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ABSTRACT

ON DESIGNING LARGE, SECURE AND RESILIENT NETWORKED SYSTEMS

Defending large networked systems against rapidly evolving cyber attacks is challenging. This

is because of several factors. First, cyber defenders are always fighting an asymmetric warfare:

While the attacker needs to find just a single security vulnerability that is unprotected to launch

an attack, the defender needs to identify and protect against all possible avenues of attacks to

the system. Various types of cost factors, such as, but not limited to, costs related to identifying

and installing defenses, costs related to security management, costs related to manpower training

and development, costs related to system availability, etc., make this asymmetric warfare even

challenging. Second, newer and newer cyber threats are always emerging - the so called zero-day

attacks. It is not possible for a cyber defender to defend against an attack for which defenses are

yet unknown.

In this work, we investigate the problem of designing large and complex networks that are

secure and resilient. There are two specific aspects of the problem that we look into. First is the

problem of detecting anomalous activities in the network. While this problem has been variously

investigated, we address the problem differently. We posit that anomalous activities are the result of

mal-actors interacting with non mal-actors, and such anomalous activities are reflected in changes

to the topological structure (in a mathematical sense) of the network. We formulate this problem as

that of Sybil detection in networks. For our experimentation and hypothesis testing we instantiate

the problem as that of Sybil detection in on-line social networks (OSNs). Sybil attacks involve

one or more attackers creating and introducing several mal-actors (fake identities in on-line social

networks), called Sybils, into a complex network. Depending on the nature of the network system,

the goal of the mal-actors can be to unlawfully access data, to forge another user’s identity and

activity, or to influence and disrupt the normal behavior of the system.
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The second aspect that we look into is that of building resiliency in a large network that consists

of several machines that collectively provide a single service to the outside world. Such networks

are particularly vulnerable to Sybil attacks. While our Sybil detection algorithms achieve very high

levels of accuracy, they cannot guarantee that all Sybils will be detected. Thus, to protect against

such "residual" Sybils (that is, those that remain potentially undetected and continue to attack the

network services), we propose a novel Moving Target Defense (MTD) paradigm to build resilient

networks. The core idea is that for large enterprise level networks, the survivability of the network’s

mission is more important than the security of one or more of the servers. We develop protocols

to re-locate services from server to server in a random way such that before an attacker has an

opportunity to target a specific server and disrupt it’s services, the services will migrate to another

non-malicious server. The continuity of the service of the large network is thus sustained.

We evaluate the effectiveness of our proposed protocols using theoretical analysis, simulations,

and experimentation. For the Sybil detection problem we use both synthetic and real-world data

sets. We evaluate the algorithms for accuracy of Sybil detection. For the moving target defense

protocols we implement a proof-of-concept in the context of access control as a service, and run

several large scale simulations. The proof-of-concept demonstrates the effectiveness of the MTD

paradigm. We evaluate the computation and communication complexity of the protocols as we

scale up to larger and larger networks.
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Chapter 1

Introduction

Defending large networked systems against rapidly evolving cyber attacks is challenging. This

is because of several factors. First, cyber defenders are always fighting an asymmetric warfare:

While the attacker needs to find just a single security vulnerability that is unprotected to launch

an attack, the defender needs to identify and protect against all possible avenues of attacks to

the system. Various types of cost factors, such as, but not limited to, costs related to identifying

and installing defenses, costs related to security management, costs related to manpower training

and development, costs related to system availability, etc., make this asymmetric warfare even

challenging. Second, newer and newer cyber threats are always emerging - the so called zero-day

attacks. It is not possible for a cyber defender to defend against an attack for which defenses are

yet unknown.

Complex networks are networks representing complex systems and featuring patterns of con-

nection between their elements that are neither purely regular nor purely random. A network is a

powerful tool to represent a collection of objects and the relationship among them. An important

problem over networked systems is anomalies detection. Anomalies detection is the analysis of

the network in order to detect objects, or relationships that are unlike the rest.

One of the threats to complex networks is the Sybil attacks. Specific assumptions of identity

are the basis on which many network applications and services are built upon. Not meeting these

identity assumptions can leave these applications and services vulnerable to attacks. The conse-

quence of these attacks can be a breach of the privacy offered by these applications and services

to its users or rendering their results questionable or incorrect. An example of an attack on iden-

tity occurs when authenticating credentials are being stolen by a third party in an impersonation

attack. Another attack on identity can involve an identity holder sharing purposely its creden-

tials with multiple other entities. This kind of attacks have been given the denomination of Sybil

Attacks, and the malicious nodes performing these attacks are called Sybil Nodes.
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In this work, we investigate the problem of designing large and complex networks that are

secure and resilient. There are two specific aspects of the problem that we look into. First is the

problem of detecting anomalous activities in the network. While this problem has been variously

investigated, we address the problem differently. We posit that anomalous activities are the result of

mal-actors interacting with non mal-actors, and such anomalous activities are reflected in changes

to the topological structure (in a mathematical sense) of the network. We formulate this problem

as that of Sybil detection in networks.

A concrete example of systems that can be victims of Sybil attacks include but are not limited

to online social networks, online voting systems, reputation systems, and peer-to-peer computing

systems. In online voting systems, a single person can vote using many online identities. In peer-

to-peer systems, a single entity with multiple identities can defeat the redundancy at the core of the

peer-to-peer system by making its single entity to appear as many different entities. In online social

network, a single entity can generate and control multiple identities that will be used to breach the

privacy of other user’s accounts. In addition, the single entity can also forge several of existing

benign user’s accounts. For our experimentation and hypothesis testing we instantiate the problem

as that of Sybil detection in on-line social networks (OSNs).

An Online Social Network (OSN) is a web-based service that allows users to create a profile

and view and interact with other users with whom they are connected [1]. OSNs create trust

networks that can be used by members to more effectively communicate with each other, to process

information, and to diffuse social influence. Among the more popular OSNs are Facebook, Twitter,

LinkedIN, and Google+. Facebook, for instance, reported to have 1.415 billion active members as

of March 2015, while Google+ reported 300 millions active users as of March 2015 [2]. Alexa [3]

reported that Facebook and Twitter are respectively the second and the 9th most visited websites

worldwide.

However, the success of OSNs have made them a lucrative target for attackers. Owing to their

open nature, they are vulnerable to both classical and emerging threats to security and privacy [4].

These threats include Sybil attacks. Almost all OSNs assume that each participating entity controls
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only a single entity – itself. In a Sybil attack, however, an adversary creates a large number of fake

identities or forges a large number of existing identities that it can then use to target the trust

underpining of an OSN and perform malicious activities benefiting itself [5]. These malicious

activities include, but are not limited to, social spamming [6], malware distribution [7], and private

data collection [8]. To give an idea of the scale of the problem, Facebook for instance, reported in

2014 that an estimated of up to 15 millions of its monthly active users represented fake accounts [9].

The malicious activities performed by these fake accounts not only affects the OSN users but also

negatively impact the revenue of the victim OSN because they can lead to a loss of confidence by

the users, investors, as well as advertisers.

Most existing Sybil detection mechanisms can be classified into two categories. The first one

includes mechanisms that analyses graph-level structures while the second one includes mecha-

nisms that analyses user-level attributes and activities. We call the first category structure-based

approaches and the second, content-based approaches.

The structure-based approaches operate by modeling an OSN as a graph whose nodes and

edges respectively represent user accounts and social relationships. The discrimination between

Sybil accounts and benign accounts leverages graph-theoretic structural differences between the

nodes representing these accounts. These approaches are based on the assumption that there is

a strong trust relationship between users that makes it hard for Sybils to link with honest users.

Therefore, there will be a small number of attack edges (which are links between Sybils and non-

Sybils), and the graph would be partitioned into two distinct regions separating Sybil accounts

from the benign ones [10]. However, several researches [11], [12], [13] have shown that structure-

based approaches can be evaded by an attacker who succeeds in creating a large number of attack

edges between the fake accounts and the benign ones. This happens specially in weak-trust OSNs.

In the content-based approaches, Sybil accounts are discriminated from legitimate ones by

a classifier trained using machine-learning techniques. The classifier is built based on unique

features extracted from recent user attribute and activities [14]. The problem with this approach

is that it is difficult to obtain good and accurate data from OSNs. Users often keep their profiles
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incomplete or frequently use misleading data in their profiles. Moreover, obtaining quality data

about user attributes and activities may raise serious privacy issues. However, they can be evaded

by a more sophisticated attacker. An attacker can evade a content-based approach by creating fake

accounts whose features are similar to those of real accounts.

The second aspect that we look into is that of building resiliency in a large network that consists

of several machines that collectively provide a single service to the outside world. Such networks

are particularly vulnerable to Sybil attacks. While our Sybil detection algorithms achieve very

high levels of accuracy, they cannot guarantee that all Sybils will be detected. Thus, to protect

against such âĂIJresidualâĂİ Sybils (that is, those that remain potentially undetected and continue

to attack the network services), we propose a novel Moving Target Defense (MTD) paradigm to

build resilient networks.

Traditional security approaches have been criticized for presenting a static target for attackers.

Critics argue that these security approaches put the defenders of computer networks and system

in a disadvantaged position, by allowing attackers to reconnoiter a system and plan the attack at

leisure. As a remedy, a new security paradigm for protecting computer networks and systems,

called Moving Target Defense, has been proposed [15]. The core idea is that for large enterprise

level networks, the survivability of the network’s mission is more important than the security of

one or more of the servers. We develop protocols to re-locate services from server to server in a

random way such that before an attacker has an opportunity to target a specific server and disrupt

it’s services, the services will migrate to another non-malicious server. The continuity of the service

of the large network is thus sustained. We implement a proof-of-concept in the context of access

control as a service that needs to be provided in a mobile cloud system.

Cloud computing is a novel paradigm that allows on-demand network access to a shared pool

of computing resources without requiring extensive management effort on behalf of the clients that

require these service.This, in turn, allows efficient cyber foraging [16] by resource crunched mobile

computing devices such as smartphones and cell phones, giving rise to the newer mobile cloud

model. In this model, cloud computing and mobile devices and networks seamlessly interact with
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each other to provide newer types of services that were previously not possible (such as location

based services). Unfortunately, this model brings with it some unique challenges to access control

that require re-visiting the traditional trusted computing base (TCB) approach [17].

In general, access control is implemented by the cooperation of four functional modules that

are part of the trusted computing base:

1. Policy Administration Point (PAP): The PAP is a repository for the authorization policies

that are expressed in terms of the actions that subjects (human users, devices, processes,

organizations etc.) can take on various objects in the system. The authorization policies are

essentially an instantiation of the access control model tailored towards the organization. It

is the main component for the authorization portion of access control

2. Policy Information Point (PIP): The PIP is the module that gathers together all the informa-

tion that are needed to evaluate an authorization policy. It is the main component responsible

for achieving authentication.

3. Policy Decision Point (PDP): The PDP gets relevant information from the PIP and consults

the PAP to arrive at a decision whether to grant or deny an access request.

4. Policy Enforcement Point (PEP): The PEP receives access requests from subjects in the ex-

ternal world, hands them to the PDP for evaluation, and after receiving the grant or deny

response from the PDP, ensures the appropriate action is taken.

One of the requirements of a TCB is that it implements the concept of reference monitor [17]; that

is, the TCB mediates all access to objects by subjects, it is tamperproof and cannot be bypassed,

and it is small enough to be thoroughly tested and analyzed. In a mobile cloud environment,

unfortunately, making the TCB small and tamperproof is very difficult to ensure. To understand

why, let us consider the high level operational architecture of a mobile cloud system shown in

figure 1.1.

The access control subsystem within the mobile cloud typically consists of three major com-

ponents:
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Figure 1.1: Operational architecture of mobile cloud system

1. access control model and policies at the hypervisor level,

2. deployment and enforcement at the hypervisor level, and

3. access control stub processes (represented by AC Stub in figure 1.1) that are distributed.

Components 1 & 2 reside in the hypervisor of the cloud stack while component 3 is linked to the

access control subsystem of each VM and the mobile network infrastructure as well the mobile

devices. Policies related to the cloud provider’s infrastructure are effectuated in the hypervisor that

can be distributed across several hardware platforms. Policies related to the tenants are present

in the different virtual machines (VMs). When a VM is instantiated, an AC Stub process is also

instantiated. It serves as a coordinator between the VMs access control subsystem and the hyper-

visor’s. Different access control operations are effectuated by the AC stubs. At the mobile network

level, AC stubs are implemented primarily within the smartphone operating system but can also

be present at the network infrastructure. The deployment and enforcement of these policies are

achieved by the deployment and enforcement module in the hypervisor is conjunction with the

access control stubs that are present at various positions within the mobile cloud stack.

To remain within the confines of the TCB framework for access control not only all the three
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components need to be made tamperproof but also all communications and coordinations among

these components need to be ensured to be so. Thus, the trusted computing base needs to be en-

larged which violates the principles of reference monitor. Moreover, the sheer size of a mobile

cloud system, the degree of heterogeneity among the different devices and VMs, and the dynamic-

ity of the whole system, compounds this problem many fold. We, therefore, posit that it is next to

impossible to rely on a TCB to provide access control in a mobile cloud environment. The access

control subsystem should try to satisfy as many properties of a TCB as possible but should also

incorporate certain self-defending strategies to make it secure.

Modern computing environments are witnessing the proliferation of servers for a wider variety

of critical services, in addition to the traditional email and file system applications. The comput-

ing power and versatility of the current day servers makes them indispensable assets for system

administrators for providing essential services to the users. The range of user services offered by

these servers has expanded towards security-critical services like access control systems, intrusion

monitoring, anti-virus filtering and stateful firewalling, among others. However, these applications

have ushered a new threat scenario in which the servers are the central targets for attackers instead

of the end-users.

As an illustration, consider a server that is deployed for enforcing an attribute-based access

control system and processes user access requests depending on the user attributes. Naturally, such

a server is under constant threat of compromise by attackers who want to exploit the information

on the server and disrupt the integrity of the service for their personal gains. For instance, in the

access control setting, a possible manipulation is to allow illegitimate requests for resources by

unauthorized users who are colluding with the attacker. Unlike the past trend of Denial-of-Service

class attacks, modern day attacks are commercially motivated and are not necessarily focused

on service disruption. Therefore, the security of servers providing security-critical services from

commercially motivated attackers is an important and challenging problem. This problem can be

stated as follows: Given a set of n servers: S1, S2, · · · , Sn, some of which are compromised by
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attackers, the objective is to design an algorithm to keep selecting one server to provide service

for short periods. The algorithm constraint is that the period of server’s service should be short

enough to thwart manipulation attacks by a concerted attacker. Further, the selection needs to be a

mutually agreed process. We cannot assume the presence of a central entity that will select the next

server, as such an entity will be subjected to same attacks and will allow an attacker to manipulate

the election.

1.1 Contributions

1.1.1 Sybil Detection using an Unsupervised Method

Given that extracting and selecting appropriate features from users attributes and activities for

content-based Sybil detection is challenging, prone to inaccuracies, and often raises privacy issues,

we propose SybilRadar, a Sybil detection mechanism that is solely based on graph-based structural

properties of OSNs. SybilRadar is able to protect OSNs with weak trust relationships against Sybil

attacks.

SybilRadar operates in three steps. The first step involves the computation of a similarity mea-

sure between every pair of nodes of the OSN social graph. The similarity between nodes is based

on the notion of common friends. Honest nodes tend to have many common friends and can be

a discriminator between honest nodes and Sybil nodes. The second step leverages the commu-

nity structure of the social graph. A second similarity metric based on the community structure

is computed and exploited to refine the result from the first step. This step produces a weighted

graph whose edge weights are the similarity values of any given pair of nodes. In the third step,

a node ranking is performed using a Modified Random Walk that uses the edge weights and pro-

vides the final list of Sybil nodes. The accuracy of SybiRadar is initially evaluated using synthetic

data generated with the help of open-source graph-processing tools [18, 19]. The validity of our

experimental results is further evaluated using real-world Facebook datasets. Finally, SybilRadar

evaluation results are compared to the ones from SybilRank [20], which is currently the most well-

known structure-based detection approach. Our analysis shows that, structural properties of an
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Online Social Network with weak trust can be suitably utilized to build a robust Sybil detection

mechanism that provides detection accuracy close to that obtained by user attribute and activity

based mechanisms without raising privacy concerns.

1.1.2 Sybil Detection using a Supervised Method

To address the weakness of content-based classification methods, we adapt a classification

mechanism that leverages the topological structure of the graph modeling the social network. An

OSN user account (real or fake) is represented by a node in this graph and social relationships

are represented by edges. The advantage of such an approach is that a malicious attacker cannot

easily spoof the system since s/he does not have much control over the structure of the OSN graph.

We compute a set of feature values for each node that constitute the feature vector for the node.

The feature vector is then used to train classifiers using three machine learning techniques – KNN,

Random Forests, and Adaboost. Our experimental evaluation using real world data shows that

our method is very accurate in classifying Sybils, with the Random Forest and KNN approaches

being able to predict Sybils with an Area Under the Curve (AUC) of 99%. To make sure that

these results are not because of overfitting, we perform several tests that are well accepted by the

community for this purpose. First we test the models on a held-out test set to see how well the

models generalize to unseen data. Then, train our models after sampling our dataset to account for

the imbalance of classes within the dataset. Finally, we plot the learning curve to detect an eventual

case of overfitting.

We make the following major contributions in this work: First, we define a set of new graph

centrality measures. These measures are:

• Weighted degree-core centrality;

• Weighted degree-clustering centrality;

• Degree-intensity centrality;

• Degree-coherence centrality;
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• Core-intensity centrality;

• Core-coherence centrality.

It appears that these measures hold much promise in similar structure-based analysis of com-

plex networks. Second, using feature selection techniques, we incorporate a set of 8 features –

four from the newly proposed centrality measures and four other well known centrality measures

that has been used in related works – to develop a novel Sybil detection method that achieves AUC

levels up to 99%, much more than achieved by current techniques. Third, we perform several

experiments using both synthetic as well as real-world data to evaluate our proposed approach as

well ensure no over-fitting.

1.1.3 Protecting an Access Control Reference Monitor

In this work, we treat access control as a service that needs to be provided in a mobile cloud

system. From a functional perspective, this service is achieved by the four functional – PAP, PIP,

PDP and PEP – that are implemented by the AC stubs and the components at the hypervisor level.

We assume that like any other service, the access control service can be attacked by a malicious

intruder and hence needs to be protected. An attacker intent on damaging the access control ser-

vice will launch reconnaissance efforts seeking exploitable vulnerabilities for this subsystem. We

believe that allowing limited opportunity to the attacker to enumerate exploitable vulnerabilities

can considerably enable protection of the access control subsystem. Towards this end we propose

a Moving Target Defense (MTD) framework for protecting the access control subsystem in mobile

clouds. In this framework, the four functional modules are effectuated by randomly materializing

processes. As a result, the attacker does not know which processes can be targeted to compromise

the system. Moreover, the window of opportunity for targeting processes is varied to further reduce

opportunities for attack.
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1.2 Organization

The rest of this dissertation is organized in the following manner. In Chapter 2 we introduce

some necessary technical background relevant to the problem of Sybil detection as well as the

Moving Target Defense. Chapter 3 introduces an extensive literature review on Sybil detection and

Moving Target Defense. A presentation of our graph sampling algorithm is presented in Chapter 4.

A protocol for Sybil detection in Online Social network using an unsupervised method is presented

in Chapter 5. In Chapter 6 we present another Sybil detection mechanism using a supervised ap-

proach. Chapter 7 presents an architecture to protect an access control monitor through Moving

Target Defense. In Chapter 8 we improve our proof of concept presented in Chapter 7, by propos-

ing a byzantine fault-tolerant leader election protocol based on a consensus protocol which itself

exploits a one-way secure hash commitment protocol. In Chapter 9 we conclude the dissertation

and present some future directions.
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Chapter 2

Background

The world in which we live comprises several complex systems. These complex systems in-

clude, but are not limited to :

• A society as a collection of individuals that are interacting with each other

• The organization of information and knowledge into a linked structure

• The interaction of genes as well as of neurons in the brain.

A network is a wiring diagram that represents the interaction between the components of a

complex system. The study of complex systems involves, actually, the analysis of the network

structures that represent them. As it turns out, graph theory is the study of network structures. So,

in this chapter, we are going to present some basic graph theory concepts that are useful in the

understanding of the rest of this work.

2.1 Graph

A graph is a structure that consists of a set of objects, called nodes, and a set of edges which

are links connecting certain pairs of nodes. A graph G is usually noted as G = (V,E) where V

is the set of nodes, whereas E is the set of edges. Graphs are useful structures that help to model

networks structures. The objects of the network structure are represented by the nodes, and the

relationship between those objects are represented by the edges.

2.2 Centrality

A primary task of network analysis id to identify nodes that play a central role in the net-

work. Centrality measures are metrics that are designed to quantify graph theoretic ideas about the

prominence of a node within a network. There are several centrality measures, but in this work we

describe degree centrality, closeness centrality, betweenness centrality, and Eigen Vector centrality.
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2.2.1 Degree centrality

Given a graph G = (V,E) and a node u ∈ V , the degree centrality of u measures the number

of nodes that are directly connected to u. A node with a higher degree can interact and influence

more nodes compared to a node with a lower degree.

2.2.2 Closeness centrality

Given a graph G = (V,E) and a node u ∈ V , the closeness centrality of node u quantify the

idea of how close node u is to other nodes of the graph G. A node with a higher closeness value

can quickly interact with its peers, and only requires a small number of steps to reach them. The

closeness centrality of node u ∈ V is expressed by :

Cc(u) =
1

∑

v∈V d(u, v)
(2.1)

where
∑

v∈V d(u, v) is the sum of the shortest distance from u to the other nodes of V .

2.2.3 Betweenness Centrality

Betweenness centrality quantify the idea that a node is prominent in a network if it occupies a

position between several shortest paths connecting pairs of nodes in the graph. Such a node plays

a role of broker for the interactions or transactions occurring between other pairs of nodes in the

graph. Given a graph G = (V,E), and a node u ∈ V , the betweenness of node u is expressed by :

Cb(u) =
∑

j 6=k

δjk(u)

δjk
(2.2)

where δjk(u) is the number of shortest paths connecting a pair of nodes v, w and δjk is the total

number of shortest paths connecting any pair of nodes v, w.

2.2.4 EigenVector Centrality

Degree centrality, even though it is the simplest centrality to compute, has the following draw-

back. Two nodes with the same degree are equally central in the graph because they have the
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same number of connections. However, the quality of those connections is not taken into account.

EigenVector centrality improves this situation by considering a node to be prominent when it is

connected to several other prominent nodes. This centrality combines the ideas of the number of

friends a node has with the idea of the quality of those friends. For a given graph G = (V,E) with

A = (au,v) being its adjacency matrix, the EigenVector centrality of a node u ∈ V is expressed by

:

Ce(u) =
1

λ

∑

t∈M(u)

Ce(t) (2.3)

where M(u) represents the set of nodes connected to u, and λ is a constant.

2.3 Similarity

Another aspect of network analysis involves the study of how an object relates to another one

in the network. In this section, we present how the similarity between two nodes in a graph is

computed. The computation of the similarity between connected nodes can be based either on the

structure if the graph or on the attributes of these nodes. Several approaches for analyzing network

networks use the concept of similarity of two nodes based on the graph structure as their building

block. These approaches includes, but are not limited to link prediction, collaborative filtering, and

community detection.

2.3.1 Structural similarity

Structural similarity measures are methods for computing the similarity between two nodes

that are based on the topology if the graph. These similarity measures can be classified in two

categories: local measures and global measures. Local similarity measures compute the similarity

between two nodes based only on the information about their respective immediate neighbors.

On the other hand, global similarity measures consider the global structure of the graph in the

computation of the similarity between two nodes. Global similarity measures give better results
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compared to local similarity measures, but this comes at the cost of the computation which is more

expensive [21].

Local similarity measures

Local similarity measures compute the similarity between two nodes based only on the in-

formation about their respective immediate neighbors. In this section we present the Common

neighbors metric, the Jaccard similarity metric, and the Adamic-adar similarity metric.

- Common neighbors metric

The common neighbors metric is the most common approach to compute the similarity between

two nodes. This similarity measure works by computing how many neighbors the two nodes have

in common. Let u and v be two nodes, an N(u), N(v) be respectively the neighbors of the nodes

u, and v [22]. Then the similarity of u and v is expressed by :

sim(u, v) = |N(u) ∩N(v)| (2.4)

- Jaccard similarity metric

The common neighbors metric, even though is simple to compute, presents a drawback of fa-

voring nodes with high degree over the ones with low degree. Jaccard similarity metric is proposed

to correct this drawback. Let u, v be two nodes, and N(u), N(v) be their respective set of neigh-

bors, Jaccard metric works by dividing the intersection of N(u) and N(v) by the union of N(u)

and N(v). It is expressed by :

sim(u, v) =
|N(u) ∩N(v)|

|N(u) ∪N(v)|
(2.5)

- Adamic-adar similarity metric

The Adamic-adar metric is another solution proposed to overcome the problem posed by the

Common neighbors metric. It is designed specifically to favor nodes with low degree. The adamic-

adar metric of nodes u and v is expressed by :
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sim(u, v) =
∑

w∈N(u)∩N(v)

1

log|N(w)|
(2.6)

Global similarity measures

Global similarity measures, unlike local similarity measures, are computed by considering the

global topology of the graph. They allow the computation of the similarity of two nodes even when

these nodes do not share any common neighbors. In this section we present the Katz similarity

metric and the Simrank similarity metric.

- Kart Similarity metric

The Katz similarity metric is based on the concept of shortest path distance as used when

defining the betweenness centrality. However, this metric considers the ensemble of all paths

between two nodes when computing their similarity. Using this metric, the similarity of two nodes

u and v is expressed by :

sim(u, v) =
∞
∑

l=1

βlpath<l>(u, v) (2.7)

where path<l>(u, v) represents the set of all paths of length l between u and v [22].

- Simrank similarity metric

The Simrank similarity metric is another global similarity measure, and is based on the concept

that the similarity of two nodes depends of the similarity of their neighbors. For two given nodes

u and v, first their similarity is set to 1. Then, their Simrank similarity is expressed by :

sim(u, v) = λ

∑

a∈N(u)

∑

b∈N(v) sim(u, v)

|N(u)|.|N(v)|
(2.8)

where N(u), N(v) are respectively the set of neighbors of u and v. λ ∈ [0, 1] is a parameter to

be set depending of the problem [23].
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2.4 Community detection

Community detection is an important topic in Social Network Analysis due to the clustering

nature of these networks. The idea of using a clustering structure when designing a similarity met-

ric was advanced by [24]. In an empirical study performed on synthetic and real-work networks,

they have shown that link prediction measures based on structural similarity perform poorly for a

network with a low clustering structure. This inspired [25] to first divide the network into com-

munities, and use this clustering structure information in designing a similarity metric for the link

prediction problem. Surprisingly, there is no consensus on the exact definition of a community but,

in general, a good community is characterized by a subset of nodes that are well connected among

themselves while being loosely connected to the rest of the graph. Most of algorithms for finding

communities are built on a metric that measures the goodness of a cluster. They differ on the kind

of techniques used to partition the network into clusters, and on how the goodness of a community

structure is measured.

In order to measure the quality of a community structure, Newman et al [26] introduced a

modularity function Q. Given a social graph G = (V,E), the modularity function can be expressed

as follows:

Q =
1

2m

∑

(Aij −
kikj
2m

)δ(Ci, Cj) (2.9)

where ki and kj are respectively the degree of nodes i and j. Aij represents an element of the

adjacency matrix, and m is the size of E which is the set of edges of the given graph G. Ci and

Cj are the respective communities to which i and j belong. The parameter δ is the Kronecker

delta symbol whose value is 1 when both i and j belong to the same community, and is 0 when

both nodes belong to different communities. Modularity is the most used function to measure the

quality of a community structure. The goal of community detection is to divide a network into

communities in a manner that maximizes the value of the modularity. However, there is a problem

of resolution limit that arises when one tries to maximize the modularity. The problem refers

to the situation where modularity maximization may fail to detect small but dense communities

when they are in presence of very large communities. Moreover, modularity maximization may
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also fail to detect communities in a network where the number of communities to be found is

larger than the number of edges in the network [27], [28]. Several methods have been proposed

to solve the problem resolution limit. Some of those methods modify the modularity function

by adding tunable parameters [29], while others basically introduce different kind of modularity

functions [30], [31].
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Chapter 3

Related Work

3.1 Sybil Detection in Online Social Networks

Several studies have shown that OSNs are very vulnerable to Sybil attacks. Facebook [32],

Twitter [33], [6], and Renren [11] have each experienced significant amount of spams whose ori-

gins were Sybil attacks. Several researchers have investigated approaches to defend against Sybil

attacks on Online Social Network following studies that have been conducted to assess the sever-

ity of these attacks. Two bodies of works have been proposed in order to mitigate Sybils. The

first body of works that we call content-based approaches leverages user behaviors and employs

machine-learning techniques to learn and classify these behaviors. OSN nodes deviating signifi-

cantly from these nodes are called Sybils. The second body of works that we call structure-based

approaches leverages graph-theoretic proprieties of the social network. Nodes that exhibit signifi-

cantly different properties than others are identified as Sybils.

Structure-based approaches model an OSN as a graph with user accounts and social relationships

respectively represented by nodes and links. These approaches determine some graph-theoretic

characteristics of nodes which are then used to discriminate Sybils from the real ones. Existing

structure-approaches are based on two assumptions. The first is that the social graph will be par-

titioned into two distinct regions, one region with the Sybil nodes and the other one with benign

nodes. The second assumption is that there will be only a small number of attack edges between

the two regions, as a consequence of the strong trust relationship in the social graph. Several mech-

anisms use these approaches to detect Sybil communities, which are tight-knit communities that

have a small quotient-cut from the honest region of the graph [34], [35], [36].

SybilRank [20] is one of the most well-known techniques. It uses graph-theoretic properties

of the OSN social graph to compute the likelihood of users to be Sybils in order to perform the

ranking. The detection starts with the administrator determining some known real users as initial
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seed node. A short random walk is run with the known seeds. At the end of the random walk, all

nodes are given trust values which are the landing probabilities for the random walk. SybilRank

then ranks all the nodes based on their trust value. Nodes having higher trust value will be at the

top, while the nodes with lower trust values will be lowly ranked. SybilRank performs almost

linearly in the size of the social graph.

However, SybilRank is based on certain assumptions that several researches [37], [38] have

proven not to be true in real life. In addition to these researches, Yang et al. show that Sybils

on Renren blend into the social graph rather than forming tight communities [11]. Mohaisen et

al. show that many social graphs are not fast-mixing, which is a necessary precondition for the

structure-based Sybil detector of SybilRank to be effective [37]. SybilRadar, on the other hand,

does not make any of these assumptions.

Integro [39] is an approach that extends SybilRank. It is developed without the two assumptions

on which SybilRank is based on. Integro is a hybrid approach. It mixes content-based approach

with a structure-based approach in order to detect Sybils. Integro first determines unique features

for users which are used to build a feature-vector. The feature-vectors are used to train a classifier

that predicts potential victims of Sybil attacks. After finding the potential victims, the edges in

the social graph are given weights based on whether they are adjacent to the potential victims or

not. The ranking is then performed by a modified random walk. Integro achieved a 95% precision

in detecting Sybils. Our approach produces similar detection accuracy without using any content-

based techniques.

SybilFrame [40] relaxes the assumptions that the social network can be partitioned into two

distinct regions – Sybil and non-Sybil – and that there exists only a small number of attack edges

between the two regions. SybilFrame is also a hybrid approach that leverages the attributes of an

individual node along with a measure of correlation between connected nodes in order to classify

nodes among benign and Sybils. SybilFrame operates in two steps. In the first step the initial

network data are fed into the framework from which node unique features are extracted in order to

compute node prior information. In Step 2, the node prior information are provided to the poste-
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rior inference layer in order to compute the correlation between nodes. This nodes correlation is

computed using Markov Random Field, and along with the Loopy Belief Propagation method, it

provides the posterior information of nodes which is used to perform the ranking of nodes.

Content-based approaches aim to find Sybil accounts by using a classifier trained using machine-

learning techniques. The most recent user activities are analyzed to extract some unique features

that will serve as inputs on which a classifier is built. Machine-learning techniques such as clus-

tering, support vector machines, and Bayesian networks are used to build the classifier. Some of

these approaches are used for spam detection such as blacklisting, whitelisting, and URL filter-

ing [6], [41], [42]. While many of these approaches have very high detection rates, the problem

with these approaches is that they are only as good as the data that are used to train the classi-

fiers. We believe that identifying proper features from user attributes and activities is challenging

because these attributes often contain incomplete, inaccurate and sometimes purposefully mislead-

ing information. Additionally, a sophisticated attacker can create fake accounts presenting features

similar to the ones one of real accounts, thus evading detection. We also believe creating such user

profiles can lead to privacy breaches and are not supportive of such techniques. Consequently, We

do not consider content-based approaches in our work any further.

The problem of detecting Sybils using machine learning classifiers is similar to the problem

of detecting spammers in an OSN, a problem which many researchers have worked on to address.

Some of the existing works leverage user profiles to build a classifier [43] while others extract user

behavior information to built their classifier [44].

In [45], the authors built a classifier to detect spammers based on the users’ attributes only.

These attributes, collected from the users’ profiles, constituted the content-based features and each

account was labeled after a manual inspection. In [43], the authors first used content-based features

derived from users’ attributes to build an SVM classifier. Subsequently, they augmented content-

based features with behavior-based features, which improved their accuracy rate from 84.6% to

87.6%. Another work using content-based features is [46]. The authors in this work aimed to

21



detect fake Twitter followers as part of the Fake Project. The dataset used was a collection of two

sets. The first set is a set of Twitter users crawled from the Twitter network, while the second set

is a set of fake Twitter accounts bought on the underground market. They designed a set of rules

based on the content of user profiles. These rules were used to train a classifier that succeeded to

accurately classify more than 95% of fake accounts.

Some researchers have shown that various means can be utilized by sophisticated attackers

to evade being detected by classifiers built using only content-based features. For instance, [47]

analyzed several evasion scenarios. These scenarios involve the attackers having full or partial

knowledge of the features or the classifier training dataset. Based on these information, they have

implemented attacks that resulted in the decrease of the classification accuracy.

The real possibility for an attacker to evade classifiers built using content-based features has

lead researchers to augment users’ attributes with either behavior-based features or structure-based

features. One work that combines user and content-based features to detect spam users is [48].

Using these features, the authors built a number of classifiers that include SVM, Decorate, Simple

logistic and Decision Trees. Their research showed that Decorate produced the highest accuracy

rate of 88.98%. One instance of a work combining graph-based and content-based features to

detect spam users is [41]. Using a dataset of 49 millions users collected from Twitter, they built

several graph-based and content-based features which were used to build a series of classifiers.

Among these classifiers, Bayesian classifier produced the highest result which was 91.7%. This

result was even improved with the use of a combination of neural networks and SVM classifiers.

In [49] authors tackle the problem of detecting Sybil using a variety of features collected from

user interactions, user profile, and the structure of the social graph. They use these features to build

several classifiers, the Decision Tree (C4.5), Decision Tree (Random Forest), Support Vector Ma-

chine (SVM), and Multilayer Neural Network. The SVM classifier produced the highest precision,

which is 97.1%. Building on this result, authors designed a browser plug-in capable of signaling

the user if an account is malicious or not.
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Several methods using the structure of social graph and a nodes ranking algorithm have been

also proposed. In [50] authors propose SybilRadar, a robust Sybil detection framework based on

graph-based structural properties of an OSN that does not rely on the traditional non-realistic as-

sumptions that similar structure-based frameworks make. In this work, authors compute similarity

values between nodes, and use those values as weights in a modified random walk. The modified

random walk results in nodes ranking in which Sybils lie at the bottom.

While many of these approaches have very high detection rates, the problem with these ap-

proaches is that they are only as good as the data that are used to train the classifiers. We believe

that identifying proper features from user attributes and activities is challenging. In addition a

sophisticated attacker can create fake accounts presenting features similar to the ones one of real

accounts, thus evading detection. Even though we have adopted a classification method to detect

Sybils, our work differs from the works surveyed here by the fact that we use for the classification

only information collected from the structure of the social graph without any input from the user

profile information or the user activities information.

3.2 Protection of Networked Systems with MTD

In this section, we are presenting a survey of previous works relevant to the problem of pro-

tecting networked systems.

3.2.1 Network Resiliency

Network resilience is defined as the ability of the network to function in face of failures due

to natural disaster or malicious attacks, which affect the proper operation of some of its compo-

nents [51]. Techniques to increase a network resilience include segmentation [52], dynamic com-

position [53], diversity [54], deception [55], and dynamic reconstruction [56]. Segmentation [52]

aims to limit the attack surface of a potential attack by logically or physically separating the net-

work critical components. Dynamic composition [53] is the ability to dynamically provide new

capabilities to the network. Diversity [54] is the action of using heterogeneous logical of physical
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components in a network. The goal is to limit the attacks exploiting common vulnerabilities. De-

ception [55] is the action of misleading or confusing attackers in order to hide the critical assets of

a network. Dynamic reconstitution [56] is the ability to reconfigure a network in order to render

it resilient to ongoing and future attacks or faults while maintaining continuity of operations. One

approach to implement a dynamic reconstitution of a network is through Moving Target Defense.

In this work, we are interested in the problem of increasing the resilience of a distributed network

that provides security-critical service such as access control. We take the Moving Target Defense

approach in order to improve the resilience of a distributed network.

3.2.2 Access Control

One of the most important aspect of security is ensuring that users access only resources to

which they are authorized. Research on designing and deploying access control in computers and

networks can be traced back several decades [57]. Early standards of access control included

discretionary and mandatory access control [58] [59] [60] [61]. However, Role based Access

Control (RBAC) represented a major leap forward in term of flexibility. RBAC is built on the

principle that users do not have discretionary access to enterprise objects. In a RBAC model, roles

are created and users belong administratively to these roles, while permissions are administratively

assigned to the roles. This arrangement provides more flexibility and simplicity to the management

of authorization [61]. RBAC has been traditionally implemented for centralized systems. In recent

years, several works have been done to provide the capabilities of this access control model to

distributed systems and the cloud. For instance, in [62] authors present an access control tailored

for distributed control systems. [63] explains how one can provide access control to anonymous

users while verifying their authorization in a decentralized manner.

In several works, including recently in [64], researchers have worried that a malicious program

may tamper with the operation of an access control system. The notion of a trusted computing

base implementing the reference monitor concept was proposed by Anderson [17], in order to

address this problem. Security kernels such as Scomp [65] and GEMSOS [66], included a reference
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validation mechanism to satisfy the reference monitor concept of the TCB. Other operating systems

such as Trusted Solaris [67], the Linux Security Modules (LSM) framework [68], TrustedBSD

[69], Mac OS X, the Xen hypervisor provide some degree of support for reference validation so as

to enable some shade of reference monitor. However, the major problem with these systems is that

the tamperproof proof property that needs to be ensured for provably implementing a reference

monitor, is hard to achieve. Tamperproofing requires the TCB to have a very small footprint. It can

be shown that a general algorithm to prove that an arbitrary program behaves correctly reduces to

solving the Halting problem. While current algorithms can prove correctness properties of specific

programs, the variety of reference validation code and the complexity of correctness properties

preclude verification for all but the smallest, most specialized systems. Unfortunately, for most

of these systems, the TCB is too large to determine whether tampering is prevented. Moreover,

for practicality and functionality, many systems allow user-level processes to modify the kernel.

However, none of these user-level processes are immune to tampering thus becoming one of the

weakest links. In this work, we are interested in the protection of the access control subsystem

where ensuring the tamperproof property of a reference monitor cannot be ensured.

3.2.3 Moving Target Defense

Moving target defense (MTD) [70] is the concept of introducing controlled change across mul-

tiple components of the network in order to reduce the window of opportunity of attackers, and in-

crease the cost of their attack efforts. The key concepts of MTD and their proprieties are presented

in [71]. Different low level techniques of MTD and their effectiveness are presented in [72]. Those

low-level techniques include Address Space Randomization, Instruction Set Randomization, and

Data Randomization. In [73], two measures are designed that allow a defender to quantify its gain

in security while deploying a MTD system. At the network level, [74] [75] and [76] present some

network-based MTD approaches while [77] introduces a MTD approach for the cloud system. In

order to chose a particular MTD technique, one needs to know its effectiveness. For that pur-

pose, [78] proposes a comparison of different MTD techniques based on their effectiveness. In this
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work we are interested in designing a MTD approach on a network whose servers are subjected

to Byzantine failures. Among the work proposing the MTD approach in face of the Byzantine

failures [79] proposes a moving target defense approach to switch among Byzantine fault tolerant

protocol according to the existing system and network vulnerability.

3.2.4 Byzantine Fault Tolerance

A computer system can be affected by a type of failures that can cause it to behave in an

arbitrary way. After being affected, the computer system can be lead either to process requests

incorrectly, to corrupt their local state, and/or to produce incorrect or inconsistent outputs. This

type of failures is named Byzantine Failures [80]. The problem for coping with this type of failure

is known as the Byzantine Generals Problem [81]. The goal of Byzantine fault tolerance is to

allow computer systems to be immune against Byzantine failures. It is a sub-field of fault tolerance

researches.

Several works have been proposed to reach a consensus in the face of Byzantine failures. Build-

ing on Paxos, [82] has proposed an improvement that allows Paxos to support Byzantine fault toler-

ance with a modest latency. Castro and Liskov’s proposed the Practical Byzantine Fault-tolerance

protocol [83] that uses only four messages. [84] looked at improving the number of communi-

cation in the Byzantine Paxos protocols. In [85] authors proposed Tangaroa by improving Raft

protocol [86]. They reach their goal by combining the ideas from the original Raft algorithm and

from Practical Byzantine Fault-tolerance protocol [82]. For missions-critical applications, in [87]

is described a practical asynchronous Byzantine fault tolerant protocol, which guarantees liveli-

ness without making any network timing assumptions. In this work, we have designed a Byzantine

fault tolerant consensus protocol for security-critical applications, which is new contribution in this

problem space.
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3.2.5 Consensus algorithms

One approach for building fault-tolerant applications is the Lamport’s approach. The core of

this approach involves two primitives : consensus and atomic broadcast [88]. Leader election

protocols are generally used to solve the consensus problem.

Bully algorithm [89] and Ring algorithm [90] are among the most used algorithms for solving

the consensus problem. Another hugely popular algorithm is the Paxos algorithm proposed by

Lamport [91]. Another popular algorithm, considered even superior to Paxos due to its simplic-

ity is Raft consensus algorithm [92]. Raft provides the capabilities for Leader election and log

replication. [93] introduces Turtle Consensus (MPTC), an asynchronous consensus protocol for

Byzantine-tolerant distributed system that uses MTD strategies to tolerate certain attacks.

ZooKeeper [94], an open-source replicated service for coordinating web applications and Chubby

[95] are some practical systems exploiting these algorithms. Recently, GIRAFFE [96] has been

proposed to provide a coordination service in scalable distributed system. Another practical system

is the Apache Kafka [97] which allows the building of a replicated logging system. However, these

algorithms and protocols do not take in account byzantine failures. In addition, their approach for

electing a new leader dot not allow to prevent a malicious host from being elected as a leader

3.2.6 Leader Election

In a distributed system, leader election is a fundamental problem that requires that a unique

leader be elected among a set of given nodes. The goal of a leader election algorithm is to elect a

good processor as a leader in a setting where there are n processors of which a certain number m

<n are bad while ensuring that no bad processor get elected as a leader [98].

A distributed computing system often requires that active nodes continue performing their task

after a failure has occurred. This reorganization or reconfiguration necessitate that a coordinator

be elected in the first place [99]. This is the reason of the wide interest the leader election problem

[100] has received. Several works have been done on Leader Election [99] [101] [102] [103] [104].
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3.2.7 Service Location Protocol

A zero configuration networking approach is a self-management networking approach that

allows network devices to be automatically configured, to discover automatically services, and

to access service automatically without the involvement of a network specialist [Intelligent Self-

Management Home Multimedia Service System]. Three major Self-management technologies

have been proposed. The Internet Engineering Task Force (IETF) promoted SLP [105] [106] as

an intranet standard for automatic network resource discovery. Intel and Microsoft on their part

proposed the Universal Plug and Play (UpnP) [107] as a standard for automatic communication

between network devices using XML messages. Apple Inc proposed a protocol called Bonjour

[108] as its Zero configuration networking standard. Recently, z2z [109] has been proposed for the

discovery of network services beyond the local network.
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Chapter 4

Graph Sampling

It is often necessary to sample smaller subgraphs from the bigger ones in order to facilitate the

development and the testing of new algorithms for network analysis. This is necessary regardless

of the availability of scalable analytical methods provided by the data mining community that are

capable of handling very big graphs. However, in order to accurately infer the performance of

new algorithms on big graphs from their sampled subgraphs, the sampled subgraphs need to be

good representatives of the big graphs. A good sampled subgraph needs to preserve the structure

of the big graph. Therefore, it is important to design a graph sampling method that produces a

good representative subgraph of the larger graph. In this section we want to produce a subgraph

representative of our twitter dataset.

The problem of graph sampling can be defined as follows: Given a graph G = (V,E) where V

is the set of nodes and E is the set of edges in the graph, find the sampling fraction ℘ that produces

the sampled graph Gs = (Vs, Es) such that Gs preserves the structure of G.

4.1 The Original Sampling Method

We first describe the graph sampling method proposed in [110]. Given an original graph G =

(V,E), the sampling method performs the sampling in two steps: in the first step a simple edge

sampling is performed on G. This means a set of edges are sampled from G and are added to

Es. The number of edges to be sampled depends on a threshold fixed by the experimenter. All

nodes adjacent to the sampled edges are added to Vs. In the second step, a subgraph Gs = (Vs, Es)

is induced by all the nodes in Vs. Here, extra edges between nodes in Vs that are present in E

are added to Es in addition to edges sampled in the first step. The result is a sampled subgraph

Gs = (Vs, Es) that preserves the structure of G = (V,E). The process is shown in algorithm 1.
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Algorithm 1 Sample fraction φ, edge set E

Graph sampling with edge fraction φ

Input: Assume edges in E are stored in an array

Initialization: Vs = ∅ , Es = ∅
// Edge-based node sampling step

while |Vs| < φ× |V | do

r = random(1, |E|) //uniformly random

(u, v) = er
Vs = Vs ∪ {u, v}

end while

// Graph induction step

for k=1:|E| do

(u, v) = ek
if u ∈ Vs AND v ∈ Vs then

Es = Es ∪ {ek}
end if

end for

return Gs = (Vs, Es)

4.2 Our Proposed Sampling Method

Although the proposed graph sampling method is simple and produces a representative sub-

graph of the original graph, it is not suitable for our situation. In our case we want to predict

malicious nodes. So, in addition to preserving the structure of the original graph we want the

sampling method to preserve the proportion of honest nodes, sybil nodes, and attack edges. These

requirements are not met by the Edge-based node sampling with graph induction. For this reason,

we adapt this sampling method to meet our requirements.

The graph sampling method we propose still operates in two steps. In the first step, an edge

sampling is performed. However, in our graph we have three types of edges: honest edges linking

honest nodes, sybil edges linking sybil nodes, and attack edges linking sybil nodes to honest nodes.

Therefore, from the original graph G = (V,E), we split E into Eh (honest edges), Em (sybil edges)

and Ea (attack edges). Then edges are sampled from each of those subsets Eh, Em, and Ea. This

ensures that the proportion of those different type of edges is maintained. The sampled edges are

added to Es, and the nodes adjacent to these edges are added to Vs. In the second step we still

induce a subgraph from all the nodes present in Vs. The result, provided by algorithm 2, is a
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subgraph that preserves the proportions of different nodes and edges in addition to preserving the

structure of the original graph.

Algorithm 2 : Sample fraction φ, edge set E

Input: Assume edges in E are stored in an array

Initialization: Vs = ∅ , Es = ∅
// Edge-based node sampling step

while |Vs| < φ× |V | do

// Sampling attack edges

ra = random(1, |Ea|) //uniformly random

(u, v) = er
Vs = Vs ∪ {u, v}
// Sampling sybil edges

rm = random(1, |Em|) //uniformly random

(r, s) = em
Vs = Vs ∪ {r, s}
// Sampling honest edges

rh = random(1, |Eh|) //uniformly random

(k, t) = eh
Vs = Vs ∪ {k, t}

end while

// Graph induction step

for k=1:|E| do

(u, v) = ek
if u ∈ Vs AND v ∈ Vs then

Es = Es ∪ {ek}
end if

end for

return Gs = (Vs, Es)

Figure 4.1 reveals that the node’s degree of both the graph and the sampled subgraph have a

similar cumulative distribution function (CDF). This indicates that our proposed graph sampling

algorithm preserves the distribution of node’s degrees from the original graph.

One goal of the proposed algorithm is to maintain the ratios of nodes in the original graph.

Those nodes are the honest nodes and the sybil nodes. Figures 4.1 and 4.2 show that the proportion

of honest nodes and sybil nodes is in accordance with their respective proportions in the original

graph.
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Figure 4.1: Degree distribution of the graph and the sampled subgraph

Table 4.1: Statistic of nodes in the graph and subgraph

Nodes Graph Subgraph

Honest nodes 372,251 30,840

Sybil nodes 97,253 16,111

Total nodes 469,504 46,951

Another goal of the proposed graph sampling algorithm is to sample the graph while maintain-

ing the proportion of all types of edges in the graph. We have three types of edge: Honest edges

which are the edges linking honest nodes, sybil edges which are the edges linking sybil nodes,

and attack edges which are the edges connecting sybil nodes to honest nodes. Figures 4.3, and 4.4

show that the different edges has been sampled proportionally to their representation in the original

graph.
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Table 4.2: Ratio of nodes in the graph and subgraph

Nodes Graph Subgraph

Ratio honest nodes 0.793 0.657

Ratio sybil nodes 0.207 0.343

Table 4.3: Statistic of edges in the graph and subgraph

Edges Graph Subgraph

Honest edges 906,102 334,205

Sybil edges 1,147,939 903,190

Attack edges 99,385 91,918

Total edges 2,153,426 1,329,313

Table 4.4: Ratio of edges in the graph and subgraph

Edges Graph Subgraph

Ratio honest nodes 0.420 0.251

Ratio sybil nodes 0.533 0.679

Ratio attack edges 0.046 0.069
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Chapter 5

SybilRadar: A Graph-Structure Based Framework

for Sybil Detection in Online Social Networks

Online Social Networks (OSN) are increasingly becoming victims of Sybil attacks. These at-

tacks involve creation of multiple colluding fake accounts (called Sybils) with the goal of compro-

mising the trust underpinnings of the OSN, in turn, leading to security and the privacy violations.

Existing mechanisms to detect Sybils are based either on analyzing user attributes and activities,

which are often incomplete or inaccurate or raise privacy concerns, or on analyzing the topological

structures of the OSN. Two major assumptions that the latter category of works make, namely,

that the OSN can be partitioned into a Sybil and a non-Sybil region and that the so-called “attack

edges” between Sybil nodes and non-Sybil nodes are only a handful, often do not hold in real

life scenarios. Consequently, when attackers engineer Sybils to behave like real user accounts,

these mechanisms perform poorly. In this chapter, we propose SybilRadar, a robust Sybil detec-

tion framework based on graph-based structural properties of an OSN that does not rely on the

traditional non-realistic assumptions that similar structure-based frameworks make. We run Sybil-

Radar on both synthetic as well as real-world OSN data. Our results demonstrate that SybilRadar

has very high detection rate even when the network is not fast mixing and the so-called “attack

edges” between Sybils and non-Sybils are in the tens of thousands.

The rest of this chapter is organized as follows. In Section 5.1 we present the system model

for SybilRadar. We discuss why assumptions in existing structure-based detection mechanisms

are invalid under real world settings. We end the section with a discussion on our attack model.

The main design of SybilRadar is presented in Section 5.2. We discuss the major intuitions in our

design and the different graph metrics that we used. Section 5.3 presents the experimental setup

and evaluation of SybilRadar including comparison with SybilRank, which is the closest in design

to SybilRadar. We conclude in Section 5.4 with a discussion of our results.
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5.1 Preliminaries

We begin by presenting the system model for our work. We then introduce the notion of strong

and weak trust relationships in OSNs. We explain why SybilRank does not perform well in a

real-world OSN with weak trust. We end this section with a discussion of our attack model.

System Model: Trust relationship between two OSN users allows one to assess the information

based upon which further information sharing can be performed or a service can be expected [111],

and is the underpinning on which OSNs are built. Consider the social network topology as defined

by a graph G = (V,E) comprising a set of vertices V, denoting users on the social network and

E a set of edges, representing trust relationships (or friendship) between users. We assume trust

relationships are mutual (bi-directional) and represent it with undirected edges between the users

in the graph G. Two kind of nodes are considered here – an honest node and a Sybil node. A

honest node that has accepted, or is susceptible to accepting a friend request from a Sybil node is

considered to be a victim node. The subgraph of G containing all the honest nodes is considered to

be the honest region of the OSN, while the Sybil region is the subgraph of G containing all sybil

nodes.

We consider three kind of edges. Attack edges are those connecting victim nodes in an honest

region and Sybil nodes. Sybil edges connect Sybil nodes to each other. Finally we have honest

edges that connect honest nodes with each other. The system model is illustrated in figure 5.1.

OSNs with weak trust: In early studies [35], [112], OSNs were assumed to have strong trust

relationships. OSNs with strong trust are those that possess the property of fast-mixing. For Sybil

detection purposes, this boils down to a social network with a small cut, which is a set of edges

whose removal will disconnect the graph into two distinct regions – the honest region and the

Sybil region [113]. In other words, in a social network with strong trust we can distinguish the

two distinct regions and there is a very limited number of attack edges between the regions (in the

tens). OSN with weak trust, on the other hand, is a network that does not display the fast-mixing

property. Indeed, it was demonstrated [37] that not many social networks are fast-mixing. In this

work, we assume an OSN with weak trust, which is in contrast to SybilRank.
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Figure 5.1: Social graph with Honest nodes in blue, Sybil nodes in red, and Attack edges in red

Attack Model: We assume that an attacker can create an unlimited number of Sybil nodes con-

stituting a subgraph (the Sybil region) whose topology is beyond the control of the OSN provider.

Attackers can create as many number of attack edges as they want, but they do not have control

on how many of those attacks edges will be successful in establishing victims. Our Sybil defense

mechanism is built around the assumption that we know at least one honest node. This assump-

tion is reasonable since such information can be provided by the administrator of the OSN after a

carefully designed process for that purpose. Same assumption is made by other works as well. In

addition, we assume that the attacker does not have complete knowledge of the entire OSN topol-

ogy, since this will require him to crawl the entire network. However, the attacker can acquire the

knowledge about a subgraph of the OSN.

5.2 System Design

SybilRadar operates in three steps. The process starts with the network dataset (set of nodes

and edges) being fed to the SybilRadar framework. The first step involves the computation of

similarity values between a given pair of nodes. The chosen similarity metric is the Adamic-Adar

metric [114], which is based on the notion of common friends between any given pair of nodes. The

intuition for choosing this metric is that honest nodes will have more friends in common that Sybil
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nodes. In the second step, the result from the first step is refined using another similarity metric

which is the Within-Inter-Community metric (WIC) [25]. This metric leverages the underlying

community structure of the given social graph. The Louvain method [115] is used to find the

social graph community information that is fed to the WIC similarity metric computation. This

step produces the prior information which is the similarity values of any given pair of nodes driven

by the community they belong to. We end this step with a tuning of the nodes similarity values for

those nodes with a similarity value greater than 1. We assign the resulting similarity values to the

social graph edges as their weights. In the third step, we run a Modified Short Random Walk on the

weighted social graph. This step produces trust values, which are the node’s landing probabilities

of the random walk. These values are assigned to each node as the posterior information in order

to perform the ranking of nodes. The general framework of SybilRadar is shown in figure 5.2.

Figure 5.2: SybilRadar framework

5.2.1 Predicting Attack Edges

Similarity metrics have been extensively used in the field of link prediction in networks. The

link prediction problem consists of predicting possible future links based on observing existing

links in a given network. Sybils try to maliciously create trust relationships with honest nodes by

creating attack edges. Our algorithm tries to predict these bad links. The prediction of future pos-

sible links can be based on observing unique and recent features of nodes present in the network,

or can be based on structural properties of nodes present in the network. In the first case, feature

similarity metrics are used, while structural similarity metrics are used in the latter case. Interested
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readers are referred to [116], [117] for link prediction works using feature similarity metrics, and

references [118], [119] for link prediction works based on structural similarity metrics. In OSNs

node attributes are not always available. For example, users may not complete their profiles or

provide inaccurate or misleading information to protect their sensitive information. Moreover, try-

ing to learn user behavior, where complete information is available, may raise privacy concerns.

This leads us to consider structural similarity metrics, which are based solely on the structure of

the social graph induced by trust relationships between users [120].

We adopt the Adamic-Adar metric [114] to compute an initial similarity value of pairs of nodes.

For a given OSN graph G = (V,E), let x and y be two nodes and Γ(x) and Γ(y) be the sets of

neighbors of x and y. The Adamic-Adar (or simply Adamic) similarity measure is given by

SAA
x,y =

∑

w∈Γ(x)∩Γ(y)

1

log | Γ(w) |
(5.1)

Given the initial social graph, running the Adamic similarity metric on each pair of nodes

results in a weighted social graph with the weight on a link being the similarity value of nodes

adjacent to that link. For a given social graph G = (V,E) and for each edge (u1, u2) ∈ E,

the similarity value Adamic(u1, u2) becomes its weight w(u1, u2). After computing the Adamic

similarity metric we make the following observations :

1. We have three sets of edges: edges with weight w(u1, u2) = 0, those with weight w(u1, u2) ∈

[0, 1], and the edges with weight w(u1, u2) > 1.

2. For the attack edges, at least 95% of them have their weight w(u1, u2) = 0, and less than 5%

have their weight w(u1, u2) ∈ [0, 1], while about zero to an infinitely small number of them

have their weight w(u1, u2) > 1.

3. The situation for honest edges is quite different. At least 90% of them have their weight

w(u1, u2) > 1, and about less than 5% have their weight w(u1, u2) ∈ [0, 1], whereas those

with weights w(u1, u2) = 0 are also less than 5%.
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We were able to make these observation because the social graph used for simulation purpose

is derived from a synthetic network whose attack edges, Sybil edges and honest edges are known

beforehand. We were able to predict about 90% of existing attack edges. We made similar obser-

vation later with our real data. We observe that predicting attack edges can be very helpful. since it

can reveal nodes that have potentially been victims of Sybil attacks. This can be a valuable infor-

mation for a system administrator. Note, however, that not all edges that have their w(u1, u2) = 0

are all attack edges. In other words, some honest edges, as well as some Sybil edges, have their

weight equal to 0. This is due to the fact that not all pairs of honest nodes or Sybil nodes have

common friends, which is the criteria used in computing the similarity value using the Adamic

metric.

5.2.2 Further Refinement of Attack Edge Detection

We next observed that there was an extreme case where our current Sybil detection algorithm

completely looses its accuracy. This situation arises when the number of attack edges far exceeds

the number of honest nodes.

This situation is not desirable because, at this level, any attacker that can succeed to create a

huge number of attack edges compared to the number of benign accounts and get a high degree of

certainty of having a significant number of his Sybil accounts evading the Sybil detection mech-

anism. We observe that among the attack edges that were not detected a significant number have

their weights w(u1, u2) ∈ [0, 1]. These edges are mixed with a significant portion of other non

attack edges which also have their weight w(u1, u2) ∈ [0, 1]. We want to filter out as many attack

edges as we can in order to increase the number of detected attack edges. For this purpose, we

leverage properties of communities (or clusters) in networks.

Community detection

OSNs typically display clustering characteristics. The idea of using a clustering structure when

designing a similarity metric was advanced by [24] who showed that link prediction measures

based on structural similarity perform poorly for a network with a low clustering structure. This
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inspired [25] to first divide the network into communities, and use this clustering structure infor-

mation in designing a similarity metric for the link prediction problem. In order to measure the

quality of a community structure, Newman et al [26] introduced a modularity function Q. Given a

social graph G = (V,E), the modularity function can be expressed as follows:

Q =
1

2m

∑

(Aij −
kikj
2m

)δ(Ci, Cj) (5.2)

where ki and kj are respectively the degree of nodes i and j. Aij represents an element of the

adjacency matrix, and m is the size of E which is the set of edges of the given graph G. Ci and Cj

are the respective communities to which i and j belong. The parameter δ is the Kronecker delta

symbol whose value is 1 when both i and j belong to the same community, and is 0 when both

nodes belong to different communities. The goal of community detection is to divide a network

into communities in a manner that maximizes the value of the modularity. In our Sybil detection

algorithm we use a modularity optimization method called the Louvain Method [115].

The Louvain method [115] was developed at the University of Louvain to detect communities

in a network in an efficient manner. The Louvain method operates by initially putting each node

in its own community. Obviously, the modularity obtained at this steps is not optimal. The al-

gorithm then proceeds to group together closely connected communities in a way that improves

the modularity. A new graph is then constructed by converting the obtained communities to nodes

and by adding links weighted by the inter-community connectivity. This iteration is then repeated

until an optimal modularity is obtained. Louvain method is the most used algorithm for finding

communities because the computation of each its iteration is linear in the number of edges. More-

over, it can be easily parallelized [121]. This algorithm can only find disjoint communities, which,

however, is not an issue in our particular use case. Several other algorithm have been developed

to detect overlapping communities in a network [122], [123]. The division of our social graph into

communities can be illustrated in figure 5.3.

To identify clusters, we first collect all the edges with weight w(u1, u2) ∈ [0, 1], and for each of

these edges we compute the similarity value of its end nodes using the Within Inter Cluster (WIC)

40



Figure 5.3: Finding communities using Louvain method. Each node color represents a community with

Honest edges in blue, and Attack edges in red

similarity metric [25]. This metric is built based on the notion of within-cluster common neighbors

and inter-cluster common neighbors. For a given graph G = (V,E), and nodes u, v, w ∈ V , w

is said to be a within-cluster common neighbor of u and v if w belongs to the same community

as them. Otherwise, w is said to be an inter-cluster common neighbor of u and v. The WIC

metric is defined to be the ratio between the size of the set of within- and inter-cluster common

neighbors [25]. Formally, the WIC metric is expressed as:

SWIC
x,y =

|
∧W

x,y|

|
∧IC

x,y|+ δ
(5.3)

The numerator |
∧W

x,y| represents the set of within-cluster (W ) common neighbors of x and y

and is defined by

|
∧W

x,y| = {z ∈
∧

x,y|x
C , yC , zC} with xC , yC , zC being the respective communities of x, y, and z.

The denominator of the equation represents the set of inter-cluster (IC) common neighbors of x

and y, which is defined as the complement |
∧IC

x,y| =
∧

x,y \|
∧W

x,y| with
∧

x,y being the set of all

common neighbors of x and y [25]. A close look at the equation above reveals that the information

about the clustering structure of the given graph is necessary in order to compute this metric.
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Running the WIC similarity metric on edges with weight w(u1, u2) ∈ [0, 1] results in this set of

edges being reduced in size. Some of its edges are converted to edges with weight w(u1, u2) > 1

while the remaining are converted to edges with weight w(u1, u2) = 0, thus increasing the size

of the set of attack edges. We terminate this preprocessing with a tuning that aims to scale down

all weights w(u1, u2) > 1 to w(u1, u2) = 1. The benefit of this transformation is a gain in the

accuracy and the stability of the detection mechanism. We are now ready to proceed to the ranking

of nodes in order to declare which ones are Sybil nodes, and which ones are benign nodes.

5.2.3 Trust Propagation

To rank the nodes, each node in the OSN is assigned a degree-normalized landing probability

of a modified short random walk. The walk starts from a known non-Sybil node. Using this node,

we compute the probability of a modified random walk to land on each node ui after k steps. This

landing probability is analogous to the strength of the trust relationship between the nodes, and

each step of the walk’s probability distribution is considered as a trust propagation process [20].

Early terminated walk: The modified random walk used by SybilRadar is called a short walk

because it is an early terminated walk [124]. A random walk that is run long enough will end up

with with all the nodes in the social graph having an uniform trust value. The uniform trust value

is called the convergence value of the random walk [125]. The number of steps k required for a

random walk to converge is called the mixing time of the social graph. Several researches [126],

[13], [37] have shown that for various social networks, the mixing time is larger than O(log n) with

n being the number of nodes in the social graph. To compute the trust values, SybilRadar adapts the

Power Iteration method [127]. The power iteration method is an eigenvalue computation method

that can compute a rank of individual nodes based on an averaging of ranks of all nodes in an

efficient manner. It is a method used by other mechanisms such as PageRank, and TrustRank to

compute rank values [128], [129]. In SybilRadar the modified power iteration is terminated after

O(logn) iterations.
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Our modified power iteration method takes as input the transition matrix of social graph, where

each element of the matrix is the probability of the random walk to transition from one node to

another. The method is executed as a succession of transition matrix multiplications, and at each

step the iteration computes the trust distribution over nodes. It works as follows. We define the

trust value on a node v after i iterations as T (v), and the total trust as the value T ≥ 1. Given

s1, . . . , sk the selected trust seeds, we initialize the power iteration by distributing the total trust

among the trust seeds as follows:

T (0)(v) =















T/k if v is a trusted seed

0 otherwise

(5.4)

After the initialization step, each node vi is assigned a trust value T (vi). The process then

proceeds with each node vi evenly distributing its trust value T (vi) to each of its neighbor vj

during each round of power iteration. Each node vi then updates its trust value in accordance

with the trust values received from its neighbors. The trust distribution is done proportionally

to w(vi, vj) ÷ deg(vj) which is the ratio of the weight on the edge between the node vi and its

neighbor vj over the degree of the neighbor node vj . The use of the weight ensures that a big

fraction of the total trust will be distributed to benign accounts rather to Sybil accounts. This

results in benign accounts having higher trust value than Sybil accounts. The entire process is

summarized in equation 4.

T (k)(vi) =
∑

(vi,vj)∈E

T (k−1)(vj)
w(vi, vj)

deg(vj)
(5.5)

After O(logn) iterations, the resulting trust value T (vi) assigned to each node vi is normalized

according to vi degree. The normalization process involves dividing each node trust value by its

degree. This transformation is motivated by the fact that trust propagation is influenced by the node

degree, and that this results in the trust propagation being biased toward node with higher degree
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when the number of iterations grows larger. The normalization ensures that benign nodes get trust

values that are close in value [20]. This is influential in identifying Sybil nodes after the ranking.

5.3 System Evaluation

We first evaluate SybilRadar using both a synthetic network and a real dataset collected from

Facebook. For both evaluations we employ procedures that other researchers have used in this

line of work. We compare SybilRadar against SybilRank which takes the same structure-based

approach that is also based on the use of the power iteration method albeit on an unweighted graph

unlike SybilRadar which uses a weighted graph.

Comparing SibilRadar to SybilRank will help highlight the role played by similarity metrics

in detecting Sybil accounts. In addition, SybilRank has been demonstrated to outperform other

previous structure-based methods [20]. Although Integro outperforms SybilRank, it is not a pure

structure-based approach since it leverages account’s feature information collected from recent

users activities. We have indicated earlier our reservations for using user attributes or activities in

Sybil detection. For this reason, we are not including it in our comparison.

Evaluation metric: To express SybilRadar’s performance, we use the Area Under the Receiver

Operating Characteristic Curve (AUC). AUC for our purpose is defined as the probability to have

a randomly selected benign node ranked higher than a randomly selected Sybil node. The AUC is

a tradeoff between the False Positive Rate and the True Positive Rate of the classifier. A perfect

classifier has an AUC of 1 while a random classifier has an AUC of 0.5. Therefore, we expect our

classifier to perform better than a random classifier, and to have an AUC as close as possible to 1.

5.3.1 Evaluation on Synthetic Networks

The synthetic network is generated using known social network models. First, the honest and

the Sybil regions are generated by providing relevant parameters to the network model, like the

number of nodes, and the average degree of nodes. Then, the attack edges are generated following
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the scenario chosen in the experiment. They can be randomly generated or generated in a way to

target some specific honest nodes.

Initial Evaluation: We generate the honest region and the Sybil region using the Powerlaw

model. The honest region has a size 4000 nodes while the Sybil region has 400 nodes. Both

regions have an average degree of 10. The attack scenario chosen simulates an attacker randomly

generating 2000 attack edges. The weights on the edges are set to be the values resulting from

the two similarity metrics previously described in this section 4.2. For this experiment, we select

20 trust seeds from the honest region. These are supposed to be some nodes that the OSN system

administrator is absolutely certain to be honest nodes.

Results: Comparing the ranking quality of both SybilRank and SybilRadar under the chosen

scenario, the results show that SybilRadar outperforms SybilRank. SybilRadar resulted in an AUC

which is always greater than 0.95, an AUC that is higher than SybilRank’s AUC of 0.90.

Varying the number of attack edges : In the next experiment, we keep the honest and the

Sybil regions as set up in the previous Basic Evaluation. In order to stress-test the platforms being

compared, we decide to successively vary the number of attack edges from 1000 to 10000. We

want to investigate how the increase in number of attack edges affects the performance of both

platforms.

Results: This result can be seen in Figure 5.4(a). As the number of attack edges increases, we

notice that SybilRank is unable to keep its initial performance, with its AUC dropping from 0.97

to less than 0.6. Meanwhile, the increase in the number of attack edges affects the performance of

SybilRadar only marginally. Its AUC still stays above 0.90. This highlights the effectiveness of

using similarity metrics in detecting Sybil nodes in the case of social graphs with weak trust.

Varying the size of the Sybil region : In this experiment, we explore how the increase in the size

of the Sybil region affects the performance of both platforms. For this purpose, we design a honest

region with 4000 nodes, and an average degree of 10. The attacker is able to create randomly 4000
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attack edges. We vary the size of the Sybil region from 100 to 500 nodes each with an average

degree of 10.

Results: The experiment results (see figure 5.4(b)) show that SybilRadar and SybilRank react

differently to the increase in the size of the Sybil region. When the size of the Sybil region is

relatively small compared to the size of the honest region, SybilRank performs poorly. SybilRank

performance improves when the size of the Sybil region get relatively bigger. However, as illus-

trated in figure 5.4b, SybilRadar displays a stable performance that is less sensitive to the size of

the Sybil region.

(a) Varying number of attack edges

(b) Varying size of the Sybil region

Figure 5.4: Performance on synthetic data
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5.3.2 Evaluation on Real-world Twitter Network

To study if our choice of data in the previous experiments biased our results, we also eval-

uated the performance of SybilRadar under larger datasets from a different OSN, namely, the

Twitter network. The dataset we used is a combination of four datasets: The FakeProject dataset,

the Elezioni2013 dataset, the TWT dataset, and the INT dataset [46]. The FakeProject dataset

contained profiles of real users who received friend requests from @TheFakeProject, an account

created for The FakeProject that was initiated in 2012 at IIT-CNR, in Pisa-Italy. The Elezioni2013

dataset was generated in 2013 for a sociological research undertaken by the University of Perugia

and University of Rome, La Sapienza. The TWT dataset and the INT dataset were a set of fake

accounts purchased respectively from the fake accounts providers http://twittertechnology.com and

http://intertwitter.com. The first two datasets mentioned provided the honest nodes while the last

two datasets provided the fake nodes [46].

Pre-processing: Since the Twitter network is directed, we considered only the set of bidirec-

tional edges. This provided us with an initial network of 469,506 nodes and 2,153,427 edges. We

further refined this network by removing all nodes with degree less than 1.

The resulting twitter network then comprised 135,942 nodes and 1,819,864 edges. The honest re-

gion comprised 100,276 nodes and 634,127 edges while the Sybil region was constituted of 35,666

nodes and 1,086,352 edges. The two regions were connected by 99,385 attack edges.

Results: We ran SybilRadar several times using the Twitter dataset described above. Sybil-

Radar resulted in an AUC which was always greater than 0.95 as shown in figure 5.5.

5.4 Discussions

In this chapter, we presented a new framework for detecting Sybil attacks in an Online Social

Network. In a Sybil attack, an adversary creates a large number of fake identities in an OSN or

forges existing identities. The adversary then uses these fake identities to influence the underlying

trust basis of the OSN and perform malicious activities such as social spamming, malware distri-

bution and private data collection. Sybils are a significant threat to the OSN. While they cannot be
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Figure 5.5: Performance on Twitter dataset

prevented in most OSNs because of their open nature, this work provides a solution by which the

OSN operator can automatically, speedily and accurately detect such Sybils.

SybilRadar belongs to the class of Sybil detection techniques that rely on the graph structure of

the OSN. This is in contrast to the alternate group of detection mechanisms that rely of identifying

features related to user attributes and activities. We believe that while the second class of detection

algorithms may provide good detection results on carefully cleaned up OSN data, in real life such

data is difficult to obtain since OSN users frequently leave their profiles incomplete or use mis-

leading information purposefully. Moreover, trying to obtain user activity related data may raise

serious privacy concerns. As a result, SybilRadar relies on just the structural properties of the OSN

graph. We used a variety of OSN test data – both synthetic as well as real-world – to evaluate the

detection accuracy of SybilRadar. Our experimental results show that SybilRadar performs very

well – much better than the most well known similar technique – even for OSNs that have the weak

trust model and which have a very large number of attack edges between Sybil nodes and honest

nodes.
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Chapter 6

Sybil Classification in Online Social Networks Using

Only Structural Features

Early Sybil account detection mechanisms involved classification of users into benign and ma-

licious based on various attributes collected from the user profiles. One challenge affecting these

classification methods is that user attributes can often be incomplete or inaccurate. In addition,

these classification methods can be evaded by sophisticated attackers. More importantly, user pro-

files can often reveal sensitive user information that can potentially be misused causing privacy

violation. In this chapter, we propose a Sybil detection method that is based on the classification

of users into malicious and benign based on the inherent topology or structure of the underlining

OSN graph. We propose a new set of structural features for a graph. Using this new feature set, we

perform several experiments on both synthetic as well as real-world OSN data. Our results show

that the proposed detection method is very effective in correctly classifying Sybil accounts without

running the risk of being evaded by a sophisticated attacker and without compromising privacy of

users.

The remainder of this chapter is organized in the following manner: Section 8.1 presents some

background on the Sybil detection problem. We present our attacker model in section 6.1.1. In

section 6.1.2 we describe the dataset used in this work. We then present a set of existing graph

centrality measures that have been used elsewhere in Sybil detection and/or Spam detection. These

existing features together with the new ones that we introduce in section 6.1.5 constitute the initial

feature vector for our classification technique. On this initial feature vector, we employ feature

selection techniques to reduce the set of features to eight. Section 6.3 introduces the classifica-

tion methods used in this work. The results of our experiments are presented in section 6.4. A

discussion of our results is presented in section 6.5.
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6.1 Background

Most popular OSNs are being targeted by Sybils that can be designed to have realistic profiles,

and to be well integrated in the social graph structure. This makes it challenging to identify Sybils.

Our goal is to detect Sybils using their structural characteristics in the social graph. These charac-

teristics are difficult for the attacker to fake because they depend on the structure of the rest of the

OSN. In this section, we present some background notions necessary to the understanding of our

study. We start by introducing the attack model that we use for this work. Next we present some

graph theory concepts that we use throughout this work. This is followed by some important graph

centrality measures that form the inspiration of our proposed new set of features. We finish with a

description of what constitutes a sybil attack in OSN.

6.1.1 Attack Model

We do not make any assumption about the capability of the attacker to create Sybils. The at-

tacker can create an unlimited number of Sybils that can be connected to each other in to constitute

a subgraph. Attackers can use any method at hand to befriend benign accounts. However, we

assume that attackers do not have control on how many of their friend requests will be accepted.

Most of OSNs make it near impossible to crawl the entire network. Thus, we assume that

the attacker does not have a complete knowledge of the OSN topology. However, using freely

available datasets along with de-anonymization techniques, an attacker can gain knowledge about

any subgraph of the social network.

6.1.2 Dataset

In this section, we describe the different datasets we have used to conduct our experiments.

The first dataset is a real world Twitter dataset with ground truth information. The second dataset

is a real world Facebook dataset complemented with some synthetically generated Sybil nodes.
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Twitter Dataset Description

We evaluated the performance of our classification on a real dataset which is a subset of the

Twitter network. Our dataset is actually a collection of four different datasets: The FakeProject

dataset, the Elezioni2013 dataset, the TWT dataset, and the INT dataset [46]. The FakeProject

dataset was initially generated for the FakeProject, a project initiated at IIT-CNR in Pisa-Italy. This

dataset comprises the profiles of real users who received and accepted a friend request from the

@FakeProject account in 2012. The University of Perugia and the University of Rome La Sapienza

initiated a sociological research in regard to the 2013 Italian election. During this research, the

Elezioni2013 dataset was generated. This dataset comprises real users.

In order to complement the graph with fake users, two additional dataset of fake users were

used. These are the TWT dataset and the INT dataset. These two datasets consists of fake accounts

purchased on the black market. The TWT dataset is a set of fake accounts that were bought

from the provider twittertechnology.com while the INT dataset was acquired from the provider

intertwitter.com.

All four datasets put together provide us with a network of 469,506 nodes and 2,153,427 edges.

We pre-process this network by only considering the biggest connected component. The result is

a graph of 469,504 nodes and 2,153,426 edges. The real users constitute the honest region with

372,251 nodes while the fake users constitute the Sybil region with 97,253 nodes. The two regions

are linked by 99,385 attack edges that form the connection between Sybil and honest users.

Facebook Dataset Description

In order to illustrate that our classification method is not limited to the Twitter network, we

have added to the analysis a Facebook dataset. This dataset is called the Ego-Facebook dataset and

originated from the Stanford Network Analysis Project (SNAP) [130].

The social graph represented by this dataset is made of 4,039 nodes and 88,234 edges. Nodes

and edges represent respectively Facebook accounts and friendship relationships. This is an undi-

rected graph as was the case with the graph representing the previous dataset. This Facebook

dataset constitutes our benign region. We generate the Sybil region by adopting the power-law
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degree distribution [131], since social networks are known to have a long-tail degree distribution.

The generated Sybil region has 4,000 nodes and 88,000 edges. We connect the two regions by ran-

domly adding 60,000 attack edges between the two regions. The final network topology has 8,039

nodes and 236,234 edges. A similar setting combining the Facebook dataset with synthetically

generated Sybils was also adopted by [40].

6.1.3 Graph Notation and Definition

We model an OSN as an undirected graph G = (V,E), where V is the set of nodes represent-

ing the users in the network, and E is the set of edges. Each edge represents a bilateral social

relationship between two users in the network. The resulting social graph G has n = |V | nodes

and m = |E| edges. A given node v of the social graph is characterized by its degree deg(v) which

represents the number of its friends.

Definition 1. Ego network [132]: The Ego network of a node v is the network formed by v and

all the nodes to whom it is directly connected to, together with the links among those nodes. The

Ego network of a node v can be understood to be the neighborhood networks or the first order

neighborhoods of v .

Definition 2. Centrality measure [133]: A centrality measure is a metric capturing a person’s

centrality, power, prestige, or influence in a given network. Centrality measures are used for the

identification of key persons within a social network. The concept of centrality measure depends

on the context, and different centrality measures have been designed based on the application.

6.1.4 Sybil Attacks

Sybil attacks are a form of attacks targeting OSN in which a malicious user creates multiple

fake identities, known as sybils, which are used to breach the privacy of legitimate users. Re-

searchers have identified four main types of sybil attacks in OSN: Sybils with a dense friendship

subgraph, sybils with a sparse friendship subgraph, sybils with a normal friendship graph, and

creepers [134].

52



In the first category, sybils with dense friendship subgraph, a malicious user creates multiple

sybil accounts and a large number of connections among them [135], [20]. This results in the sybil

account’s friendship subgraph forming a tight knit cluster.

In the second category, sybils with a sparse friendship subgraph, the sybil account created by a

malicious user either does not form social links among themselves or are loosely connected [10].

The sparsity of the sybil friendship subgraph is the result of the snowball sampling techniques used

by sybils to identity potential victims. In addition, it was determined that those sybils tend to send

friendship requests to popular users, because of their high likelihood to accept friend requests from

strangers [136].

Sybils with normal friendship subgraph constitute the third type of sybil attacks. In this cat-

egory, even though their friendship subgraph is normal, it is different from the one for legitimate

users. The reason for this situation is that, in order to blend in, sybils create a few connections

among themselves. Next, they send friend requests to legitimate users. However, it was shown

in [135], [20] that only a small percentage of those friend requests get accepted by legitimate

users [136].

Creepers constitute the fourth type of sybil attacks. Creepers are fake accounts created by

non-malicious users with the purpose to perform activities like pranks, stalking, cyberbullying,

etc, [14].

6.1.5 Graph Centrality Measures Previously Used in Sybil and/or Spam De-

tection

Previously, researchers have used graph centrality measures as features in Sybil detection.

Graph centrality measures have also been used in OSN spam detection. To design and refine

our classifiers, we start with these previously used centrality measures and augment them with a

set of measures that we propose. Next, we use feature selection techniques to identify the feature

set that gives the most accurate results. At this stage, we discuss the previously used centrality

measures. These measures include the average nearest neighbor degree, the average degree, the
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core number, the clustering coefficient, the edge volume, the weighted vertex volume, the aver-

age core number and the average clustering coefficient. We have run the experiments using other

centrality measures such as the betweenness centrality, the closeness centrality, and the Page-rank

centrality. These measures, besides being computationally expensive, did not contribute much to

the improvement of the results.

Average nearest neighbor degree: The average nearest neighbor degree of a node of degree k

is a measure of dependencies between degrees of neighbor nodes in a network [137]. This is also

known as assortativity. Assortativity is the preference for a network’s nodes to attach to others with

similar degree [138]. It is expressed by:

Knn(u) =
1

ku

∑

kj (6.1)

where Knn(u) denotes the average nearest neighbor of node u, ku is the degree of node u, and kj

is the degree of a node adjacent to node u.

Average degree: The average degree of a node is the average number of edges adjacent to that

node [139]. For a given node u, and considering its Ego network, the average degree of node u is

expressed as:

AD(u) =
1

|N(u)|

∑

j∈N(u)

kj (6.2)

where AD(u) is the average number of edges adjacent to node u, N(u) is the neighborhood of

node u, and kj is the degree of node j that belongs to the neighborhood of u.

Core number: Given a graph G = (V,E), the k-core or core of order k is the maximal subgraph

G′ = (V ′, E ′) such that for all nodes v ∈ V ′, deg(v) ≥ k where deg denotes the degree of node

v. The order of the core with the highest order to which a node belongs determines the core-ness

or core number of the node [140]. Previous research [141], [142] have shown the usefulness of

k-core in detecting cohesive groups of fraudsters [143].
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Clustering coefficient: This centrality measures the propensity that the neighbors of a node v

are linked to each other. It captures the friends-of-friends relationship between social network

accounts. In a social network, the friends of a benign user are likely to be benign. This is not

always true for malicious users since they establish friendships with benign users in a random

manner [144]. The clustering coefficient of a node u, denoted by CC(u), is intended to capture

the situation described above, and is defined [145] as:

CC(u) =
2tr(u)

ku(ku − 1)
(6.3)

where tr(u) is the number of triangles formed by node u with two of its neighbors, and ku is the

degree of node u.

Edge volume: For a given node u, and its Ego network N(u), the Edge Volume of node u is a

measure of network properties in terms of the weights of edges. It represents the node strength

[146], and is expressed by:

EV (u) =
∑

v∈|N(u)|

w(u, v) (6.4)

where EV (u) is the Edge Volume of node u, N(u) is the neighborhood of node u, and w(u, v) is

the weight between node u and all other nodes adjacent to it. If deg(x) represents the degree of

node x, then this weight is expressed by:

w(u, v) =
deg(u).deg(v)
∑

v∈V deg(v)
(6.5)

Weighted vertex volume: For a given node u, the Weighted Vertex Volume of u is the ratio of

the degree of u over its Edge Volume [146]. It is expressed by:

WV V (u) =
deg(u)

EV (u)
=

deg(u)
∑

v∈|N(u)| w(u, v)
(6.6)
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Average core number: This metric represents the average core number of nodes adjacent to the

focus node. Let C(v) be the core number of a node v. For a given node u and its Ego network

N(u), the average Core of u, AC(u), is expressed by:

AC(u) =
1

|N(u)|

∑

v∈N(u)

C(v) (6.7)

Average clustering coefficient: For a given node u, the average clustering coefficient of u is

a measure of the average of clustering coefficients in the Ego network of u. Let CC(v) be the

clustering coefficient of node v as defined in equation 6.3. Then the average clustering coefficient

ACC(u) is expressed by:

ACC(u) =
1

|N(u)

∑

v∈N(u)

CC(v) (6.8)

6.2 Proposed New Features for Sybil Detection

We now describe the set of new features for nodes that we have proposed. All features are

extracted from the structure of the social graph. Each feature is based on some centrality metric,

and represents the importance of the node in the graph. The philosophy for feature identification

is to have features that an attacker cannot manipulate in order to bypass the detection mechanism.

Some of the features – weighted degree-core centrality and weighted degree-clustering centrality

– have been inspired by the weighted degree-degree centrality [147].

Weighted degree-degree centrality Let EN(v) be the Ego network of node v, and wij , the

degree weight, be the probability of two nodes i and j are connected based on their degrees. Degree

weight is given as:

wij =
deg(i).deg(j)
∑

u∈V deg(u)
(6.9)

where deg(u) is the degree of a node u. The Weighted Degree-degree centrality of a node v is the

sum of weighted degrees of that node’s friends and is expressed as:
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DDw(v) =
∑

j∈EN(v)

[w(v, j).deg(v)] (6.10)

A second set of features has been proposed based on the concepts of subgraph intensity and

subgraph coherence. The clustering coefficient is a basic metric to study the clustering properties

of a graph. By extending the concept of clustering to a subgraph, [148] introduced the concept of

subgraph intensity and subgraph coherence. Let g be a subgraph and lg is the set of its links whose

respective weights are wij . The subgraph intensity, I(g), is defined as the geometric mean of the

weights on its links, and is expressed as:

I(g) = (
∏

(i,j)∈lg

wij)
1

|lg | (6.11)

If one of the weights is low or all the weights are low, this can lead the subgraph intensity to be

low without a way to distinguish which case is the cause of the low value.

The measure subgraph coherence was introduced to clarify this situation. It is defined as the

ratio of the subgraph intensity to the arithmetic mean of its weights [148]. Let Φ(g) is the subgraph

coherence of g, I(g) is the intensity of the subgraph g, and lg is the set of links, with each link

having a weight wij . The subgraph coherence is expressed by:

Φ(g) =
I(g)|lg|

∑

ij∈lg
wij

(6.12)

The second set of new features includes the degree-intensity centrality, the degree-coherence cen-

trality, the core-intensity centrality, and the core-coherence centrality. We call these centrality

measures hybrid centrality measures. The hybrid centrality measure of a node is computed as the

sum of basic centrality values of that node’s friends. We now present our six new features.

Weighted degree-core centrality: We have extended the concept of weighted degree-degree

centrality by proposing the weighted degree-core centrality. Let EN(v) is the Ego network of

node v, and wij is the probability of two nodes i and j to be connected based on their degrees, as
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expressed by equation 6.9. The weighted degree-core centrality of a node is the sum of weighted

core numbers of that node’s friends, and it is expressed as:

DCw(v) =
∑

j∈EN(v)

[w(v, j).core(v)] (6.13)

Weighted degree-clustering centrality: Let EN(v) is the Ego network of node v, Cl(v) the

clustering coefficient of node v, and wij is the weight on the link (i, j) as expressed by equation

6.9. The weighted degree-clustering centrality of a given node v is the sum of weighted clustering

values of the node v’s friends, and it is expressed as:

DClw(v) =
∑

j∈EN(v)

[w(v, j).Cl(v)] (6.14)

Degree-intensity centrality: The degree-intensity centrality of a node is defined as the geometric

mean of the degree weights on the links in its Ego network. If EN(v) is the Ego network of node

v, and wij is the degree weight of the link (i, j) ∈ EN(v), the degree-intensity centrality, DI(v)

is expressed as:

DI(v) = (
∏

(i,j)∈EN(v)

wij)
1

|EN(v)| (6.15)

Degree-coherence centrality: We define the degree-coherence centrality of a node v as the ratio

of the degree-intensity of v to the arithmetic mean of the weights on the links in v’s Ego network.

This measure is expressed as:

DC(v) =
DI(v)|EN(v)|
∑

ij∈EN(v) wij

(6.16)

where wij is expressed by equation 6.9.

Core-intensity centrality: Modeled on the concept of subgraph intensity, we define the core-

intensity centrality of a node v as the geometric mean of the weights on the links in v’s Ego

network. Let EN(v) be the Ego network of node v, and wij is the core weight of the link

(i, j) ∈ EN(v) which represents the probability of two nodes i and j to connect based on their
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core numbers. Let core(u) represents the core number of a node u. The core weight is expressed

as:

wij =
core(i).core(j)
∑

u∈V core(u)
(6.17)

The core-intensity centrality is then expressed as:

CI(v) = (
∏

(i,j)∈EN(v)

wij)
1

|EN(v)| (6.18)

Core-coherence centrality: We define the core-coherence centrality of a node v as the ratio of

the core-intensity of v to the arithmetic mean of the weights on the links in v’s Ego network. Let

CI(v) be the core-intensity of node v and wij is the core weight expressed by equation 6.17. The

Core-coherence centrality is expressed as:

CC(v) =
CI(v)|EN(v)|
∑

ij∈EN(v) wij

(6.19)

6.3 Classification Methods

Based on the graph centrality measures discussed earlier, we now describe the supervised ma-

chine learning methods we use to automatically detect Sybil accounts in Online Social Networks.

The supervised machine learning methods are essentially trained classifiers that make the binary

decision whether an account is benign or Sybil. The classifiers used in this works are: Random for-

est, Adaboost, and KNN. We have built our classifiers using scikit-learn [149], a machine learning

toolkit that is supported by Google.

Adaboost [150] is the first practical boosting algorithm. Boosting is a machine learning approach

based on the idea of combining several relatively weak and inaccurate prediction rules in order to

reach a highly accurate prediction rule [151]. In practice, boosting involves repeatedly learning

weak classifiers, each built using a different sample of the training data. The final classifier is

obtained by combining the weak classifiers learned at each round of the classification process.
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K-Nearest Neighbor (KNN) [152] is a non-parametric classification method that takes as in-

put training examples and produces an output which is a class membership. Using KNN , the

classification of an unlabeled object occurs when the object is assigned to a class based on a ma-

jority vote by its K nearest neighbors. The classification accuracy depends of two elements: the

distance between the object to be classified and its nearest neighbors. The second element is the

parameter K. This parameter can be chosen experimentally by taking the value K which gives the

least classification errors.

Random Forests [153] is a classification method using several decision trees. In order to be

classified, the input data point is assigned to each tree in the forest. Each tree is going to classify

the given data point, and the final result is the majority vote from all participating trees. We have

trained our Random Forests classifier using 100 estimators and the optimal parameters setting is

obtained via cross validation.

Support Vector Machine (SVM) [154] performs a classification by finding a hyperplane that

separates the training data points belonging to two different classes into two different regions of

a N-dimensional space. The goal is to optimize this separation with a maximum margin. The

classification of a data point is done by checking which side of the hyperplane it lies after its

vector has been mapped into the N-dimensional space.

6.4 Experimentation and Results

We now present a description of the experimental results to demonstrate the effectiveness of the

various classifiers used for the detection of Sybils. We compare the performance of the classifiers

we have chosen, which include KNN, Random Forest, and Adaboost.

In this experiment, we have adopted the following settings. The Random Forests classifier was

built using 100 trees. The number of estimators in Adaboost was also set to 100. The values of

various performance evaluation metrics are obtained after applying a 10-fold cross validation. In

the end, the mean value of each evaluation metric if collected.
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The performance evaluation metrics considered in this work are: the Precision,the Recall, the F-

measure and the AUC. These metrics are computed using the True Positive (TP), the False Positive

(FP), the True Negative (TN), and the False Negative (FN) as illustrated by the confusion matrix

in table 6.1.

These metrics are formally and respectively defined by the equations 6.20, 6.21, and 6.22. The

Area Under the Curve (AUC) measures how the true positive rate (recall) and the false positive

rate trade off.

Recall =
TP

TP + FN
(6.20)

Precision =
TP

TP + FP
(6.21)

F −measure = 2
Precision×Recall

Precision+Recall
(6.22)

Table 6.1: Example of a confusion matrix

Predicted Class

Sybil Benign

Sybil TP FN

Benign FP TN

6.4.1 Features Selection

We started with a set of fourteen features. We need to figure out the best possible features,

namely, the ones that improve the classification accuracy and AUC. This is the purpose of features

selection models.

Features selection models can be categorized into filter models [155], wrapper models [156]

and embedded models [157]. Filter models select a set of features by ranking features based on the

characteristics of the data, and without involving any classification algorithm. The wrapper models
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Figure 6.1: Distribution of Core number Figure 6.2: Distribution of Degree-degree

involve a classification algorithm in order to select a set of features which are going to improve the

performance of the classification algorithm used in the process. The embedded models combine

the advantages of the two previous features selection models.

In this work, we have chosen as our feature selection model the Recursive Feature Elimination

(RFE) [158]. Since RFE is a wrapper model, we have used it along with a classification algorithm

which is SVM [154]. It results from this process that the best features are: The core number,

the weighted degree-degree centrality, the weighted core-degree centrality, the degree-coherence

centrality, the core-coherence centrality, the edge volume centrality, the average degree centrality,

and the average clustering centrality.

After selecting the eight best features, we want to identify how well each of the eight features is

able to discriminate benign nodes from malicious nodes. For this purpose, we plot the Cumulative

Distribution Function (CDF) of each feature respectively for benign nodes and Sybil nodes. It

results from the observation of figures ranging from figure 6.1 to figure 6.8 that, for each feature,

the distributions of benign nodes and sybil nodes are fairly distinctive. This explains why the

combination of these features is able to provide us with a better classification performance.

6.4.2 Insight Behind the Features

In this section, we present the insight behind the choice of the features we have chosen to

perform the classification of nodes into sybils and legitimate nodes. Our features are designed to
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Figure 6.3: Distribution of Degree-core Figure 6.4: Distribution of Degree-coherence

Figure 6.5: Distribution of Core-coherence Figure 6.6: Distribution of Edge volume

Figure 6.7: Distribution of Average degree Figure 6.8: Distribution of Average clustering
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capture specific topological patterns of sybil accounts that separate them from legitimate accounts.

These patterns, as explained in section 6.1.4, are:

• Sybils that form a dense friendship subgraph which is also said to be a near-clique;

• Sybils that form a sparse friendship subgraph resembling a star subgraph;

• Sybils tend to have friendship relationships with popular users. Therefore, they have friends

with very high degree.

In the following lines, we explain how the designed features help capture the topological pat-

terns of sybil users.

In a study conducted in [159] and [142] that intended to distinguish fraudsters from normal

auctioneers in a OSN, it was observed that fraudsters ofter appeared in the subgraph of the network

with core number equal to two. This is the motivation behind using the core number as one of our

features.

Since sybils tend to send a lot of friendship requests to legitimate users, the average degree

centrality has been selected as one of the features to capture this pattern. However, for those sybils

exhibiting a normal friendship subgraph, this feature is not sufficient to distinguish them from

legitimate users. Since, this type of sybils tend to connect to popular users, we look at the patterns

of their friends. The weighted degree-degree centrality and the the weighted core-degree centrality

were designed to detect this type of sybils.

In a social network, the friends of a legitimate user are likely to be other legitimate users.

This is not always true for sybil users since they establish friendship relationship in a random

manner [144]. In [11], authors have observed that legitimate users have clustering coefficient

values larger than sybil users. This is due to the fact that legitimate users tend to have a small

number of well connected social cliques while sybil users are more likely to be connected to users

with no mutual friendship relationship. For this reason, we have selected the average clustering

coefficient as one of our features. In [148], authors have proposed the concept of subgraph intensity

and subgraph coherence as an extension of the concept of clustering coefficient. In order to capture
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the patterns of the clustering in a node neighborhood and in the neighborhood of that node’s friends,

we propose the use of degree-coherence centrality and the core-coherence centrality as our next

features.

The edge-volume centrality, as explained in section 6.1.5, measures the strength of vertices

in terms of the total weight of their connections [146]. In [160], authors have observed that the

number of nodes and the number of edges in a node neighborhood follow a power law distribution.

They also used this pattern in a scheme designed to detect anomalous nodes in a network since

their pattern deviates from the normal one. That is why we have proposed to use the edge-volume

centrality as one of our features.

6.4.3 Evaluating using the Best Features

The feature selection process has provided us with eight best features. In this section, we

trained our three classifiers using only these eight best features. In order to perform the classifica-

tion, we generate two dataset, one for the Twitter network and the other for the Facebook network.

Each of these dataset has eight columns representing the eight best features. The rows in each

dataset represent the nodes of the respective network.

On the Twitter dataset, the results show that Random Forest and KNN turn out to be the classi-

fiers giving the best results with an AUC of 99%. These results are presented in table 6.2. Training

the classifiers on the Facebook dataset reveals that all three classifiers perform equally with a pre-

diction reaching a perfect AUC. These results can be seen in table 6.3.

Table 6.2: Classification performance on Twitter dataset

Classifier Precision Recall F-measure AUC

AdaBoost 0.95 0.94 0.94 0.94

KNN 0.99 0.99 0.99 0.99

Random

Forests

0.99 0.99 0.99 0.99
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Table 6.3: Classification performance on Facebook dataset

Classifier Precision Recall F-measure AUC

AdaBoost 1.00 1.00 1.00 1.00

KNN 1.00 1.00 1.00 1.00

Random

Forests

1.00 1.00 1.00 1.00

6.4.4 Checking for Over-fitting

In this section, we present all the measures we have taken to avoid the issue of over-fitting

our classifiers. We also present the analysis we have conducted to prove that we have not over-fit

our classifiers. The problem of over-fitting and under-fitting are related to the concepts of model

bias and variance. Bias expresses the ability of a model to approximate the data, while variance

represents the stability of a model with regard to new training examples [161]. Over-fitting usually

produces classifiers with very high predictive performance.

To prevent over-fitting, we have taken the following measures. During the pre-processing stage,

the standardization of the data, was done using a pipe to avoid information leakage from the test-

ing data to the training data. The hyper-parameters tuning for various classifiers was done using

a nested k-fold cross-validation technique. Finally, since our dataset is heavily imbalanced to-

ward the benign nodes, we have trained our classifiers after either oversampling the minority class

(Sybils) or under-sampling the majority class (benign nodes). The sampling was done using a

library called imblearn [162].

After all the measures exposed above, the crucial question is: In regard to the high predictive

results we are getting, how would you tell that the model is not over-fitting? Andrew Ng [161]

suggests doing two things: Use a held-out test set, and plot the learning curve. The held-out test

set is considered as an unseen data. After training the classifiers using k-fold cross-validation, we

test the models on the held-out test set to see how well the models generalize to unseen data, and

can be helpful in determining how well the models generalize to new data. We run the experiment

using the Twitter dataset, and the results show that the AUC of the models on the held-out test data

is consistent with the one produced by the k-fold cross-validation.
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Figure 6.9: Learning curve (AdaBoost) Figure 6.10: Learning curve (KNN)

Figure 6.11: Learning curve (RF)

The learning curve is obtained by plotting the training set and the validation set error (or accu-

racy score) as a function of the training set size. The model is said to over-fit if the learning curve

shows a stable gap at the right end of the plot. As shown on figures 6.9, 6.10, and 6.11, we do not

have a gap between the training curve and the validation curve in any of our classifiers. Therefore,

we can safely say that there is not over-fitting, and that the results are valid.

6.5 Discussion

In this paper, we presented a new framework for detecting Sybil attacks in an OSN. Sybil

attacks occur when an adversary is able to create a large number of fake identities in an OSN, which

are used to spread spams, malware or just to collect private information. The openness of OSN
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platforms make it challenging to prevent such malicious activities from taking place. However, the

platform we have designed can be a useful tool for accurately detecting sybil attacks.

Our framework relies on machine learning techniques to classify sybils. Several previously

proposed sybil detection techniques also use machine learning techniques. Those previous tech-

niques use user attributes and activities as source of information to build the features needed for

the classification. User attributes, collected from the user profile, are often incomplete or contain

misleading information. In addition, they can be forged by a sophisticated adversary. On the other

hand, user activities are obtained by logging every operation a user performs when using his online

account. This collection of activity data raises serious concerns about privacy. Because of these

concerns, we have proposed a framework whose classification relies only on features engineered

from information collected from the structure of the social graph. Those features present the ad-

vantage of being hard to forge by an adversary, unless one has the full knowledge of the entire

social graph.

To validate our results, we used two datasets.The first dataset is a real world Twitter dataset

with ground truth information. The second dataset is a real world Facebook dataset complemented

with some synthetically generated sybil nodes. We have performed the classification using three

machine learning techniques which are KNN, Random Forests, and Adaboost. The best result is

provided by Random Forest, which is able to predict sybils with an AUC of 99%. This result is

consistent with the one obtained from KNN. Adaboost reports the worse prediction with an AUC

of 94%.
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Chapter 7

Resilient Reference Monitor for Distributed Access

Control via Moving Target Defense

Effective access control is dependent not only on the existence of strong policies but also on

ensuring that the access control enforcement subsystem is adequately protected. Protecting this

subsystem has not been adequately addressed in the literature. In general, it is assumed to be

implemented as a reference monitor in a trusted computing base (TCB) that is tamper-proof. How-

ever, in distributed access control, ensuring TCB security kernel to be tamper proof is not always

feasible. It needs to be implemented in software and on platforms that can potentially have vulner-

abilities. We posit that allowing a very limited opportunity to the attacker to enumerate exploitable

vulnerabilities in the access control subsystem can considerably facilitate its protection. Towards

this end we propose a moving target defense framework for access control in a distributed environ-

ment. In this framework, access control is provided by cooperation of several distributed modules

that materialize randomly, announce their services, enforce access control and then disappear to be

replaced by another module randomly. As a result, the attacker does not know which process can

be targeted to compromise the access control system.

The rest of the chapter is organized as follows: In section 7.1 we first present the reference ar-

chitecture for access control in distributed environments. We then give an overview of our moving

target defense approach for protecting the access control subsystem. Section 7.2 presents the mov-

ing target defense architecture. We present our implementation in section 7.3 as well as an analysis

of the security of the proposed approach. Finally, we conclude this chapter with a discussion in

section 7.4.
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7.1 Architecture Overview

We assume that the access control model is Role-Based Access Control. We start with a high

level operational architecture of access control (AC) in the distributed setup. The resources we

are concerned about are the shared resources. The AC architecture is composed of four functional

entities. Each entity has specific functions and participates in the communication as a client, as a

server or both.

7.1.1 Access Control Architecture Components

The four entities are:

1. A user’s client: It is an endpoint entity whose main objective is to access protected resources.

It is responsible to initiate or terminate a session with the Resource Access Server. It resides

on the individual devices running the applications that require access to shared resources.

2. Resource Access Service(RAS) : It is an entity that manages the various distributed resources

and controls the access to it. It acts as both client and server when receiving or replying

to access requests from the client. The decision to grant or deny the access to protected

resources is received from the Authorization Control Server. The Resource Access Server is

responsible for reinforcing that decision.

3. Authorization Control Service (ACS) : It is an endpoint entity that governs the access to each

protected resource. It hosts the Access Control engine. The access control engine is based

on RBAC model (other models are also possible) and is designed to prevent unauthorized

access to protected resources. The policies defining the access to protected resources are

also managed by the Authorization Control Service. This service receives any client request

and replies with the decision to grant or deny the access to the needed resources.

4. Discovery Service : Since the protection of the Authorization Control Service requires this

later to be moved to a different location in a non predictable manner, the clients need to
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be able to discover the new location of the Authorization Control Service. The Discovery

Service provides such capability.

Using these entities, the distributed access enforcement proceeds as follows. When a client

needs to access a protected resource, it sends a request to the Authorization Control Service (ACS).

The ACS verifies the policy governing the access to the needed resources, and replies with a de-

cision to grant or deny access to the requested resource. If the decision was to grant access, the

request is forwarded to the Resource Access Service along with a limited life-time token given to

the client allowing it to access that particular resource. The occurrence of an election triggers the

Authorization Control Service to be Switched to a different location. In this case, the ACS will

register its new location with the Discovery Service. In addition, the client will need to consult the

Discovery Service in order to find the new location of the ACS.

7.1.2 Threat Model

In our architecture, we consider access control (AC) as a service and we assume that the Ac-

cess Control Service can be attacked and compromised. To mitigate the vulnerability of the open

network in which an attacker passively listens to various communications, we make all access re-

lated communications go over secure channels. This makes the communication secure, but does

not protect the endpoints, particularly the Resource Access Server and the Authorization Control

Server where the AC engine components reside. We assume that an attacker can masquerade as

one of these servers. Alternately, some numbers of these servers can themselves be compromised

by malware and behave in a Byzantine manner. An attacker masquerading as a valid server or

corrupting a server are treated similarly.

To protect these two entities, we propose the Moving Target Defense strategy. Our motivation

for this approach follows from the observation that an attacker needs a reconnaissance window

to explore the vulnerabilities in a system before attacking it. The moving target defense strategy

reduces this window of opportunity. It requires both the Resource Access Server and the Autho-

rization Control Server to be replicated. At each instance there is only one Resource Access Server
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and one Authorization Control Server that is responsible to handle access requests. These are

called respectively, RAS leader and ACS leader servers. In addition, both leader servers are peri-

odically replaced by a pair of leader servers randomly chosen by following a Byzantine consensus

process executed by the existing candidate RAS and ACS servers. The replacement is achieved

through a migration process that relies on a secure service discovery process.

Using moving target defense in this manner to protect the Access Control Engine raises several

challenges. Those challenges are as follows.

1. How does one avoid migrating a leader server to a malicious server during the migration

process?

2. Which access control component is going to be migrated? And,

3. After the migration process, how does one discover which server is currently providing the

services?

In the following sections we are going to address these challenges.

Figure 7.1: Moving Target Defense Architecture
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7.2 Distributed Access Control Architecture

We present an architecture that provides access control services. In order to protect the access

control service against certain attacks, we have proposed to implement a Moving Target Defense

strategy on the access control service architecture. In this section, we present the different compo-

nents that constitute our Moving Target Defense architecture.

7.2.1 The Client

It is an endpoint entity whose main objective is to access protected resources. It is responsible

to initiate or terminate a session with the Resource Access Service. It resides on the individual

devices running the applications that require access to shared resources.

7.2.2 The Authorization Control Service

In this section we present the different components that allow the Authorization Control Service

to provide access control service, to be elected as a leader, and to announce its services once elected

as a leader.

Access Control Engine

The access control engine is based on RBAC model (other models are also possible) and is

designed to prevent unauthorized access to protected resources. It comprises the Policy Enforce-

ment Point (PEP), the Policy Decision Point (PDP), the Policy Administration Point (PAP), and

the Policy Information Point (PIP).

Fault Detector Module (FD)

The Fault Detector Module is designed to detect the byzantine faults occurring in the server

providing the Access Control service. The failure and the compromise of the current leader server

are reasons to trigger the Moving Target Defense. The Fault Detector is able to detect any kind

of byzantine faults that are local to the leader server. The unavailability of the leader server is

detected by the Fault Detector of any other server that probes the aliveness of the leader server.
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The occurrence of either failure, compromise, or unavailability is used to trigger the election of a

new leader server that will be responsible to provide access control services.

Election Module (EM)

The Election Module is responsible for processing the election of a new leader server. Several

causes can trigger this election. Since the leader server is assuming this function for a limited

time, called here a term, the expiration of this term is a cause that triggers the election of a new

leader server. We add randomness to the duration of this term in order to prevent an attacker from

correctly guessing the occurrence of the next leader election. At the expiration of his term, the

current leader server proceeds to the election of a new leader. In other circumstances, the first

server noticing the failure of the current leader server, is responsible to proceed to a new election.

Leader Election Protocol In our system, after having opted to replicate the Authorization Con-

trol Service among several servers, a single server is responsible to provide this service at any

given time. We call this server the leader. At any instance, this leader may be the subject of attacks

or of failures. Thus to realize the moving target defense, the leader is required to be periodically

changed. This change can occur at the expiration of the current leader’s lifetime or when the cur-

rent leader fails. Moreover, the next server is not pre-determined but is elected by existing servers,

each of which is a candidate. All this is done in an environment where we assume that some

servers may be malicious attackers. Thus, we need a leader election algorithm that can ensure that

a malicious server cannot be elected as leader. Once a server is elected, it sets a random lifetime

for itself.

For the sake of maintaining our distributed system in a good functioning state, it becomes

crucial to prevent faulty nodes from becoming leader. We adapt the algorithm from [163] in order

to realize a leader election. The election process proceeds in the form of a distributed protocol as

follows.

The election algorithm proceeds in rounds and in each round there is a node that is coordinating

the consensus, called the coordinator. For each round r there is a coordinator c known a priori by
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each participating node by computing c ≡ (r mod n)+1 with n being the total number of nodes. At

each node, there are several local variables that are maintained, among which there is the estimate

value which is an input value selected by the node, its current election round, its current coordinator

cp, and a timestamp tsp. The consensus algorithm runs by exchanging messages between nodes

participating in the distributed system. These messages include the types ESTIMATE, SELECT,

CONFIRM, READY/NREADY, and SUSPECT. The algorithm runs in a sequence of five tasks

that are concurrently executed.

The consensus algorithm, (see Algorithm 3), works as follows. The algorithm starts with each

node p picking its estimate of the input value, and sending an ESTIMATE message to all nodes.

The coordinator, after receiving n−k ESTIMATE messages that it was waiting for, selects a value

es based on all the estimate values received. It then sends a SELECT message carrying the es

value to all nodes. Each node p, upon receiving SELECT message from the coordinator, sends a

CONFIRM message carrying the es value to all other nodes. The es value should be the same for a

given round r. After receiving a CONFIRM message from ⌊(n+k)/2⌋+1 distinct nodes, each node

p updates its local variables. It then sends a READY message or a NREADY message depending

on whether it had received the same es value or not from ⌊(n + k)/2⌋ + 1 CONFIRM messages.

It should be noted that if the CONFIRM messages received by a node p did not contain the same

es value, p will assume that the coordinator had deviated from the algorithm. The node p will

therefore add the coordinator to its list of Suspect, and will send a SUSPECT message containing

the id of the suspected coordinator to all. After a node p received the same es value as content

of READY message from ⌊(n + k)/2⌋ + 1 distinct nodes, it will decide on that value. A node

q is confirmed to be malicious by a node p and added to Output(D)p if and only if node q have

been reported malicious by at least k + 1 nodes. Output(D)p is the final list of malicious nodes.

Any round in which the coordinator has not been reported with malicious nodes will end with a

consensus on the input value and the coordinator being confirmed as the new leader. Otherwise, a

new round will start with a new coordinator.
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Algorithm 3 Leader Election

1: /* Each node p executes the following */

2: /* Initialization */
3: ep = VP {Chosen value}

4: rp = 0 {Initial round}

5: tsp = 0 {Initial timestamps}

6: Estimatesp = ∅ {list of estimate msg}

7: Confirmsp = ∅ {list of comfirm msg}

8: Suspectedp = ∅ {list of suspected nodes}

9: Outputp = ∅ {blacklisted nodes}

10: for r in listnode do
11: Suspectingp[r] = ∅

12: end for
13: COBEGIN {Concurrent tasks}

14: {Task 1:}

15: while true do
16: rp ← rp + 1

17: {Select a Coordinator cp}

18: cp ← (rp mod n) + 1

19: {Task 1, Phase 1 : each node creates estimate msg}

20: estimatep = (ESTIMATE, p, rp, ep, tsp)

21: Send estimatep to all

22: {Task 1, Phase 2: Coordinator counts received estimate msg}

23: if [p = cp] then

24: [Wait until received (n− k) distinct estimateq messages from q
nodes]

25: Estimatesp ← estimateq

26: ts = largest tsq : estimateq ∈ Estimatesp

27: if [ts = 0 and (at least (k + 1) distinct estimateq ∈
Estimatesp have common value e)] then

28: es← e
29: else
30: es← ep

31: end if
32: {Coordinator creates select msg}

33: selectp = ((SELECT, p, rp, es)p)

34: Send selectp to all

35: end if
36: {Task 1, Phase 3 : receiving confirm msg}

37: [Wait until received [(n+ k)/2] + 1 distinct confirmq messages or
cp ∈ Outputp]

38: confirmp = ((SELECT, p, rp, es)p)

39: if [[(n + k)/2] + 1 distinct confirmq ∈ Confirmsp have com-
mon value e] then

40: tsp ← rp

41: ep ← e

42: Confirmp ← (CONFIRM, q, rp, e)q

43: readyp = (READY, p, rp, e)p)

44: Send readyp to all

45: else
46: nreadyp = (NREADY, p, rp, e)p

47: Send nreadyp to all

48: end if
49: end while
50: {Task 2: }

51: while true do
52: if [p received selectp msg from c = (rp mod n) + 1 and p has not

sent confirmq msg] then

53: Selectsp ← ((SELECT, c, r, e, ts)c)

54: confirmp = (CONFIRM, p, r, e)p

55: send confirmp to all

56: end if
57: end while
58: {Task 3:}

59: while true do
60: [Wait until received [(n + k)/2] + 1 distinct readyq messages from

q nodes with common r,e]

61: decide(e)

62: end while
63: {Task 4:}

64: while true do
65: {Send list of suspected nodes}

66: Suspectedp ← D1

67: suspectp = (SUSPECT, p, Suspectedp)p

68: Send suspectp to all

69: end while
70: {Task 5:}

71: for r in S do
72: When p receives Suspectq from q

73: if r in Suspectedq then

74: Suspectingp[r]← Suspectingp[r] ∪ (q)

75: else
76: Suspectingp[r]← Suspectingp[r]− (q)

77: end if
78: if |Suspectingp[r]| > k + 1 then

79: Outputp = Outputp ∪ (r)

80: else
81: Outputp = Outputp − (r)

82: end if
83: end for
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Migration Module (MM)

The Migration Module is responsible for executing the migration protocol. The Migration

Module receives a notification from the Election Module that a new leader has been elected. This

notification contains the identity of the new leader server. Upon receiving the notification from the

Election Module, this module executes the migration protocol, which transfers the Access Control

service to the new elected leader server.

Service Migration Protocol In our architecture, replacing the current leader server by a new

one necessitates the migration of the Authorization Control Service provided by the current leader

server to the new one. For this purpose, we need to put in place a service migration protocol that

can handle this task.

Process migration is the movement of a running process from one host to another. A process

migration protocol can have several components like the transfer policy, the selection policy, and

the location policy. Since we are interested with the migration of an access control service, we

define these policies in terms of the requirements of the access control service.

1. The Transfer Policy: This policy determines when a host needs to send a process to another

host. In our case, it determines when the current leader server needs to send the access

control services to a newly elected leader server. In our architecture, this decision is triggered

by the successful completion of the leader election protocol.

2. The Location Policy: This policy determines the destination host to which to transfer the

process to be migrated. In our architecture, this information is provided by the leader election

protocol that communicates the identity of the new elected leader server to all the hosts. This

new Authorization Control Service is the destination host for the migration protocol.

3. The Selection Policy: Determines which resource to transfer. It is question here to determine

which component of the access control service needs to be migrated. We have designed the

Authorization Control Server to be fully replicated. We assume the existence of a replicated
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protocol. Therefore, the discussion about the replication protocol is beyond the scope of this

paper. Being fully replicated, each Authorization Control Service has the same PDP, PAP,

and PEP. There is no need to migrate those entities. However, only the current leader server

has the information about the granted access requests in addition to having the most up to

date policy database. Granted access requests information is stored in the session history

of the current Authorization Control Service. Therefore, the session history and the policy

database need to be migrated to the new Authorization Control Service to allow users with

granted access a continuous use of the allowed resources.

7.2.3 The Discovery Service

Implementing a Moving Target Defense for an Access Control service requires switching fre-

quently but randomly the server that is responsible for offering the Access Control service. Once

the Authorization Control service has been switched to a newly elected leader server, users need

a way to rediscover the new server offering the service. In this section, we adapt the Service Lo-

cation Protocol or SLP in order to enable users to discover the new location of the services they

need.

SLP Module

The SLP Module is responsible for running the service discovery protocol. This service is

provided to clients that need to consult the SLP Module in order to discover the new Authorization

Control Service location.

SLP overview

Service Location Protocol (SLP) is a protocol designed by the Internet Engineering Task Force

to eliminate the need of a manual configuration from users of communication networks in order

to discover services, applications, and devices available in those networks. Since users, mainly

mobile users, increasingly experience changing environments and the fact that the Internet has

became more service oriented, service location is becoming more helpful in today’s complex net-

works [106, 164].
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SLP Architecture

The SLP framework includes three main components called "Agents" to process SLP informa-

tion. These agents are: User Agents (UA), Service Agents (SA), and Directory Agents (DA).

• User Agents (UA): They are responsible for requesting services on behalf of the users or

applications.

• Service Agents (SA): They are entities that advertise the location and description of services

on behalf of services. To advertise services, the SAs embed the service information into an

URL. These information include the IP address, the port number, the service type and the

path. Each service type is characterized by specific attributes along with their default values.

All of these are specified by the Service Templates.

• Directory Agents (DA): They are central repositories that aggregate SLP information. Since

service information are embedded in a URL, these URL are stored by the DA which provides

them to any UA that have issued a request which matched some attributes in the URL.

At the beginning of the protocol, any service provider needs to advertise its services. For

that purpose, its SA registers the service with the DA. This step is known as the Service

Registration. The DA acknowledges the registration by issuing a service ACK message to

the SA. A user that needs to use the given service needs to have his UA issuing a query with

the appropriate attributes to the DA. This is known as the Service Request step. The DA

may reply back to the UA with the address and characteristics of the desired service (Service

Replay). This is the general approach of the SLP protocol as illustrated on fig 7.2.

There is a major issue with the general approach of the SLP protocol as explained above. No

one from both the UA and the SA knows the address of the DA. Before registering a service

with the DA, the SA needs to discover the existence of the DA. The same thing applies to

the UA.

Three different methods are used to discover the location of the DA: static, active, and pas-

sive. When using the static discovery method, both the UA and the SA learn the address of
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the DA from a DHCP server. In case of an active discovery, SLP agents contact the DA by

sending service requests to the SLP multicast address on which the DA is configured to listen

to for incoming communications. Upon receiving a service request, DA responds directly to

the requesting agent via the agent’s unicast address. The passive discovery method involves

DAs periodically advertising their existence through the SLP multicast address. The other

SLP agents discover the DAs location after listening the multicast advertisements. They can

then contact the DAs directly through their unicast addresses for other operations [165].

Figure 7.2: Service Discovery flow

Besides the basic SLP architecture involving SAs, DAs, and UA, it is possible to set a SLP

architecture without DAs. In this case, UAs and SAs need to communicate directly to each other.

In order to discover available services, UAs repeatedly send out their service requests to the SLP

multicast address. On the other hand, SAs are listening for incoming requests on the SLP multicast

address. Upon receiving a request corresponding to a service they are advertising, SAs reply

through unicast address to UAs.

7.2.4 The Resource Access Service

It is a server that manages the various protected resources. It acts as both client and server

when receiving or replying to access requests from clients. The decision to grant the access to

those resources is received from the Authorization Control Service.
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7.3 Implementation

In this section, we introduce the proof-of-concept implementation of our proposed architecture.

We have designed a test case to exemplify the functioning of the protocol.

7.3.1 Clients and Resource Access Service

We assume that we have a set of users represented by client applications. Those users are

grouped into a set of roles (Undergraduate, Graduate, and Faculty). We also have a set of resources,

in this case files stored on a file server. This file server constitutes our Resource Access Service.

We have also defined a set of actions to be performed on those files by users. We have chosen basic

Linux actions: Read, Write, and Execute. The different permissions given to users over those files

are represented on figure 7.3.

Figure 7.3: Roles-Permissions assignment

7.3.2 Authorization Control Server

Using socket programming, we have implemented five Authorization Control Services named

ACS1, ACS2, ACS3, ACS4, and ACS5. Those have been implemented as Java client-servers.

Each of those Authorization Control Services has an Access Control Module that is responsible

for verifying user’s authorization to resources that are stored on the Resource server. At each time,

only one Authorization Control Service is responsible for providing the access control service.

Access Control

We start our process with the Authorization service being provided by, let us say, the Autho-

rization Control Server ACS1. We consider that user Tom submits a request to read a file named

certificate.txt. This request is intercepted by ACS1 which run the Access Control Module. The Ac-
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Figure 7.4: XACML architecture

cess Control Module has been implemented using the Balana [166] open source implementation of

XACML. Tom’s query will be a tuple user-id, action, resource-name where in this particular case

user-id is Tom, action is read, and resource-name is the file certificate.txt requested by Tom.

Policy Enforcement Point

Tom’s query is intercepted by the Policy Enforcement Point (PEP). In fact, the PEP intercepts all

queries sent to the Resource Access Service [167]. We have developed a wrapper that converts the

original query into a XACML request. The request is then sent to the PDP for verification. Figure

7.5 illustrates the form of the XACML request.

Figure 7.5: User Request sample
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Policy Decision Point

The Policy Decision Point (PDP) receives Tom’s request coming from the PEP. It needs to analyse

if Tom fulfills the required conditions to read the file certificate.txt. The PDP will consult the Policy

file to determine what actions Tom is allowed to perform on the file certificate.txt. Balana [166]

provides us with an API call that allows us to create a PDP.

Policy Administration Point

To write policies, we have made use of the Simple Policy Editor. This policy editor is part of WSO2

Identity Server [168]. Simple Policy Editor allows anyone to create XACML 3.0 policies without

an extensive knowledge of XACML language. However, an understanding of access control rules

is required. Figure 7.6 is a sample of our policy file.

Figure 7.6: Policy file sample

In addition to the Policy file, the PDP also consults the user-role assignment table. After

determining Tom’s role, which is undergraduate, and consulting the Policy file, the PDP reaches

the conclusion to authorize Tom to read the desired file. The PDP passes that decision back to the

PEP. That response is represented as a XACML file. A sample of the response XACML file is

exhibited on figure 7.7.

The PEP then replies to Tom with a response granting him access to the file. Tom can now

access the file server.
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Figure 7.7: Response sample

Leader Election

Our objective is to protect the Access Control Module by regularly switching the Authorization

Control Service providing the Access Control service at any given time. For the sake of demon-

strating, we have chosen to switch the Authorization Control Service after every 10 minutes plus

a random number of seconds. The random time is added to cancel the predictability of the time

when the election takes place. An attacker knowing when the new leader is elected can schedule

his attack accordingly.

An election is called after the end of term of the current Leader. In this instance, that term is set

to ten minutes and some random seconds. The current leader being ACS1, it is the one responsible

to call for an election. Using Java, the Leader Election is implemented according to the adaptation

of the protocol presented in section 7.2.2. At the end of the protocol a new leader is elected. This

leader is different from ACS1, for instance ACS3 has been selected a the new leader. This is the

server that is going to be responsible of providing the Authorization Control Service until next

election. We made all Authorization Control Services probe the leader after every ninety seconds

by sending a IsAlive message to it. This is done in order to detect the failure of the current leader.

Tom want to request another file stored on the file server, but the Authorization Control Service

has been moved from ACS1 to ACS3. Any attacker who was in the middle of preparing an attack

against ACS1 will be attacking the wrong Authorization Control Service, which is the intended

goal of our architecture. However, Tom will also be sending his authorization request to the wrong

server.
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Migration

We have implemented the Migration Module as a mechanism to simply transfer the session

history file and the policy file from the previous leader ACS1 to the elected leader ACS3. As

stated in section 7.2.2, the other access control modules are the same across all Authorization

Control Services. The reason for transferring ACS1 Policy file to ACS3 is that while ACS1 was

providing the Authorization service, policies, resources and users may have been updated. To

avoid disruption in the access control service, ACS3 needs to have the most recent policy file.

Other alternatives to this migration can be envisioned. One option is to store the policies

in a Policy Database, and replicate the database across all the Authorization Control Services

accordingly. Another option would be to migrate the database from the current leader to the new

leader at the end of an election. An additional option would be to use a single Policy database that

would be shared by all the Authorization Control Services. This last option can create a potential

issue by making that single policy database a single point of failure attractive for would be attacker.

7.3.3 Discovery Service

We need to let Tom know that the Authorization Control Server ACS3 has been elected as the

new leader, and therefore he should send his request to ACS3. The Discovery Service allows us to

achieve that goal through the adaptation of SLP protocol.

We have implemented the Discovery Service using a tool called OpenSLP [169] which is an

open source implementation of the Service Location Protocol. OpenSLP can be used either in a

three components mode or in a two components mode. In the first mode, we can have a User Agent

(UA), a Service Agent (SA) and Directory Agent (DA). The User Agent is the Agent requesting

services. The Service Agent is the Agent providing the services, while the Directory Agent is

the repository of services. In a two component mode, we can have only the User Agent and the

Service Agent. In this case, the Service Agent plays also the role of a Directory Agent (DA). For

the sake of this demonstration, we have implemented the later option. We have installed OpenSLP

and made sure that slpd, which is the OpenSLP daemon, is running.
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Service Agent

Since our setting do not use a Directory Agent, the new leader will have to register its services

with slpd upon being elected. The old Authorization Control Service, previously registered, is

unregistered to avoid confusing users. The new leader registers its access control service by

issuing a query in the form of a ServiceURL. The ServiceURL has the following form: ser-

vice:ServiceName://IPAddress:PortNo, where ServiceName is the Authorization Service, IPAd-

dress is the IP address of the new leader, and PortNo is the port where the Authorization Service is

running.

User Agent

In our setting, the User Agent is Tom who needs to find the location of the new leader which is

providing the access control service. In order to discover the Authorization Service, Tom’s client

sends a multicast packet with a ServiceURL. The Service Agent, which is the new leader, will

verifies if Tom’s query matches the registered service. In case of a match, the Service Agent

replies to Tom with the ServiceURL informing him how to access the access control service.

7.4 Discussion

In this chapter we have proposed a Moving Target Defense architecture aiming at defending

an Access Control Reference Monitor. The design allows a master Resource Access Server and a

master Authorization Control Server to be periodically and randomly switched to other ones. This

mechanism allows the disruption of any ongoing attack on the Access Control Reference Monitor.

This work opens a new direction in research on Moving Target Defense of an Access Control

Reference Monitor. This architecture can benefit from some improvements. For instance, we do

not believe that the election algorithm is an optimal one in term of computation and the number of

messages exchanged during the election process.
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Chapter 8

A Secure hash Commitment Approach for MTD

Protection of critical servers is an important requirement in the modern era of distributed sys-

tems and services. A centralized server offering security-critical services, like access control or

anti-virus filtering, is an attractive target for attackers, as the compromise of a central server will

allow attackers unlimited access to the network. In this work, we focus on this important problem

of central point of vulnerability and implement an efficient solution based on the moving "target"

defense strategy, to protect against such active adversaries.Specifically, we focus on the case study

of a reference monitor service for access control, i.e., the server provides a reference monitor ser-

vice to allow or deny user requests for resources based on the access policies. The main intuition

in our approach is to increase the attack surface of an attacker by dynamically moving the secu-

rity service among a group of designated servers. However, for this approach to be effective in

practice, the movement of the service should be fast and unpredictable, i.e., the attacker should

not have upfront information regarding the next server that might be hosting the service. Towards

this, we describe an efficient Byzantine fault-tolerant leader election protocol that achieves the de-

sired security objectives and validate it through theoretical and extensive experimental analysis on

prototype implementation of fifty servers. We show that our approach is scalable and can tolerate

Byzantine behavior among the nodes while ensuring that a server controlled by an adversary has

no greater than a uniform probability for becoming the next active server.

The rest of this chapter is organized as follows. In Section 8.1 we describe the system model for

the application domain under consideration as well as the threat model covering the capabilities

of the adversary along with the nature of the attack. In Section 8.2 we outline the mechanics

of our consensus protocol and describe the leader election protocol. The different phases of our

election protocol are explained in Section 8.3. In Section 8.4 we discuss the security of our protocol

considering, both theoretical as well as practical attack scenarios. We evaluate our protocol and
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present the various results in Section 8.5. We conclude in Section 8.6 with a discussion of our

results.

8.1 Background

In this section, we describe the system model for the application domain under consideration,

the threat model covering the capabilities of the adversary along with the nature of the attack.

8.1.1 System Model

We consider the scenario where an online server is providing security-critical services, such as

access control, to the end users. On the same network, there are other servers that can be chosen

to become the point-of-service to the end users. To locate the current point of service, the end

user uses a service discovery protocol like SLP [170] and is able to contact the server. We assume

that there is a broadcast channel available on the local network and that the nodes are loosely

synchronized, which is normal in LAN connected nodes. The pool of servers are considered to be

reliable and available for service almost always, i.e., the churn of the network is negligible for all

practical purposes. Our approach is to securely move the service from one server to another within

a specific system specified time constraint to protect against service tampering attacks.

8.1.2 Threat Model

We consider a generic adaptive adversary who intends to compromise a live server and tamper

with the integrity of the service being offered. The adversary stands to gain by the attacks and

merely disrupting service is not profitable for the attacker. Now, since it requires the attacker to

take complete control of the server, we assume that the attacker requires certain time-window to

prepare and complete the attack. Furthermore, we assume that that attacker is in control of at most

⌊n−1
3
⌋ nodes, as a higher number of nodes puts the attacker nodes in a majority and there is no

possibility of fair consensus [80, 171] in such a case. Also, we allow for the scenario where the

network administrator detects a compromised server and fortifies it eventually. This ensures that,
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on an average, the attacker time-window is always a non-trivial value. If this were not the case

then, in the likely event of an attacker eventually compromising all the nodes, there would be no

possibility of preventing tampering of the security-critical service.

8.2 One-way Hash Commitment for Secure Consensus

In this section, we outline the mechanics of our consensus protocol and describe the leader

election protocol. The general approach for the existing consensus protocols [82, 172, 173] is for

the nodes to declare a random value and then agree on the lowest value among those published.

But, with this approach, there is a possibility of some nodes waiting for inputs from other nodes

before declaring their own values. If the attacker controls a sufficient number of nodes then the

attacker can successfully publish the best values that will help in winning the consensus. In the

present network model, this problem is further exaggerated as the nodes are connected by a reliable

broadcast channel and the attacker has instant access to inputs of all the nodes. To address this

problem, we devise a commit and reveal approach, i.e., the nodes first commit a value, say C, to

the network and then reveal the value, V . By using a suitable mathematical function, in our case a

one-way hash function H such as SHA-256, to link C and V , it is difficult for compromised nodes

to deny their commitment values. The construction details are as follows.

Let S1, S2, · · · , Sn denote the set of n servers that are available to act as the next point-of-

service. Let H : {0, 1}∗ → {0, 1}t denote a strong pseudo-random one-way hash function that

takes any length input and generates a fixed t-bit output. The main property of the pseudo-random

one-way hash function we wish to exploit is that, given an input x it is easy to compute H(x), but

the converse is hard, i.e., given H(x), it is difficult to obtain x. Let N denote a public parameter that

is configured for all the nodes. Let Pi denote a public-value that is used in a particular consensus

round i. There is no strict constraint that all the nodes participating in round i need to be aware of

the up to date Pi value being used, they are allowed to use some older values of Pi as well. For

each subsequent round, a node locally updates the Pi value, which it presently knows, as follows:

Pi+1 = Pi+1. However, if a node is using an older Pi value that has not been incremented beyond
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a certain system defined threshold, then the other nodes will consider the inputs of this node as

faulty and ignore them. We use the notation P j
i denote the local view of the Pi for a given node

Sj , ∀1 ≤ j ≤ n.

One-way Hash Commit Value V . Now, in a consensus session i, each node Sj , ∀1 ≤ j ≤

n, independently chooses a random value Rj and computes a commitment value Vj as follows:

[H(Rj, P
j
i )%N ]. Each node Sj broadcasts its commit value, Vj , and the public value, P j

i , used

in the hash computation, i.e., the tuple {Vj, P
j
i }, to the rest of the network. Reveal Value Rj .

Once the commit phase is complete, each node Sj broadcasts the secret value Rj to the rest of the

network. Now, a given node compares all the commit V values received and verifies the integrity

of these values by recomputing the hash values based on the respective random value, Rj , and the

public value, P j
i , pairs. For all the properly matched hash values, a node selects the smallest hash

value among all the values and confirms the corresponding publishing node as the winner.

8.3 Leader Election to "Move" Target

The goal of our protocol is to keep "moving" the service, which is the attack target, from one

server to another and reset the attacker’s effort. We start with the assumption that one or more

nodes, but no more than ⌊n−1
3
⌋ nodes, are compromised by the attacker already.

8.3.1 Protocol Overview

The protocol begins with each node selecting a random value independently and computing

a one-way hash on the random value. Each node advertises its hash value to all the nodes in the

network. We call this phase as the Commit phase and it is an implementation of the semantics of

the One-way hash commit step of the commitment technique from Section 8.2. Once this round

completes, each node reveals its chosen random value to the other nodes in the network. We call

this phase as the Estimate phase and it is an implementation of the Reveal step of the commitment

technique from Section 8.2.
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Now, each node selects the smallest hash value from the set of hash values received from the

other nodes, and its own hash value. At the end of the computation, each node broadcasts, the

winning node identifier, the list of hash values and the corresponding sender identifiers, to the rest

of the network. At the end of this communication round, each node will possibly have all the hash

value lists received from the other nodes. Each node performs two steps at this point: confirms the

leader of the election and detects faulty nodes. The leader of the election is the node that advertised

the smallest value in the Commit phase and marked by at least ⌊n−1
2
⌋ other nodes.

Further, the node performs a fault detection step using the received lists to detect inconsistently

advertised values, i.e., two different hash values being advertised by the same node. The inconsis-

tent values are considered to be sent by Byzantine nodes that are compromised by the attacker. All

nodes advertising such inconsistent values are put in a suspect list and, each node shares its local

copy of the suspect list with the rest of the network. At the end of this communication round, each

node compares its suspect list with the received suspect lists from other nodes and detects nodes

that are declared as faulty by a majority, i.e., ⌊n− k⌋ nodes where k = ⌊n−1
3
⌋. At the end of this

round, the leader election is complete and the leader provides the service for a given time-period

called as the Election term.

8.3.2 Protocol Constructs

We describe the building constructs used in our protocol like, cryptographic tools, public pa-

rameters, messages, and the time-outs, for different phases of the protocol. Cryptographic Tools.

We assume that all the nodes are loaded with public-key certificates and digitally sign all messages

sent into the network. The digital signatures are essential for ascertaining the identity of a sender

and to prevent replay attacks. Also, we use the digital signatures to detect inconsistent messages

sent by the same node to different receivers, which is an important step in our fault-detection pro-

tocol. For hash computations, we use a cryptographically strong pseudo-random one-way hash

function H such as SHA-256. All protocol communication is in plain-text with digital signatures

and no other confidentiality measures are in place.
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Public Parameters. All the nodes are initialized with two public-parameters for the Hash com-

mitment phase of our protocol.

The first public parameter is a large integer N , which is used for modulo reducing the one-way

hash value at each node and is a fixed value throughout. The second public parameter is P . It is a

critical component of our protocol and is one of the inputs to H along with the random value chosen

by a node. A possible attack on the hash commitment approach in Section 8.2 is that a node might

fix the value of P and brute-force over the space of random numbers to select the best candidates

that yield the lowest hash values for several election terms. P plays the role of public randomness

in our protocol, which is a difficult property in distributed systems [174]. The key property of this

parameter is that it is incremented after each election session to provide the necessary randomness

for the one-way hash computations. However, even with this safe-guard, a malicious node might

not increment this parameter in order to fix one of the inputs to the one-way hash function and gain

an unfair advantage. To prevent this, we define a certain stale threshold, which is the maximum

difference of a node’s copy of P from any other node’s copy of P . This threshold reduces the

attack surface of an attacker and, the brute-force attack will no longer be a feasible option. In our

security analysis, we show that this parameter helps in achieving strong security guarantees in our

protocol.

Messages and Formats. There are four messages in our protocol: COMMIT , ESTIMATE,

CONFIRM and SUSPECT .

We use NID to denote a node-identifier field, HCV to denote the hash commitment value

field, P to denote the public-parameter field, and R to denote the random value field. We use σNIDc

to denote the public-key signature of a message by the sending node NIDc where c means "cur-

rent sending node". The COMMIT message has two fields, {HCV, P}σNIDc
. The ESTIMATE

message contains only one field: {R}σNIDc
. The CONFIRM message is composed of two fields:

the node identifier of the node that published the lowest HCV and, the list of all the HCV values

and corresponding NIDs received by this node. The format is as follows:

{(NIDmin)σNIDc
, LIST [(HCV1, NID1)σNID1

, · · · , (HCVn−1, NIDn−1)σNIDn−1
]} where n is the
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maximum number of nodes in the system. Finally, the SUSPECT message contains the NIDs

of suspected faulty nodes: {LIST [(1, NID1), · · · , (k, NIDk)]}σNIDc
where k is the maximum

number of allowed suspects in the system.

Time-outs. In our protocol, each distinct phase of the protocol is terminated by a properly

chosen time-out value: Tp where p indicates the protocol phase1. For a particular protocol phase,

the time-out value is chosen in such a way that it allows for just enough time for nodes to perform

any local computations in this protocol phase and send out their results to the rest of the network.

The time-out essentially binds the nodes to perform only necessary computations for the protocol

and is an inhibitor for any node that is trying to manipulate the inputs to the protocol in an unfair

manner. One important attack scenario where a time-out might prove beneficial is the case of

a malicious node waiting for the inputs from all the nodes. The malicious node might try to

utilize the best random value from the set of brute-forced values. However, if the node is unable

to do so within the time-out value, then it is put in a list of faulty nodes. In our protocol, we

choose the time-outs within a ∆-fraction of the estimated round-trip network delay, RTDelay,

i.e., Tp = (RTDelay + ∆ ∗ RTDelay + f(n)) where 0 < ∆ ≤ 1, to ensure that such "wait-

and-see" behavior of nodes is detected. Also, f is an implementation dependent time function

that accounts for the scale of the network, the network communication facility available, and the

computations. Finally, we do not assume that the nodes are tightly synchronized and allow for the

staggering of the timeouts across the network.

8.3.3 Commit Phase

At steady state or the end of a previous election term, each node computes a commit value V

independently and sends the digitally signed COMMIT message to the remaining nodes. The

node starts a timer T and uses this value to wait for the next protocol phase to start. The node

stores the COMMIT values received from other nodes in this phase.

1We will drop p when it is clear from context and assume that all protocol phases use the same timeout.
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8.3.4 Estimate Phase

At the end of the timeout of the Commit phase, the node sends out an ESTIMATE message

containing the random value R used for generating the commit value V in the Commit phase and

starts a new timer T for this phase. Also, the node stores the random values received from other

nodes along with their respective V values.

8.3.5 Confirm Phase

At the completion of the Estimate phase, a node first needs to validate the respective {V , R}

pairs from other nodes. Using Algorithm 4, each node verifies the digital signatures on the received

messages and then, performs the validation step by checking if: {Vj == H(Rj, P
j
i ) mod N}, for

the node NIDj in election session i. After validation, each node selects the minimum hash value

from among the valid values and returns the NID of the corresponding V .

Algorithm 4 : Minimum Commit Value at NIDc

Input: I = {I1, · · · , In} where Im = (Vm, Rm, P
m
i , NIDm)

Output: NIDi publishing minimum Vi

Let V alid = {φ}
for Im ∈ {1, ..., n} do

if [Vm == H(Rm, P
m
i )] then

V alid = V alid
⋃

Im
end if

end for

Let Imin = I1,
⇒ NIDmin = NID1 and Vmin = V1

for It ∈ {1, ..., |V alid|} do

if Vmin > Vt then

Imin = It
Vmin = Vt

end if

end for

Return NIDmin;
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Finally, each node sends a CONFIRM message containing the NID of the winning V and

also, includes the list of all the V values received from other nodes. If each node receives a majority

⌊n−1
2
⌋ confirm messages asserting the same winning node identifier, then the leader is decided.

8.3.6 Fault-Detection Phase

Algorithm 5 : Fault Detection Algorithm

Input: L1, · · · , Ln where Lm = {NIDa, · · · , NIDm}
Output: {Lfaulty where ∀NID ∈ Lfaulty each NID is in at least |n− k| Lis

Lfaulty = {φ}
k = ⌊n−1

3
⌋

THRESHOLD = ⌊n− k⌋

for Li ∈ L1, ..., n} do

for NIDj ∈ Li do

COUNT = 1

if [(NIDj ∈ Lp) AND (p 6= i) AND (COUNT 6= THRESHOLD)] then

COUNT = COUNT + 1

if [COUNT == THRESHOLD AND NIDj 6∈ Lfaulty] then

Lfaulty = Lfaulty

⋃

NIDj

Break;

end if

end if

end for

end for

Return Lfaulty

Using the list of received hash values in the Confirm phase, each node determines inconsistent

messages by misbehaving nodes and creates a Suspect list, which is broadcasted to the rest of the

network in a SUSPECT message. Next, each node compares all the received suspect nodes’ lists,

including its own, and identifies the nodes that are identified as suspect by a threshold majority of

the nodes. The threshold majority is given by ⌊n − k⌋ where k = ⌊n−1
3
⌋. The choice of these

parameters are from the classic results [80] in the Byzantine fault tolerance domain. All suspect

95



nodes satisfying the threshold majority are placed in the faulty node list, as shown in Algorithm

5, and their inputs are ignored for a certain number of election sessions until the administrator

patches up the server and fortifies them for service again. At the end of this phase, each node sets

the time to the election term and waits until the current leader’s term is complete.

8.4 Security Analysis

We discuss the security of our protocol considering, both theoretical as well as practical attack

scenarios. For theoretical analysis, we consider an Adaptive Byzantine Adversary who has the

ability to modify the inputs to the protocol by controlling a threshold number of servers, not nec-

essarily the same, in any given session. For practical situations, we consider two kinds of attacks:

brute-force and clone attacks.

8.4.1 Adaptive Byzantine Adversary

The definition of an adaptive adversary A in the context of our protocol is as follows:

Definition 1: An adaptive Byzantine adversary A is a Byzantine adversary who has access to

all the inputs and results of the protocol for a polynomial q number of election sessions, i.e.,

the attacker knows all the hash commit values, the random values and the winning values. The

adversary is also in control of some of the inputs, not more than k = ⌊n−1
3
⌋, which is required for

a safe quorum to be achieved. We denote the adversary storage by: S = {S1, S2, · · · , Sq} where

Si = {(HCV i
1 , Ri

1, P i
1, NIDi

1), · · · , (HCV i
n, R

i
n, NIDi

n)} denotes the ith protocol session’s

input-output pairs.

ǫ-advantage. The ǫ-advantage is the advantage probability of an adversary to win the election in

any election session while being in control of k servers.

In practice, ǫ-advantage should be the uniform probability: 1
n

and ideally, it should be 1
n−k

.

[ǫ-security]
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Assuming the presence of a strong pseudo-random function, our protocol is ǫ-secure against

Byzantine adversaries where ǫ ≤ 1
k

and k = ⌊n−1
3
⌋, and the stale threshold of the public parameter

P is ≤ q.

Proof. We base our proof on two important assertions and show that the adversary advantage

does not increase based on the history of the interactions and the strategy used.

Assertion 1. The protocol is history independent as long as the public parameter P is incre-

mented by the honest majority.

{(x1,H(x1)), · · · , ( xq,H(xq))} The output of H(xq+1) is independent of all past outputs as

per the definition of H. In our protocol, there are two inputs to H: R and P , of which R is random

and P is monotonically increasing. Therefore, if an honest majority increment P , and even if

the R space is controllable or predictable by the adversary, then the adversary gains no additional

advantage from knowing the history of outputs of H. This assertion states that the ǫ-advantage is

not cumulative and forces the adversarial nodes to increment P after the qth round to ensure that the

adversarial inputs are acceptable. Although this result might seem to render our Byzantine adaptive

adversary definition redundant, but our definition captures the real-life behavior of adversaries.

Assertion 2. Within a given session, the adversarial advantage is not increased due to attack

strategies used.

There are two attack strategies an adversary might use: (a) Use all k compromised servers to

select an input that is better than a particular target server, which the attacker feels might win the

election, and (b) Use each of k servers to target all the honest servers with a divide-and-conquer

approach, i.e., one compromised server targets a subset of the honest servers. For the first attack

strategy, the advantage of the adversary is ǫ for selecting an input better than the target server.

However, there are still n − k − 1 honest servers that will pick their inputs independently and at

random and the probability of a winner from this coalition is 1
n−k−1

. Therefore, the final advantage

of the adversary in winning the election becomes ǫ × 1
n−k−1

, which is in fact smaller than ǫ. For

the second attack strategy, assume that the attacker divides the network into B = {B1, · · · , Bk}
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where |B| = ⌈n−k
k
⌉ coalitions and assigns one server to each coalition Bi. Now, each compromised

server has (ǫ/k) advantage of winning the election against a given coalition, Bi.

To compute the cumulative adversary advantage, we observe that, the adversary advantage

within each coalition is independent of the results in the other coalitions. Therefore, the adversarial

advantage is no better than (ǫ/|B|) = ǫ/(n−k
k
) = ǫ× k

n−k
, which is less than ǫ. While these attack

strategies seem limiting, they are a good baseline for modeling real-world adversaries. Therefore,

based on these two assertions, our protocol remains ǫ-secure under the conditions of monotonically

increasing P , regardless of the adversarial strategies.

8.4.2 Brute Force Attack

An adversary might try to win the election by brute-forcing the random number space and

keeping the P fixed up to the stale threshold. There are two reasons why this attack is likely to

fail. First, while the attacker’s servers do not update P , the other honest majority of nodes update

P . As a result, the attacker’s brute-force on the random numbers will result different H outputs

from the honest majority’s H outputs, even for the same random number choices. Therefore, the

likelihood of the attacker’s random numbers being the winning choice is as good as the honest

majority’s random numbers. Second, some of the honest majority do not update their P value due

to various reasons like down time or lack of synchrony. Even in this scenario, brute-forcing is

unlikely to be successful because it is more than likely that these honest nodes will still have a P

that is different from the attacker’s servers. Also, the honest nodes will go out of synchrony with

respect to P for at most one election round. Once the election starts and then these nodes start

receiving COMMIT messages, these nodes will update their P values according to the higher

values seen in the COMMIT messages. Therefore, the attacker will have no additional advantage

even if some of the honest nodes are not in synchrony with the remaining honest majority. Hence,

based on the above two reasons, brute-force attack is not a practical option for an adversary against

our protocol.
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8.4.3 Clone Attacks

A more feasible attack on our protocol is a message "clone" attack, in other words, an attacker

server "waits-and-sees" an honest servers inputs-outputs and "clones" these messages. This attack

is as follows: an adversary waits for the commit messages from other servers and records the V

values of other nodes and picks the smallest value. The adversary announces this value to the rest of

the network. Now, for the next step, the attacker has two choices to complete the Estimate phase:

(a) first, either the attacker brute-forces the random number space and finds a suitable random

number matching the V value it has advertised, or (b), the attacker repeats the "wait-and-see" step

to announce the winning random number. The result of this attack is that, in both scenarios, there

will be two winning nodes. First, we consider the brute-force scenario, where an attacker brute-

forces a suitable random value and show that it can be addressed with properly chosen timeouts. If

the attacker is successful then the attacker has essentially followed the protocol steps correctly and

can be a winner. However, brute-forcing an input based on the output HF is a time-consuming

operation as it involves computing a H output and reducing it modulo N , till the desired modulo

value is found. As a result, there are no guarantees of finding a suitable random value within the

timeout of the current protocol phase. Therefore, an attacker is unlikely to choose this option to be

successful in the clone attack. Second, the scenario, where the attacker replays the same random

value, can be addressed with a tie-breaking protocol in place. The remaining nodes can randomly

choose one of the winning nodes as the leader and announce it to the rest of the network. The

node that gets the majority votes will be the winner of the election. While this mitigation step is

likely to allow an attacker server to be a leader, the probability is still bounded by: 1
2(n−k)

, for the

remaining honest majority n − k nodes and assuming that the honest majority chooses one of the

nodes uniformly.

Timeouts can prevent this attack as the attacker has to wait for almost all the nodes in the

network to send their values. In practice, this waiting time will timeout the attacker and render

the cloning attack ineffective or put the attacker in a faulty node as desired. A modified version of

this attack, that does not necessarily timeout, is that the attacker clones the input-output pairs of a
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particular honest server in the network. But this attack has a far less likelihood of winning as the

attacker’s winning chances are only as good as the honest server being targeted. However, clone

attack still remains one of the limitations of our protocol at present and there is a solution for this

through log analysis. The attacker is assumed to be in control of k nodes. Now, if these nodes keep

winning the election through the clone attack, a statistical analysis of the past logs will reveal this

pattern and all the suspected nodes will be decommissioned and inspected. Also, any attempts by

the attacker to remain under the radar of the statistical analysis is likely to reduce the impact of the

attacker in the long run. One of our goals is to incorporate the tie-breaking protocol and the log

analysis in our future work.

8.5 Performance Evaluation

8.5.1 Experimental Methodology

We implemented a prototype test-bed, shown in Figure 8.1, to measure and validate the perfor-

mance of our protocol. The various modules are, PEP –Policy Enforcement Point, DSA ?-Digital

Signature Algorithm, EM ?-Election Module and FD ?-Fault Detector. The programming language

was Java with Apache Maven build environment.

We used fifty HP-Z440-XeonE5-1650v4 servers, running Fedora 25, each with 8 cores, 3.6Ghz

clock, and 16GB RAM to act as the nodes communicating over a LAN network with 1Gbps ca-

pacity. The nodes communicated in unicast manner, i.e., the broadcast capabilities of the LAN

were not utilized due to departmental restrictions. We used Apache Log4j logging service, which

uses asynchronous loggers, to log the node activities. We used OpenSLP 2.0.0 implementation to

register the leader that is servicing the access control request.

The service location protocol (SLP) is used to publish/broadcast the leader service to all the

clients. For the service offered, we used Balana XACML implementation as the Policy Enforce-

ment Point to provide access control service over the network. All nodes were equipped with

public-key private-key pairs and used the Elliptic-Curve DSA signature algorithm with 512-bit

keys. The secure one-way hash function chosen was SHA-256, the public-parameter was a 512-
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Figure 8.1: Implementation Architecture

bit integer and the modulo reducer N was a 256-bit integer. The configurations of the number of

nodes per election term were: 5, 10, · · · , 50, and each experiment was averaged over 50 trials.

The election term of server was chosen to be 120 seconds.

8.5.2 Timing Analysis

Our protocol is efficient and is suitable for practical deployment.

The summary of the performance of our protocol is shown in Figure 8.2 and Figure 8.3 .
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Figure 8.2: Avg. Election Time
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Figure 8.3: Min. Avg. Election Time

In Figure 8.2, we show the average election time for each network configuration, which varies

from 10s of milliseconds for 5 nodes up to 400 ms for 50 nodes. In Figure 8.3, we show the

minimum average time for leader election, which shows a minimum time of 25 ms for 5 nodes
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Figure 8.4: Commit
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Figure 8.5: Estimate
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Figure 8.6: Confirm
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Figure 8.7: Fault-Detection
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Figure 8.8: Leaders’ Quantitative Distr: 5 nodes
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Figure 8.9: Leaders’ Quantitative Distr: 10 nodes
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Figure 8.10: Leaders’ Quantitative Distr: 25 nodes
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Figure 8.11: Leaders’ Quantitative Distr: 50 nodes
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Figure 8.12: Leaders’ Temporal Distr: 5 nodes
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Figure 8.13: Leaders’ Temporal Distr: 10 nodes
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and about 250 ms for 50 nodes. Given that the election term is about 120 seconds, the protocol

execution times constitute only a fraction, 0.008− 0.3$ of the election term, which shows that our

protocol is suitable in practice.

From Figure 8.4 to Figure 8.7, we show the execution times of the various phases of our pro-

tocol, which include the timeout values, the message transmission times and the computation re-

quired for each phase. The Commit, Estimate and Fault − detection phases averaged from

10ms up to 70ms for 5 up to 50 server configurations, respectively. However, the Confirm phase

required more time as it includes the validation of the committed V values from various nodes and

then select the lowest among the valid values.
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Figure 8.14: Leaders’ Temporal Distr: 25 nodes
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Figure 8.15: Leaders’ Temporal Distr: 50 nodes

8.5.3 Leader Distribution

Our protocol exhibits uniformity in leader election and does not give the adversary additional

advantage.

From Figure 8.8 to 8.11, we show the number of times a node is elected as leader across 200

election terms for server configuration of 5, 10, 25 and 50 nodes. These results only count the

total number of times a node is elected leader and not necessarily consecutively. For instance, for

a 5 node network, the distribution in Figure 8.8 clearly shows that any given node is equally likely
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to be the leader. Furthermore, for this 5 node network, the observed probabilities of the nodes

being elected as leader are: 0.175, 0.225, 0.4, 0.18 and 0.17, which compare very well with ideal

probability of 0.2. For 50 nodes, over 200 election terms, a node has chance of getting elected 4

times 50/200. The graph shows that on an average this is true.

We also considered the temporal distribution of leaders, i.e., are there many instances of the

same node being elected as the leader. The scatter plots in Figures 8.12, 8.13, 8.14, and 8.15

demonstrate this distribution, which shows that there are no regular patterns or clusters. This

clearly demonstrates that our approach is successful in choosing leader uniformly at random.

8.5.4 Failure Scenarios

Our protocol successfully handled various failure scenarios like leader and nodes failing.

We tested our test-bed by considering various failure scenarios. In the event of a leader failure,

we follow a simple policy of "no-service" to the clients. We use this policy due to the commu-

nication overhead of mechanisms like "heart-beat" or "alive" messages and also, of the additional

complexity introduced by similar methods into our protocol. Also, the short timeouts and leader

election times in our protocol make it a feasible option to elect a new leader. The different failure

scenarios we considered are: node failures during protocol phases, and leader failures. For node

failure scenarios, the nodes are detected by our fault detector phase and placed in faulty list until

they recover and become active. For leader failure scenarios, the server node is also put in faulty

node and the election resumed with the remaining active nodes.

8.6 Conclusion

In this chapter, we addressed the problem of securing online servers from concerted attacks by

an Byzantine class adversary who is capable of compromising servers and manipulating the inputs

to the protocol.We described an efficient moving target defense by which the next point of service

node is decided in a uniform way with the help of randomly chosen hash commitment values. The

movement of the point of service ensures that the adversary needs to keep looking for newer targets
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to compromise on the network.Due to the nature of the pseudo-random one-way hash functions,

the adversary has no better advantage of winning the election than any honest node in the network.

We have implemented a prototype test bed to test the efficacy of our protocol in realistic workloads

for an XACML access control monitor. Our protocol shows that it is possible to have election

rounds within a few hundred milliseconds with an election term of 120 seconds for a network of

50 servers. We have shown the security of our protocol using formal as well as practical analysis.

Our extensive experimental results show that the average probability of a node being the winner of

an election is close to the ideal probability.
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Chapter 9

Conclusion

In this work, we investigated the problem of designing large and complex networks that are

secure and resilient. We looked at this problem from two different aspects. The first problem

we looked at was about detecting anomalous activities in the network, in particular an Online

Social Network under sybil attacks. Although this problem has been previously investigated, we

addressed it using a different approach. Our approach is guided by the insight that anomalous

activities are the result of mal-actors interacting with non mal-actors, and such anomalous activities

are reflected in changes to the topological structure (in a mathematical sense) of the network. Using

this insight, we have designed two sybil detection mechanisms. The first sybil detection mechanism

uses topological properties of the social graph along with a ranking algorithm to accurately detect

sybil accounts. The second approach leverages topological properties of the social graph to build

relevant features that are fed to machine learning classifiers in order to accurately classify accounts

respectively into benign and malicious.

While our Sybil detection algorithms achieve very high levels of accuracy, they cannot guaran-

tee that all Sybils will be detected. Thus, to protect against such "residual" Sybils, the second aspect

of our problem was how to build resiliency in a large network that consists of several machines

that collectively provide a single service to the outside world. These networks are particularly

vulnerable to Sybil attacks. To build resilient networks, we have designed two protocols based on

the Moving Target Defense (MTD) paradigm. In this chapter, we present a summary of the results

collected from all the experiments conducted as part of this dissertation.

9.1 The Results

The contributions of our dissertation can be described as follows:
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• We present a new framework, SybilRadar, for detecting Sybil attacks in an Online Social

Network. SybilRadar is an unsupervised approach that belongs to the class of Sybil detection

techniques that rely on the graph structure of the OSN. This is in contrast to the alternate

group of detection mechanisms that rely of identifying features related to user attributes and

activities. We believe that while the second class of detection algorithms may provide good

detection results on carefully cleaned up OSN data, in real life such data is difficult to obtain

since OSN users frequently leave their profiles incomplete or use misleading information

purposefully. Moreover, trying to obtain user activity related data may raise serious privacy

concerns. As a result, SybilRadar relies on just the structural properties of the OSN graph.

We used a variety of OSN test data - both synthetic as well as real-world – to evaluate the

detection accuracy of SybilRadar. We show that SybilRadar performs very well - much

better than the most well known similar technique – even for OSNs that have the weak trust

model and which have a very large number of attack edges between Sybil nodes and honest

nodes.

• We present a new framework for detecting Sybil attacks in an OSN. Our framework relies

on machine learning techniques to classify sybils. Several previously proposed sybil detec-

tion techniques also use machine learning techniques. Those previous techniques use user

attributes and activities as source of information to build the features needed for the clas-

sification. User attributes, collected from the user profile, are often incomplete or contain

misleading information. In addition, they can be forged by a sophisticated adversary. On the

other hand, user activities are obtained by logging every operation a user performs when us-

ing his online account. This collection of activity data raises serious concerns about privacy.

Because of these concerns, we have proposed a framework whose classification relies only

on features engineered from information collected from the structure of the social graph.

Those features present the advantage of being hard to forge by an adversary, unless one has

the full knowledge of the entire social graph.
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To validate our results, we used two datasets. The first dataset is a real world Twitter dataset

with ground truth information. The second dataset is a real world Facebook dataset comple-

mented with some synthetically generated sybil nodes. We have performed the classification

using three machine learning techniques which are KNN, Random Forests, and Adaboost.

We show that the best result is provided by Random Forest, which is able to predict sybils

with an AUC of 99%. This result is consistent with the one obtained from KNN. Adaboost

reports the worse prediction with an AUC of 94%.

• We propose a Moving Target Defense architecture aiming at defending an Access Control

Reference Monitor. The design allows a master Resource Access Server and a master Au-

thorization Control Server to be periodically and randomly switched to other ones. This

mechanism allows the disruption of any ongoing attack on the Access Control Reference

Monitor. This work opens a new direction in research on Moving Target Defense of an

Access Control Reference Monitor.

• We propose an efficient moving target defense by which the next point of service node is de-

cided in a uniform way with the help of randomly chosen hash commitment values. This is

done to address the problem of securing online servers from concerted attacks by an Byzan-

tine class adversary who is capable of compromising servers and manipulating the inputs

to the protocol. The movement of the point of service ensures that the adversary needs to

keep looking for newer targets to compromise on the network. Due to the nature of the

pseudo-random one-way hash functions, the adversary has no better advantage of winning

the election than any honest node in the network. We have implemented a prototype test bed

to test the efficacy of our protocol in realistic workloads for an XACML access control mon-

itor. We show that it is possible to have election rounds within a few hundred milliseconds

with an election term of 120 seconds for a network of 50 servers. We have shown the secu-

rity of our protocol using formal as well as practical analysis. Our extensive experimental

results show that the average probability of a node being the winner of an election is close to

the ideal probability.
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9.2 Future Work

During the design of SybilRadar, we observed an interesting behavior of our algorithm, which

we have not yet been able to explain. We observed that as we increased the number of attacks

edges, the accuracy degrades a little, which is expected, but that the accuracy fluctuates also. We

observed the same behavior with SybilRank which was more dramatic than ours. Immediate future

work involves exploring the reason behind this fluctuation. It might give us better insights into OSN

behaviors that we had overlooked and guide us towards designing better detection algorithms.

We also plan to add a temporal dimension to our detection framework in the next round. Sybil

behavior will most likely not be static but change with time. We expect to see major differences in

how structures properties of honest nodes change over time and how that of Sybil nodes change.

We would like to investigate how this can be modeled to detect Sybils. Although we are not a big

supporter of using user attributes and activities in Sybil detection, we admit that these techniques

can provide somewhat better results. We would like to investigate if and how these techniques can

be integrated with SybilRadar so as to improve it but in a manner that does not raise any privacy

issues related to OSN users.

For the detection framework using machine learning, we would like to perform the classifica-

tion using a dynamic graph and an online classifier. This is motivated by the fact that the structure

of OSNs is dynamic with accounts being added or deleted over time. This will necessitate the

design of methods to compute our features on the fly from structural data streamed from the social

graph.

Our future work regarding the protection of networked systems using Moving Target Defense is

to consider different attack strategies possible and expand the protocol to work for larger networks.

Another direction is to consider the possibility of message "clone" attacks in realistic computing

scenarios and design safeguards against such attacks. Finally, we would like to explore the usage

of the protocol for realistic workloads on different kinds of services besides access control and

explore the service specific challenges in such deployments.
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