38 research outputs found

    Content Censorship in the InterPlanetary File System

    Full text link
    The InterPlanetary File System (IPFS) is currently the largest decentralized storage solution in operation, with thousands of active participants and millions of daily content transfers. IPFS is used as remote data storage for numerous blockchain-based smart contracts, Non-Fungible Tokens (NFT), and decentralized applications. We present a content censorship attack that can be executed with minimal effort and cost, and that prevents the retrieval of any chosen content in the IPFS network. The attack exploits a conceptual issue in a core component of IPFS, the Kademlia Distributed Hash Table (DHT), which is used to resolve content IDs to peer addresses. We provide efficient detection and mitigation mechanisms for this vulnerability. Our mechanisms achieve a 99.6\% detection rate and mitigate 100\% of the detected attacks with minimal signaling and computational overhead. We followed responsible disclosure procedures, and our countermeasures are scheduled for deployment in the future versions of IPFS.Comment: 15 pages (including references), 15 figures. Accepted to be published at the Network and Distributed System Security (NDSS) Symposium 202

    Trust management schemes for peer-to-peer networks

    Get PDF
    Peer-to-peer (P2P) networking enables users with similar interests to exchange, or obtain files. This network model has been proven popular to exchange music, pictures, or software applications. These files are saved, and most likely executed, at the downloading host. At the expense of this mechanism, worms, viruses, and malware find an open front door to the downloading host and gives them a convenient environment for successful proliferation throughout the network. Although virus detection software is currently available, this countermeasure works in a reactive fashion, and in most times, in an isolated manner. A trust management scheme is considered to contain the proliferation of viruses in P2P networks. Specifically, a cooperative and distributed trust management scheme based on a two-layer approach to bound the proliferation of viruses is proposed. The new scheme is called double-layer dynamic trust (DDT) management scheme. The results show that the proposed scheme bounds the proliferation of malware. With the proposed scheme, the number of infected hosts and the proliferation rate are limited to small values. In addition, it is shown that network activity is not discouraged by using the proposed scheme. Moreover, to improve the efficiency on the calculation of trust values of ratio based normalization models, a model is proposed for trust value calculation using a three-dimensional normalization to represent peer activity with more accuracy than that of a conventional ratio based normalization. Distributed network security is also considered, especially in P2P network security. For many P2P systems, including ad hoc networks and online markets, reputation systems have been considered as a solution for mitigating the affects of malicious peers. However, a sybil attack, wherein forging identities is performed to unfairly and arbitrarily influence the reputation of peers in a network or community. To defend against sybil attack, each reported transaction, which is used to calculate trust values, is verified. In this thesis, it is shown that peer reputation alone cannot bound network subversion of a sybil attack. Therefore, a new trust management framework, called Sybildefense, is introduced. This framework combines a trust management scheme with a cryptography mechanism to verify different transaction claims issue by peers, including those bogus claims of sybil peers. To improve the efficiency on the identification of honest peers from sybil peers, a k-means clustering mechanism is adopted. Moreover, to include a list of peer’s trustees in a warning messages is proposed to generate a local table for a peer that it is used to identify possible clusters of sybil peers. The defensive performance of these algorithms are compared under sybil attacks. The performance results show that the proposed framework (Sybildefense) can thwart sybil attacks efficiently

    On designing large, secure and resilient networked systems

    Get PDF
    2019 Summer.Includes bibliographical references.Defending large networked systems against rapidly evolving cyber attacks is challenging. This is because of several factors. First, cyber defenders are always fighting an asymmetric warfare: While the attacker needs to find just a single security vulnerability that is unprotected to launch an attack, the defender needs to identify and protect against all possible avenues of attacks to the system. Various types of cost factors, such as, but not limited to, costs related to identifying and installing defenses, costs related to security management, costs related to manpower training and development, costs related to system availability, etc., make this asymmetric warfare even challenging. Second, newer and newer cyber threats are always emerging - the so called zero-day attacks. It is not possible for a cyber defender to defend against an attack for which defenses are yet unknown. In this work, we investigate the problem of designing large and complex networks that are secure and resilient. There are two specific aspects of the problem that we look into. First is the problem of detecting anomalous activities in the network. While this problem has been variously investigated, we address the problem differently. We posit that anomalous activities are the result of mal-actors interacting with non mal-actors, and such anomalous activities are reflected in changes to the topological structure (in a mathematical sense) of the network. We formulate this problem as that of Sybil detection in networks. For our experimentation and hypothesis testing we instantiate the problem as that of Sybil detection in on-line social networks (OSNs). Sybil attacks involve one or more attackers creating and introducing several mal-actors (fake identities in on-line social networks), called Sybils, into a complex network. Depending on the nature of the network system, the goal of the mal-actors can be to unlawfully access data, to forge another user's identity and activity, or to influence and disrupt the normal behavior of the system. The second aspect that we look into is that of building resiliency in a large network that consists of several machines that collectively provide a single service to the outside world. Such networks are particularly vulnerable to Sybil attacks. While our Sybil detection algorithms achieve very high levels of accuracy, they cannot guarantee that all Sybils will be detected. Thus, to protect against such "residual" Sybils (that is, those that remain potentially undetected and continue to attack the network services), we propose a novel Moving Target Defense (MTD) paradigm to build resilient networks. The core idea is that for large enterprise level networks, the survivability of the network's mission is more important than the security of one or more of the servers. We develop protocols to re-locate services from server to server in a random way such that before an attacker has an opportunity to target a specific server and disrupt it’s services, the services will migrate to another non-malicious server. The continuity of the service of the large network is thus sustained. We evaluate the effectiveness of our proposed protocols using theoretical analysis, simulations, and experimentation. For the Sybil detection problem we use both synthetic and real-world data sets. We evaluate the algorithms for accuracy of Sybil detection. For the moving target defense protocols we implement a proof-of-concept in the context of access control as a service, and run several large scale simulations. The proof-of- concept demonstrates the effectiveness of the MTD paradigm. We evaluate the computation and communication complexity of the protocols as we scale up to larger and larger networks

    Web3Recommend: Decentralised recommendations with trust and relevance

    Full text link
    Web3Recommend is a decentralized Social Recommender System implementation that enables Web3 Platforms on Android to generate recommendations that balance trust and relevance. Generating recommendations in decentralized networks is a non-trivial problem because these networks lack a global perspective due to the absence of a central authority. Further, decentralized networks are prone to Sybil Attacks in which a single malicious user can generate multiple fake or Sybil identities. Web3Recommend relies on a novel graph-based content recommendation design inspired by GraphJet, a recommendation system used in Twitter enhanced with MeritRank, a decentralized reputation scheme that provides Sybil-resistance to the system. By adding MeritRank's decay parameters to the vanilla Social Recommender Systems' personalized SALSA graph algorithm, we can provide theoretical guarantees against Sybil Attacks in the generated recommendations. Similar to GraphJet, we focus on generating real-time recommendations by only acting on recent interactions in the social network, allowing us to cater temporally contextual recommendations while keeping a tight bound on the memory usage in resource-constrained devices, allowing for a seamless user experience. As a proof-of-concept, we integrate our system with MusicDAO, an open-source Web3 music-sharing platform, to generate personalized, real-time recommendations. Thus, we provide the first Sybil-resistant Social Recommender System, allowing real-time recommendations beyond classic user-based collaborative filtering. The system is also rigorously tested with extensive unit and integration tests. Further, our experiments demonstrate the trust-relevance balance of recommendations against multiple adversarial strategies in a test network generated using data from real music platforms

    Towards a Framework for DHT Distributed Computing

    Get PDF
    Distributed Hash Tables (DHTs) are protocols and frameworks used by peer-to-peer (P2P) systems. They are used as the organizational backbone for many P2P file-sharing systems due to their scalability, fault-tolerance, and load-balancing properties. These same properties are highly desirable in a distributed computing environment, especially one that wants to use heterogeneous components. We show that DHTs can be used not only as the framework to build a P2P file-sharing service, but as a P2P distributed computing platform. We propose creating a P2P distributed computing framework using distributed hash tables, based on our prototype system ChordReduce. This framework would make it simple and efficient for developers to create their own distributed computing applications. Unlike Hadoop and similar MapReduce frameworks, our framework can be used both in both the context of a datacenter or as part of a P2P computing platform. This opens up new possibilities for building platforms to distributed computing problems. One advantage our system will have is an autonomous load-balancing mechanism. Nodes will be able to independently acquire work from other nodes in the network, rather than sitting idle. More powerful nodes in the network will be able use the mechanism to acquire more work, exploiting the heterogeneity of the network. By utilizing the load-balancing algorithm, a datacenter could easily leverage additional P2P resources at runtime on an as needed basis. Our framework will allow MapReduce-like or distributed machine learning platforms to be easily deployed in a greater variety of contexts
    corecore