions
re plugged into the remaining equations, we get polynomial conditions for the parameters of the Möbius transformation
. Computing these parameters then leads to the affine equivalences themselves. Combining this with Corollary 2, we
rrive at Algorithm Affine-Equiv-Trans for solving the affine equivalence problem for surfaces of translation.
Notice that the complexity of Algorithm Affine-Equiv-Trans is dominated by the complexity of computing affine

quivalences between the generator curves. In this regard, we refer the interested reader to the exhaustive analysis of
he performance of the algorithm for computing affine equivalences between curves carried out in [8]. In particular, this
nalysis shows that the algorithm is very efficient even for high degree.
Setting S1 = S2 in Algorithm Affine-Equiv-Trans, and requiring f (x) = Mx + b to be an isometry (i.e., M

rthogonal), leads to an analogous algorithm for computing symmetries of translational surfaces.

emark 1. Note that in Algorithm Affine-Equiv-Trans we need to compute the affine equivalences f ij : Ci −→ Dj
f the four curve pairs {C1, C2} × {D1,D2}.

emark 2. Let ϕ : C −→ C be a meromorphic function, i.e., a quotient ϕ = ϕ1/ϕ2 of two holomorphic functions.
mbedding the complex plane C as an affine chart of the complex projective line P1

C through the map z ↦−→ [z : 1], the
eromorphic function ϕ can be extended to an analytic function

P1
C −→ P1

C, [t : s] ↦−→ [ϕ1(t/s) : ϕ2(t/s)].

t follows from Liouville’s theorem that every such analytic function on P1
C is rational [20, §2.9]. Hence, perhaps

urprisingly, also the bi-analytic bijections on the complex projective line are Möbius transformations. Due to this,
esults analogous to Theorem 1, Corollary 2 and Proposition 3 hold for curves C,D ⊂ C3 with proper meromorphic
arametrizations c, d. However, we are unaware of the existence of algorithms for checking affine equivalence of generic
eromorphic curves. Hence an analogous result to Algorithm Affine-Equiv-Trans for meromorphic curves is not
vailable at the moment.
5
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Fig. 1. Isometric translational surfaces, each generated by translating a twisted cubic curve along itself.

xample 1. Consider the twisted cubic curves

C : t ↦−→ c(t) =
(
t, t2, t3

)
, D : t ↦−→ d(t) =

(
t3, −t, t2

)
,

as well as corresponding surfaces of translation C⊕C and D⊕D obtained by translating these curves along themselves (see
Fig. 1). In this case Algorithm 1 simplifies, as it is only requires detecting affine equivalences f : C −→ D (cf. Remark 1).

For ease of presentation we will restrict our attention to affine equivalences f (x) = Mx + b with zero constant term,
.e., b = 0. First we consider the case where ϕ as in (13) satisfies d = 1. Let

R = Q[a, b, c,m11, . . . ,m33]

e the ring of polynomials with rational coefficients in the entries mij of M and the coefficients a, b, c of ϕ. Substituting
generic ϕ (with d = 1) together with a generic matrix M = [mij]

3
i,j=1 in (14), clearing denominators, and equating the

coefficients of the monomials 1, t, t2, . . ., one obtains a system of equations {pk = 0}, where the polynomials pk generate
an ideal I ⊂ R. Using Sage with Singular as a back-end (see [14]), we compute a Gröbner basis G of I . After eliminating
the variables {mij}, we obtain an elimination ideal in the ring Q[a, b, c] with Gröbner basis

{a3c, a2c2, ac2, b, d − 1}.

It follows that d = 1 (as imposed), b = 0 and (since ad − bc ̸= 0) in addition c = 0 and a ̸= 0, yielding the Möbius
transformations ϕa(t) = at . Substituting this back into G one finds that all entries of M are zero, except for m13,m21,m32,
which satisfy m21 = −a,m32 = m2

21 = a2, and m13 = −m2
32/m21 = a3. A similar analysis with d = 0 in (13) provides no

new solutions.
We conclude that the affine equivalences (with zero constant term) between C and D and corresponding Möbius

transformations ϕ satisfying (14) are

f a(x) =

⎡⎣ 0 0 a3
−a 0 0
0 a2 0

⎤⎦ x, ϕa(t) = at, 0 ̸= a ∈ R.

By Corollary 2, these are also affine equivalences between C⊕C and D⊕D. Note that isometries are obtained for a = ±1.

Example 2. Let S1 = C1 ⊕ C2 be the translational surface generated by the curves

C1 : t ↦−→ c1(t) =

(
t

t6 + 1
,

t3

t6 + 1
,

t5

t6 + 1

)
,

C2 : s ↦−→ c2(s) =

(
s2,

s
s2 + 1

, s4 − 2
)

.

urthermore, for i = 1, 2 we consider f i(x) = Ax + bi, with

A =

⎡⎣√
2 −1 2

√
2

1 −2
√
2

−1 −
√
2 2

⎤⎦ , b1 = 0, b2 =

[ 1
0

−1

]
,

nd we let S2 = D1⊕D2 be the translational surface where Di = f i(Ci) for i = 1, 2, parametrized by d1(t) = (f 1◦c1)(t−1),
d2(s) = (f 2 ◦ c2)(s − 1).

According to Corollary 2, the surfaces S1, S2 are affinely equivalent and satisfy S2 = f (S1), where

f (x) = Ax + b, b = b1 ⊕ b2 =

[ 1/2
0

]
. (15)
−1/2
6
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Using Maple 18 [21], we compute the affinities f ij between the Ci and the Dj. For i ̸= j no affinity is found, while for i = j
e get

f 11(x) = Ax, f 22(x) = Ax + b2

ith corresponding Möbius transformations

ϕ1(t) = t + 1, ϕ2(s) = s + 1.

hus, as expected we recover the affinity (15) between S1 and S2. The interested reader can check [14] for further detail
n the computations.

.2. Designing symmetric translational surfaces

We can apply the preceding results to construct symmetric translational surfaces. In order to do this, we observe
hat Corollary 2 also holds when replacing ‘‘affinely equivalent’’ with ‘‘isometric’’, and ‘‘affine equivalence/map’’ with
‘isometry’’. In particular, Corollary 2 provides two quick ways to generate a symmetric translational surface, which are
ummarized in the following result.

roposition 4. Let S = C1 ⊕ C2, and let f : K3
→ K3 be a symmetry satisfying one of the following two conditions:

(a) f is a common symmetry of C1 and C2;
(b) f is an involution, i.e., f ◦ f is the identity, and C2 = f (C1).

hen f is a symmetry of S .

We illustrate this result in the following examples.

xample 3 (Crunode). Let C1 ⊂ R3 be the crunode curve parametrized by

c1(t) =
(
x(t), y(t), z(t)

)
=

(
t

t4 + 1
,

t2

t4 + 1
,

t3

t4 + 1

)
. (16)

s shown in [7], this curve is invariant under the half-turn about the y-axis, as[
−1 0 0
0 1 0
0 0 −1

][x(t)
y(t)
z(t)

]
=

[x(−t)
y(−t)
z(−t)

]
.

as well as reflections in the planes z ± x = 0, since[ 0 0 ±1
0 1 0

±1 0 0

][x(t)
y(t)
z(t)

]
=

[
±z(t)
y(t)

±x(t)

]
=

[x(±1/t)
y(±1/t)
z(±1/t)

]
.

We consider now the curves c2 parametrized as c2 = c1, c2 = Myc1 and c2 = M zc1, where the matrices My and M z denote
reflections in the planes y = 0 and z = 0. Proposition 4 implies that the translational surfaces c1 ⊕ c2 are symmetric;
these surfaces are shown in the first row of Table 1.

Example 4 (Trefoil Knot). Let C1 ⊂ R3 be the trefoil knot parametrized by

c1(θ ) =
(
x(θ ), y(θ ), z(θ )

)
:=
(
sin(θ ) + 2 sin(2θ ), cos(θ ) − 2 cos(2θ ), − sin(3θ )

)
. (17)

Since the parametrization is trigonometric (i.e., each component is polynomial in sin(θ ) and cos(θ )), the reparametrization
z = eiθ provides a rational, complex parametrization ĉ1 : S1 −→ C1, with S1 := {z ∈ C : |z| = 1} the unit circle. Then,
applying the method in [22] (cf. [14]), one obtains rotational symmetries about the z-axis by angles ±2π/3, as well as
a half-turn about the y-axis. Alternatively, these symmetries are determined directly by applying a rotation matrix and
standard trigonometric identities. In particular,[

cosϕ − sinϕ

sinϕ cosϕ

][
x(θ )
y(θ )

]
=

[
sin(θ − ϕ) + 2 sin(2θ + ϕ)
cos(θ − ϕ) − 2 cos(2θ + ϕ)

]
=

[
x(θ − ϕ)
y(θ − ϕ)

]
holds identically if and only if ϕ ≡ 0 or ϕ ≡ ±2π/3 modulo 2π , while[

−1 0 0
0 1 0
0 0 −1

][x(θ )
y(θ )
z(θ )

]
=

[x(−θ )
y(−θ )
z(−θ )

]
.

Choosing c2 as in the previous example yields the symmetric translational surfaces c1 ⊕ c2 shown in the second row of
Table 1.
7
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Table 1
Translational surfaces inheriting symmetries shared by their generator pairs.
c1 c1 ⊕ c1 c1 ⊕ Myc1 c1 ⊕ M zc1

4. Minimal surfaces

Since minimal surfaces are translational surfaces with complex conjugate generator pairs (see Section 2.3) (C, C), we
an apply the previous results to minimal surfaces for which the minimal curve C is rational or meromorphic. In this case
is rational or meromorphic as well.

.1. Detecting affine equivalences and symmetries

In this subsection we consider minimal surfaces with parametrizations P as in (11), where c is rational or meromorphic.
f P is rational, c must also be rational (see [5, Corollary 22.25]), and the parametrization (8) of the real part of S = C ⊕ C
s rational in u, v. Note that while rational parametrizations c as in (12) come from rational pairs f , g , not every pair of
ational functions f , g provides a rational c [1]. We will make the additional assumption that c is proper.

Recall that while we have presented an algorithm for detecting affine equivalences in the rational case, we do not have
such an algorithm for the meromorphic case, since an algorithm for checking affine equivalence of meromorphic curves
is currently absent. For this reason we will focus on the rational case, while making clear which results also hold in the
meromorphic case.

Therefore, for i = 1, 2, given minimal surfaces Si which are not multitranslational, rationally parametrized by
Pi =

(
ci ⊕ ci

)
◦ ι as in (8) with ci proper, we can use Algorithm Affine-Equiv-Trans to determine whether S1, S2 are

ffinely equivalent, by determining whether their minimal curves are affinely equivalent. As we only consider real affine
quivalences, there is an additional advantage here: while the case of general surfaces of translation requires finding the
ffine equivalences between four pairs of space curves, this case only requires finding the affine equivalences between
wo pairs of space curves. Indeed, if there exist M ∈ R3×3, b ∈ R3 and ϕ a Möbius transformation satisfying

Mc1(t) + b = c2 ◦ ϕ(t),

onjugating this equation and substituting s := t yields

Mc1(s) + b = c2 ◦ ϕ(s).

Thus, if c1 and c2 parametrize complex space curves that are related by a real affine map, the same affine map relates the
complex curves parametrized by c1 and c2 (although the corresponding Möbius transformation is complex conjugated).
A similar statement holds for c1 and c2. Hence, we have the following result, which is another corollary of Theorem 1.

Corollary 5. For i = 1, 2, let Si be a minimal surface that is not multitranslational, rationally parametrized by Pi = (ci⊕ci)◦ ι

s in (8), with ci a proper parametrization of a minimal curve Ci. Then f is an affine equivalence between S1 and S2 if and only
f, for some Möbius transformation ϕ, one of the following cases holds:

1. f ◦ c1 = c2 ◦ ϕ (f is an affine equivalence between C1 and C2)
2. f ◦ c1 = c2 ◦ ϕ (f is an affine equivalence between C1 and C2)

Next we consider the symmetries of a rational minimal surface S , rationally parametrized by P = (c ⊕ c) ◦ ι as in (8).
he following result follows directly from Corollary 5.
8
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Proposition 6. Let S be a rational minimal surface that is not multitranslational, rationally parametrized by P = (c ⊕ c) ◦ ι

s in (8), with c a proper parametrization of a minimal curve C. Then f is a symmetry of S if and only if, for some Möbius
transformation ϕ, either of the following cases holds:

1. f ◦ c = c ◦ ϕ (f is a symmetry of C)
2. f ◦ c = c ◦ ϕ (f is an isometry mapping C onto C)

Remark 3. Following Remark 2, Corollary 5 and Proposition 6 also hold when c is a proper parametrization with
eromorphic components.

We now introduce an additional assumption, namely that the functions f , g defining c in (12) are rational functions
ith real coefficients. Many of the classical algebraic minimal surfaces found in the literature take this form (c.f. [4]
nd [5, Chapter 22]). Thus, let C ⊂ C3 be the complex curve parametrized by c = (x, y, z) : U ⊂ C −→ C3 as in (12). If
he functions f , g in (12) have real coefficients, conjugating (12) shows that the complex conjugate curve C admits the
parametrization

c(s) =

(
x(s), y(s), z(s)

)
=

(
x(s), −y(s), z(s)

)
, s ∈ U . (18)

or the trivial Möbius transformation ϕ(z) = z and reflection

f (x) = Mx + b, M =

[1 0 0
0 −1 0
0 0 1

]
, b = 0 (19)

n the plane y = 0, the parametrization (18) yields

f ◦ c = c ◦ ϕ.

Hence Proposition 6 states that f is a symmetry of the surface S. Thus we recover the following known result, which
reveals that minimal surfaces generated by minimal curves (12) constructed from real rational functions f , g always have
at least one mirror symmetry.

Corollary 7. Every minimal surface S parametrized by P as in (8) and (12), with f , g rational functions with real coefficients,
is symmetric with respect to the plane y = 0.

4.2. Symmetries of higher-order Enneper surfaces

As an application of the results in the previous subsection, in this subsection we illustrate how Proposition 6 can be
used to compute the symmetries of the (higher-order) Enneper surfaces Sk, for k = 1, 2, . . . (c.f. [23]). These are the minimal
surfaces obtained by taking constant f = 2 and monomial g = zk in (12). The Enneper surfaces are classical examples of
minimal surfaces with polynomial parametrizations.

We require an explicit parametrization of Sk, which we derive due to lack of a suitable reference. The proof involves
the Chebyshev polynomial Tn of the first kind, defined recursively by

T0(x) := 1, T1(x) := x, Tn(x) := 2xTn−1(x) − Tn−2(x), n ≥ 2,

or implicitly by

Tn
(
cos(θ )

)
= cos(nθ ), n ≥ 0. (20)

Substituting θ =
π
2 − θ ′ in (20), one obtains

Tn
(
sin(θ ′)

)
= Tn

(
cos(θ )

)
= cos(nθ ) = cos

(nπ
2

− nθ ′

)
= cos

(nπ
2

)
cos(nθ ′) + sin

(nπ
2

)
sin(nθ ′),

yielding the lesser-known identity

Tn
(
sin(θ )

)
= (−1)k sin(nθ ), n = 2k + 1 ≥ 1. (21)

Proposition 8. For k ≥ 1, the higher-order Enneper surface Sk admits the parametrization

Pk(u, v) =

(
u −

r2k+1T2k+1
( u
r

)
2k + 1

, −v − (−1)k
r2k+1T2k+1

(
v
r

)
2k + 1

, 2
rk+1Tk+1

( u
r

)
k + 1

)
. (22)
9
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Proof. Write t = reiθ = u + iv. With f (t) = 2 and g(t) = tk, the expression (12) yields the minimal curve

Ψk(t) =

(
t −

t2k+1

2k + 1
, it + i

t2k+1

2k + 1
, 2

tk+1

k + 1

)
. (23)

rom (20) it follows that

tn + tn

2
= rn cos(nθ ) = rnTn

(
cos(θ )

)
= rnTn

(u
r

)
or n ≥ 0, while (21) implies

tn − tn

2i
= rn sin(nθ ) = (−1)krnTn

(
sin(θ )

)
= (−1)krnTn

(v

r

)
for n = 2k + 1 ≥ 1. Hence the statement follows from Pk(u, v) = ℜ

(
Ψk(u + iv)

)
. □

xample 5. For k = 1, we obtain the classical Enneper surface parametrized by

P1(u, v) =

(
v2u −

1
3
u3

+ u,
1
3
v3

− vu2
− v, −v2

+ u2
)

, (u, v) ∈ R2. (24)

ll nontrivial minimal bicubic Bézier surfaces are affinely equivalent to pieces of this surface [24, Theorem 2]; hence it is
seful in computer-aided geometric design for the purpose of architecture, where minimal material usage is important.

emark 4. With r =
√
u2 + v2 and n = 2k + ε with k ≥ 0 and ε ∈ {0, 1}, one can show by induction that

rnTn
(u
r

)
=

k∑
m=0

(−1)k+m
(

n
2 m + ε

)
vn−2 m−εu2 m+ε,

rnTn
(v

r

)
=

k∑
m=0

(−1)k+m
(

n
2 m + ε

)
un−2 m−εv2 m+ε.

This expresses the parametrization (22) in the monomial basis.

Let O(3) be the orthogonal group of R3, i.e., the symmetry group of the sphere consisting of orthogonal 3 × 3 matrices,
and let

D2k+2 :=
⟨
ρ, σ : ρ2k+2

= σ 2
= e, σρσ = ρ−1⟩

= {σ nρm
: n = 0, 1, m = 0, . . . , 2k + 1}

be the dihedral group of order 4k + 4 (here e denotes the neutral element). Let

S :=

[1 0 0
0 −1 0
0 0 1

]
, Rk :=

⎡⎣ cos
(

π
k+1

)
sin
(

π
k+1

)
0

− sin
(

π
k+1

)
cos
(

π
k+1

)
0

0 0 −1

⎤⎦ . (25)

roposition 9. The symmetry group {f m,n(x) := Mm,nx} of the higher-order Enneper surface Sk is parametrized by the group
onomorphism

D2k+2 −→ O(3), σ nρm
↦−→ Mm,n := SnRm

k . (26)

oreover, with Pk as in (22) and Möbius transformations ϕm(z) := ζmz, where ζ = ζ2k+2 := e2π i/(2k+2) is a (2k + 2)-th root
f unity,

f m,n ◦ Pk = Pk ◦ ϕm, n = 0, 1, m = 0, 1, . . . , 2k + 1.

roof. Applying Proposition 6 to compute the symmetries of Sk, we first compute the symmetries of the complex space
urve Ck parametrized by ck. Applying Proposition 3 with c = d = ck, each symmetry of Ck corresponds to an isometry
(x) = Mx + b and a Möbius transformation ϕ satisfying (14). Since ck is polynomial, ϕ(t) = at + b is polynomial, and
e obtain the polynomial system
Mck(t) + b = ck(at + b). (27)

10
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Writing M = [mij]ij and b = [bi]i, the last equation of this system is

(m31 + m32i)t +
2

k + 1
m33tk+1

+
1

2k + 1
(−m31 + im32)t2k+1

+ b3

=
2

k + 1

k+1∑
j=0

(
k + 1

j

)
ajbk+1−jt j. (28)

Equating coefficients of (highest) order 2k + 1 yields m31 = m32 = 0. Hence, since M is orthogonal, it follows that
m33 = ±1. Equating coefficients of order k + 1 yields ak+1

= m33 = ±1, so that a = ζm for some m ∈ {0, 1, . . . , 2k + 1}.
Moreover, equating linear coefficients yields 2abk = m31 + m32i = 0, implying b = 0. Evaluating (27) at t = 0 yields
b = ck(b) = 0. Differentiating (27) l times and substituting t = 0 yields Mc(l)k (0) = alc(l)k (0), which provides the matrix
equation

M = CAmC−1,

where, since ζ
(2k+1)
2k+2 = ζ−1

2k+2 and ζ k+1
2k+2 = −1,

C :=
[
c′

k(0), c
(k+1)
k (0), c(2k+1)

k (0)
]
, Am :=

[
ζm 0 0
0 (−1)m 0
0 0 ζ−m

]
.

It follows that Mm,0ck = ck ◦ ϕm for m = 0, 1, 2, 3, where ϕm(t) = ζmt and

Mm,0 :=

[1 0 −(2k)!
i 0 i(2k)!
0 2 0

][
ζm 0 0
0 (−1)m 0
0 0 ζ−m

]
1
2

⎡⎣ 1 −i 0
0 0 1
−1
(2k)!

−i
(2k)! 0

⎤⎦
=

⎡⎣ ζm
+ζ−m

2
ζm

−ζ−m

2i 0
ζ−m

−ζm

2i
ζm

+ζ−m

2 0
0 0 (−1)m

⎤⎦ =

⎡⎣ cos( πm
k+1 ) sin( πm

k+1 ) 0
− sin( πm

k+1 ) cos( πm
k+1 ) 0

0 0 (−1)m

⎤⎦
= Rm

k .

Next we compute the isometries mapping Ck onto the complex curve Ck parametrized by ck. Applying Proposition 3
with c = d = ck, each such isometry f (x) = Mx + b corresponds to a Möbius transformation ϕ satisfying (14), again
ecessarily polynomial:

Mck(t) + b = ck(at + b). (29)

roceeding as before, one demonstrates that ϕ(t) = ϕm(t) := ζmt and b = 0. It follows that Mm,1ck = ck ◦ ϕm for
= 0, 1, . . . , 2k + 1, where

Mm,1 = CAmC−1
= SCAmC−1

=

[1 0 0
0 −1 0
0 0 1

]⎡⎣ cos( πm
k+1 ) sin( πm

k+1 ) 0
− sin( πm

k+1 ) cos( πm
k+1 ) 0

0 0 (−1)m

⎤⎦ = SRm
k . (30)

One verifies that the map σ nρm
↦−→ Mm,n is a monomorphism by comparing multiplication tables, or simply by

verifying that its generators Rk and S satisfy R2k+2
k = S2

= I and SRkS = R−1
k . □

Remark 5. Since SRm
k = R−m

k S , precomposing (26) with the group automorphism σ nρm
↦−→ σ nρ−m of D2k+2 yields an

alternative group monomorphism

D2k+2 −→ O(3), σ nρm
↦−→ M−m,n := Rm

k S
n.

Note that Mm,n is a rotation of angle −
πm
k+1 about the z-axis, composed by a reflection in the plane z = 0 when m ≡ 1

mod 2), and in addition composed by a reflection in the plane y = 0 in the case n = 1. For k = 1, 2, 3, 4, Fig. 2 shows
the higher-order Enneper surface Sk, together with its symmetry elements.

The particular form ϕm(t) := ζmt of the Möbius transformation was the inspiration for the results in the next
subsection.

4.3. Constructing symmetric surfaces

Inspired by Section 4.2, in this subsection we will see that imposing certain parity-like properties on the functions
f , g in (12) will result in a minimal surface S with certain symmetries. In this case, we need to make certain assump-
tions on f , g (see Proposition 10). When satisfied, these assumptions lead to meromorphic, not necessarily rational,
parametrizations of S.
11
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Fig. 2. For k = 1, 2, 3, 4, top view (top) and side view (bottom) of higher-order Enneper surfaces Sk , together with symmetry planes, symmetry
otation axes, and symmetry point (the latter for k = 2, 4).

Let F be the space of meromorphic functions on a simply connected region U ⊂ C and let ϕ : U −→ U be
eromorphic. Consider the composition operator

Tϕ : F −→ F, Tϕ(f ) := f ◦ ϕ. (31)

he eigenvalue equation

Tϕ(f ) = λf

s called Schröder’s equation; it is known to have solutions under general conditions.
In our case, for any integer K ≥ 2, we consider the Möbius transformation ϕ(t) = ϕK (t) := ζK · t , where ζK denotes

K -root of the unity. Notice that ϕ leaves invariant any complex disk centered at the origin; in particular, in this case
e can take U to be any such disk, or even the entire complex plane C. The corresponding composition operator T = Tϕ

eneralizes the parity operator. The K -fold composition satisfies T K (f ) = f ◦ ϕK
= f , which implies that the eigenvalues

f T are the K th roots of unity ζm
K , with m = 0, . . . , K − 1. These provide an eigendecomposition of the function space

= F0 ⊕ · · · ⊕ FK−1 into K parts.
For simplicity we restrict ourselves to K = 4, in which case ζK = i; a similar analysis can be carried out for any
≥ 2. The following proposition states that choosing f , g in (12) as eigenfunctions of T (and hence of T q, with q ≥ 1)

esults in certain symmetries of the corresponding minimal surface. More precisely, we obtain a symmetry for every pair
f eigenpairs (ir , f ), (is, g) of T q for which q+ r + s ≡ 0 (mod 2). The functions f , g and domain U satisfy the requirements
or the Weierstrass representation (12), described in more detail in Section 2.3.

roposition 10. Let ϕ(t) = it and T = Tϕ be as above. Suppose that in a simply-connected region U ⊂ C invariant under ϕ,
f is holomorphic, g is meromorphic with no pole at t = 0, and fg2 is holomorphic. In addition, suppose f , g satisfy

T q(f )(t) = f (iqt) = ir · f (t), T q(g)(t) = g(iqt) = is · g(t) (32)

for some q, r, s ∈ Z/4Z satisfying q + r + s ≡ 0 (mod 2). Let C be the corresponding curve parametrized by c as in (12), with
complex conjugate C parametrized by c. Let S be the corresponding minimal surface parametrized by P as in (8). Then S has
he symmetry f ±

q+r,s(x) = M±

q+r,sx as in Table 2, for each choice of the sign ±.

Proof. Suppose (32) holds for some q, r, s ∈ Z/4Z satisfying q + r + s ≡ 0 (mod 2). By Proposition 6 and Remark 3, the
ymmetries of S are the symmetries of C and the isometries mapping C onto C. In light of Proposition 3 and Remark 2,
we examine when the reparametrization ϕq(t) := iqt of c can be expressed as the composition of such an isometry with
either c or c. Applying the change of variable γ = iq · η and using (32),

Ψ1(iqt) =

∫ iq·t

0
f (γ )

1 − g2(γ )
2

dγ = iq+r
∫ t

0
f (η)

1 − (−1)sg2(η)
2

dη, (33)

Ψ2(iqt) = i ·
∫ iq·t

0
f (γ )

1 + g2(γ )
2

dγ = iq+r+1
∫ t

0
f (η)

1 + (−1)sg2(η)
2

dη, (34)

Ψ3(iqt) =

∫ iq·t

f (γ )g(γ )dγ = iq+r+s
∫ t

f (η)g(η)dη. (35)

0 0

12
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Table 2
Real orthogonal (black) and imaginary unitary (gray) matrices M±

q+r,s in (36)–(37) with symmetry types and symmetry
elements for the various cases (q, r, s), where ≡ denotes equivalence modulo 4.
M+

q+r,s q + r ≡ 0 q + r ≡ 1 q + r ≡ 2 q + r ≡ 3

identity central inversion
R3 x = y = z = 0

s ≡ 0

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ ⎡⎣ i 0 0
0 i 0
0 0 i

⎤⎦ ⎡⎣−1 0 0
0 −1 0
0 0 −1

⎤⎦ ⎡⎣−i 0 0
0 −i 0
0 0 −i

⎤⎦
rotoreflection quarter-turn
x = y = z = 0 x = y = 0

s ≡ 1

⎡⎣0 −i 0
i 0 0
0 0 i

⎤⎦ ⎡⎣ 0 1 0
−1 0 0
0 0 −1

⎤⎦ ⎡⎣ 0 i 0
−i 0 0
0 0 −i

⎤⎦ ⎡⎣0 −1 0
1 0 0
0 0 1

⎤⎦
reflection half-turn
z = 0 x = y = 0

s ≡ 2

⎡⎣1 0 0
0 1 0
0 0 −1

⎤⎦ ⎡⎣ i 0 0
0 i 0
0 0 −i

⎤⎦ ⎡⎣−1 0 0
0 −1 0
0 0 1

⎤⎦ ⎡⎣−i 0 0
0 −i 0
0 0 i

⎤⎦
quarter-turn rotoreflection
x = y = 0 x = y = z = 0

s ≡ 3

⎡⎣0 −i 0
i 0 0
0 0 −i

⎤⎦ ⎡⎣ 0 1 0
−1 0 0
0 0 1

⎤⎦ ⎡⎣ 0 i 0
−i 0 0
0 0 i

⎤⎦ ⎡⎣0 −1 0
1 0 0
0 0 −1

⎤⎦
M−

q+r,s q + r ≡ 0 q + r ≡ 1 q + r ≡ 2 q + r ≡ 3

reflection half-turn
y = 0 x = z = 0

s ≡ 0

⎡⎣1 0 0
0 −1 0
0 0 1

⎤⎦ ⎡⎣ i 0 0
0 −i 0
0 0 i

⎤⎦ ⎡⎣−1 0 0
0 1 0
0 0 −1

⎤⎦ ⎡⎣−i 0 0
0 i 0
0 0 −i

⎤⎦
half-turn reflection
x + y = z = 0 x − y = 0

s ≡ 1

⎡⎣0 i 0
i 0 0
0 0 i

⎤⎦ ⎡⎣ 0 −1 0
−1 0 0
0 0 −1

⎤⎦ ⎡⎣ 0 −i 0
−i 0 0
0 0 −i

⎤⎦ ⎡⎣0 1 0
1 0 0
0 0 1

⎤⎦
half-turn reflection
y = z = 0 x = 0

s ≡ 2

⎡⎣1 0 0
0 −1 0
0 0 −1

⎤⎦ ⎡⎣ i 0 0
0 −i 0
0 0 −i

⎤⎦ ⎡⎣−1 0 0
0 1 0
0 0 1

⎤⎦ ⎡⎣−i 0 0
0 i 0
0 0 i

⎤⎦
reflection half-turn
x + y = 0 x − y = z = 0

s ≡ 3

⎡⎣0 i 0
i 0 0
0 0 −i

⎤⎦ ⎡⎣ 0 −1 0
−1 0 0
0 0 1

⎤⎦ ⎡⎣ 0 −i 0
−i 0 0
0 0 i

⎤⎦ ⎡⎣0 1 0
1 0 0
0 0 −1

⎤⎦

With t := q + r and using that c = Sc, it follows that

c ◦ ϕq
=

[it 0 0
0 it 0
0 0 it+s

]
c =

⎡⎣it 0 0
0 it−2 0
0 0 it+s

⎤⎦ c, if s ≡ 0 (mod 2),

c ◦ ϕq
=

⎡⎣ 0 it−1 0
it+1 0 0
0 0 it+s

⎤⎦ c =

⎡⎣ 0 it+1 0
it+1 0 0
0 0 it+s

⎤⎦ c, if s ≡ 1 (mod 2),

so that

c ◦ ϕq(t) =f +

q+r,s ◦ c(t) = M+

q+r,sc(t), (36)

c ◦ ϕq(t) =f −

q+r,s ◦ c(t) = M−

q+r,sc(t), (37)

here M+

q+r,s = M−

q+r,sS is as in Table 2. The real isometries f ±

q+r,s are obtained by discarding the cases q + r + s ≡ 1
mod 2), shown in gray. Thus, from Proposition 3 we deduce that in the remaining cases f +

q+r,s is a symmetry of C and
f − is an isometry mapping C onto C. In either case, Proposition 6 implies that f is a symmetry of the surface S. □
q+r,s

13
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The Enneper surface S1 originates from taking f (t) = 2 and g(t) = t , in which case

f (iqt) = 2, g(iqt) = iqt, q ∈ Z/4Z.

Hence (32) holds whenever r ≡ 0 modulo 4 and s ≡ q ≡ q+ r modulo 4. Therefore the symmetries Rm
1 S

n of the Enneper
surface are recovered as the diagonal cases m ≡ s ≡ q + r , with n = 0 for the top sign and n = 1 for the bottom sign.

Remark 6. Consider the (external) direct product group

D4 × Z/2Z ≃ ⟨ρ, σ , τ : ρ4
= σ 2

= τ 2
= e, σρσ = ρ−1, τρ = ρτ, στ = τσ ⟩,

where e denotes the neutral element. With R1, S as in (25) and with T := diag(1, 1, −1) the reflection in the plane z = 0,
the map

D4 × Z/2Z −→ O(3), ρmσ nτ p
↦−→ Rm

1 S
nT p

is a group monomorphism establishing a group structure on the set of real matrices in Table 2.

Remark 7. Alternatively, consider Möbius transformations ϕ(t) = t +b and T = Tϕ as in (31) for a space F of periodic or
doubly periodic meromorphic functions. For K ≥ 2, choosing b = ω/K for one of the periods ω of F , the operator T again
has order K and eigenvalues ζm

K , for m = 0, . . . , K − 1. Analogous to Proposition 10, solutions f , g to Schröder’s equation
again lead to symmetric minimal surfaces (c.f. [23]).

5. Conclusion and open problems

In this paper we have introduced a characterization for affine equivalence of two surface of translation, defined by
either rational or meromorphic generators. Since minimal surfaces are surfaces of translation with a complex conjugate
generator pair, the results naturally translate to minimal surfaces of the considered kind as well. When the generators are
rational, our algorithm leads to an algorithm that ultimately relies on the algorithm in [8] to check whether two space
curves are affinely equivalent. Additionally, we have applied our results to building surfaces of translation and minimal
surfaces with symmetries, and to computing the symmetries of higher-order Enneper surfaces.

However, notice that the algorithms in this paper require the surfaces to be defined by means of certain types
of parametrization. In the case of surfaces of translation, we need them to be given in the standard form P(u, v) =
1
2

(
c1(u) + c2(v)

)
, where c1(u) and c2(v) are rational curves. In the case of minimal surfaces, we require them to be given

s in (11), which in turn requires to know a minimal curve for the surface.
If a surface of translation is reparametrized, then the standard form is lost. In the general case, it is still an open problem

o efficiently recognize a surface as a surface of translation when it is not parametrized in the standard way (c.f. [1,
2.3]), and to bring it into standard form. Similarly, if a rational minimal surface undergoes a rational reparametrization,
omputing a minimal curve for the surface is still an open problem.
A first step in this direction is the paper [25], where ideas for recognizing rational surfaces of translation are provided.

owever, the algorithm in [25] requires computing the implicit equation of the surface and, which is harder, a tangent
irection to one of the curves in the generator pairs. Although [25] presents a novel approach in this regard, a complete
nd efficient solution to the problem is still absent. However, since minimal surfaces are surfaces of translation with a
omplex conjugate generator pair, these two open problems, i.e., recognizing and reparametrizing translational surfaces
nd computing a minimal curve, are certainly connected.
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