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Abstract

The virtually unlimited growth of popular Online Social Networks (OSNs) is often accom-
panied by severe violations of their users’ privacy and intellectual property rights. Both
problems are rooted in the centralized architecture of many current OSNs, in which a single
entity (the provider of the network) controls all globally stored but unencrypted user data.
As a result, the provider is able to analyze, forward, sell, modify, or otherwise misuse the
data. However, even though these practices have raised serious privacy concerns among
OSN users, many providers continue to collect and analyze evermore data and introduce
diverse restrictions on their users, while showing little interest in changing their behavior.

On these grounds, Decentralized Online Social Networks (DOSNs) have attracted the
attention of both researchers and users. A DOSN can function without a central provider
and aims at allowing users to control access to their data by their own rules. However,
by comprehensively reviewing state-of-the-art DOSNs this thesis shows that, although the
need for a competitive DOSN is obvious, several challenges for DOSNs remain unsolved,
including the construction of a robust, privacy-preserving communication and data storage
infrastructure.

This thesis further emphasizes the prevalence of the Sybil attack in OSNs, in which an
attacker orchestrates a large number of fake accounts for various malicious intents, includ-
ing vote manipulation or distributing spam messages. A detailed study of state-of-the-art
proposals to defend an OSN against this particular attack reveals that none of these solu-
tions offers efficient detection or containment of the fake nodes. As a consequence, securing
DOSNs against the Sybil attack emerges as another central challenge.

In tackling these major challenges, this thesis proposes a new, comprehensive DOSN.
Dubbed SOUP, the SELF-ORGANIZED UNIVERSE OF PEOPLE—among other distinctive
and valuable features—in particular offers functionality to build a robust and secure DOSN.

Its infrastructure is robust in the sense that SOUP effectively replaces the central OSN
provider with a substrate built by the OSN participants themselves. The substrate, even
though it does not rely on any permanently available resources, makes the encrypted data
of all users highly available.

It is further secure in the sense that it effectively guards user data from being accessed by
unauthorized parties, and properly functions in the presence of large amounts of malicious
users. In particular, even if an attacker can compromise large fractions of the OSN by a
Sybil attack, she cannot significantly adversely affect SOUP’s operation.
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Zusammenfassung

Schwere Verletzungen der Privatsphäre, des Rechtes auf informationelle Selbstbestimmung
und des Urheberrechtes ihrer Nutzer begleiten das nahezu unbegrenzte Wachstum von On-
line Social Networks (OSNs). Die Wurzeln dieser erheblichen Probleme liegen in der zen-
tralisierten Architektur der OSNs, durch die der Anbieter des Netzwerkes die Kontrolle über
alle (unverschlüsselten) Nutzerdaten erhält. Dies resultiert oft in der Analyse, dem Verkauf
oder anderweitigem Missbrauch dieser Daten, und führt zu einem schwerwiegenden Kon-
flikt: Einerseits protestieren immer mehr Nutzer gegen derartige Vorgehensweisen, während
die OSN-Anbieter ihrerseits keinen Willen zum Entgegenkommen erkennen lassen.

Als Konsequenz aus diesem Dilemma ist die Idee der Decentralized Online Social Net-
works (DOSNs) gewachsen und erfreut sich immer größerer Beliebtheit. In einem solchen
dezentralen Netzwerk existiert der zentrale Anbieter nicht mehr. Vielmehr sind die Nutzer
in der Lage, den Zugriff auf ihre nun verschlüsselten Daten sehr genau selbst zu kontrol-
lieren. Eine im Rahmen dieser Dissertation durchgeführte Studie zeigt allerdings, dass
bisherige DOSN-Ansätze eine große Anzahl an Problemen aufweisen, wie zum Beispiel
das Fehlen einer robusten und effizienten Alternative zur Infrastruktur des Providers.

Ein weiteres bedeutendes Problem ist die geringe Widerstandsfähigkeit gegenüber An-
griffen auf das DOSN, insbesondere gegen den sogenannten Sybil-Angriff, der in letzter Zeit
vermehrt in OSNs aufgetreten ist. Es liegt zwar eine Anzahl an Verteidigungsmechanismen
gegen diesen Angriff vor; in einer gründlichen Analyse derer zeigt diese Dissertation je-
doch, dass diese Systeme ihre Verteidigungsfähigkeit unter Berücksichtigung realitätsnaher
Annahmen verlieren und ein DOSN daher nicht vor Sybil-Angriffen schützen können.

Um diese Probleme zu lösen, wird in dieser Arbeit ein neues DOSN vorgestellt. Das
SELF-ORGANIZED UNIVERSE OF PEOPLE (kurz: SOUP) verfügt neben weiteren prob-
lemlösenden Alleinstellungsmerkmalen vor allem über zwei Eigenschaften:

SOUP ist robust, indem es die zentrale Infrastruktur effektiv durch ein Substrat er-
setzt, das von den Teilnehmern des OSNs selbst errichtet ist. Insbesondere sind die ver-
schlüsselten Daten aller Nutzer hoch verfügbar.

SOUP ist außerdem sicher, indem es effektiv gegen Datenzugriff von unautorisierten
Parteien schützt und gleichzeitig seine Funktionalität auch in der Gegenwart verschiedener
Angriffe gewährleistet. Dazu zählt insbesondere der Sybil-Angriff, der auch bei einer
weitreichenden Kompromittierung des OSNs keine signifikanten Auswirkungen auf dessen
Performanz hat.
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Chapter1
Introduction

With every new product launch, it seemed Facebook would wait for the inevitable
negative reaction on privacy, then announce minimal changes without
fundamentally altering the new feature.

— The Washington Post, ”Mark Zuckerberg’s theory of privacy“ [1]
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1.1 The Problem

Online Social Networks (OSNs) have evolved from small, themed networks into ubiquitous
platforms of communication over the past few years. In July 2014, Facebook1, once a small
Harvard campus network and now the world’s largest OSN, counted one billion interactions
related to the FIFA Football Worldcup 2014 [2]. At the same time, Twitter2 observed 672
million status updates (tweets) related to the tournament, and over 35 million tweets during
a single match [3]. Regardless of such prominent events, YouTube3 provides its members
with the opportunity to rate, subscribe to and comment on hundreds of hours of new video
uploaded every minute [4]. The video sharing platform is now the major contributor to
European Internet traffic [5].

Concurrent to the explosion of content, OSNs user numbers are continuously growing.
Twitter’s 225 million users are surmounted by 1.32 billion users on Facebook, and almost
one billion unique users visit YouTube every month [4, 6, 7]. In 2008, the Flickr photo
sharing community4 experienced a growth of 58% in just three months [8], while Twitter
even reported an even more remarkable 1,400% growth rate for 2009 [9], and has been
continuously growing ever since [10].

Due to their enormous reach, OSNs can even have an influence on politics. During the
political uprisings of the Arab Spring of 2011, Twitter and other social media played a major
role as both communication infrastructure and dissemination channels for the demonstra-
tors [11–13]. In 2010, protest organizers used Twitter, YouTube, and Flickr as alternative
platforms for reporting during the G-20 summit in Toronto [14].

For the same reason, OSNs have also become an effective way for content producers
to reach their customers, and also influence the business model of enterprises [15]. For
instance, media are currently using OSNs as one major way of distributing news [16], and
sales teams exploit the opportunities of viral marketing over OSNs [17, 18].

Currently, the key OSNs are organized in a centralized fashion and usually controlled by
global players in information technology. Whereas Facebook and Twitter took the step to
stock-markets themselves in 2012 and 2013, respectively, YouTube was acquired by Google
(which additionally operates its own OSN, Google+5) in 2006 [19], and Flickr is owned
by Yahoo [20]. These players (or providers), caused by the exponential growth of OSNs,
deal with tremendous amounts of user information. They can obtain deep insights into

1http://www.facebook.com (all URLs have been checked on December 30th 2014)
2http://www.twitter.com
3http://www.youtube.com
4http://www.flickr.com
5http://plus.google.com

http://www.facebook.com
http://www.twitter.com
http://www.youtube.com
http://www.flickr.com
http://plus.google.com
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their users’ personal interests, opinions, social relationships, and economical or political
preferences, a situation that has raised serious privacy and security concerns [21,22]. As an
example, Facebook already controls the private data of one-sixth of the worlds population.6

Still, it is striving to obtain more user data, as demonstrated by the multi-billion dollar
acquisitions of the Instagram and WhatsApp user bases in 2012 and 2014, respectively [23,
24]. With both deals Facebook obtained photos and messaging data for almost 500 million
users, which were either unknown to the company before or complemented its view on the
data of already-known users.

The providers may exploit user data stored at their premises for various purposes, in-
cluding the resale of potentially private data or their analysis for commercial use, without
notifying users [25]. This practice has already led to several class action lawsuits against
OSN providers [26], without however changing their perspective towards user data pri-
vacy [1, 27]. In fact, providers not only collect the data for their individual purposes; many
OSNs, including Facebook, Google and Yahoo, granted full access to user data to the United
States government through the PRISM program [28].

While the mere aggregation of huge amounts of data at a single instance is thus alarming
in itself, OSN users often are additionally at the mercy of the OSN provider with regards
to the OSNs’ terms of use, which often compromise the users’ data privacy and property
rights [29]. For instance, Facebook and Google+ have forced their members into using their
real names as user names, threatening to delete the accounts of those who would not follow
that directive [30].

Moreover, many providers leave users helpless when changing, forwarding, or misusing
their data [31]. In 2014, Facebook changed the location of 20 million Instagram photos
from their original datacenter into Facebook’s own without notifying the users [32]. Be-
tween 2007 and 2009, the Facebook Beacon application forwarded sensitive shopping in-
formation of users between Facebook and a group of partners (e.g., Amazon) without the
users’ consent. Beacon was only stopped in the course of a class-action lawsuit, which
cost Facebook 9.5 million US dollars to settle [25]. In June 2012, an incident at LinkedIn7

demonstrated that a central storage of private user data is also subject to external misuse,
when millions of passwords were leaked from its central repository [33].

At the same time, there is little to no activity by providers to permanently fix or even
improve the situation of user privacy, even though a fix might not be much of a technical
challenge. A large step towards comprehensive security and privacy means to their users
could be taken by, for instance, encrypting user data and letting users decide with whom
they want to share what parts of their data. The major providers’ conduct of not following

6According to http://www.census.gov/popclock/.
7http://www.linkedin.com

http://www.census.gov/popclock/
http://www.linkedin.com
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that path is however more than understandable from an economic perspective, as doing so
would result in giving up the ability to analyze and sell user data and thus the loss of their
main source of income [34, 35].

Consequently, the concept of Decentralized Online Social Networks (DOSNs) has at-
tracted researchers and practitioners from academia and industry. The main idea of DOSNs
is to build an OSN without any participation from a central provider, and thus to enable
better user data security and privacy. Due to the significance of the problem, a plethora of
DOSN solutions has been proposed recently [36–48]. These systems greatly differ in their
approach to replace the centralized infrastructure. Whereas some DOSNs try to utilize per-
manently available resources—in particular storage space and processing power [36–39]—
other systems relax the dependency on such resources, and let nodes cooperate with each
other [40–46]. Finally, some researchers build hybrid solutions that incorporate both per-
manently available capacities and node cooperation [47, 48].

However, each of these solutions introduces new shortcomings, including (i) limited
success in providing high availability for user data [40–43, 45, 46, 48]; (ii) a discrimi-
nation of some users based on their dependency on other nodes [40, 43, 45–48]; (iii) a
dependency of all users on powerful nodes [37–39, 47, 48]; (iv) high communication or
storage overhead [43–46]; (v) a low adaptivity to the user dynamics typically present in
OSNs [36, 37, 41–48]; (vi) susceptibility to malicious users [37, 40–48]; (vii) a lack of data
encryption and thus weakened user privacy [37, 41, 42, 48]; (viii) lack of non-consideration
of mobile users [40–48]; and (ix) technical feasibility and economic deployability is-
sues [36, 38, 39, 46, 47].

While most approaches suffer from a multitude of drawbacks, each one of these short-
comings can prevent the successful establishment of a competitive DOSN. For instance, a
DOSN which does not offer a high availability of user data is unlikely to persuade a critical
mass of users to join the network because the user experience will be worse than in current
centralized OSNs. At the same time, if data availability comes with a usage fee, users are
unlikely to join the network as well since market leading OSNs are free of charge.

Among all deficiencies, one critical drawback is susceptibility to malicious users, against
which state-of-the-art DOSN solutions are not inherently protected. In fact, recent research
has uncovered the existence of large numbers of malicious accounts in OSNs [49–52],
which could deteriorate the performance of any unprotected DOSNs. Currently, most of
the malicious accounts are used as part of a Sybil attack [53]. The term Sybil attack de-
scribes the creation of a multitude of fake accounts (hence the name Sybil) for eclectic
malicious intents. Whereas some attackers try to distribute spam messages with the created
Sybils [49,54], others aim at manipulating recommendation or voting schemes by outvoting
regular users [51, 55]. Fake account creation itself is now a multi-million dollar business in
the underground economy, where attackers can easily buy a large number of Sybil accounts
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for little money [50]. As a consequence, millions of Sybils have been observed in real-world
OSNs [49, 51], which has lead researchers to try to develop automated algorithms to detect
and exclude Sybils from these networks [56–63]. If these algorithms should prove to be
efficient, currently proposed DOSNs could rely on them to ward off Sybil attacks on the
network.

However, recent research has identified a rich set of behaviors of both attackers and hon-
est users that calls these defenses into question [51, 52, 54, 64, 65], and it is uncertain how
well they perform with regards to these behaviors. While it is critical to have effective
Sybil defense solutions, it is therefore unclear what help and how much help can be ob-
tained from existent solutions, and to what degree a DOSN, taken by itself, must be secured
against Sybils.

Therefore, in essence, there exists an obvious need for decentralized online social net-
working, and potential users of DOSNs are currently faced with a plethora of approaches
to choose from. These approaches greatly differ in their architectures and measures to re-
place central OSN providers, However, none of these solutions constitutes a comprehensive
DOSN that is able to compete with current centralized OSNs. One particular imperfection is
the lack of resiliency against malicious users, which have vigorously infiltrated OSNs in re-
cent years. At the same time, it is unclear whether or not existing solutions to defend against
malicious users could be of help when designing a new, better DOSN that is competitive
with centralized OSNs.

1.2 Thesis Contributions

In this thesis, the problems stated above are addressed through the following contributions:

• To provide a clear overview of the state-of-the-art of DOSNs, a comprehensive study
of existing decentralized online social networking approaches is conducted. The
study reveals the absence of a full-fledged DOSN. The lessons learned from this
study are applied to investigate the challenges that a new, better DOSN would face.
• Particular attention is paid to the most predominant attacks in OSNs, specifically the

Sybil attack. To clarify whether or not existing techniques can help to prevent Sybil
attacks, existing Sybil defenses based on OSNs are analyzed in detail. The result of
the in-depth analysis suggests that currently no efficient Sybil defense exists, and that
DOSNs hence need to be resilient to Sybils in their design.
• The main contribution of this thesis then is the design, implementation, and evaluation

of the SELF-ORGANIZED UNIVERSE OF PEOPLE (SOUP), a novel DOSN, which
addresses all the challenges emerging from the previous parts of this thesis.
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1.2.1 A Comprehensive Review of DOSNs

As the first contribution, before starting to produce yet another DOSN, state-of-the-art solu-
tions are investigated with regards to their advantages and drawbacks. The goal of the study
is to hand both researchers and end users a clear overview of the specific characteristics
and features of each DOSN approach. Therefore, a clear categorization into both solution
classes and the particular functionality offered by each system is provided. Based on this
classification, an analysis of which kind of approach would be the best design choice for a
novel DOSN is conducted, followed by an investigation of the challenges this approach has
to overcome.

1.2.2 An Analysis of Sybil Defenses Based on OSNs

As the second contribution, existent Sybil defense approaches are systematically analyzed,
measured, and compared to find out whether or not any of these existing defense schemes
can be applied to a novel DOSN, and to evaluate how well or inadequately they perform.
The goal is to qualify and quantify the strengths and weaknesses of these approaches.

Two classes of Sybil defense approaches are investigated in detail: Sybil detection
approaches—which try to detect Sybil nodes and exclude them from participation in a target
system, and Sybil tolerance approaches—which try to limit the impact of Sybils present in
the system. The former includes SybilGuard/SybilLimit [56, 66], SybilShield [63], Sybil-
Infer [59], SybilDefender [62], GateKeeper [58], and SybilRank [57]. The latter includes
Ostra [8] and SumUp [60].

Given that the Sybil defenses will face a modern scenario, in which a Sybil node may
utilize more attack edges than traditionally assumed, this thesis’ analysis pays particular
attention to what a Sybil node has to achieve in order to make itself indistinguishable from
honest nodes—and thereby disguise itself from the defense scheme. Different attack strate-
gies are investigated where applicable, and for every Sybil defense solution the cost for the
attacker (e.g., the number of attack edges to create) to thwart the solution is quantified.

The main finding is that current OSN-based Sybil defense approaches of both classes have
difficulty identifying attack edges and Sybil nodes in the modern scenario. Surprisingly
little effort is needed to deceive any existent defense scheme. Specifically, in many schemes
a Sybil node only needs to create one or two attack edges to random honest nodes in order
to successfully masquerade as a benign node. The attacker can further reduce the required
effort if she follows more intelligent attack strategies that exploit particular weaknesses in a
given defense scheme. As a consequence, when designing a new DOSN, the system needs
to be designed in a way that is resilient to Sybils in the system.
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1.2.3 SOUP: An Online Social Network By The People, For The People

As the third and main contribution, a novel DOSN, the SELF-ORGANIZED UNIVERSE

OF PEOPLE (SOUP) is presented. Based on the analysis of related work and the Sybil
defense analysis SOUP solves the drawbacks of related works and, therefore, addresses the
following challenges:

(i) To achieve high data availability, SOUP proposes a new, generic approach for storing
user data in a DOSN. Built on a robust, secure, and scalable mechanism, the approach
mirrors a user’s data at intelligently selected other OSN participants. Despite conser-
vative assumptions on the availability of resources, the performance in terms of data
availability is close to that of a centralized solution.

(ii) To not discriminate against any OSN user, SOUP ensures that regardless of partici-
pants’ social relations or online probabilities, data for all participants is highly avail-
able.

(iii) To remove any dependencies on powerful nodes, it does not rely on permanently avail-
able or altruistically provided storage, although it can make an opportunistic use of
such resources as they become available.

(iv) To limit overhead, it makes sure that there exist only as many replicas as required, and
keeps the set of mirrors stable to avoid unnecessary user data retransmissions.

(v) To achieve reliability, SOUP is designed to be adaptive to the dynamics often seen in
a DOSN—such as frequent node joining and departure—and it can quickly respond
to changes in the system and continue to provide high performance.

(vi) To offer resiliency, SOUP provides the means to efficiently defend itself against ma-
licious OSN users executing both Sybil or Denial of Service (DoS) attacks, as it can
tolerate up to half of the identities in the OSN being controlled by an adversary.

(vii) To grant data privacy, SOUP offers effective mechanisms for encrypting data and en-
sures only eligible users can access data.

(viii) To support mobile users, SOUP is designed to minimize data transfer and resource
consumption on mobile nodes.

(ix) Finally, to demonstrate its feasibility, extensive simulation experiments with three dif-
ferent large-scale real-world datasets are conducted, and SOUP is shown to meet all
aforementioned challenges. Further, SOUP is successfully implemented and deployed
on both desktop and mobile platforms.
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1.3 Thesis Overview

The remainder of this thesis is organized as follows: in Chapter 2, the basic concepts of
(decentralized) online social networking are explained. To further show the importance of
developing DOSNs, a case for decentralization of social networks is presented in Chapter 3.
A comprehensive review of related work on DOSNs is conducted in Chapter 4. The review
uncovers the need for a novel DOSN solution, for which challenges emerge in Chapter 5. As
one of the challenges is the resiliency against the Sybil attack, a detailed study of existing
Sybil defense solutions follows in Chapter 6.

Based on the findings of all previous chapters, Chapter 7 then introduces the SELF-
ORGANIZED UNIVERSE OF PEOPLE (SOUP). Chapter 8 is entirely devoted to a critical
component of SOUP: the mirror selection, which ensures that SOUP can in fact constitute
a robust and secure DOSN. SOUP is then extensively evaluated based on a large-scale sim-
ulation in Chapter 9. Afterwards, the implementation of SOUP is described in Chapter 10.
In Chapter 11, a deployment of SOUP and an analysis of the obtained data is presented. In
discussing several aspects related to SOUP, Chapter 12 paves the way for future work, and
the thesis is summarized and concluded in Chapter 13.





Chapter2
Background

Online Social Networks (OSNs) are present in hundreds of millions of people’s everyday
lives, but their characteristics often remain only vaguely defined. This chapter starts with
providing the theoretical background of these networks. In particular, OSNs typically pivot
on their social graph, a construct that contains information about the relations between all
the users in the network. The social graph is thus the principal topic of the first part of this
chapter.

Afterwards, the focus is switched to more practical issues, and the basics of techniques
required to build a DOSN are discussed. These include widely accepted approaches that can
be of help to replace the centralized provider, as well as different cryptographic approaches
to secure user data in OSNs from unauthorized access.
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2.1 Online Social Networks

In a scientific context, the first use of the term social network is attributed to the anthropolo-
gist John Arundel Barnes in 1954 [67, 68]. Ever since, the interest of the scientific commu-
nity to investigate social networks has been growing considerably across disciplines, with a
clear manifestation in high impact research in the 1980s [67, 69, 70].

Kähler gives a basic definition of a social network as “the network of—usually social—
relationships that can be observed between a defined set of single units—usually individu-
als” in his 1975 literature survey [71]. Approximately twenty years later, in 1994, Wasser-
man follows a similar path:

Definition 2.1 (Social Network) A social network consists of a finite set or sets of actors
and the relation or relations defined on them. An actor is a discrete individual, corporate,
or collective social unit. A relational tie links two actors to each other. [67]

In this classical social network perspective that is coined from a sociological perspective,
a linking of actors can be established by, e.g., talking to each other or by being biologically
related.

With the rise of the Internet to an ubiquitous platform of communication, the concept
of social networks has been carried online in the last decade. While Friends Reunited,
the world’s first Online Social Network (OSN), was founded in 1999 before the millenium
turned, Friendster was the first OSN to accumulate a large-scale user base after its opening
in 2003. Rather than being confined to actual human interactions, actors in OSNs are linked
over the Internet and therefore communicate online, which allows them to interact without
spatial and temporal constraints. Ellison defines Social Networking Sites (SNS), a synonym
of OSNs, as follows:

Definition 2.2 (Social Networking Sites) We define social network sites as web-based ser-
vices that allow individuals to (1) construct a public or semi-public profile within a bounded
system, (2) articulate a list of other users with whom they share a connection, and (3) view
and traverse their list of connections and those made by others within the system. The
nature and nomenclature of these connections may vary from site to site. [72]
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Hence, with regards to Definition 2.1, in online social networks the following interpreta-
tions apply:

• Actor: The actor is usually represented by a user in the OSN. The user herself is
an abstraction of the original definition of the actor, i.e., of a discrete individual,
corporate or collective social unit.
• Relational Tie: A tie is represented by an actual connection between users in the

OSN. These links can be unidirectional or bidirectional and can represent a variety
of social relationships. The concrete interpretation of the links between users differs
among the OSNs.

An abundance of OSN services implementing this concept has been developed in the
past decade, a trend which has attracted the interest of computer scientists for various rea-
sons. To begin with, the sheer scale of OSNs results in an enormous reach of these net-
works. Arguably the most famous OSN is Facebook, with currently approximately 1.3 bil-
lion users [7]. By providing a scalable infrastructure to enable users to communicate with
each other, OSNs are continuously growing. Twitter has reached 271 million monthly active
users in August 2014, which is a remarkable growth compared to its 100 million monthly
active users in 2011 [6]. These users submit 500 million tweets (short text messages) every
day [6]. During the 2014 FIFA Football Worldcup, over 35 million tweets were posted dur-
ing a single match, and 672 million tweets related to the tournament were submitted during
the worldcup in total [6].

Caused by their scale, OSNs further deal with enormous amounts of data. Whereas tweets
originally consisted of 140 text characters only and Twitter has just recently opened up for
multimedia content, Facebook has always allowed its users to upload photos and videos,
like content, and comment on (multimedia) items. Altogether, users on Facebook con-
tributed to one billion different interactions during the first two weeks of the FIFA Football
Worldcup [7]. Other OSNs such as the Flickr photo sharing community or the video portal
YouTube, concentrate on one particular type of content. Nonetheless, they are growing fast
as well. While the Flickr OSN grew 58% in just three months in 2008 [8], YouTube is now
the dominant contributor to European Internet traffic [5], as users view six billion hours of
video on the platform every month [4].

Not all of this data is generated by users in the narrower sense, as media and other content
producers have discovered OSNs as one major way of distributing content based on the
ability of OSNs to efficiently propagate information to a large number of users [16,73]. For
the same reason, companies use the opportunities of viral marketing over OSNs to increase
the perception of their products [18]. At the same time, OSNs can even have influence on
economics or politics, as shown during the Arab Spring of 2011, where Twitter and other
social media were used as both communication infrastructure and dissemination channel by
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Figure 2.1: An exemplary undirected and unweighted social graph G = (V,E).

the protesters [11–13].

Given the large scale, the huge amount of data to analyze, and the impact of OSNs on
content propagation, researchers have thus begun to investigate and exploit these networks
and to build new applications and infrastructures for them. Their research ranges from the
analysis of interactions between users [74, 75], to exploiting the links between users [76],
and building novel datacenter networks for large-scale OSNs [77–79].

2.1.1 The Concept of the Social Graph

Research investigating OSNs often focuses on the social graph of the network’s users, a
core structure of each OSN:

Definition 2.3 (Social Graph) Denoted as G = (V,E), the social graph of a network gives
a representation of the set of users (V , the nodes in the graph) and links (E, the edges in the
graph) between the users in that network. [80]

Depending on the interpretation of the nodes in V and the links in E, the social graph
yields a structural representation of the OSN. The most widespread interpretation of V and
E is to let each v ∈ V represent a user and each e(v,w) ∈ E represent a friendship between
v and w (i.e., implying v is friends with w). On Facebook, each of these friendship links is
treated as mutual, which leads to an undirected social graph G which contains all friendships
on Facebook. A small example of such an interpretation is shown in Figure 2.1, where each
link in G is undirected.

A different interpretation, as for instance found in Twitter, where each node v ∈ V rep-
resents a Twitter account, is that each edge e(v,w) ∈ E represents a follower-followee (or
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subscriber-subscribee) relation between the nodes v and w. In particular, such an edge
depicts v following w, and is thus a directed edge. As a consequence, G is a directed graph.

For the remainder of this thesis, the terms edge, link, (social) relation, connection, or
tie are interchanged when discussing an edge between two nodes. When considering
undirected social graphs, the term friendship is also used in the same context.

In both directed and undirected graphs most social networks use a binary model when
constructing the graph. That is, an edge between two nodes v and w either exists (then
e(v,w)= 1), or does not (then e(v,w)= 0). For instance, two users on Facebook are assumed
to be friends as soon as there is a link between them. However, such a model does not
accurately represent a social network, as each tie can be of different strength [70]. Gilbert
et al. found that the mere existence of an edge only contributes with approximately 4.5%
to the actual strength of the tie [81]. Hence, there have been efforts to improve the social
graph so that it models the strength of the ties more accurately. These models consider,
e.g., the interaction frequency between nodes [74] or the intimacy of the words used in a
conversation [81]. As a result, each edge e(v,w)∈E can also have a weight, which describes
the strength of the tie between the actors behind the users v and w.

The number of edges with which a node v is connected to other nodes is the degree of a
node.

Definition 2.4 (Node Degree) The degree d(v) of a node v is the number of nodes in V
adjacent to v in G. [80]

The degree of node u in Figure 2.1, for instance, is 3. Various studies of OSNs have found
that node degrees in most of these networks follow a power-law distribution [74, 82]. That
is, most of the nodes have a relatively low node degree and only few nodes are very well
connected and thus have a very high degree.

Recently, some researchers have pointed out that power-law distributions might not be
the perfect fit for some OSNs as they overestimate the number of high-degree nodes in
the network [83, 84]. Also OSNs have taken action to encourage their users to establish a
certain number of links, so that the number of extremely poor connected users might not fit
a power-law distribution as well [83,84]. At the same time, other studies report that power-
law distributions underestimate the degree of the high degree nodes [16]. For this thesis,
the following facts confirmed by all kinds of studies are important: (i) most users in OSNs
have a low or moderate node degree; and (ii) only few nodes with high degree exist.
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Nevertheless, social graphs are well-connected. To measure the connectedness of a graph,
usually the Largest Connected Component (LCC) (sometimes also giant component [85])
is considered.

Definition 2.5 (Largest Connected Component) A connected component is a set of nodes
for which each pair of nodes are connected by at least one path through the network. The
LCC is the largest of these components. [83]

In Figure 2.1 the LCC comprises all nodes in the graph, since every pair of nodes is
connected by at least one path through the graph. Here, the node with the lowest degree, v
(d(v) = 1), is still reachable by all other nodes. On a larger scale, a study of the complete
700-million-user Facebook social graph of 2011 found that 99.9% of the network belong to
the LCC [83]. Hence, the graph is almost connected, with only a tiny fraction of the nodes
in the network not being able to reach every other node by traversing edges in the graph.
These nodes are often called singletons, i.e., users not participating in the OSN at all [85].

2.1.1.1 Communities and their detection

In addition to being well-connected, directed or undirected, and weighted or unweighted,
OSN graphs have further structural properties. In particular, they typically contain commu-
nities [86–88].

Definition 2.6 (Community) Communities are subsets of nodes in G within which edges
between nodes are dense, but between which edges are less dense. [86]

In Figure 2.1, there exist two communities—the membership of a node to a commu-
nity is given by its coloring—in which nodes are highly interconnected but between which
there exist few edges only. In real-world social networks, these communities can also be
hierarchically composed [87, 89], where one larger community can contain several smaller
communities.

In fact, most social networks are comprised of a large number of small communities.
Averaged over different kinds of OSNs, 40% of the nodes belong to communities that are
connected to the core of the network by a single edge, leading to a graph structure that can
be best visualized by the term ”Octopus“ [89]. This phenomenon is also referred to as the
high modularity of the OSN graph.
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Figure 2.2: An exemplary execution of the Louvain method. Initially, for each node, a com-
munity containing only that node is created, and the weight of the links between
all nodes is 1 (left). Then, in phase one, for each node the modularity gain is
calculated, which results in three communities (center). In phase two, the nodes
are aggregated into their communities (right), and each community is assigned
the weight of the links between the community members. In this case, a second
iteration yields no modularity gain, and the algorithm terminates.

Definition 2.7 (Modularity) The modularity of a graph is defined by the fraction of the
edges that fall within the communities minus the expected such fraction if edges were dis-
tributed at random. [90]

That is, for a given division of the network’s vertices into communities, modularity re-
flects the concentration of edges within communities compared with a random distribution
of the same amount of links between all nodes in the graph. Therefore, a graph with densely
connected communities, which are only sparsely connected among each other, will obtain a
high modularity score.

The discovery of the modularity of social graphs has also led to an abundance of pro-
posals to detect the communities in social networks, of which two of the most important
approaches are the Girvan-Newman algorithm [86] and the Louvain method [87]. Due to its
efficiency for even very large networks (the method runs in the complexity class O(n logn)),
the ability to detect hierarchical communities, and readily available implementations8, the
Louvain method is applied where necessary in this thesis.

An example of applying the Louvain method to a social graph is depicted in Figure 2.2.
The method distinguishes between two phases:

• It starts by creating a community for each node in G, i.e., with |V | communities. At
the same time, based on the edges between nodes in G, a weighted graph is con-
structed, such that for each neighbor v of a node u, a link between the communities

8http://perso.uclouvain.be/vincent.blondel/research/louvain.html

http://perso.uclouvain.be/vincent.blondel/research/louvain.html
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representing u and v is established with weight 1. It then continues by calculating,
for each node u and all its neighbors N = v1,v2, ...,vdu , the modularity gain obtained
by the removal of u from its own community, while adding it to the community of a
neighbor vi. It then places u into the community that yields the highest gain or leaves
u in its own community if there is no further gain. This procedure is executed until
no further gain is possible and a local modularity maximization is reached.
• In the second phase, a new graph is created based on the communities found in the

first phase. In this graph, the new nodes represent the communities found in the first
step. The weights between these nodes are given by the sum of the weight of the links
between nodes in the corresponding two communities. The method then executes the
first phase (starting from calculating the modularity gain) again.

An iterative execution of this method will yield a hierarchy of the determined communi-
ties, or in other words communities of communities. One widely used metric to determine
the quality of a community (i.e., the ratio of edges within the community to those edges to
nodes outside of the community) is conductance.

Definition 2.8 (Conductance) For a social graph G = (V,E), let S ⊂ V be a set of nodes
in G with |S| ≤ 1

2 |V |. Further, let v = ∑
|S|
i=1 di be the sum of the node degrees in S, and s the

number of edges with one endpoint in S and one endpoint outside of S. Let all nodes outside
of S be denoted as S̄. The conductance of S is then defined as φ = s/v. [89]

In other words, the conductance describes a measure of the goodness of the distinction
between a community S and the rest of the graph, S̄. A small conductance usually hints
at a stronger community, as then the number of edges pointing towards nodes outside of
the determined community is, compared with the degree of all community members, low.
Hence, the community is ought to be well connected internally, while there are only few
links to other nodes.

2.1.1.2 Random Walk

Another approach to approximate communities is to execute several Random Walks (RWs)
on a social graph (for details, see Chapter 6). The concept of the RW was first described
by Pearson in 1905 as a mathematical formalization of a path that consists of a succes-
sion of random steps [91]. RWs are used in many fields, including biology, chemistry,
medicine, and first and foremost in many models in mathematics, physics and computer
science [92,93]. As a consequence, they have gained significant attention from the research
community [92–94].
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RWs can, for instance, be conducted on a line, in the plane, in higher dimensions—or on
graphs. The most simple definition of a RW is as follows:

Definition 2.9 (Random Walk) Let U = (U1,U2, ...) be a sequence of independent random
variables with values in Rd . Then, the stochastic process defined by

Xn = X0 +
n

∑
i=1

Ui n ∈ N0 (2.1.1)

is a d-dimensional random walk.

In a simple random walk on a line, each Ui ∈U takes the value 1 with probability p∈ [0,1]
and −1 with probability 1− p, respectively. One often used example to visualize the RW is
the Drunkard’s Walk, as introduced by Pearson in his 1905 article [91]: “A man starts from
a point O and walks l yards in a straight line; he then turns through any angle whatever
and walks another l yards in a second straight line. He repeats this process n times.” In
other words, at each step, the RW process chooses randomly from the options to continue
available. In the case of a simple random walk on a line, the drunkard will thus step forward
(Ui = 1) with probability p and backwards (Ui =−1) with probability 1− p, respectively.

More generally, a random walk is defined by a transition function, which describes for
each pair of points (x,y) the probability of transitioning from x to y. In this thesis, the
random walk on a social graph G = (V,E) is considered. Here, the transition function
P(x,y) describes the probability that the random walk transitions from a node x ∈ V to a
node y ∈V over the edge (x,y) ∈ E. Hence

0≤ P(x,y)≤ 1,
d(x)

∑
i=1

P(x, i) = 1 (2.1.2)

where d(x) is the degree of x. In other words, in a random walk on a graph—as executed
exemplary in Figure 2.3—originating from a chosen starting point x, a neighbor y of x is
chosen randomly and the walk moves to y. At y, a neighbor z of y is chosen randomly again,
the walk moves to z, and so on.

More formally, such a random walk on a graph is a finite Markov chain that is time-
reversible [93]. In short, this characteristic implies that the previous states of the walk are
irrelevant in predicting the probability of subsequent states (for details about Markov chains
and their properties, see [95]).
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Figure 2.3: The first steps of a random walk on a graph. The walk starts at node A with
d(A) = 3 in (a). Hence, each edge originating at A is traversed with probability
p = 1

3 . In this example, the random walk chooses e(A,B). In (b), the probability
for the traversal of each edge originating from B is p = 1

4 , as d(B) = 4. The
random walks selects e(B,E). Then, analogously to previous steps, p = 1

3 for
each edge originating at E, and so on.

For a connected graph G = (V,E) with n nodes and m edges, the random walk starts
at a node v0. At the t-th step, the walk is at node vt and moves to a neighbor of vt with
probability 1/d(vt). Here, the sequence of random nodes (vt : t = 0,1, ...) is a Markov chain.
The starting point v0 can be fixed or be drawn from an initial distribution P0. Lovasz [93]
gives notations of PT , the distribution of vt as Pt(i) = Prob(vt = i), and the transition matrix
of the Markov chain as M = (pi j) for i, j ∈V , such that

pi j =

{
1/d(i), if i j ∈ E,
0, otherwise

(2.1.3)

If AG denotes the adjacency matrix of G and D the diagonal matrix with Dii = 1/d(i), then
Lovasz states that M = DAG, and if G is d-regular, then M = (1/d)AG. As a consequence
Pt = (MT )tP0.

In other words, the probability pt
i j of starting at i to reach j in t steps can be taken from

the entry (i, j) of Mt . In the case of G being regular (i.e., every node has the same degree
d), the Markov chain is also symmetric, meaning that a transition from i to j has the same
probability as a transition from j to i.

In OSNs, regular graphs are unlikely to exist. For non-regular graphs, the Markov chain
is instead time-reversible, meaning that a random walk in the backward direction is also a
random walk [93]. If all random walks (v0, ...,vt) with v0 drawn from an initial distribution
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P0 are considered, a probability distribution Pt on vt is obtained. Additionally, there is also
a probability distribution Q on all sequences (v0, ...,vt), and if each of these sequences is re-
versed, the resulting probability distribution Q′—if the chain is time-reversible—is the same
as the distribution obtained by observing random walks originating from the distribution Pt .

The—for this thesis—most important probability distribution is the stationary distribu-
tion (sometimes also called steady-state distribution [96]).

Definition 2.10 (Stationary Distribution) A distribution P0 is called stationary for G if
Pt = P0 for all t > 0.

Or, in a different notation, given a transition matrix M, the stationary distribution is a prob-
ability distribution π such that π = π ·M [95]. In other words, in the long run, regardless
the starting state, the proportion of time the Markov chain spends at a node v converges to
πv (the starting state is forgotten). Closely related to the stationary distribution is the mixing
time of a (social) graph.

Definition 2.11 (Mixing Time) The mixing time of a graph G indicates how fast a random
walk approaches the stationary distribution. A slow mixing time means that a random walk
needs to be long in order to reach the stationary distribution. [80, 97]

Social graphs with a low mixing time often also offer a small minimal cut.

Definition 2.12 (Minimal Cut) A minimal cut of a graph is a cut whose cutset (i.e., the set
of edges which have to be removed to partition the graph) has the lowest number of edges
among all cutsets. [97]

For instance, the minimal cut of the graph depicted at the beginning of this Chapter in
Figure 2.1 consists of the two edges connecting the left community with the right commu-
nity. Note that the minimal cut is closely related to a low conductance value.
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Figure 2.4: An exemplary graph traversed by BFS, starting at A. The first iteration explores
only B. Moving on from B, BFS explores C, D, and E in the second iteration, and
finally F , G, and H in the third iteration, upon which the algorithm terminates.

2.1.1.3 Breadth First Search

Besides a random walk, multiple algorithms can be applied to traverse a (social) graph, to,
for instance, sample the graph [8, 75]. Among them, Breadth First Search (BFS) is one of
the most-widely used algorithms. It starts from a selected node and progressively explores
all neighbors [98]. Then, in each new iteration the unvisited nodes are selected in order of
their exploration. As a consequence, BFS ultimately discovers all nodes that are connected
to the starting node (recall that OSN graphs tend to be connected). Figure 2.4 shows a small
social graph (on the left), and the order in which the nodes would be traversed by BFS (on
the right).

The algorithm runs in O(|V |+ |E|) in the worst case, which may be reduced to O(|V |)
for many real-world applications [98].

2.1.1.4 Flow Network

Social graphs may additionally be more complex than the graph presented in Figure 2.1.
For instance, a flow network is a directed graph, which assigns a certain capacity to each
edge in the graph. Based on the capacity of each edge, flows (i.e., messages passing through
the network) are admitted or rejected from being executed. More formally, a flow network
can be defined as follows:
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Figure 2.5: Sending of two subsequent messages in the same flow network. In (a) a message
with cost cm = 2 can be sent from source S to destination D, as a path R with
cm ≤ Ri j∀Ri j exists (S−A−F−D). Afterwards, the capacity is reduced by cm.
As a result, the message in (b) cannot be sent (the cost exceeds the capacity on
both incoming edges of D).

Definition 2.13 (Flow networks) A flow network is a network of entities represented by a
graph G = (V,E), in which a non-negative real number Ri j is associated with each edge
e(i, j)—the capacity of that edge. [99]

Of particular interest for this thesis are the capacity constraints of flow networks:

Definition 2.14 (Capacity Constraint) In a flow network, when trying to send a message
m with a certain cost cm from a source node s to a destination node d over the network,
m can only be sent if and only if there exists a path R = [Rs,i1 , ...,Rin,d ] in the network,
where cm ≤ Ri j∀Ri j ∈ R, i.e., all edges on the path have sufficient capacity to forward the
message. [99]

An example flow network, in which a source tries to send two subsequent messages to a
destination is given in Figure 2.5.
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2.2 Distributed Hash Tables

Both centralized and decentralized OSNs often rely on a Distributed Hash Table (DHT)
to handle large amounts of users. Whereas centralized OSNs use DHTs such as Cassan-
dra [100] to ensure high data availability across multiple datacenters without a single point
of failure [101], decentralized OSNs rather make use of DHTs as their basic infrastructure.

A DHT implements the functionality of a hash table in a decentralized manner, i.e., it
provides a table that allows key-value pairs to be inserted and queried for—without storing
the table at a centralized instance. For this purpose a DHT requires the participation of nodes
in the network in maintaining the table. In detail, the participating nodes are interconnected
in a structured overlay network and each node is responsible for a partition of the network.
Here, the global key-space is distributed among the nodes. For those keys in the partition of
the key-space for which a node is responsible, the node stores all relevant key-value pairs
and answers queries (lookups) of other nodes towards keys within its partition.

The literature offers a number of approaches to DHTs [102–106], which have also been
successfully deployed to popular Peer-to-Peer (P2P) networks. For instance, BitTorrent
uses Kademlia [104] as a lookup directory [107]. While sharing a common name, each
DHT defines the form of the structured overlay (including the ordering of nodes) and the
way of routing messages between the nodes in a unique way. For instance, the CAN overlay
is built on a multi-dimensional coordinate-space [105], whereas nodes form a ring structure
in Chord [103]. Thus, to route a query to a certain key in the key-space, CAN maps that key
to a point in the coordinate-space, while Chord numerically orders nodes according to their
identifier and then matches the key to a node identifier.

Although diverse in their architecture and lookup mechanisms, all approaches are similar
in their performance. Most major DHTs route a lookup request from the source to the node
storing the key in O(logn) steps, where n is the number of nodes in the overlay—the ex-
ception is CAN, in which the path length grows as O(n1/d), where d is the dimension of the
overlay [108]. This property enables efficient forwarding of queries, insertions and mainte-
nance instructions even in large scale systems like BitTorrent or OSNs. All approaches also
incorporate maintenance algorithms to handle node arrivals and departures. The handling
of departures caused by a node failing is of particular importance, as such failures can cause
the DHT to fail on a network-wide level [108]. CAN, Chord, Kademlia, Tapestry [106] and
Pastry [102] all offer mechanisms to prevail against such failures.
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Figure 2.6: An exemplary Pastry ring. Dark colored nodes are online nodes. The routing
table of node u is depicted by the dashed line, whereas its leaf set is represented
by the solid arrows.

2.2.1 The Pastry DHT

In later parts of this thesis the Pastry DHT [102] will be used in the process of building
a novel DOSN. The reason for choosing Pastry over other DHTs is that there exists an
open-source JAVA Pastry implementation, which features a easy-to-use Application Pro-
gramming Interface (API) and—more importantly—is maintained continuously.9 Pastry
further—as most other DHTs—offers the critical O(logn) performance and mechanisms to
handle node failures.

In Pastry, nodes are arranged in a circular 128-bit node key (identifier) space, denoted as
ring, as shown in Figure 2.6. The identifier is assigned randomly as a new node joins the
system (i.e., peers with adjacent identifiers are not necessarily geographically close), and is
considered a sequence of digits with base B. B is a configuration parameter usually set at
B = 2b with b = 4.

Each peer then maintains (i) a routing table; (ii) a leaf set and (iii) a neighborhood set.

9http://www.freepastry.org/FreePastry/
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The routing table consists of logB n rows with each row of cardinality |B− 1|. An entry
in row m shares a prefix of length m with the local node but differs in the m+ 1th digit.
In other words, each row in the routing table shares a successively longer prefix with the
identifier of the node maintaining the table. This prefix is then used for a longest-prefix
matching routing protocol. For instance, in Figure 2.6, node u’s Pastry identifier starts with
111. It will thus have a routing table entry pointing to prefixes starting with zero (m = 0),
10 (m = 1) and 110 (m = 2).

The leaf set L contains the |L| (|L|= 2b = B, usually) nodes with the numerically closest
node identifiers, in which |L|/2 entries contain nodes with larger identifiers and |L|/2 nodes
contain nodes with smaller identifiers, as shown in Figure 2.6. The neighborhood set M
consists of node identifiers and Internet Protocol (IP) addresses of the |M| closest peers to
the local node (|M| = 2b = B, usually as well). The closeness of a node is determined by
using a scalar proximity metric like the IP geographic routing distance.

2.2.1.1 Routing

Based on the data structures described above, the routing itself is done as follows. When a
node faces a routing request it first checks whether or not the key falls within the range of
its leaf set. If so, the message is directly forwarded to the closest node to the key in the leaf
set, which is the destination of the request. If not, the request is forwarded using the routing
table by applying longest prefix match forwarding at each node on the path. In the case of a
node failure or missing entry in the routing table, the request is forwarded to a node sharing
a prefix of the same length as the local node, which at the same time is numerically closer
to the key than the local node.

2.2.1.2 Node Join

If a node, say u, wants to join the overlay it has to (i) inform the other nodes of its presence
and (ii) build an initial routing table. To do so, it needs to know at least one node, say v, in
the network (e.g., based on some external mechanism providing a list of bootstrap nodes).
It then sends a JOIN message to v, which is however targeted at u’s own identifier. This
request is routed through the network to the node w with the identifier numerically closest
to u’s identifier.

Upon receiving the request, all nodes on the path from u to w send their routing tables
to u, and u uses that information to build its own routing table as follows: u most probably
does not share a prefix with v (the bootstrap node), but may take the first row v0 of v’s
routing table, since it does not need to share any prefix with these entries.
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As the message is routed via longest-prefix matching afterwards, the m-th node on the
path to w shares a prefix of length m with u. Therefore, u uses the m-th row of that node’s
routing table as its own m-th row. u also receives the leaf set of w since w is the numerically
closest identifier and its leaf set is thus suitable for u as well. As u is also probably being
in proximity to v, v’s neighborhood set is used to initialize u’s neighborhood set. Finally, u
sends its routing table to each node in the leaf set, neighborhood set and routing table. The
recipients update their own tables based on this information.

2.2.1.3 Node Leave

A node x is considered to have left the network if its immediate neighbors in the identifier
space can no longer communicate with it. In that case, nodes for which x is a member of the
routing table, leaf set or neighborhood set have to update those. To fix its routing table in
case of a failing entry, a node u contacts a node in the same row as the failed entry. It asks
that node for its entry at the position of the failed entry. To update its leaf set, if u was a
neighbor of the failed node x, u requests the leaf set L′ from the live node v with the largest
index on the side of the leaf set x was on. L′ partly overlaps with u’s leaf set L. Node u then
inserts a suitable node of L′ into L after verifying that it is still alive by contacting it. To keep
the neighborhood set up-to-date each node u further periodically contacts all the entries of
its neighborhood set. If one of these does not respond, u asks other nodes to transmit their
neighborhood sets and determines the closest distance of an entry of these sets as its new
neighbor.

2.3 Cryptography Basics

As a consequence of the prevalence of computers and communication systems, a demand
for mechanisms to securely exchange data in these systems has emerged [109]. The goals
of a secure data exchange are manifold and range from ensuring the authenticity of a sender
to enabling access control for data [109]. Modern cryptography mainly exploits two major
concepts to accomplish these goals: symmetric cryptography and asymmetric cryptography.

2.3.1 Symmetric Cryptography

Symmetric cryptography uses the same key K for the encryption of plain text and for the
decryption of ciphertext [109, 110]. The key is ought to be known only by the communi-
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cating entities after an exchange over a supposedly secure channel. The two main types of
symmetric cryptography are stream ciphers and block ciphers.

In stream ciphers, the digits (i.e., bytes) of a plain text message are encrypted with their
corresponding digit in a pseudorandom cipher digit stream, one digit at a time. In block
ciphers, several bits are encrypted as a single unit (e.g., in the Advanced Encryption Stan-
dard (AES) [111] the block size is 128 bits). Here, the plain text is padded so that its length
is a multiple of the block size.

One popular stream cipher example is the A5 cipher, which is used in, for instance,
cellular networks [112]. A5 is based on Linear Feedback Shift Register (LFSR) to keep
the internal state of the cipher. LFSR are shift registers, which use Exclusive OR (XOR)
operations as feedback to move from one internal state to the next one.

Well known examples for symmetric block cipher cryptography are the Data Encryp-
tion Standard (DES) (previously widely used [109], but now considered insecure), and its
successor AES, a common cryptography standard.

The key advantage of symmetric schemes like A5, DES, AES, or Blowfish [113] is that
XOR and most other implemented operations are basic binary operations, which makes their
implementation in hardware easy. By choosing fast, hardware efficient ciphers, symmetric
encryption thus offers a good user experience (i.e., short latencies) and is suitable for mobile
computing because of a low energy consumption.

However, a major drawback of symmetric cryptography is that the secret key K needs
to be exchanged over a possibly insecure channel before the communication starts—and
secretly kept only between communication partners afterwards. In case of a compromised
key, all encrypted messages can be decrypted.

2.3.2 Asymmetric Cryptography

To mitigate the problem of secure key exchanges, asymmetric cryptography (or public-key
cryptography) builds on two different keys for encryption (KE) and decryption (KD), and
each user owns one key KE and one key KD, respectively [109, 110]. The keys themselves
are designed such that a user Alice, who owns KE and KD can decrypt a message encrypted
with KE by applying KD and KD only. Alice publishes KE (also named public key) and keeps
KD secret (also called secret or private key). The most important principle of asymmetric
cryptography is thus that KD—as the only way to decrypt a message encrypted with KE—
cannot be computationally derived from KE [109]. Hence, to ensure message confidentiality,
any sender can encrypt messages for Alice, but only Alice can decrypt the messages. To en-
sure sender authenticity and message integrity, Alice can further digitally sign the message
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with KD, and the signature can be verified with KE .

For the verification, it is further necessary that Alice’s public key is certified, i.e., that
other users can validate the binding of KE(Alice) to Alice’s identity. Two major approaches
exist to achieve this certification.

(i) A Certification Authority (CA) computes the keys and assigns them to Alice’s iden-
tity, i.e., it issues a digital certificate to Alice that confirms the binding [114]. Users
intending to communicate with Alice can then, with the help of the CA, check the
validity of Alice’s certificate before initiating the communication. Here, the CA is a
trusted third party. Currently, the party holding the most certificates is the Symantec
Group [115].

(ii) Alternatively, asymmetric cryptography can also work without a (centralized) trusted
third party. In Pretty Good Privacy (PGP), the users themselves form a web of trust,
and vouch for each other [116]. For instance, a friend Bob of Alice can digitally sign
Alice’s PGP public key to vouch for its validity. Any other user who trusts Bob’s
signing policies will then also accept Alice’s public key as valid.

A major advantage of public-key cryptography is that it is much easier to provide authen-
tic and secure public keys than it is to share a symmetric key secretly. On the other hand,
asymmetric cryptography usually deals with larger keys and is thus considerably slower
than symmetric cryptography.

The algorithms to manage the generation of keys, encryption and decryption routines,
and signature procedures are usually bundled within a cryptographic system.

Definition 2.15 (Cryptographic System) A cryptographic system is a set of cryptographic
algorithms together with the key management processes that support use of the algorithms
in some application context. [117]

Two major asymmetric cryptographic systems are the Rivest-Shamir-Adleman (RSA)
cryptographic system [118] and the Elliptic Curve Cryptography (ECC) cryptographic sys-
tem [119, 120].

2.3.2.1 RSA Cryptographic System

RSA, named after its inventors Rivest, Shamir, and Adleman in 1978, is the most commonly
used public-key cryptographic system [118]. The security of RSA (i.e., the inability to com-



31 2.3 Cryptography Basics

putationally derive KD by knowing KE) relies on the assumption that factoring the product
of two large prime numbers p and q is hard, whereas the multiplication of p and q is easy.

In RSA, the RSA module N = pq and either an encryption exponent e or a decryption
exponent d are combined to generate KE = (e,N) and KD = (d,N) respectively. Here, e is
co-prime to φ(N), where φ is Euler’s totient function. Also, d is a multiplicative inverse of
e such that ed ≡ 1( mod φ(N)).

To achieve message confidentiality, a sending user Bob can then encrypt a message m to
a ciphertext c by using the KE of the receiver Alice to compute c≡ me ( mod N), such that
Alice can decrypt m with her KD as m≡ cd ( mod N), because ed ≡ 1( mod φ(N)).

Next to message confidentiality, two further main goals are to ensure message integrity
(i.e., that the message has not been tampered with) and to authenticate the sender. RSA uses
digital signatures to achieve both.

Definition 2.16 (Digital Signature) A digital signature is a value computed with a cryp-
tographic algorithm and appended to a data object in such a way that any recipient of the
data can use the signature to verify the data’s origin and integrity. [117]

To create the signature for his message to Alice, Bob will first apply a hash function H to
m to obtain H(m) (for details on hash functions see [121]). He will then apply his private
key to H(m), and attach the resulting value as a signature to the message itself. Since e
is the multiplicative inversive of d, Alice, upon retrieval of the message, can apply Bob’s
public key to the signature.

Afterwards, Alice can compare the hash value of the signature with the hash value of the
message itself. If both are equal, Alice can then verify that the message was not modified
after sending (integrity), and that the author of the message was in possession of Bob’s
private key (authenticity).

The recent increase in computational power does not compromise the security of RSA,
as the usage of longer keys counteracts the factorization of N into p and q in practical time.
Currently, a key length of 2048-bit is recommended [122].
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2.3.2.2 ECC Cryptographic System

Elliptic Curve Cryptography (ECC) cryptographic systems were introduced independently
by Koblitz and Miller in 1985 [119, 120], and are nowadays widely implemented [123].
Their primary benefit over RSA lies within usually shorter keys, as, for instance, a 256-bit
ECC key provides comparable security to a 3072-bit RSA key [124]. The security of ECC
relies on more complex assumptions than RSA. Here, the main principle is that the division
of two points in a cyclic group on an elliptic curve is hard, whereas the addition of the points
is easy.

In the Elliptic Curve Integrated Encryption Scheme (ECIES), an elliptic curve is defined
to be a plane curve over a finite field that consists of the points satisfying y2 = x3 +ax+b,
where a and b are predefined constants. Since the definition of an elliptic curve requires an
agreement between all participants of the communication on all the elements that define the
curve (such as, among others, a and b), these are usually not negotiated before beginning
a conversation. Participants rather agree on one of multiple pre-defined parameter settings
denoted as (p,a,b,G,n,h), as, e.g., given in [125, 126]. Here, p defines the finite field
over which then the curve is defined, G is the generator point of the elliptic curve, n is the
cryptographic order of G, and an h is the cofactor, i.e., the ratio between the order of p and
the order of G.

Then, a user Alice generates her private key KD = d and public key KE = dG (recall that
deriving d from dG is computationally hard), where d is a randomly selected integer with
d ∈ [1,n−1] (n according to the parameter settings). Hence, the public key is the result of
adding G together d times.

To encrypt a message, Alice uses a hybrid scheme of symmetric and asymmetric cryp-
tography. She will first select a random number r ∈ [1,n−1] and calculate R = rG. From
the recipient Bob’s public key, she will then derive a shared secret (a point)

S = P = (Px,Py) = rKBob
E (2.3.1)

From S, Alice will afterwards derive both a symmetric encryption key and a Message
Authentication Code (MAC) key with a Key Derivation Function (KDF)

kE ||kM = KDF(S||S1) (2.3.2)

where S1 is some optional shared information (for details on MACs and KDFs
see [127, 128]). After encrypting the message to ciphertext c = mK

E , she also attaches
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d = MAC(kM;c||S2), where S2 is another optional shared information. She will then send
R||c||d to Bob.

To decrypt the message, Bob will derive S and kE ||kM in the same fashion as Alice with
the help of R. He will then validate d =MAC(kM;c||S2), and, if the validation holds, decrypt
the message with the symmetric key as m = ckE .

The principle of digital signature generation is similar to the one used in RSA. Alice will
first compute the hash value H(m) over the message m. She will then sign this value with
her private key, whereas a recipient Bob will use Alice’s public key to verify the signature.
In detail, Alice will, after calculating H(m), take z, an integer representation of the leftmost
bits of H(m), and select a random number k ∈ [1,n−1]. Afterwards, she will calculate the
curve point (x1,y1) = kG and r = x1 mod n.

She finally calculates

s = k−1 (z+ rd) mod n (2.3.3)

The signature pair (r,s) is then attached to the message itself. Bob first verifies that the
signature can be a correct ECC signature (e.g., r and s have to be in [1,n−1]), and computes
H(m) himself. Afterwards, similarly to RSA, he calculates an inverse w = s−1 mod n
and thereafter u1 = zw mod n and u2 = rw mod n. Based on the results, Bob can now
determine the curve point

(x1,y1) = u1G+u2KEAlice (2.3.4)

The signature is then valid if and only if r ≡ x1 ( mod n).

2.3.3 Attribute Based Encryption

In traditional, asymmetric cryptography, a message is encrypted for a specific receiver using
the receiver’s public key, and the public key is usually verified by a CA or other users (as in
PGP). The public key usually does not contain any further information about its owner.

On the contrary, Identity Based Encryption (IBE), an ECC based encryption scheme,
changed the perspective of public key encryption in that it allowed the public key of a user
to be a publicly known, arbitrary string identifying that user, such as her email address [129,
130]. This allows users to encrypt messages to a publicly known identity without access to
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the recipient’s public key certificate, and therefore without requiring the assistance of a CA
or other users for looking up certificates.

Subsequently, Fuzzy-IBE introduced some fault-tolerance to IBE [131]. Fault-tolerance
is useful for, e.g., biometric cryptography applications, where two samples taken at different
times usually differ to a small extent. Fuzzy-IBE lays the foundations for Attribute Based
Encryption (ABE), as it is the first cryptographic approach to view the identity of a user as
a set of descriptive attributes. Here, a user is able to access a message if and only if her
identity is in a certain range of the public key used to encrypt the message.

ABE itself is a relatively recent approach towards public-key cryptography [36, 132].
It generalizes the concept of (Fuzzy-)IBE and defines the identity of a user as a set of at-
tributes, and messages can be encrypted with respect to those attributes (Key Based Attribute
Based Encryption (KB-ABE) [133]) or policies defined over a set of attributes (Ciphertext
Policy Attribute Based Encryption (CP-ABE) [132]). In this thesis, wherever ABE is men-
tioned, it refers to CP-ABE. The main advantage of CP-ABE over KB-ABE is that, in the
latter, the encrypter cannot control who accesses the encrypted data by other means than
assigning attributes to the data. In CP-ABE however, the encrypter is additionally able to
grant access to the data by assigning attributes to identities, which then—on a high level—
have to match with those assigned to the data to enable the decryption of the data [132].

In detail, access to an encrypted message is granted by an Access Structure (AS) over a
defined universe of attributes within the system.

Definition 2.17 (Access Structure) Let P1,P2, ...,Pn be a set of attributes. A collection A⊆
2P1,P2,...,Pn is monotone if ∀B,C: if B ∈ A and B ⊆ C then C ∈ A. An access structure is a
(monotone) collection A of non-empty subsets of P1,P2, ...,Pn, i.e., A ⊆ 2P1,P2,...,Pn\ /0. The
sets in A are called the authorized sets and the sets not in A are called the unauthorized
sets. [132]

Here, a user will only be able to decrypt the message, if and only if her ASK is associated
with the attributes to satisfy the AS of the message. ASs can be specified over (groups of)
attributes using (k,n) threshold gates, where k out of n attributes have to be present in the
ASK of the requester to decrypt the message.

The logical operations AND (∧) and OR (∨) can be derived from these gates as (n,n) and
(1,n) threshold gates respectively [133]. Theoretically, ABE is also able to express non-
monotonic ASs by including the logical NOT (¬), which however would be computationally
expensive [132].
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training-partner

2of3

co-workerfriend

1of2
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Figure 2.7: The ABE access tree of the AS ’friend co-worker training-partner 2of3 family
1of2’. Two (k,n) threshold gates (2of3, 1of2) are applied to a total of four
attributes.

ABE will process the attributes defined in the AS based on an access tree. The access
tree is usually traversed in post order, i.e., first the left part of the tree, then the right part of
the tree and finally the root is visited. Figure 2.7 shows the access tree for the example AS
’friend co-worker training-partner 2of3 family 1of2’.

Nonetheless, even without a NOT operation, ABE is highly expressive. The expressive-
ness however comes at the price of high complexity, since all operations in ABE are asym-
metric.

2.3.3.1 Cryptographic Operations

Based on these high-level concepts and on the concepts introduced in the discussion of the
ECC cryptographic system (cf. Section 2.3.2.2), Sahai et al. define the following crypto-
graphic operations in [132]:

Let S be a set of elements in Z+ under the Lagrange coefficient ∆ (for details on Lagrange
polynomials and their coefficients, see [134]).

Setup. Given a bilinear group G0 of order n with a generator g (for details regarding the
bilinearity, see [135]), the setup algorithm chooses two random exponents α,β ∈ Z. Then,
the ABE Public Key (APK) of a user is

APK =G0,g,h = gβ , f = g1/β , e(g,g)α (2.3.5)
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where e is the bilinear map G0×G0 → G1. At the same time, the ABE Master Secret
Key (AMSK) is computed as (β , gα).

Encryption. Let τ be an access tree. Then, the encryption algorithm encrypts a message
M under the access structure of τ . For each node of τ , it selects a polynomial qx that is of
a degree that is one less than the threshold value k of that node, and that is defined by k−1
points randomly selected from Z+.

That is, starting at the root node R, qR(0) = s = rand(Z+), and for any other node x,
qx(0) = qparent(x)(index(x)). The remaining points to define qR and qx are chosen randomly.
Then, if Y is the set of leaf nodes in τ , the Ciphertext (CT) is computed as

CT = (τ,C̃ = Me(g,g)αs,C = hs,

∀v ∈ Y : Cy = gqy(0),C′y = H(att(y))qy(0)).
(2.3.6)

Here, H is a collision resistant hash function.

Key Generation. The input for the key generation algorithm is a set of attributes S. The
algorithm again chooses a random r ∈ Z+, and for each attribute j ∈ S it chooses another
random r j ∈ Z+. Then, the ASK is generated as

ASK = (D = g(α+r)/β ,

∀ j ∈ S : D j = gr ·H( j)r j , D′j = gr j).
(2.3.7)

Decryption. Finally, the decryption algorithm takes the CT, an ASK associated with a
set S of attributes and a node x from the access tree τ as input. If x is a leaf node, then
i = att(x) and if i ∈ S, then the decryption algorithm computes

DecryptNode(CT, SK, x) =
e(Di,Cx)

e(D′i,C′x)

=
e(gr ·H(i)ri , hqx(0))

e(gri , H(i)qx(0))

= e(g,g)rqx(0).

(2.3.8)

Otherwise, if i /∈ S, then the algorithm returns DecryptNode(CT,SK,x) = ⊥.
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In other words, if the ASK contains the attribute describing the tree node (i.e., it contains
i), the node is satisfied, whereas if the ASK does not contain the attribute describing the
node, the node is not satisfied.

Then, for a non-leaf node x the decryption algorithm computes DecryptNode(CT,SK,z),
for all child nodes z of x. The node x is then satisfied if there exists a set of child nodes
Sx of x of arbitrary size for which ∀z ∈ Sx : DecryptNode(CT,SK,z) 6=⊥. In other words,
depending on the definition of the AS A, a number of child nodes have to be satisfied for x
to be satisfied.

To decrypt the ciphertext, the decryption algorithm then executes DecryptNode(CT,SK,R)
for the root node R of τ , which recursively calls DecryptNode(CT,SK,z) on all child nodes
z of R, until it reaches a leaf node. Then, if the tree is satisfied by the ASK associated with
S, it sets

A = DecryptNode(CT, SK, r) = e(g,g)rqR(0) = e(g,g)rs (2.3.9)

and decrypts the ciphertext with

C̃/(e(C,D)/A) = C̃/
(

e
(

hs, g(α+r)/β

)
/e(g,g)rs

)
= M. (2.3.10)





Chapter3
Why Do We Need Decentralized Online
Social Networking?

All the seemingly trivial details we reveal about ourselves online every day can be
cross-referenced and correlated often to startling effect.

— Tom Chatfield on BBC, ”Do we reveal too much about ourselves online?“ [136]

All major OSNs are currently orchestrated by a single provider. This provider usually
offers a sophisticated centralized infrastructure, which is used by an ever-growing number of
OSN participants to exchange data. However, concomitant with these networks’ tremendous
growth are increasing concerns from users about their privacy and the protection of their
data. As both the infrastructure and user data management are centralized, the provider has
the unprecedented privilege to access every user’s private data.

In this chapter the case for a different approach towards online social networking is made.
Instead of relying on a central provider, decentralized OSNs can enable social networking
services, in which the access to and management of user data is controlled by the users
themselves. Additionally, such decentralization approaches can also help to increase the
usability of OSN applications.
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3.1 Issues with Centralized OSNs

The remarkable growth of OSNs has inherently led to tremendous amounts of user infor-
mation being part of these networks. At the same time, this information is maintained by a
single instance—the provider of the OSNs (e.g., Facebook, Google, or Yahoo). This situa-
tion has raised severe privacy and security concerns [21, 22].

First and foremost, the control over huge amounts of user data without restriction of any
kind is worrisome itself, because the providers can obtain a deep insight into their users’
personal interests, opinions, social relationships, and economical or political preferences.
For instance, recent lawsuits against Facebook and other OSN providers (e.g., Google and
Yahoo) complain about the practice of tapping into the users’ private messages for the pur-
pose of content analysis [137, 138]. Moreover, both Facebook and Google have introduced
a clear-name policy, which makes the use of real names as user names mandatory; not
following the directive will result in an exclusion of the user from the OSN [30].

The providers have good reasons for their actions: For instance, Facebook is currently
creating 85% of its annual income from personalized advertisements [35], which can be
customized better—and therefore sold with greater revenue—if precise user profiles are
available. By extracting interests or product preferences from user data such as messages,
the profile precision can be increased; the clear-name policy further eases the linking of
existing OSN profiles with all sorts of information available elsewhere [139].10

These problems even affect persons who do not have an account in the OSN, let alone
uploaded any data to its servers [140]. Providers have started to collect information about
non-members from data uploaded by the members of the OSN, a practice which has been
coined shadow profiling [141]. For instance, Facebook has crawled its users’ email or phone
address books for such information [141]. As a consequence, even though a particular
person might not own any OSN account, significant fractions (e.g., a phone number or
address) of her data can still be in the hands of a provider.

The profiling of users does not even stop at the boundaries of the OSN providers. Be-
tween 2007 and 2009, Facebook and a group of partners (among them, e.g., Amazon, eBay
and Sony [142]) implemented the Beacon application, which forwarded sensitive shopping
information of users along the partners without the users’ consent. Beacon was only stopped
in the course of a class-action lawsuit, which cost Facebook 9.5 million US dollars to set-
tle [25]. Additionally, a large group of major OSN providers—including Facebook, Google
and Yahoo—granted full access to user data to government agencies within the PRISM pro-
gram without any knowledge of their users [28]. Extended cooperation or collaboration
of providers with government institutions could thus ultimately result in the “transparent

10For further issues with the policy see, for instance, http://mynameisme.org

http://mynameisme.org


Why Do We Need Decentralized Online Social Networking? 42

user”, where all available information about each single user is available in a bundle at a
single instance, without the user’s knowledge and thus also without her consent.

From a different perspective, data misuse does not only happen at the will of the provider.
Storing all user data at a single entity also increases the risk of a major external privacy
breach. Attackers seeking to obtain user data only need to compromise that entity to gain
access to all data. The reality of this danger was demonstrated in June 2012, when eight
million users of LinkedIn11 saw their passwords leaked from the company’s central repos-
itory [33]. Earlier, attackers were able to obtain access to millions of accounts on the now
shut down German OSN SchülerVZ in multiple attacks in 2009 and 2010 [143]. This par-
ticular leak drew considerable public interest, as most members of SchülerVZ are chil-
dren [144].

Further, users of OSNs, even those familiar with current networks’ limited privacy set-
tings, tend to underestimate their audience. As a result, private user data is often visible to
a larger audience than intended by the data owner herself [145, 146].

Finally, the providers do not only endanger user privacy. The terms of use are often
difficult to process and at the same time invalidate property rights [29]. For instance, for
every photo uploaded to Facebook, the user grants a simple usage right for that picture to
the company, and the photo will remain on Facebook indefinitely (see Section 2.1 of [147]).
Additionally, the central provider might at some point introduce a usage fee to a previously
free-of-charge service. Users would then face the ostensible choice to either lose their social
network or to pay the fee to continue using the service.

In summary, there exists an obvious and urgent need for increased privacy in OSNs.
However, if OSN providers would indeed aim at protecting user data, this would require
them to forfeit access to those data. In addition to not longer being able to cooperate with
government institutions, such a concession would be tantamount to giving up a number of
economical advantages, including (i) the opportunity to analyze the data for personalized
advertisement; (ii) the possibility to link external publicly available information with the
OSN profiles of their users; (iii) the option to exchange data with other providers to com-
plete their own view on the data; and (iv) usage rights on the content. As a consequence,
it is unlikely for OSN providers to allow users to apply comprehensive security and pri-
vacy means to their data. Current OSN users can thus not expect any provider efforts to
drastically improve the current privacy situation [1].

11http://www.linkedin.com
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Figure 3.1: An exemplary centralized OSN. User data is stored across multiple inter-
connected datacenters, which are controlled by a central entity. Encryption for
user data is non-existent.

3.2 The Advantages of Decentralized Online Social Networks

The organization of a centralized OSNs usually comprises several inter-connected datacen-
ters to host unencrypted user data, as shown in Figure 3.1. Google, for instance, operates
thirteen different datacenters across the globe [148]. User data is replicated among these
datacenters either with full replication or geographical replication schemes [149, 150]. In
full replication, each user’s data is available at every datacenter, while geographical repli-
cation schemes try to save storage space by replicating a user’s data only to datacenters in
geographic proximity of the user. Although the inter- and intra-datacenter communication
might thus be complex itself, connecting a user to the data is relatively easy in a traditional
client-server fashion. For instance, in Figure 3.1, Eve can update her data directly at the
corresponding datacenter(s), and Alice can request Bob’s data from there as well. In fact,
the central provider deals with all technical challenges of social networking, such as the
massive scale of OSNs, averting malicious attacks, and so on. The downside however is, as
described above, that the provider also has full control over the network and any data stored
in the datacenters.

A Decentralized Online Social Network (DOSN) on the other hand is an OSN that is not
controlled by a provider, but is rather maintained by a multitude of distributed entities. As a
consequence, a DOSN usually does not benefit from a sophisticated centralized infrastruc-
ture, but has to construct a substrate for that infrastructure itself. The construction approach
is a matter of system design, and may greatly differ from one DOSN to another.
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Figure 3.2: An exemplary decentralized OSN. The central provider is removed and en-
crypted user data is stored among the users themselves.

As an example, Figure 3.2 shows a decentralized OSN, in which the users themselves
absorb the absence of the central provider by storing encrypted data across the participants’
devices, and these devices control access to the data. Another option to realize the substrate
is to make use of permanently available resources. For instance, a DOSN can delegate data
storage to paid servers in cloud environments, or to personal, dedicated servers.

Connecting a user to data is, however, more difficult. For instance, as there exists no
central user data directory, users first need to locate data of interest in the network before
they can request it. The location, at which the data is located, might further be a node that
was previously unknown to the requesting user. As an example, in Figure 3.2, Alice requests
Bob’s data from a user she does not necessarily know. At the same time, Eve can update
her data at her own machine, but has to somehow communicate the information about the
update to other users.

Although removing the central provider is technically challenging, by building a DOSN
on either of these construction approaches, users can regain control over their data. In
both forms of decentralization, they can determine the location of their data themselves.
Additionally, and more importantly, users are able to encrypt their data such that it is only
accessible by eligible users. For instance, in Figure 3.2, Bob’s data is encrypted, and Alice
can only access it, if she owns the proper decryption credentials. In particular, the storage
provider itself is not able to analyze any data (unless access is granted by the user).

Further, a decentralized approach is also a natural fit for online social networking for
several reasons.
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First, the communications paths in OSNs do not require the presence of a provider. Al-
though the provider of current centralized OSNs offers the infrastructure to distribute and
access the content, it does not significantly contribute to the content itself. In fact, online
social networking is rather peer-to-peer in nature, as the users of an OSN generate content
for other users (e.g., their friends) and not for any third party like a provider. In a DOSN,
both the infrastructure and access to user data would be maintained by those entities that
produce and consume the content anyway—the users (or their surrogates) themselves.

Second, a decentralized system without a single, central data repository also limits the
risk of large-scale privacy breaches [22]. Since such a system would rely on a multitude
of distributed storage repositories for user data, a breach at a single one of them would not
expose all user data to the attacker.

Third and finally, DOSNs can—without decreasing the users’ privacy—remove one of
the big barriers of todays OSNs, the non-existing interoperability between several of these
networks [151]. Currently, a user needs one account for each OSN she is a member of (e.g.,
Facebook, Twitter, Flickr, etc.), and additionally inevitably shares her data redundantly with
many providers at the same time. Worse, if there was a single-sign-on for all OSNs the user
is registered with, the provider of this service could connect all data of users from several
OSNs. A generically designed DOSN however can allow users to accurately control a
single set of encrypted data, and to reduce the hassle of handling multiple accounts, while
still granting access to a multitude of OSN applications on a fine-grained basis.





Chapter4
Related Work

The previous chapter discussed that, even though centralized OSNs are extremely success-
ful and home to billions of users, Decentralized Online Social Networks (DOSNs) offer a
promising alternative for both better user data privacy and improved usability. As a conse-
quence, researchers have started to propose approaches to decentralize OSNs with increas-
ing frequency over the past years. These approaches greatly differ in the way the central
provider is replaced by a distributed architecture and the features they offer to their users.

This chapter conducts a comprehensive review of state-of-the-art DOSNs. The review is
started with an analysis of whether or not classical P2P or distributed storage solutions can
be reused to create the storage substrate in DOSNs. Afterwards, existing DOSNs are sys-
tematically grouped into three broad categories of working principles—(i) systems, which
rely on permanently available resources; (ii) approaches, which rely on the cooperation of
users; and (iii) hybrid systems, which contain elements from both other categories. Within
each of these categories, the existing approaches are introduced and discussed in detail.

To conclude the review, a comparative analysis of the strengths and weaknesses of each
DOSN is provided. The analysis emphasizes the key features that each DOSN provides
as well as the properties that may be missing to achieve competitiveness with centralized
OSNs.
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4.1 Classical Distributed Storage Solutions

In the course of providing an efficient storage substrate, classical P2P or distributed data
storage approaches might offer a solution (for a detailed survey see, for instance [152]).
However, these approaches are generally designed for supporting traditional decentralized
applications such as file sharing, which are often characterized by long durations of user
online time, typically spanning from multiple hours up to days. For instance, BitTorrent
users have been shown to exhibit long segments of online time during file seeding, and
desktop machines at workplaces have been shown to be online almost permanently [153–
155]. At the same time, orthogonal to such applications, users’ online patterns in social
networking sites show high activity peaks with large gaps of offline time [82, 156]. The
main contributing factor to these patterns is that OSN content is often uploaded and accessed
from mobile devices, which may be disconnected most of the time.

Moreover, the goals of replication differ between classical P2P storage and storage in
OSNs. Whereas files in traditional P2P systems often have a limited required lifetime due to
their exponential decrease in popularity [157], data in OSNs should be available even after
the first interest in the data abates. For instance, users will want to keep their conversations
with others for later review or may want to look at photos that might have been taken several
years ago, even though the vast majority of the content might not be accessed frequently
after its initial exchange.

Another OSN characteristic is the inherent relation between the participants, which can
imply storage incentives among the users of the OSN [158]. Intuitively, a user will prefer
to store the data of a friend to that of a stranger, and in case of storage exhaustion, a user
would prefer to help friends to achieve a better performance, and thus would rather drop
data of the stranger.

Furthermore, in contrast to traditional P2P systems, the tit-for-tat strategy is not as desir-
able for OSNs. In a tit-for-tat strategy, a user’s performance depends on the contributions
she makes towards the network. For instance, in BitTorrent, users will be able to download
files faster if they contribute more bandwidth for uploading files themselves. Applied to the
OSN scenario, in terms of data availability, users would achieve high availability for their
data if they are often online and host data themselves.

However, users rather need the OSN as a whole to be robust, with each user’s data acces-
sible at any given time. Otherwise, even highly contributing users may find data of interest
unavailable. For instance, consider a highly contributing user Alice who wants to access
the newest photo album of her friend Bob. If Bob, for whatever reasons, did not contribute
enough to the network, Alice—in spite of her earlier performance—might not be able to see
Bob’s photos.
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Table 4.1: A chronologically ordered categorization of DOSN approaches.
Node CooperationPermanent Resources Hybrid

Approach Year Ref. Approach Year Ref. Approach Year Ref.

Persona 2009 [36] Friendstore 2008 [40] Confidant 2011 [47]

Diaspora 2010 [37] PeerSoN 2009 [41] SuperNova 2012 [48]

Vis-à-Vis 2011 [38] Safebook 2009 [43]

Contrail 2011 [39] Cachet 2012 [44]

MyZone 2013 [45]

Proofbook 2014 [46]

4.2 Specific DOSN Solutions

With these reasons in mind, researchers have suggested a wide range of solutions that are
specifically tailored to decentralize OSNs [36–48]. These solutions can be divided into
three categories that describe both their approach to replace the centralized infrastructure
and thereby inherently also the assumptions under which this replacement occurs.

The first category are systems that exploit permanently available resources, which are
built upon the assumption that every user has access to a device that can be online con-
stantly. To relax this assumption, approaches that work without such resources but rather
expect a cooperation of users constitute the second category. The third class of DOSN solu-
tions then consists of hybrid systems, which contain elements of both previous categories.
Such systems typically require that there are both permanently available resources and the
cooperation of users.

Table 4.1 shows a chronologically ordered classification of existing DOSNs into these
categories. It is striking that hybrid systems are rather existing in a niche, while most
DOSNs do not assume any permanent resources, but build on the cooperation of users in-
stead. Chronologically, the trend is that after an initial burst of node cooperation schemes
(2008-2009), with the advent of cloud computing, researchers were more attracted towards
hybrid and resourceful solutions (2010-2012). Thereafter however, cooperation schemes
have—at least with regards to their numbers—become more popular again. The reasons for
this latest development are twofold. First, the reputation of resourceful storage providers
with regards to privacy has suffered recently, which has led researchers to avoid these
providers. Second, there exist technical reasons to opt for node cooperation schemes. Both
reasons will be discussed in detail in the following sections.



51 4.2 Specific DOSN Solutions

Bob

Eve

Peter

John

Bob Alice

Alice

User Social Network

Online Social Network Architecture

Eve

request

(data_bob)

update

(data_eve)

Peter

John

Figure 4.1: A decentralized OSN that exploits permanently available storage. The central
provider is removed and each user provides a permanently available server to
store her user data, as in, e.g., Persona. When Alice wants to retrieve Bob’s
data, she contacts the server where Bob has stored his data. When Eve wants to
update her own data, she does so by manipulating it on her server.

4.2.1 Solutions Built on Permanently Available Resources

When assuming permanently available resources, the usual approach is to distribute data
control and storage to a limited number of permanently online storage locations, which are
shared by multiple users [36–39], as shown in Figure 4.1. The storage and control facilities
might either be altruistically provided, or supplied based on economic incentives such as
user payments.

In Persona [36], the approach is to ask each user to provide a permanently available stor-
age space (e.g., a personal web server) for their own encrypted profile. This approach does
provide high data availability and low overhead, since the data is permanently available at
the server and no replication is required. However, it also requires all users to be tech-
nically able to provide and configure their own permanently available data storage, which
is impractical. The issue might be mitigated by incentivizing storage and configuration
providers, which however results in monetary costs for the user.

Diaspora [37] extends this solution by not only allowing each user to set up her own
server, but also by relying on a limited number of altruistically provided servers. As an
alternative to setting her own server, a user can also select one of the altruistically provided
servers to store her data on. Diaspora itself then offers a server-overarching search function
to find other users. To run her own server, a user would have to be able to first setup the
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server physically and then to install Ruby, SQLite3, OpenSSL, and several other libraries
required to run a Diaspora server [159]. Since this is usually too much effort required from
a typical OSN user, most users have to rely on the altruistically provided servers.

Vis-à-Vis [38] gets rid of altruistically provided servers, but rather lets users store their
private data on cloud services like the Amazon EC2 cloud [160] or Microsoft Azure [161].
Each user operates an independent server—a Virtual Machine (VM) running in a commer-
cial cloud that hosts the user’s data—and all independent servers in turn form the network.
Content is then shared within groups of user servers, for each of which membership is ad-
ministered by the user who created that group. As the operation of a VM is not free of
charge, Vis-à-Vis—like Persona—requires the operation of a paid resource by each user.

Contrail [39] builds on a cloud storage substrate as well, and additionally relies on the
cloud to act as a relay for messages between (mobile) users. Here, users do not interact
directly between each other, but send and receive messages from so called cloud relays in
a publish-subscribe fashion. A result of this extended cloud usage is a higher cost for the
user.

In summary, while requiring each user to set up their own server is impractical, altruistic
provisioning, usually from a limited set of volunteers, is unlikely to meet the demand of
a large-scale social network with as many as several hundred million users. At the same
time, motivating server providers with user payments will most likely prevent a large-scale
transition from current centralized OSNs, which do not impose fees on their users.

The dependency on both altruistic and paid servers is also a concern, as data loss can
occur when such servers become disengaged abruptly. Additionally, cloud providers are
not necessarily a better alternative than current OSN providers with regards to user privacy.
Dropbox, for instance, was also involved in the PRISM program and has been criticized for
other privacy breaches [162]. Further, in Diaspora, since users are not able to encrypt their
data, full privacy of data is also not achieved; the danger of misusing user data is rather
shifted from one central provider to several quasi-central providers (e.g., server administra-
tors in Diaspora).

Common among all the approaches are further drawbacks, especially with regards to
malicious users. If a user stores her data at a dedicated server, this server might suffer
from Distributed Denial of Service (DDoS) attacks at any time. None of the state-of-the-art
systems provide means to react to such an attack. One exception is Vis-à-Vis, in which a
user could boot additional VMs to manage the increased load, but the procedure itself is
undefined and would also result in higher monetary cost. At the same time, these solutions
are not adaptive in the sense that a user, who wants to contribute more than her own machine,
is not able to do so easily.
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Figure 4.2: A decentralized OSN that exploits user cooperation. The central provider is
removed and users provide each other temporary storage to host their data, as
in, e.g., PeerSoN. In this example, Alice requests Bob’s profile from another,
possibly unknown user, as Bob himself is not online. Eve updates her data at
her own machine.

4.2.2 Solutions Built on the Cooperation of Users

The second category of approaches lets users cooperate and provide temporarily available
storage to each other [40–46], as shown in Figure 4.2. With the mutual cooperation of nodes
and flexible data storage locations, users can be independent of dedicated servers and their
drawbacks. Moreover, as the OSN functions with resources that are exclusively contributed
by users, it can operate without additional costs. Due to the lack of dedicated servers, the
major challenge of this approach, however, is to provide a storage substrate with high data
availability to the users, while limiting the overhead induced by that substrate.

The earliest approach into social cooperation was Friendstore [40], an online backup
system for user data in which users store data at their friends’ machines, which achieved
high data availability in a real-world deployment. However, since Friendstore is a storage
substrate only, it lacks any OSN functionality. Further, recent studies suggest that the online
time of OSN users is much less than assumed in Friendstore [82, 156]. Ultimately, this
would lead to a reduction of data availability. Finally, users can only store their data at
friends’ devices. Thus, as many OSN users only have few friends (see Chapter 2.1.1), their
data will suffer from low availability due to a lack of suitable storage locations.

PeerSoN proposes an optimized node selection algorithm in which nodes with mutual
agreements store data for each other [41, 42]. Here, the mutual agreements are formed
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between nodes with similar online times in a tit-for-tat manner. That is, nodes with high
online times will match with other high performance nodes, and low performance nodes
will team up with other nodes with little online time. The main issue of this approach is
its inability to construct a robust OSN. Users with an online time of less than eight hours a
day achieve less than 90% data availability. Given the power-law distribution of online time
in OSNs [82, 156], the majority of users will thus be unable to achieve high levels of data
availability. The outcome is a frail OSN where even highly contributing users may not be
able to find data they want.

Cachet [44] replicates the data of users within a DHT. While the data replication feature
of the DHT ensures high data availability, it also increases the communication overhead
between nodes. As OSNs usually experience high churn rates [82], data often has to be
transferred from departing nodes to other DHT members. This is particularly the case for
mobile nodes. Also, Cachet does not minimize the number of replicas, which can increase
the overhead to keep all replicas of a user’s data up-to-date.

Similar to Friendstore, but designed as comprehensive OSNs, Safebook [43], My-
Zone [45] and ProofBook [46] mirror each user’s data at a subset of their direct friends.
Unfortunately, as in Friendstore, in those systems a user depends on her social contacts for
data storage, as she needs enough suitable friends that qualify as a mirror (in MyZone a
mirror is even more trusted than a friend). This is difficult for many users in OSNs who
maintain few social relations [75]. As a consequence, such systems typically achieve low
data availability rates (e.g., 90% in Safebook and MyZone). Additionally, in Safebook the
data is only accessible through a path of so called shells. The mirrors form the innermost
shell, friends of mirrors form the second shell, and so on. Retrieving a node’s data requires
traversing the shells along the path of nodes that befriend each other. Hence, all nodes
on the same path towards the innermost shell need to be online simultaneously in order to
provide access to the data, which is unlikely considering the typical online time patterns of
OSN nodes [74].

Finally, some additional deficits exist across all approaches, with some exceptions to that
rule. First, none of the above schemes explicitly consider mobile (i.e., smartphone) devices,
which have become one major way of using OSNs. In cooperation schemes some tasks
(e.g., maintenance of a DHT) can be difficult for mobile devices with limited bandwidth
capacity and energy resources. Second, both defense algorithms against any kind of attack
and adaption mechanisms for extended user contributions are missing. One slight exception
is MyZone, which considers some specific attacks in its design, but does not efficiently
prevent a DDoS attack (see Chapter 6 for details). Third, with the sole exception of the
optimized approach of PeerSoN, all other solutions are not making an effort to limit their
storage and communication overhead.
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4.2.3 Hybrid Systems

Some DOSN solutions try to combine elements from both above categories. Confidant [47]
lets users cooperate to provide each other with storage space for their data, while the name
resolution service for the data is built by using cloud services. Thus, Confidant requires
a lower level of cloud interaction than Vis-à-Vis, as the (paid) cloud service only runs the
name resolution service for data that is otherwise stored on user machines. Still, a monetary
effort is required by the user. At the same time, data availability from storing the data on
user machines tends to be low for weakly connected users, as Confidant also requires these
machines to be trusted (i.e., friends).

SuperNova [48] relaxes the dependency on dedicated servers, but builds on the existence
of so called super peers, i.e., nodes with increased resources. These super peers act as a
replacement for the dedicated servers, and thus have to implement a variety of functionality
to be used by the remaining users, including maintenance of the directory of the network
and acting as a storage node for others. At the same time, the regular nodes in the network
are supposed to cooperate by acting as storekeepers for each other, i.e., to mirror each others
data. However, SuperNova does not provide any information on how to choose storekeepers,
and suffers from low data availability similar to Safebook or MyZone. Additionally, the
super peers are supposed to be economically motivated as well. Finally, SuperNova does
not provide any encryption means, so that super peers and storekeepers can always inspect
the data other users store at their facilities.

4.3 Summary

A summary of state-of-the-art DOSNs is given in Table 4.2. Here, each approach is listed
with regards to its strengths and weaknesses as discussed above with the goal of providing a
clear overview of the profileration of DOSN solutions. The main finding is that each inves-
tigated system has deficiencies in multiple properties, which would be important to fulfill
in order to enable the adaptation of the DOSN by a critical mass of users from centralized
OSNs. As a consequence, a competitive DOSN is currently lacking.

On the one hand, systems, which rely on permanently available resources can enable high
availability for encrypted data with low overhead. However, their main unsolved challenge
is to provide these features in a technically and economically feasible fashion, without de-
pending on some sort of (paid-for) centralized entity as, for instance, cloud services or web
servers.

On the other hand, systems, which exploit cooperation among users are able to mitigate
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Table 4.2: A summary of the state-of-the-art DOSNs.
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these challenges, but have limited success in providing high and robust data availability
without introducing a lot of overhead, and do not consider mobile devices.

Moreover, hybrid systems, while trying to extract the best from both worlds, in fact suffer
from their combined drawbacks as well. For instance, in Confidant, the usage of cloud
services as lookup service still introduces a monetary cost, while the data storage at user
nodes is still problematic with regards to availability.

Finally, arching over all existing solutions resiliency and adaptivity is lacking. The reason
for shortcomings in these features is mainly that providing a storage substrate for a DOSN is
already challenging, and researchers have focused on providing this substrate for a normal
operation until now. Thus, both security (besides the privacy of user data) and adaptivity
have—although important—not been considered as issues yet.
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Challenges for Decentralized OSNs

Linking the observations of Chapter 3 with the results of the study of the state-of-the-art in
Chapter 4 shows that while there is a substantial need for decentralized OSNs, a compre-
hensive solution is currently lacking.

This chapter lays the foundation for the design of such a solution as it clarifies the chal-
lenges which a DOSN must address to emerge as a comprehensive alternative to current
centralized OSNs. The discussion of these challenges benefits from the analysis and dis-
cussions in both Chapter 3 and Chapter 4 by considering the opportunities of decentralized
online social networking and by learning from the drawbacks of existing works.
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5.1 Robust Data Availability without User Payments

A primary challenge for the new DOSN is to achieve a level of data availability that is
very close to that of centralized OSNs while decentralizing the control over the data and
its storage. In particular, when removing the central provider, its sophisticated communica-
tion infrastructure is also no longer available. As discussed in Chapter 4, there are several
options to build the substrate for that infrastructure.

The first option is to rely on permanently available resources. However, as previously
argued, taking such an approach would (i) result in a dependency on the resource provider
(e.g., a cloud provider as Amazon); (ii) require to obtain enough trustworthy storage loca-
tions; and (iii) incur costs on the users. As a consequence, a large-scale dissemination of
the DOSN would be unlikely, as it requires the acquisition of a critical mass of users. The
same reasoning can be applied to hybrid systems, where a dependency on super nodes or
cloud providers still exists.

As a consequence, a DOSN that exploits the cooperation of users emerges as the better
choice. However, the design of such an approach is more difficult:

In leveraging resources of participating nodes, the new approach must address the sig-
nificantly differing characteristics of OSN users. First, users run diverse hardware config-
urations. While desktop devices are still a major way to use OSNs, social networking on
mobile devices has become much more popular in recent years. For instance, Facebook was
accessed by almost equal amounts of mobile and desktop users in June 2014 [7]. Second,
the online time patterns of OSN nodes can differ substantially from each other. OSNs usu-
ally experience a power-law distribution of online times in OSNs [74, 82, 156]. As a result,
the majority of users are seldomly online. Further, once users are online, they remain online
for a short time only, i.e., their sessions are usually short and bursty [74, 82, 156]. Hence,
a major challenge of a DOSN building solemnly on the cooperation of users is that it will
also have to deal with churn among possible storage locations.

Moreover, the DOSN must recognize that these storage locations are usually not servers
and only offer limited storage capacities. Thus, even though storage is a relatively cheap
resource, the DOSN must use the capacity each node supplies efficiently. Further, as a node
exhausts its capacity, it must be able to decide which data to keep and which to drop.

Finally, while facing these challenges, it must scale to the dimensions of OSNs and be
easily deployable in large-scale scenarios. The latter requires a quick convergence to a
stable system state; even when many nodes join the system at the same time and each node
has little information to begin with, SOUP must provide effective means to quickly reach
high data availability to each joining node.
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5.2 Low Overhead

Achieving high data availability in an unfavorable scenario as described above is difficult,
especially as the DOSN has to limit the overhead which is introduced by maintaining the
DOSN in the absence of a central controller.

The overhead introduced is mainly two-fold. First, there is a possible storage overhead
caused by the absence of dedicated servers. Because most non-server devices are not con-
stantly powered on and thus not always connected to the DOSN, user data has to be repli-
cated across multiple storage locations to enable high data availability. Second, each added
replica of user data also requires maintenance, which introduces further communication
overhead between users. As an example, a user that uploads a new photo album to the
DOSN will have to distribute this album to all of her storage locations.

Another major challenge is thus to keep the number of storage locations low to ensure
that there is no excess in both storage and communication overhead.

5.3 Adaptivity

Although the system must be able to achieve high and robust data availability with low over-
head by using user machines only, it should also be open to the opportunities of altruistically
provided resources and exploit them if they become available.

The most preferred resource selfless users may provide is probably highly available stor-
age with high capacity. For instance, some users could decide to provide storage on servers
they are operating anyway. At the same time, smaller contributions to the resource pool
(e.g., a desktop machine intentionally left online for a relatively long time by its owner)
should also be exploited.

5.4 Resiliency

While the new approach should exploit altruistically provided resources, it must be resilient
when facing more unfavorable situations as well. That is, its performance must not signifi-
cantly suffer even if resources in the network become unavailable.

For instance, a DDoS attack can disable a large number of machines, or a targeted DoS
attack can be launched at the storage locations of a particular user to make her data unavail-
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able. Both types of attacks have been investigated thoroughly by the research community,
but—as attackers evolve—still constitute major problems today [163]. Similarly, network
failures can also reduce the resources available for the DOSN and need to be handled. As
a consequence, the new approach must be resilient in the sense that it has to be able to
dynamically adjust to these scenarios.

However, not only external influences such as DoS attacks or network outages pose a
problem for OSNs. In particular, OSNs have recently been infiltrated from the inside by an
increasing number of fake identities [51]. Many such fake identities are often orchestrated
by a single attacker, who uses them collaboratively in a Sybil attack inside the OSN for
various purposes. For instance, Sybils may try to rig the outcome of a voting system by
outvoting honest users [164]. A new DOSN must also pay respect to such an attack in its
design.

5.5 Data Privacy

While current, centralized OSN platforms are—due to their sophisticated, redundant
infrastructure—usually well equipped to defend against external attacks, their major prob-
lem is that they do not grant privacy for user data, but rather tend to collect, analyze and
misuse the data as discussed in previous chapters of this thesis. Simply removing the
central provider and shifting the data to distributed storage locations across the OSN does
not entirely prevent such a behavior by parties interested in user data, as these parties could
set up powerful storage facilities for DOSN users to regain access to user data.

Hence, a new DOSN must provide users with means to hide the contents of their data
from others, including the storage location owners themselves. User content in OSNs is
often targeted at a specific audience only. For instance, while a user might decide to share
her vacation pictures with her close friends, she does not want her work colleagues to see
those pictures as well. At another time, she might want to share a photo of the last company
meeting with her colleagues, but not with her family. As a consequence, the new system
must allow each user to control access to every single data item, and to do so on a very
fine-grained basis.

5.6 Mobile Awareness

OSN users have been using social applications from their mobile phones with increasing
intensity (see Chapter 4). In addition to acknowledging that not every device used in the
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network is a device with sufficient resources in terms of storage, mobile devices also have
other limitations. For instance, they experience an even higher churn rate than stationary
devices (including laptops), suffer from limited connectivity in terms of bandwidth, and are
often restricted in using that bandwidth due to expensive data plans.

In contrast to existing works, a full-fledged DOSN must therefore also be able to distin-
guish between such devices and others that are not subject to those limitations. In partic-
ular, when designing the system, a careful consideration of mobile devices is necessary to
not only prevent an overburdening of these devices, but also to increase the stability of the
system itself.

5.7 Genericness

One of the big opportunities of decentralized online social networking is to remove the
need for each user to maintain one set of data for each social networking application (see
Chapter 3). Thus, a new DOSN should also be generic in the sense that it allows a multitude
of applications to operate on a single set of shared data.

Moreover, these applications should be allowed to be diverse in the sense that they, while
operating on a single set of shared data, can implement arbitrary functionality. In particular,
they should not be limited to current OSN functionality. Instead, to ensure the DOSN’s
future competitiveness, the functionality of the DOSN and its applications has to be exten-
sible.

5.8 Exploitation of Social Relations

So far, the design of a DOSN seems to be subject to a lot of challenges. However, there is
also help at hand. The new solution can and should exploit the potential of social relations
within the OSN. In fact, multiple applications have leveraged these relations to improve
their performance (e.g., [76, 165, 166]).

Also, some research suggests that social relations can be the usually required incentive
for self-interested nodes to cooperate with other nodes in an OSN and discourage freerid-
ing (recall that users need a robust OSN, see Chapter 4) [167]. If utilized properly, such
cooperation can, for instance, help every user to distribute her data within the OSN more
efficiently, or to defend against certain attacks.
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However, to not violate the requirement of robust data availability, such cooperation must
not hinder users with weak social connections from obtaining high availability for their data.
Instead, the data of every user must be highly available in the OSN at all times. Also, the
cooperation must not be influenced by possibly manipulative attackers.

5.9 Summary of Challenges

In summary, the following challenges have to be addressed successfully to provide a novel,
full-fledged DOSN:

(i) the DOSN must provide data availability for all users without requiring user payments;

(ii) it must do so without introducing excessive overhead;

(iii) the new solution must be both adaptive to additionally provided resources and resilient
against malicious activity;

(iv) each user must have a way to grant fine-grained access control to her data, while
excluding illegible parties from accessing it;

(v) sharing of the encrypted data by multiple independent applications with arbitrary func-
tionality should be enabled;

(vi) the limited capabilities of mobile devices must be considered; and

(vii) the opportunities of exploiting social links between users of the OSN should be ex-
ploited, if possible.





Chapter6
Defending against the Sybil Attack

The resiliency against malicious users has emerged as one of the critical challenges for the
construction of a new DOSN. Defending against DoS and DDoS attacks is still an unsolved
problem [163], which is why future DOSNs need to be able to alleviate such attacks to a
certain extent themselves.

Moreover, the research community has lately observed another manipulative strategy—
the Sybil attack—in many real-world networks, including OSNs [51, 53, 168]. Here, the
adversary forges multiple identities in order to compromise a target system. In particular,
when considering DOSNs, each user could be a Sybil herself and aim at breaking the sys-
tem. As a consequence, various attacks on the DOSN may be possible, especially when
each user’s actions or opinions are influential.

However, due to the potentially critical effect of the attack, researchers have investigated
defense schemes against it, many of them based on OSNs [56–63]. The new DOSN could
thus delegate the control of Sybil identities to one of these defense solutions, if that solution
can efficiently protect OSNs against Sybils. On the contrary, if none of the systems can be
applied to (D)OSNs, the system itself needs to be Sybil-resilient.

This chapter thus investigates state-of-the-art Sybil defense schemes to determine their
eligibility for preventing Sybils to affect the operation of both OSNs and DOSNs. In partic-
ular, it answers the following questions:

(i) What are possible Sybil defense solutions for (D)OSN?

(ii) What is the scenario that these solutions would face in (D)OSN?

(iii) How do they perform when facing this attack scenario?

(iv) Ultimately, can they protect a new DOSN from Sybils?
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6.1 The Sybil Attack and OSNs

In the past decade, the research community has extensively studied a new kind of malicious
behavior. In the Sybil attack—the term Sybil originates from a pseudonym for a patient with
multiple personality disorder—the attacker forges multiple identities in order to subvert a
target system [164].

Sybil attacks are not only a threat in theory, but have also been observed in many real-
world networks, including Ebay and OSNs [51,168]. In OSNs, Sybil attacks—next to DDoS
attacks—are a major menace as they are used for spam or malware propagation [54]. Mat-
ters get worse when considering DOSNs built on user cooperation, as each participating user
could be a Sybil herself and attack the cooperation schemes. Here, the attack schemes can
be diverse, ranging from manipulating recommendation schemes to maliciously exploiting
friendship relations of the target DOSN. While existing user-cooperation DOSN solutions
do not acknowledge such attacks and are thus not constructed to be Sybil-resilient, a novel
DOSN approach must be able to tolerate the attack.

At the same time, the Sybil attack, due to its pervasiveness, has also attracted researchers
to build defense schemes against it. Among the various schemes that researchers have
proposed to defend a target system, the most popular approaches in recent years leverage the
OSNs of users in the target system, and inspect the structure of their social relations [56–63].

The main hypothesis of the existing defense schemes is that OSN identities controlled by
the attacker will have difficulties establishing social relations (i.e., edges in the OSN graph)
with honest users. These approaches reason that there must be some sort of trust between
both ends of a social relation, which should not be the case for relations between honest
users and forged identities. Thus, although there may be many relations both among the
Sybil identities themselves and among the benign users themselves, there should be very
few connections from Sybils to the community of benign users. These isolated links, i.e.,
links between a Sybil node and a benign node, are called attack edges [97]. As a result,
the social network graph will have a clear partition between a Sybil region and a non-Sybil
region, except for the few attack edges between them. In other words, there is supposed to
be a small cut between both regions, as removing a small number of attack edges would
result in two disconnected graphs [166]. To summarize, OSN-based Sybil defenses have
been predominantly investigating the following scenario:

Although an attacker can create an arbitrary number of Sybil identities, she cannot
establish an arbitrary number of attack edges to the non-Sybil identities.

However, as described in detail in Section 6.3, recent research has identified a rich set of
behaviors of both attackers and honest users that invalidate the above hypothesis. In fact,
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attackers can easily create links to benign users by simply sending out link-establishing
requests (e.g., friendship requests on Facebook). The success rate can reach an astonishing
90% for specifically forged profiles or engineered bots [51,52,54]. At the same time honest
users can also be easily tricked to establish the link and even initiate communication with
forged identities [64, 65]. In addition, contrary to what all Sybil defense approaches have
suspected, Sybils do not create numerous links mostly between themselves and thereby
form a dense Sybil community; instead, almost 75% of links originating at a Sybil are
connected to honest users and thus attack edges [51]. Therefore, the scenario that matches
the assumptions made by current defense approaches is referred to as the classical scenario,
while a modern scenario emerges:

Rather than predominantly connecting with other Sybils, an attacker is able to es-
tablish an increasing amount of social relations to benign users, and becomes more
and more integrated within the community of benign users.

Hence, it is uncertain how well all existent OSN-based Sybil defense solutions, which
were designed for the classical scenario, would perform under the new, modern scenario.
While it is critical to have effective Sybil defense solutions for building a new DOSN,
it is unclear what help and how much help can be obtained from existent solutions. In
this chapter, the focus is to systematically analyze, measure, and compare how well or
inadequate existent OSN-based approaches perform, with the goal to determine whether or
not any approach might be applied to protect a DOSN from a Sybil attack. In doing so,
this chapter qualifies and quantifies the strengths and weaknesses of these approaches under
both the classical scenario and the modern scenario.

This thesis investigates two classes of Sybil defense approaches: Sybil Detection (SD)
approaches—which try to detect Sybil nodes and exclude them from participation in a
target system, and Sybil Tolerance (ST) approaches—which try to limit the impact of
Sybils present in the system. The former includes SybilGuard/SybilLimit [56, 66], Sybil-
Shield [63], SybilInfer [59], SybilDefender [62], GateKeeper [58], and SybilRank [57].
The latter includes Ostra [8] and SumUp [60]. Given that a Sybil node may obtain more
attack edges than traditionally assumed, the analysis in this thesis pays particular attention
to what a Sybil node has to achieve in order to make itself indistinguishable from honest
nodes—and thereby disguise itself from the defense scheme. Different attack strategies are
investigated where applicable, and for every Sybil defense solution the cost for the attacker
(e.g., the number of attack edges to create) to thwart the solution is quantified.

The main finding is that current OSN-based Sybil defense approaches of both classes have
difficulty identifying the attack edges and the Sybil nodes in the modern scenario. Although
they perform well in the classical scenario, surprisingly little effort is needed to deceive any
existent defense scheme. Specifically, in many schemes a Sybil node only needs to create
one or two attack edges to random honest nodes in order to successfully masquerade as
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a benign node. The attacker can further reduce the required effort if she follows more
intelligent attack strategies that exploit particular weaknesses in a given defense scheme.

As a consequence, a new DOSN cannot efficiently detect or tolerate Sybils by relying on
one of the existing schemes. It rather needs to actively protect itself against a Sybil attack.

6.2 Related Work

Prior to the survey presented in the following, there have been other studies analyzing OSN-
based Sybil defenses. In the work closest to this thesis’ analysis, Viswanath et al. revealed
that Sybil detection schemes could be abstracted to community detection algorithms [166].
In another study, Yu provided a concise summary of Sybil defenses existent prior to that
study, and described their working principles under the classical scenario [97]. Viswanath
et al. further explored the design space for OSN-based defenses [169]. Finally, Boshmaf et
al. presented a framework for the evaluation of graph-based Sybil detection [170].

This thesis substantially differs from such studies: First, the performance of Sybil de-
fenses in a completely new scenario, i.e., the modern scenario (Section 6.1) is analyzed.
For instance, research in [166] requires Sybils to reside outside a distinguishable commu-
nity, which is not true in the modern scenario. Second, this thesis includes more recent
defense schemes that were not studied before. In particular, it studies approaches that can
handle modular OSN graphs [57], which did not exist at the time of previous studies. Third,
to determine what conditions cause each defense system to fail, not only qualitative analy-
sis is provided, but also a quantitative approach to providing concrete results is taken. This
complements studies such as [170], which do not analyze particular approaches, but rather
develop guidelines on how they should be evaluated or designed.

Besides research focusing on the analysis of Sybil defenses, some works further rethought
social graph properties with regards to Sybil defense. Alvisi et al. [171] pointed out that
Sybil defense schemes tend to assume a minimal cut between Sybils and honest users (see
Chapter 2.1.1.2), which however may not hold. The authors also analyzed SybilLimit [56]
and show the sensitivity of the scheme to the existence of this cut. The analysis of this
thesis goes one step further: It provides an in-depth analysis of all relevant Sybil de-
fense approaches and their performance. Unlike Alvisi et al., it also considers Sybil tol-
erance approaches (a listing and categorization of the subjects under investigation is given
in Section 6.4), whose working principles greatly differ from those of Sybil detection ap-
proaches [169].

Researchers have also attempted to alter social graphs to help Sybil defense schemes work
better. Mittal et al. proposed introducing noise to a social graph to hide its true structure
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to attackers [172]. However, doing so only hides the exact structure of the graph from the
attacker, but does not constrain her in creating attack edges.

6.3 Revisiting Assumptions for Sybil Defenses

This thesis emphasizes that attackers employing a Sybil attack operate differently than pre-
viously thought. The following section explains why a new attacker behavior is proposed
and what this behavior looks like, and thereby lays the foundation of the in-depth study
reported in the later parts of this chapter.

6.3.1 Troubling Observations

Recently, researchers have discovered a multitude of behaviors of both honest and Sybil
nodes that have a significant impact on the structure of a social graph. These behaviors can
be observed across different OSNs, independent from their working principle and graph
structure [51, 54, 64, 65]. The most salient observation is that a large fraction of OSN users
are credulous and attackers are easily able to create links to honest nodes. Yang et al. found
close to 11 million attack edges distributed among roughly 65,000 Sybil nodes—an average
of 170 attack edges per Sybil [51]. Attack edges can be created by simply sending out link-
establishing requests in OSNs (e.g., friendship requests on Facebook). The success rates of
this simple attack range between 26% and an astonishing 90% of requests for specifically
forged profiles or engineered bots [51, 52, 54].

Moreover, Bilge et al. show that 50% of users with whom the attacker could create an
attack edge also clicked on links which the attacker sent in a message [54]. This implies
that honest users even trust the forged profiles to a certain extent—even though the content
of the message is possibly malicious (e.g., a link to malware).

It is also easy to trick benign users into sending link-establishing requests to Sybils [64,
65]. Using simple attacks (e.g., manipulating the friend recommendation scheme on Face-
book), an attacker can obtain hundreds of friend requests per day with a single fake profile.
Sybils are thus able to obtain thousands of attack edges to benign users without initiating
any contact. Furthermore, once a Sybil has established some attack edges to honest users, it
will be recommended to more users due to the existence of mutual friends, thus increasing
the number of attack edges constantly. Sridharan et al. show that spammers on Twitter
can effectively trick benign users into following them, i.e., creating a link to attackers [65].
Even with a simple attack, one third of the spamming accounts could accumulate more than
100 honest followers.
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Figure 6.1: Juxtaposition of Scenarios. In (a), a clear distinction of the Sybil region and the
honest region is possible, whereas such a distinction has become difficult in (b).

Further, what has changed is not only how Sybils are able to interact with honest users,
but also how many attack edges Sybils can create. In fact, according to [51], almost 75% of
links originating from Sybils are connected to honest users, instead of connecting to other
Sybils as once thought, meaning the Sybil community structure is not as densely connected
as thought before.

As a consequence, Sybils can be observed in a multitude of OSNs, ranging from regional
OSNs like the Chinese network RenRen [51] and subscription-based OSNs like Twitter [65]
to the world’s largest OSN, Facebook [54, 64].

6.3.2 Modern Scenario versus Classical Scenario

As a result of these findings, this thesis proposes a new structure of the OSN graph, with the
following characteristics: (i) the number of attack edges k increases; and (ii) Sybils create
most links to honest nodes, not to other Sybils [51]. Figure 6.1 shows a juxtaposition of the
original classical scenario (Figure 6.1a) and the modern scenario (Figure 6.1b). The modern
scenario has two major distinguishing features:

1) No minimal cut exists. Figure 6.1a provides a clear distinction between a benign region
and a Sybil region based on a small minimal cut in a social graph. Recall that a minimal
cut of a graph is a cut whose cutset has the lowest number of edges among all cutsets (see
Chapter 2.1.1.2). In the modern scenario, the existence of such a minimal cut between the
honest and the Sybil nodes is no longer assumed (note that such cuts may exist between
communities sparsely connected to each other [57]).

Some approaches abstract the existence of a minimal cut in a graph to the mixing time of
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the graph [97]. Recall, that the mixing time indicates how fast a random walk on a graph G
approaches the stationary distribution (see Chapter 2.1.1.2). Defense schemes then compare
the mixing times of different subsets of G. If G contains a minimal cut between honest and
Sybil nodes, it should have a slower mixing time than the subset of honest nodes, which is
well connected [97]. On the other hand, if there is no minimal cut, the mixing time for G
will then be faster. Applied to the modern scenario, the mixing times of different subsets of
G are not easily distinguishable anymore.

2) There is not a single, densely connected Sybil community. In the classical scenario,
Sybils form a single community, which is densely connected internally. Since Sybils create
links to honest nodes in larger counts than to other Sybils, this dissertation advocates that
Sybils do not form any specific community structure.

6.4 Analysis of OSN-based Sybil Defenses

In this section, the working principle and effectiveness of the well-known Sybil defense
approaches are analyzed under the modern scenario. Both Sybil detection approaches and
Sybil tolerance approaches are investigated. In particular, this section provides a qualitative
analysis of the weaknesses of these approaches. A quantitative analysis and comparison is
then presented in Section 6.5.

6.4.1 Sybil Detection Approaches

To identify Sybils in an OSN graph G, a primary methodology has been leveraging random
walks of limited lengths on the graph (see Chapter 2.1.1.2), starting at an a priori known
trusted node. The main idea is that Sybil nodes experience a low reachability from the
trusted node since it is highly unlikely for a length-constrained random walk originating
from the trusted node to cross one of the few attack edges. Instead, the random walk is
expected to stay within the honest region with very high probability.

Different methods are employed in leveraging the random walk concept. SybilGuard/Sy-
bilLimit use random routes, a random walk modification that uses pre-computed random
routing tables to determine the next hop of a random walk, and check if the random route
from a verifier will intersect with that from a suspect node. SybilShield follows the same
concept; in addition, it performs random walks to find agent nodes for the verification of the
random routes. SybilInfer conducts random walks—called traces—from all nodes, where a
particular a priori honest node computes the probability that a subset G′ of G is composed
of entirely honest nodes based on the mixing time of the subset. SybilDefender first uses
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Figure 6.2: An exemplary graph with Sybil nodes attached to honest nodes in different sce-
narios. The honest nodes are organized into two communities.

random walks originating from an a priori known honest node to identify starting points
of further random walks, which in turn identify certain Sybil nodes based on the frequency
with which these walks traverse them. It then uses random walks again to detect additional
Sybils in the neighborhood of the already detected Sybils. Finally, SybilRank relies on the
landing probabilities of short random walks that start from a non-Sybil node.

The only exception is GateKeeper. Rather than using random walks, it employs a Breadth
First Search (BFS) ticket distribution strategy to detect Sybils (see Chapter 2.1.1.3). How-
ever, like approaches using random walks, it also exploits the low reachability of the as-
sumed Sybil region from the honest region. The idea behind GateKeeper is that since
Sybils are not as well connected to the ticket sources, they will obtain substantially less
BFS distributed tickets than benign nodes.

All these approaches were designed primarily toward the classical scenario. For instance,
consider a random walk starting at node S1 in Figure 6.2. The walk has a low probability of
traversing the attack edge to the Sybil community attached to node A. In the following, the
impact of the modern scenario on each of these detection schemes is discussed.

6.4.1.1 SybilGuard/SybilLimit

Because of the similarity of SybilGuard and SybilLimit (the latter is the successor of the
former), these two approaches are studied together.

Working principle. In SybilGuard, an honest node (the verifier) accepts a suspect node
only if the random route (i.e., the modified random walk) from the verifier intersects with the
random route from a suspect node. If there are only a few attack edges, it is highly unlikely
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that the random route from a Sybil will intersect with the route of a verifier, causing the
Sybil to be unlikely to be accepted. SybilLimit modifies SybilGuard, where every suspect
and verifier initiate multiple random routes. For a Sybil to be accepted by a verifier, it needs
to come up with a random route intersecting with a random route of the verifier. Route
intersections are no longer related to nodes on the routes, but to the tails (i.e., the final
traversed edge before a route halts). Every random route is also shorter, leading to less
possibilities for attackers to fake random routes that cross attack edges.

Effectiveness analysis. SybilGuard provides guarantees on the number of Sybils admit-
ted per attack edge. If the number of attack edges k in a system with n benign nodes is
at most O(

√
n/ logn), SybilGuard will admit at most O(

√
n logn) Sybil nodes per attack

edge. If however k increases, SybilGuard is not able to limit the number of Sybil nodes at
all [56]. SybilLimit improves on SybilGuard to the point where it accepts at most O(logn)
Sybils per attack edge, no matter how many attack edges exist. It does not suffer from
SybilGuard’s limitation that the number of attack edges must stay below a certain thresh-
old to have an effect. Nonetheless, SybilLimit was designed for a particular scenario: A
densely connected Sybil community connected to the honest region by only a few attack
edges. In this (classical) scenario admitting O(logn) Sybils per edge is a good effort, since
many more Sybils may be connected to the honest region by these edges only (see Figure
6.1a or node A in Figure 6.2). However, in an inversion of the argument, this also means
that every Sybil that can obtain a single attack edge can be admitted with high probability.

6.4.1.2 SybilShield

Working principle. SybilShield extends the working principle of SybilGuard to also cover
modular OSNs, i.e., OSNs that consist of multiple distinct communities. In SybilShield, a
verifier does not immediately reject a suspect node if no intersections exist among random
routes. Instead, the verifier will perform random walks towards nodes outside of its own
community, and use the endpoints of these walks as its agents. The verifier will then still
admit the suspect, if the suspect’s random routes have enough intersections with the random
routes of a number of agents.

As in SybilGuard, if Sybils are gathered in a distinct community, the probability for ran-
dom routes from an honest verifier and those from a Sybil node to intersect is low. Also,
it is unlikely that a Sybil node can obtain enough intersections with random routes from a
number of agents. On the other hand, since verifiers can now reach out to multiple commu-
nities, the extension with agents allow well-connected honest nodes to become accepted by
more verifiers.
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Effectiveness analysis. SybilShield works as effectively as SybilGuard in its first step,
as the approaches are basically the same. With the addition of the agent walks, SybilShield
can even admit more honest nodes, while not admitting noticeably more Sybils. However,
the principle only works if the number of attack edges is indeed small, and the Sybils are
indeed gathered in a distinct community. When these assumptions are dismantled—as in the
modern scenario—it might in fact be easier for a Sybil to be admitted than for a benign node.
As Sybils are not bound to the community structure found in OSNs, they can attach their
attack edges to multiple communities and become integrated into those. As a consequence,
compared to an honest node that belongs to a single community, a Sybil can more easily
create more intersections with the agents.

6.4.1.3 SybilInfer

Working principle: SybilInfer assumes OSN graphs to be fast-mixing, which is a dubious
assumption in itself [56, 80]. The basic principle of SybilInfer is that with a small number
of attack edges k—i.e., the existence of a small cut in G—the mixing time of G is slower
than the mixing time of just the benign region of G. The reason is that traces originating
from a benign node are more likely to remain in the benign region than to traverse one of
the few attack edges and end on a Sybil node.

Effectiveness analysis: SybilInfer would work well if k is indeed small and the benign
region is fast-mixing. However, if the Sybil nodes become more integrated into the graph,
the cut will become less distinct (consider nodes B and C in Figure 6.2). The degree to
which the cut is detectable also depends on the structure of the Sybil region. In SybilInfer,
an attacker should not introduce many interconnected Sybils (e.g., node A in Figure 6.2), as
otherwise all attacker nodes can be detected due to a slower mixing time of G. The attacker
will be most successful in disguising Sybil nodes as benign nodes with a sparse community
structure and many attack edges, an attacking behavior which is observed in the modern
scenario.

6.4.1.4 SybilDefender

Working principle: In addition to the minimal cut, SybilDefender also assumes that the
Sybil region is substantially smaller than the honest region. It works in multiple stages. In
its first stage, it offers a set of algorithms to detect Sybil nodes. In the second stage, origi-
nating from these Sybils, it tries to further detect the supposedly existing Sybil community
surrounding the previously detected Sybils. Both stages rely on random walks.
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The first stage executes a number of random walks originating from an a priori known
honest node and ending at a number of judges. In turn, the judges and the honest node
each start a number of random walks of varying lengths in order to learn the threshold
for identifying Sybils; in particular, they count how often each node is traversed by these
walks—i.e., the frequency of a node. Then, for each suspect node, SybilDefender performs
random walks from the suspect to determine if it is a Sybil. The key principle is that a long
enough random walk from an honest node will traverse more different nodes than a walk
that is trapped inside the small Sybil region. In other words, the frequency of nodes in walks
originating from an honest node will be lower than that in walks originating from Sybils.

The second stage starts a series of random walks from a previously detected Sybil, and
every random walk terminates once it reaches a dead end (i.e., a node whose neighbors
have already been visited). It sorts the nodes traversed by all random walks based on their
frequency into a list in decreasing order. From this list, it adds nodes one by one into
the Sybil region (initially empty), until the conductance of the Sybil region is not getting
smaller. The nodes on the list then constitute the Sybil region discovered from the second
stage. Recall that the conductance measures the quality of the cut between a region and
the rest of a graph, and is the ratio between the number of edges in the cut and the sum of
the degrees of all the nodes in the region (see Chapter 2.1.1.1). The reasoning is that, in
presence of the minimal cut, the walks will remain within the Sybil region, and nodes with
the high frequency are very likely Sybil nodes as well.

Effectiveness analysis: In the presence of one honest and one Sybil community sepa-
rated by a minimal cut, the random walks started from the judges will remain within the
honest community with high probability. Hence, honest nodes will—compared to Sybils—
obtain higher frequencies during the random walks. Also, the Sybil community can be de-
tected in the same way when starting at a known Sybil node within that community. Thus,
SybilDefender works well within the classical scenario and adds an efficient second stage to
previous approaches. If, however, one of the assumptions does not hold (and neither of them
holds in the modern scenario), SybilDefender’s performance deteoriates. If there are multi-
ple honest communities, the false positive rate will rise, as judges are likely to stay within
one honest community only. Or, as Sybils rather attach themselves to different benign com-
munities, not only does the detection step become ineffective, but the false positive rate will
again increase. The reason is that starting random walks from a presumably identified Sybil
node to detect its community will also cover a wide selection of honest nodes.

6.4.1.5 SybilRank

Working principle: Like SybilLimit and SybilInfer, SybilRank also employs random
walks as a means to detect Sybil nodes. In particular, SybilRank uses logn power iterations
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to determine the fate of a node. In short, power iterations are a succession of random walk
transition matrix multiplications, which compute the probability that an early-terminated
random walk would land on a node (for details see [173]). The higher the probability is,
the more likely the node is benign.

The random walk starts at a seed inside a Louvain-detected honest community (see Chap-
ter 2.1.1.1), and each major community in the OSN can have a manually chosen seed that
is guaranteed to be benign. This method allows SybilRank to deal with the highly modu-
lar OSN graph structure. Under the assumption that there are few attack edges connecting
Sybil nodes with an honest community, a short random walk is unlikely to finish at a Sybil
node since the traversal of an attack edge is needed. Consider node A in Figure 6.2. As
there is only one attack edge towards A, the random walk from seed S2 is unlikely to land
on any node in the Sybil community around A.

Effectiveness analysis: SybilRank heavily relies on the number of attack edges that Sybil
nodes can establish (it admits O(logn) Sybils per attack edge), but is roughly independent
of the Sybil community structure. Consider Sybil nodes A and D in Figure 6.2, where A is
part of a Sybil community but D is attacking as a single node. Since a random walk only has
one attack edge to traverse to reach either A or D, both A and D will obtain a low ranking,
and are thus likely to be categorized as Sybil nodes.

If the number of attack edges k increases, random walks will be more likely to land on
Sybils adjacent to attack edges, thus increasing the ranking of these Sybils and even misla-
beling them as benign nodes. The Sybil node C in Figure 6.2, for example, is completely
disguised in the non-Sybil community. In fact, when starting random walks at S2, node C
will receive one of the highest rankings due to its position in the graph.

Finally, the introduction of trusted seeds enables more sophisticated attacks. By putting
one seed in each major honest community (e.g., S1, S2 in Figure 6.2), honest users should be
ranked higher than Sybils since they are well connected to those seeds, whereas Sybils have
to rely on few attack edges. However, if Sybils can create links to nodes near the seed, they
can increase their rankings. Although the seeds themselves might be careful with accepting
link requests, nodes near them may be not.

6.4.1.6 GateKeeper

Working principle: In contrast to all previously discussed approaches, GateKeeper does
not (directly) leverage random walks for Sybil detection. Similar to SybilRank, a central
authority (called admission controller) selects a number of seeds (called ticket sources).
Whereas the selection of ticket sources is performed via random walks originating at the
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controller, the actual Sybil detection algorithm operates differently.

Each ticket source obtains a number of tickets from the admission controller. In a Breadth
First Search (BFS) approach the ticket source then distributes the tickets equally among its
neighbors, and each neighbor again distributes the tickets equally among its neighbors, and
so on (see Chapter 2.1.1.3). To be admitted into the system, a node must obtain tickets
from a fraction of the ticket sources (e.g., a node is required to collect a ticket from 20%
of all sources in [58]). The reasoning here is that if Sybils are only connected to the honest
region by very few attack edges, they will rarely obtain tickets from the requisite fraction of
sources, whereas honest users will easily do so.

Effectiveness analysis: GateKeeper is strongly dependent on the number of attack edges
k, and accepts O(logk) Sybils per attack edge, improving from the magnitude of O(logn)
of the previous schemes. If the Sybil community is well-connected among itself and there
are few attack edges, the system will only admit k logk Sybils from the Sybil region. The
more attack edges (i.e., the further k is increased), the more Sybil nodes will be admitted. In
the case of the modern scenario, it becomes easier for Sybils to obtain the required fraction
of tickets: each Sybil owns more attack edges and—similar to SybilRank—may be able to
place them within a small distance to a ticket source.

6.4.2 Sybil Tolerance Approaches

In contrast to Sybil detection approaches, Sybil tolerance schemes aim at limiting the influ-
ence of Sybils that may reside in a system without necessarily detecting them. For instance,
these Sybils could—if there are no countermeasures—flood a DOSN with spam data or
manipulate its cooperation schemes. Another major difference between the two classes is
that Sybil tolerance approaches are usually designed for a particular purpose, while Sybil
detection approaches are meant to provide a more universal solution.

This thesis focuses on two major Sybil tolerance approaches, Ostra and SumUp, which
may act as a countermeasure against both spam and vote manipulation in cooperation
schemes. Both schemes are built upon a flow network where each link is granted a cer-
tain capacity (see Chapter 2.1.1.4), called credit. Nodes can exchange messages (Ostra) or
cast votes (SumUp) only if they find a path with enough credit on every link of the path.
Both schemes also feature feedback mechanisms in order to penalize links used for spam
(Ostra) or bogus votes (SumUp).
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Figure 6.3: Credit reduction in Ostra due to spam. As one credit is reduced for every spam,
eventually every link between u and v—including benign links—has no avail-
able capacity for message delivery.

6.4.2.1 Ostra

Working principle: Ostra aims to limit spam issued by malicious users in a social network.
It provides two modes of operation. One mode which requires strong user identities (i.e., a
user is guaranteed to have only one digital identity) and a second mode where this require-
ment is relaxed. As a DOSN should not enforce strong user identities (see Chapter 3), Ostra
is studied with regards to the latter mode.

It assigns credits to links between users, where each link has two dependent credit values,
one for each direction. If Ostra finds a path with available credit from a sender to its receiver,
the sender’s message can be sent; otherwise, the message will be blocked. As a message
traverses along a path, starting at the source of the message, credit will be deducted from
each traversed link in the direction of message transmission, while the same amount of
credit is added in the opposite direction. If the recipient classifies the received message as
wanted (i.e., not spam), Ostra will reverse the credit operations previously performed, such
that only messages classified as spam will have an effect on the credit available on each
link. The main idea limiting the influence of Sybils is that the classification of messages
will quickly deplete the capacity on attack edges, leaving Sybils unable to distribute any
spam afterwards.

As benign users may inadvertently send out unwanted messages from time to time, Ostra
also provides a mechanism to forgive a link over which spam was sent previously. That is,
Ostra increases the credit on each link periodically, even if it has been depleted before.

Effectiveness analysis: In Ostra, more attack edges will lead to more spam that Sybils
can send. Additionally, the credit forgiving scheme effectively makes sure that an attack
edge never dies completely. Furthermore, sending spam reduces not only the credit on
an attack edge of a spammer, but also the credits on the entire path to the destination. For
instance, in Figure 6.3, with each spam message sent from a Sybil node u to an honest node
v that traverses the path p = u,x1,x2,v, Ostra will penalize benign edges (x1,x2) and (x2,v)
as well. If there is no other path, eventually it may not be possible for x1 to send a regular
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message to x2 or v anymore, as the capacity C has been depleted. An intelligent attacker
may therefore be able to isolate some honest nodes by depleting credits on many edges in
the network. Ostra suggests honest users obtain “a sufficient number of trust links” [61] to
reduce the probability of becoming isolated, which further lowers the bar for the attacker,
as users are even more willing to accept link requests.

Even worse, the attacker could specifically target the few links that connect the commu-
nities in a highly modular OSN graph G. Consider Figure 6.2 again. Sybils A and D can
block any communication towards the community to the left (located in the shaded area) if
each can send their spam toward S2 over one of the two links for reaching the community.

6.4.2.2 SumUp

Working principle: SumUp aims at limiting the number of bogus votes that Sybil nodes
can cast in a system. It chooses an a priori trusted vote collector, which then distributes
tickets in a BFS manner downstream along the OSN graph. Every node will keep one
ticket, and distribute the remaining tickets equally among its next BFS-level neighbors. The
capacity of every link is set to be the number of tickets distributed along the link plus one.
SumUp defines all links with a capacity larger than one to be within the voting envelope.
The main idea is to keep Sybil nodes outside of the envelope and limit the voting capacity
per attack edge to one.

SumUp employs two main mechanisms to modify an OSN graph and reduce the impact
of attack edges. Before distributing tickets, SumUp employs a pruning mechanism to reduce
the number of attack edges available to Sybils (therefore limiting their attack capability) and
speed up vote computation with fewer edges. Basically, the number of edges from a node
at a BFS-level of i+1 can only have at most d edges going to BFS-level i, where the vote
collector is at BFS-level 0. It also has a feedback mechanism: the vote collector can provide
negative feedback to paths through which bogus votes have been cast. Once an edge has too
much negative feedback, it is eliminated and no vote can be cast along that edge any more.

Effectiveness analysis: As in Ostra, the damage from Sybil nodes will be directly pro-
portional to the number of attack edges. Moreover, more attack edges would lead to a higher
likelihood for a Sybil to be close to a vote collector (e.g., Sybil node C in Figure 6.2 would
be close to S2). As nodes near the collector can issue more tickets, such a Sybil would
gain an increased capacity. Furthermore, as the number of attack edges increases, SumUp’s
feedback mechanism may penalize links adjacent to benign nodes too, causing collateral
damage to benign edges while penalizing attack edges (similar to Ostra). If there is a suf-
ficient number of Sybils with a path through a benign node, it may even cause all edges of
the node to be eliminated. To mitigate this negative effect, after SumUp removes certain
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Table 6.1: The datasets used for evaluating Sybil defenses.

Facebook 90,269

OSN Nodes

Synthetic 1,000

3,646,662

Edges

2,048

40.40

Avg. Degree

2.05

edges due to penalties caused by Sybil votes, it reintroduces pruned edges into the graph to
replace the penalized edges in order to maintain the required number of incoming edges per
node. The reintroduced edges, however, could be attack edges, leaving the efficacy of this
feature questionable.

6.5 Are OSN-based Sybil Defenses Still Working?

After providing a qualitative analysis of the weaknesses of Sybil defense approaches un-
der investigation in Section 6.4, in this section a quantitative study of these approaches is
conducted. In particular, this study answers the following questions:

(i) How serious are the weaknesses of Sybil defense solutions?

(ii) Can OSN-based Sybil defense schemes still work?

(iii) What is the actual cost for the attacker (e.g., the number of attack edges to create) to
thwart a defense solution.

6.5.1 Evaluation Methodology

All aforementioned Sybil defense approaches have been implemented and simulated to
test their behavior when faced with different attack strategies. The simulations are based on
both a real-world Facebook graph [174] and a synthetic graph as shown in Table 6.1. The de-
gree distribution of the synthetic graph follows the OSN-typical power-law distribution (see
Chapter 2.1.1), which can also be observed in the Facebook graph. Sybil nodes,which—
as suggested in [51]—are sparsely interconnected are added to these existing graphs in a
second step.
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In evaluating every Sybil defense approach, the parameters of the original evaluation of
each approach are implemented if possible. For instance, the evaluation of Ostra uses the
same amount of messages sent in the system and follows the original evaluation with 93%
of these messages sent to direct neighbors.

The parameters which are varied mainly include the number of attack edges and the
strategy for placing attack edges. By default the attacker is assumed to place attack edges
completely randomly, but for some approaches the attacker can place them close to specific
nodes to gain certain advantages as explained in Section 6.4. To prevent biased results due
to the specificity from one attack edge placement, for each parameter setting 100 different
attack edge placements are simulated.

The evaluation of approaches which use any form of seed placement may require per-
forming community detection beforehand. Following SybilRank, the Louvain method is
used to detect communities in these cases. Recall, that the Louvain method iteratively
merges two existing communities if a merge would result in a higher modularity of the
graph with low computational cost (see Chapter 2.1.1.1).

Since Sybil detection and Sybil tolerance schemes have different goals and working prin-
ciples, they are treated separately in their evaluation as well. To ensure that only the change
in the structural properties of OSN graphs is evaluated, the attacker is not allowed to devi-
ate from the protocol of an approach being studied. For instance, in SumUp, a Sybil node
obtaining a number of tickets will not try to favor other Sybils but follow the SumUp de-
sign and distribute tickets further downstream, even if the recipients are honest nodes. The
Sybils are also not allowed to be selected as seeds where applicable. The results are very
similar for both datasets; for the ease of exposition results are reported for the Facebook set
unless stated otherwise.

6.5.2 Sybil Detection Approaches

The goal for evaluating Sybil detection approaches is to find out what an attacker needs
to achieve in order to disguise a Sybil node, i.e., to disable a detection approach from dis-
tinguishing between the Sybil node and honest users. Thus, there are two main questions
which need to be answered:

(i) How many attack edges does a Sybil node need to establish in order to disguise itself
as an honest node?

(ii) Does the location of Sybils on an OSN graph make a difference?



83 6.5 Are OSN-based Sybil Defenses Still Working?

To determine whether a Sybil detection approach is able to distinguish between Sybils
and honest nodes, both classes of nodes are compared with regards to their the relative
performance in each detection scheme. In an ideal detection approach, all benign users
should perform far better than all the Sybil nodes, thus leading to a clear distinction between
both classes without any false positives or negatives. In the following, the ability of each
scheme to differentiate between Sybils and honest nodes is called its distinguishing ability.

To illustrate the relative performance of benign users and Sybils, Cumulative Distribution
Function (CDF) graphs are used for the majority of the SD approaches. Generally speaking,
the further to the right a CDF curve appears, the better the nodes in this class perform. Thus,
the CDF describing the Sybil nodes’ performance would ideally be located on the far left in
each graph, whereas the CDF for the performance of the benign nodes would ideally be at
the far right. Then, the distinguishing ability of the defense solution would be sustained, as a
clear distinction between the performance of Sybils and honest nodes is possible. However,
the more both CDFs approach each other, the harder it becomes for the system to distinguish
nodes in both classes. In the worst case, the Sybil CDF would ’overtake’ the benign CDF,
which indicates that Sybils performed better than honest nodes.

6.5.2.1 SybilLimit

The distinguishing ability of SybilLimit depends on the number of intersecting tails that
a Sybil has with a verifier. Recall that in the original SybilLimit design, a Sybil node
only needs one tail to intersect with that of a verifier in order to be verified. Preliminary
experiments revealed that a Sybil can become verified with high probability if it can place
one attack edge to a random honest node. This is not hard to achieve given that O(logn)
Sybils could be admitted per attack edge (see Section 6.4.1.1).

However, with some modification, SybilLimit might still be able to distinguish honest
nodes from Sybils by looking at the number of intersecting tails. In particular, the worst
performing benign node might obtain significantly more intersecting tails with the verifiers
than the best performing Sybil. In that case, SybilLimit might still able to work with differ-
ent parameters. Therefore, it is more important to ask how many attack edges a single Sybil
node would have to create, denoted as k, in order to be indistinguishable from a benign node
in terms of the number of intersecting tails.
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Figure 6.4: Performance of SybilLimit (SL). k is the number of attack edges per Sybil.
SybilLimit is not able to detect Sybils with k increasing.

Figures 6.4a and 6.4b show the CDF of the number of intersecting tails with verifiers in
SybilLimit. The attack edge parameter k increases from one attack edge per node up to a
point at which SybilLimit is no longer able to distinguish both classes of nodes. When a
Sybil node can obtain one randomly placed attack edge (Figure 6.4a), the distinguishing
ability of SybilLimit remains good. However, as the number of attack edges increases,
the distinguishing ability is reduced. The results are exemplified with 5 attack edges per
node (k = 5) in Figure 6.4b. The main observation is that a possible admission threshold,
which rejects the vast majority of Sybils, would also classify 30% of the honest nodes as
Sybils. These results have to be seen in the light of recent discoveries discussed earlier in
this section, after which attackers can gain hundreds of attack edges per day.

6.5.2.2 SybilShield

As SybilShield is based on random routes as well, the issues with SybilLimit also apply
in principle. In particular, SybilShield’s distinguishing ability also lies in the ability to
differentiate between the numbers of intersections that Sybils and honest nodes achieve
with the verifiers, respectively. As SybilShield does not consider tail intersections but rather
route intersections—which are less difficult to obtain, as it is easier to obtain an intersection
on an arbitrary node rather than on a specific edge—it already breaks at one attack edge per
Sybil node (Figure 6.5a). Here, the number of intersections between verifiers and benign
nodes is not clearly distinguishable from the intersections between verifiers and Sybils.

One distinguishing feature in SybilShield is the agent walk, by which additional nodes
are selected to perform verification on behalf of a verifier. This should allow more honest
nodes to be accepted even if their random routes reach communities without a verifier.
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Figure 6.5: Performance of SybilShield (SS). k is the number of attack edges per Sybil.
SybilShield is compromised with a single attack edge per Sybil (a), and its per-
formance is worse in the agent phase (b).

However, as Figure 6.5b shows, compared with benign nodes, Sybil nodes can clearly
obtain more random route intersections with these agents. The reason is that most benign
nodes belong to a single community within the OSN, whereas Sybils will randomly attach
their attack edges to possibly multiple communities, thus remaining in the reach of more
agents.

6.5.2.3 SybilInfer

The distinguishing ability of SybilInfer lies within the landing probability of its modified
random walk, i.e., the trace. Originating at a benign node, the vast majority of traces should
end at another benign node—only then can gaps between the mixing times of different
subgraphs be detected. Figure 6.6a shows the number of traces that end at benign and Sybil
nodes, normalized by the number of benign and Sybil nodes in the system, respectively. All
traces originate from a benign node, and therefore are called benign traces. As observed in
SybilLimit, Sybils cannot obtain a sufficient amount of traces to end at a Sybil node with
a single attack edge. However, Sybils succeed as more attack edges are added. As seen
in Figure 6.6a, even with two randomly placed attack edges per Sybil node, i.e., k = 2,
SybilInfer is no longer able to distinguish between benign and Sybil nodes, because more
traces now end on Sybils than on benign nodes.

Another finding of this experiment is that when traces end at a Sybil, they do not con-
centrate at a few Sybils, but instead are widely distributed. If k = 2 and a trace starts from
every benign node, altogether the traces can hit 75% of the Sybils. An equivalent amount
of Sybils might be admitted.
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Figure 6.6: Performance of SybilInfer (SI) and SybilDefender (SD). k is the number of at-
tack edges per Sybil. SybilInfer suffers from a low distinguishing ability if k≥ 2
(a), and the same is valid for SybilDefender, which exhibits high false negative
rates (b) and false positive rates (c).

6.5.2.4 SybilDefender

The distinguishing ability of SybilDefender’s first stage lies in its ability to detect deviations
in the frequencies of nodes on the random walks originating from Sybils, which should be
significantly larger than the precomputed frequency thresholds. In contrary, the frequen-
cies of nodes on the random walks that start from an honest node should not deviate much.
Figure 6.6b shows that, as the number of attack edges increases, SybilDefender’s ability to
identify Sybil nodes degrades. As a Sybil community does no longer exist and Sybils are
more integrated in the honest communities, the random walks originating at a Sybil node
result in a frequency deviation similar to those originating at an honest node. Hence, many
Sybils are treated as honest nodes (false negatives). The severity of this issue is inversely
correlated to the number of random walks originating at the judge nodes. By increasing
the number of walks the judges execute, the average frequencies become more stable, and
SybilDefender is more reliable in detecting Sybils. However, arbitrarily increasing the num-
ber of random walks from the judges is not effective, as the improvements in false negative
rates rely on the small size of the cut, which is no longer given in the modern scenario. Even
with 4000 such random walks, two attack edges per Sybil are more than enough to confuse
SybilDefender.

Given the Sybils detected in the first stage, the second stage of SybilDefender identifies
all nodes within the Sybil region. Figure 6.6c shows that as the number of attack edges
increase, the number of honest nodes that are mistakenly added to the Sybil region also
increases. The reason for that is that as Sybils become more integrated into the honest
community the cut between the two regions becomes larger. Instead, as the cuts between
honest communities tend to be small [87], SybilDefender could detect an honest community
as a Sybil community.
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Figure 6.7: Performance of SybilRank (SR). k is the number of attack edges per Sybil.
Whereas a random attack strategy requires two attack edges for a Sybil to dis-
guise itself (a), a more intelligent attacker can reduce the effort to one attack
edge, if she is able to place that edge close to a trust seed (b).

6.5.2.5 SybilRank

SybilRank distinguishes nodes according to their normalized trust ranking. The lower the
ranking of a node is, the more likely it should be a Sybil. Thus, to determine the distin-
guishing ability of SybilRank, the difference of the rankings of benign nodes and Sybil
nodes should be evaluated.

In its original evaluation, SybilRank places 50 seeds, with one chosen from ten nodes with
the highest degree in the OSN and the other 49 randomly chosen [57]. Initial experiments
showed that this strategy becomes increasingly flawed as the size of the OSN graph grows.
The reason is that due to the modular structure of OSN graphs, in many cases the distance
of the honest users to the seeds is larger than that of the Sybil nodes to the seeds, resulting
in higher rankings of Sybils than many benign nodes. Therefore, to improve SybilRank’s
distinguishing ability, one seed is placed in each honest Louvain-detected community in
another experiment, for which results are shown in Figure 6.7.

While SybilRank retains a good distinguishing ability if a Sybil can place only one attack
edge randomly (k = 1), a Sybil can already obtain a higher ranking than 30% of the honest
nodes with two such edges, leaving SybilRank with either a very high false positive rate
(30% of honest nodes ranked as Sybils) or ineffective at detecting Sybils.

More worrisome, as shown in Figure 6.7b, if the attacker can place attack edges two hops
away from a seed (i.e., d = 2), a single attack edge is sufficient for Sybils to outperform the
majority of honest nodes.
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(a) Sybils Attached Directly to Seed (b) Sybils Attached to Seeds Neighbors

(c) Sybils Attached Further Away

Figure 6.8: Performance of SybilRank when attacking seeds. k is the number of attack edges
per Sybil. If directly attached to a seed, a Sybil needs one attack edge to succeed
(a). For each hop further away from the seed, Sybils need one additional edge
to become indistinguishable to SybilRank (b,c).

Further, an observation drawn from additional experiments in Figure 6.8 is that, as a rule
of thumb, if placing attack edges one more hop away from the seed, a Sybil will only need to
add one more attack edge in order to achieve the same effect. In case of d = 3 (Figure 6.8c),
SybilRank performs similarly to the scenario in which attack edges were placed randomly.
This is a reasonable result considering that the average path lengths in OSN graphs is usually
around 5 [83], and thus a distance of 3 towards a certain seed is as effective as a random
placement of the edge. At the same time, the CDFs of benign nodes stay virtually the same
for different number of attack edges.
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Figure 6.9: Performance of GateKeeper (GK). k is the number of attack edges per Sybil.
Threshold = 35 tickets. When considering the threshold approach, most nodes,
both Sybil and honest, do not get admitted, because GateKeeper is not able to
work with a modular graph (a). A modification of the approach is only success-
ful to limited extent (b).

6.5.2.6 GateKeeper

The distinguishing ability of GateKeeper depends on how many tickets Sybil nodes can
obtain relative to honest users. Figure 6.9a shows two CDF curves of acquired tickets for
Sybil nodes and benign nodes, respectively, with one randomly placed attack edge per Sybil
node (k = 1). Clearly, one randomly placed attack edge per Sybil is sufficient to make the
two CDFs cross. About 35-40% of the honest nodes obtain fewer tickets than Sybil nodes.
If all Sybil nodes are excluded from being admitted, about 90% of the honest nodes will
suffer the same fate. This is caused by the modular structure of the OSN (i.e., multiple
distinct benign communities), which GateKeeper does not consider. With only few edges
connecting different communities, most ticket sources selected by the admission controller
via random walk will be in the same community as the controller, and nodes from other
communities will only acquire at most a trickle of tickets. Here, the same concept that
should protect GateKeeper from Sybils backfires. Further experiments with more, randomly
placed attack edges show that Sybils will not gain much further advantage. As long as attack
edges are randomly attached to a different community than that of the ticket source, Sybils
will not receive much more tickets by increasing attack edges.

To see whether modifying GateKeeper may help, GateKeeper can be altered so that it
can reach more benign nodes in modular networks. An admission controller is placed in
each Louvain-detected community. The results are shown in Figure 6.9b, which shows
that virtually all honest nodes are admitted, since they only have to be admitted by one
controller, and there is one in each community. However, for the same reason virtually all
Sybil nodes are admitted as well. If more attack edges are added, the Sybils outperform
honest users. In fact, if a Sybil is able to obtain two random attack edges, it can collect
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Figure 6.10: Performance of Ostra (OS). k is the ratio of attack edges in the system. Ostra
can mitigate spam in the system (a), but also blocks honest users content from
being sent (b).

more tickets than 80% of the honest nodes. This is because benign nodes have most links
within one community, whereas Sybils have a good chance to place attack edges to multiple
communities, and therefore in reach of multiple ticket sources.

6.5.3 Sybil Tolerance Approaches

The goal in evaluating Sybil tolerance approaches is to find out to what extent these ap-
proaches are able to limit the impact of the Sybil nodes in the modern scenario. In contrast
to Sybil detection approaches, it is important to consider the number of attack edges relative
to the number of honest edges in a Sybil tolerance system, i.e., the ratio of attack edges to
honest edges, also denoted as k.

Therefore, the focus in ST experiments is on to which extent the impact of Sybils may
grow with a higher ratio of attack edges or intelligent attack strategies.

6.5.3.1 Ostra

Figure 6.10 provides an overview of Ostra’s performance for a varying number of attack
edges. On one hand, Ostra does a good job in mitigating spam from Sybils. While the
amount of spam messages that can go through does grow proportionally with the number of
attack edges in the system, as shown in Figure 6.10a, Ostra is able to block a large amount of
spam messages and keeps the delivery ratio for Sybils quite low. However, the true impact
of an increasing number of attack edges lies in Figure 6.10b, where the amount of benign
messages that are blocked due to the credit depletion on the path between a source and a
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Figure 6.11: Performance of SumUp (SU). k is the number of attack edges per Sybil. Prun-
ing to one incoming edge has a negative impact on the voting capabilities of
honest nodes.

destination is evaluated. Recall that when a Sybil node sends spam to a destination, all links
on the path—including edges between honest users—can be penalized by Ostra’s feedback
mechanism (see Section 6.4). For example, with 1% (k = 0.01) edges in the entire system
being attack edges, about 5% of the benign nodes will have 5% of their messages blocked.
Note that since a message that traverses one attack edge may traverse multiple benign edges,
every newly added attack edge can multiply the negative impact described here.

6.5.3.2 SumUp

Among all evaluated approaches, SumUp is probably the most complex. It employs two
mechanisms which modify an OSN graph—namely pruning and feedback-based link elim-
ination. Both mechanisms are investigated in the following.

Pruning mechanism: Pruning the OSN graph affects both honest and Sybil users in their
voting options. For honest users, as a successful pruning should have limited or no impact
on them. This is the case if a node has three or more incoming edges after pruning as shown
in Figure 6.11. Pruning to a single incoming edge, however, has an adverse impact since it
depletes vote capacities on edges that could otherwise be routed around.



Defending against the Sybil Attack 92

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4
(a) SU: Impact of Pruning on Sybils

A
v
g
 A

tt
a
c
k
 C

a
p
a
c
it
y
 p

e
r 

E
d
g
e

Ratio Honest Voters/Honest Nodes

 

 

Pruning to 1

Pruning to 3

No Pruning

0 5 10 15
10

0

10
2

10
4

V
o
te

s
 C

o
lle

c
te

d

Ratio Honest Voters/Honest Nodes

(b) SU: Impact of Feedback

 

 

Benign
Sybil

Benign (AS)
Sybil (AS)

Figure 6.12: Performance of SumUp (SU). k is the number of attack edges per Sybil. Prun-
ing has little impact on Sybils (a), feedback reduces the number of collected
honest votes, and attackers can cycle through Sybils to outvote benign users
(b).

Figure 6.12a illustrates how pruning may affect Sybils’ voting capacity. Specifically, it
shows how the capacity of attack edges varies when the pruning has a different level of
aggressiveness and when more honest voters vote. The results in Figure 6.12a demonstrate
that pruning has minimal impact on Sybil users, if any. Only pruning to a single incoming
edge drops the average capacity per attack edge significantly. Unfortunately, doing so comes
at the price of a reduced ability of collecting honest votes (Figure 6.11). Furthermore, when
there is no pruning, Sybil voters perform better as more benign users vote. The reason is
that the more honest votes reach the vote collector, the more tickets are to be distributed,
thus the higher edge capacities on average and the more Sybil votes.

Feedback mechanism: SumUp is also designed for independent voting events, all of
which take place at different points of time. In a single poll Sybils are able to influence
the outcome of a vote, but SumUp utilizes a feedback mechanism in order to reduce, if not
remove, the attack capacity of Sybil votes.

The best way to evaluate the efficacy of the feedback mechanism is to see how well it
works when attackers establish attack edges close to the vote collector (allowing them to
flood a large number of bogus votes). Thus in an experiment with multiple rounds of voting,
the objective was to see if the feedback from every round can help the subsequent rounds of
voting. Here, social graphs, where attack edges are directly connected to the vote collector
and every node is pruned to have at most three incoming edges are used. Out of 1,000
honest users at every round a random 10% will vote, thus 100 votes per round. At the
same time 10,000 bogus votes try to outvote the honest votes in every round. Figure 6.12b
shows the results for this experiment. First, coinciding with SumUp’s original findings, the
feedback mechanism can rapidly reduce the number of Sybil votes after only a few rounds.
While Sybils can initially cast 104 votes, no bogus votes can go through after round seven.



93 6.6 Lessons Learned and the Impact on DOSNs

However, the feedback mechanism also reduce the number of honest votes. Although the
bogus votes cannot outvote the honest votes after several rounds, in the end out of 100
honest votes cast every round, only seven can be taken. The cause of this problem is that
as the feedback mechanism penalizes more and more links, some honest votes will not be
able to reach the vote collector. Moreover, an intelligent attacker can employ some attack
strategy (denoted as AS in Figure 6.12b) to counter the feedback mechanism. For example,
instead of having all Sybils vote in every voting round, in every round it can cycle through
the Sybil nodes and let different Sybils to vote (in this experiment every Sybil was given a
probability of 0.10 to vote). By doing so, although Sybils cast less votes this way, they can
outvote honest votes continuously.

Pruning and feedback mechanisms working together for Sybils: Recall that after
SumUp removes penalized links, it can reintroduce pruned links to replace the penalized
links in order to maintain the required number of incoming edges for every node (Sec-
tion 6.4.2.2). Unfortunately, the attacker can take advantage of this feature, and Sybil nodes
with a large number of attack edges can cycle through their penalized links and pruned links.
If a Sybil has an attack edge that is far from the vote collector and a previously pruned edge
that is close to the collector, the Sybil could even cast bogus votes to have the attack edge
replaced with the pruned edge, thus moving itself closer to the vote collector.

6.6 Lessons Learned and the Impact on DOSNs

This section reflects on all the state-of-the-art, OSN-based Sybil defense approaches that
were studied analytically and quantitatively, and lists the lessons learned based on their
performance in both the classical scenario and the modern scenario. Table 6.2 provides a
high-level summary of the analysis, measurement and comparison of these approaches.

As pointed out earlier (Section 6.4), all Sybil defense approaches assume the classical
scenario. They all assume that Sybils cannot obtain many attack edges, so that a small cut
exists in the social graph, whereas some further assume that the Sybils remain in a single
Sybil region. Also, only few schemes acknowledge that there might be multiple benign
communities, thus forming a modular OSN graph.

Sybil Detection. Based on these assumptions, Sybil Detection approaches are quite sim-
ilar in their implementations. Most approaches leverage random walks or modifications and
combinations of random walks. As a consequence, they suffer from a common weakness
when facing the modern scenario and their ability to distinguish Sybils from benign nodes
is no longer obvious. The experimental evaluation from a quantitative perspective further
confirms the qualitative analysis on the drawbacks of current Sybil detection approaches.
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Table 6.2: Sybil defense approaches summarized.

SybilGuard

SybilLimit

SybilShield

SybilInfer

SybilDefender

SybilRank

GateKeeper

Ostra

SumUp

SD

SD

SD

SD

SD

SD

SD

ST

ST

RR

Multiple RR

RR / RW

modified RW

RW / RR

RW

BFS Tickets

Link Credit

Link Credit

SC / SR / SBC

SC / SR / SBC

SC / SR / MBC

SC / SR / SBC

SC / SR / SBC

SC / MBC

SC / SBC

SC / SR / SBC

SC / SR / SBC

Solution Class Technique(s)Assumptions

2008

2010

2013

2009

2012

2012

2011

2008

2009

Year

Legend: SD = Sybil Detection, ST = Sybil Tolerance, RR = Random Route, RW = Random Walk,  SC = Small Cut,

 SR = Sybil Region, SBC = Single Benign Community, MBC = Multiple Benign Communities, AE = Attack Edges

Sybils obtain enough RR intersections

Sybils obtain enough tail intersections

Sybils obtain enough RR intersections

Enough traces end on Sybils

Sybils vs. Benign: RW frequency indis-

tinguishable; SR detection fails (no SC)

Sybils earn high enough ranks

Sybils collect enough tickets

Sybils can block benign content

Sybils can outvote honest nodes

Reason(s) for Ineffectiveness

≥ 1 AE per Sybil

≥ 5 AE per Sybil

≥ 1 AE per Sybil

≥ 2 AE per Sybil

≥ 2 AE per Sybil

≥ 2 AE per Sybil

≥ 2 AE per Sybil

≥ 1% AE in Network

Cycle AE in Voting

Conditions to break

In particular, they are indeed very vulnerable to an increasing number of attack edges. For
some, a single, randomly attached attack edge is sufficient for a Sybil to disguise itself as
a benign node, making these schemes incapable in real-world networks where Sybils can
easily obtain hundreds of these edges (see Section 6.3).

Additionally, the more sophisticated a scheme is by introducing additional steps to Sybil
detection, the more likely it will introduce more serious problems. SybilShield and SybilDe-
fender are probably the best examples. In the former, the use of agents opens up more
chances for Sybils to become accepted, whereas in the latter, the Sybil community detec-
tion can have a high false positive rate.

Finally, simple modifications to these approaches are not sufficient to improve their ca-
pabilities in detecting Sybils. Out of the approaches under investigation, a modified Sybil-
Limit required the most—but still very little—effort of the attacker. Here, a Sybil needs
to obtain about five attack edges in order to hide itself successfully. The increased effort
is due to a lower benefit of each attack edge to the attacker than that in other Sybil detec-
tion approaches. While having more attack edges makes it easier for the random routes
from a Sybil node to intersect with random routes from a verifier, at the same time it also
helps—although to a less extent—the random routes from a benign node to intersect with
those from a verifier. In other approaches, adding more attack edges yields higher benefits
for the Sybils, allowing them to break the defense solution with less effort. For instance, in
SybilShield, an increase in attack edges results in more intersections with the agents, from
which the benign nodes do not benefit in most cases.

Sybil Tolerance. In contrast to Sybil detection schemes, Sybil tolerance schemes (Ostra
and SumUp) are not as broken—they still limit Sybil activity to some extent. The reason
is that, unlike Sybil detection approaches, Sybil tolerance systems do not need to decide
whether or not a node is a Sybil, but can rather adaptively react to the behavior of ma-
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licious nodes. However, both Ostra and SumUp have serious flaws as well: in Ostra a
non-negligible fraction of benign nodes may be blocked from communicating, and SumUp
would allow an intelligent attacker to outvote benign users, leaving both schemes with only
limited success in tolerating Sybils.

6.6.1 Prospects of Future Sybil Defense Solutions

These results further provide insights to new Sybil defense solutions. The main commonal-
ity that connects all current approaches is that they solely exploit the (same) distribution of
edges in the OSN graph. Follow-up suggestions to detect Sybils, such as using the cluster-
ing coefficient [51], fall in the same category and are therefore very sensitive to changes in
the graph structure as well.

One suggestion is to force Sybils into the required structure by monitoring the link re-
quest acceptance rates of different nodes [171]. As a node has to be accepted by a certain
number of other nodes to be classified as benign, Sybils might be forced into creating many
links among themselves (which are guaranteed to be accepted). This would eventually lead
to a larger density of edges among the Sybils themselves compared to the links with honest
nodes—which could ultimately allow detection using existing approaches again. However,
Sybils can already achieve acceptance rates of up to 90% for their link establishment re-
quests. Also, while this scheme depends on Sybil nodes initiating contact, Sybils actually
can use simple attacks to gather a lot of requests toward them (Section 6.3), making it
unnecessary for Sybils to reach out to benign nodes for acceptance.

In fact, structural properties only account for a very small fraction of the information
incorporated within a social relation [81]. Social networks contain lots of meta-data that
quantifies the strength of ties between users. Therefore, in looking forward to future Sybil
defense solutions, an approach that enriches the structure of a social graph with more infor-
mation about the relations between its users in order to defend against Sybils is anticipated.

For instance, one could measure the intensity of communication between two particular
nodes—a major contributing factor to the tie strength between users [81]—to detect Sybils.
Here, if a node has a low intensity of communication with nodes already identified as be-
nign, it then might be classified as a Sybil.

However, such an approach can suffer from a high false positive rate, as honest users who
rarely interact with others might be mistaken for Sybils. A similar criterion contributing to
the total trust is the intimacy of a relation. Here, the messages between users might be
analyzed for certain keywords. Again, such an approach can introduce a high false positive
rate, and as message content needs to be parsed, it can interfere with the users’ privacy.
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Another major factor which contributes to the tie strength is duration. The longer a
relation exists, the stronger it is. In contrary, attack edges could experience a significantly
shorter lifetime than regular edges, since they might be deleted once a benign user realizes
he has become connected to a Sybil. If so, one could classify nodes whose links experience
suspiciously short lifetimes as Sybils.

6.6.2 Towards Other Research Directions

One key observation of the previous sections is that OSN-based Sybil defenses are overly
reliant on the social relations between participants. Doing so, however, is not unique to
Sybil defenses. A large number of systems of various research directions do the same and,
as a consequence, may need to be rethought as well.

Like Sybil defenses, many of these systems either try to strengthen the security of a target
system, or try to improve the performance of the target system. For instance, Reliable E-
Mail [76] is an email spam protection service that whitelists friends of friends. Hence, if a
Sybil can obtain attack edges with a short distance to the target of a spam email, the Sybil
will be whitelisted as well. At the same time, in Delay Tolerant Networkss (DTNs), some
researchers suggest that friend nodes are better carriers for messages [165]. Thus, if an
attacker can obtain attack edges close to the source of a message and deny any forwarding
actions, it can act as a dead end for these messages.

These systems do not face serious problems if attack edges are rare. However, serious
drawbacks can be assumed if the modern scenario is considered. It is suggested above that
Sybil defenses, which solely rely on structural properties of the graph are hardly viable.
Practically, the same statement is valid for many more systems.

6.6.3 The Impact on DOSNs

The original question asked at the beginning of this section was whether or not there exist
Sybil defenses that can be of help for existing or new DOSNs. The previously discussed
results show that this is clearly not the case, and that in fact these defense solutions open
up many possibilities for Sybils to easily sneak into the OSN by disguising themselves
as honest users. This is particularly the case for Sybil Detection (SD) approaches, which
would be more desiring for DOSNs, as they are aimed at providing a more universal defense
against Sybils than Sybil tolerance approaches. These systems should not be applied to a
novel DOSN, as they could lead honest users to believe that every participant of the network
is honest. At the same time, they might even classify weakly connected benign users as
Sybils.
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DOSNs could still use Sybil Tolerance (ST) approaches to thwart certain spam or ma-
nipulation attacks. However, for both ST approaches under investigation, serious system-
specific weaknesses prevent their application to DOSNs. If Ostra would be applied to pre-
vent the distribution of spam, a significant number of honest users could be blocked from
sending a certain fraction of their non-spam messages, while SumUp has shown to be inef-
ficient in preventing the outvoting of honest users by Sybils. These findings have two major
implications.

First, existing DOSNs are in fact very vulnerable to the Sybil attack. In Safebook for
instance, each user stores data at her supposedly trusted friends, who also act as request
forwarders towards the user. If such a friend happens to be a Sybil, both the user’s privacy
(e.g., the Sybil could analyze the data or track access to it) and the system performance
(e.g., the Sybil could deny requests to the data) can be degraded.

The same applies for Cachet, Proofbook and MyZone, which all put a lot of trust in the
social relations of a user. For instance, Cachet could possibly end up in caching data at
Sybils. In MyZone passphrases to access a users data are shared among friends, and a user
refuses connections from non-friends [45]. Since Sybils can in fact easily establish hundreds
of social relations to honest users, they can gain access to user data and flood others after
infiltrating the system, while MyZone will not react to any of these attacks. Such deficits
add to the multitude of drawbacks of related works, as described in Chapter 4.

Second, and more importantly, a new DOSN needs to be resilient against an attacker
orchestrating a large number of Sybils. That is, it has to tolerate that users might not be
careful when establishing social relations. In other words, even though the adversary might
be able to establish a large number of social relations to honest users, she still should not be
able to have a significant impact on the quality of service of these users. For instance, recall
that one property of a novel DOSN should be to exploit the opportunities of social relations
in OSNs. Hence, for each collaborative element of a new approach—as, for instance, any
sort of recommendation process—there must not be an opportunity for Sybils to easily
exploit it.

Also, recall that systems with permanently available resources were ruled out earlier in
this thesis. In a network that is based on the cooperation of users to store data for each other
an attacker may have the opportunity to flood the system with data. If such flooding is pos-
sible, it must be detected by the DOSN as well. Addressing these challenges is mandatory
for a new approach.
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6.7 Chapter Summary

In this chapter a wide range of state-of-the-art OSN-based Sybil defenses have been pro-
foundly studied. The goal was to figure out to what extent these defense solutions can be of
help to protect DOSNs against suffering from a Sybil attack. After elaborating on a more
recently emerging attacker behavior, in which the attacker is able to disguise her fake identi-
ties better than previously assumed, this chapter systematically analyzed and evaluated two
classes of Sybil defenses (Sybil Detection (SD) and Sybil Tolerance (ST)) with regards to
their performance when faced with that behavior.

The main finding was that current Sybil defenses have serious problems in the identifica-
tion of Sybils, often mistake honest nodes as Sybils, or accidentally impose restrictions on
benign users. Because modifying existing schemes does not result in a significantly better
performance, they should not be used as reliable protection means by DOSNs.

As a consequence, an additional central challenge for a new DOSN will be to

(i) efficiently mitigate the impact Sybils can have on each honest user’s experience; and

(ii) ensure the unimpaired functionality of the DOSN as a whole in the presence of an
increasing number of malicious accounts.



Chapter7
By The People, For The People
SOUP - An Online Social Network

The previous chapters provided a thorough analysis of the reasons for building a competi-
tive DOSN (Chapter 3), the shortcomings of previous efforts to do so (Chapter 4), and the
challenges such a system has to overcome (Chapters 5 and 6).

In this chapter the design of a novel approach towards a robust and secure DOSN, the
SELF-ORGANIZED UNIVERSE OF PEOPLE (SOUP), is presented. Ultimately, SOUP is
designed to solve all the previously outlined challenges by replacing the central provider
with an infrastructure substrate that is built and managed by the users themselves.

The focus of the upcoming sections is the construction SOUP’s communication infras-
tructure, which inherently addresses the first set of DOSN challenges. The remaining chal-
lenges are then addressed in the process of building the storage infrastructure (Chapter 8).
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7.1 SOUP in a Nutshell

In the SELF-ORGANIZED UNIVERSE OF PEOPLE (SOUP) all online nodes form a struc-
tured overlay that enables communication among them. The nodes maintain this overlay as
a global user directory in the absence of a central provider. In particular, a user interested in
communicating with another participant can search for that participant’s addressable iden-
tifiers, and then initiate a direct connection over an appropriate link.

Within the overlay, every SOUP node comprises the SOUP middleware and the SOUP
applications. Multiple SOUP applications can run concurrently on top of the SOUP middle-
ware, each of which can use the same social data for a different social networking context.
The applications communicate through a generic API with the middleware, which resides
between the network stack and the applications. The middleware provides the means to

(i) organize all online SOUP nodes into the overlay (Section 7.2);

(ii) establish communication channels with other SOUP nodes (Section 7.3);

(iii) provide the generic API to SOUP applications (Section 7.4); and

(iv) handle mobile nodes, which may run on limited resources and with limited connectiv-
ity (Section 7.5).

The lack of a central provider also entails the lack of a global data repository. To mitigate
the absence of this repository, SOUP also has to build a storage substrate. To enable this
substrate, every participating user (represented by a SOUP node) maintains her own data,
and selects a small set of other nodes as mirrors to store replicas of her data, in order to
keep her data available even when the user herself is offline. The replicas are synchronized
by an recursive update-based mechanism, whereas the data itself is securely encrypted. The
encryption routines allow each user to define arbitrary, fine-grained access policies to each
part of her data. In summary, the middleware thus further provides the means to

(v) ensure user data privacy (Section 7.6);

(vi) replicate the encrypted data to the mirrors (Chapter 8); and

(vii) maintain and synchronize the replicas (Section 7.7).
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Figure 7.1: An overview of the SOUP overlay based on a DHT. A user u can store her
information entry, including a list of mirrors at which others can find her data
while u is absent, in the DHT for others to lookup. After a successful lookup,
two users can directly communicate by exchanging signed, encrypted SOUP
objects, which can carry arbitrary content from applications operating on top of
SOUP. New nodes can join SOUP via a bootstrapping node and mobile nodes’
DHT requests are relayed by a fixed gateway node.

7.2 The SOUP Overlay

The structured overlay is formed as shown in Figure 7.1. It acts as a globally searchable
information directory and is based on the Pastry Distributed Hash Table (DHT) (see Chap-
ter 2.2). The choice of a DHT as the structured overlay is justified by the following reasons:

(i) A DHT does not require any permanently available resources.

(ii) It enables efficient publish and lookup operations in a decentralized fashion, making
a centralized user directory unnecessary.

(iii) The availability of the directory information is secured by an internal replication
mechanism [108].
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(iv) It can easily scale to millions of users [107, 108]. In fact, the more users there are in
the system, the more stable the DHT operates, because a partition of the ring becomes
more unlikely.

(v) DHTs have shown to be able to handle the churn rates typically present in OSNs.

(vi) DHTs offer important security features, such as, for instance, being resilient against
Sybil nodes [175].

In the DHT, every SOUP user can publish her directory entry at the node that is respon-
sible for her Identifier (ID) in the DHT key-space (e.g., v’s entry is published at s—Step 1
in Figure 7.1), and any other node can locate the node to retrieve the entry (e.g., u can look
up v’s ID—Step 2). An entry typically contains a user’s name, her SOUP ID, the interfaces
(i.e., IP addresses) via which she can currently be contacted, and the SOUP IDs of all the
mirrors of her data. Here, the SOUP ID is a 64-bit SHA-256 hash over the user’s 2048-bit
public key and uniquely identifies the user.

It is important to note that in contrast to some related work [44], a user only publishes
pointers to mirror nodes (i.e., SOUP IDs) in the DHT (e.g., w publishes her mirrors at y—
Step 3), whereas the data themselves are stored among nodes themselves. Directly storing
data in the DHT would have undesirable consequences:

(i) Every user would have no control over which other nodes will be her mirrors to host
her data, whereas the mirrors would have no option to reject unwanted data.

(ii) Moreover, it would increase the overhead of the system; whenever a node departs—
which can be often since SOUP nodes may have a high churning rate—it has to trans-
fer all its DHT data to another node.

Both problems are mitigated by decoupling the storage substrate (see Chapter 8) from the
overlay directory.

SOUP incorporates a list of publicly known bootstrapping nodes to support new nodes in
joining the system. A bootstrapping node is simply a regular node enhanced with a function
to bootstrap others: a new node can contact a bootstrapping node as its entry point to the
DHT, thus adding itself to the DHT. For example, in Figure 7.1, node n joins the DHT via
a bootstrapping node y. It then can prepare its entry (including looking up its own SOUP
ID in the DHT to make sure the SOUP ID is not used by another node by any chance), and
publish it to the DHT, enabling other nodes to look up the entry of the newly joined node.
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7.3 Communication in SOUP

To request data of interest, a user establishes a connection with another user in two steps:
In the first step, the user searches the entry of her communication partner in the DHT (e.g.,
u looks up the entry of v in Figure 7.1; m would do so via its gateway z). In the second step,
she extracts the addressable interfaces of the partner from the entry and creates a direct com-
munication channel. This channel can be based on any networking protocol, ranging from
standard Transport Control Protocol (TCP)/IP to Bluetooth, if available. Once a communi-
cation channel is established, the communication partners (u and v in Figure 7.1) exchange
signed SOUP objects, which can contain arbitrary information (Step 4 in Figure 7.1).

7.4 Applications in SOUP

The communication channel is usually created upon a request of a SOUP application to
send some data to another node running the same application. Multiple such applications
may be running concurrently on top of the SOUP middleware. They can encapsulate their
payload (such as user data or friend requests) into SOUP objects, which are then handled by
the middleware. The encapsulation into the SOUP object is done over a simple API, which
offers the functionality listed in Table 7.1. For instance, if an application issues a friend
request, the middleware encapsulates the request into a SOUP object and then forwards the
object to the request’s target (ADD FRIEND in Table 7.1).

Additionally, the API in particular allows applications to exchange content transparently
to the middleware (TRANSMIT APP DATA in Table 7.1), and thus enables the development
of any kind of OSN application on top of it. For instance, a Flickr clone would predom-
inantly exchange images among users. In that case, the middleware can encapsulate each
image into the PAYLOAD field of a SOUP object (see Figure 7.1), which is afterwards treated
like any other object carrying application data. Only when it reaches the destination node,
the payload is decapsulated and forwarded to the Flickr clone application running on that
node—or stored as an update for that application if it is not running.

Such transparency establishes SOUP as a generic DOSN, in which a single set of data
can be modified by a multitude of OSN operations, whereas its owner remains in control of
access to the data.
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Table 7.1: The API offered by SOUP to applications.

ADD_FRIEND Creates a friend request

Command Function

EDIT_FRIEND Edits ABE attributes for an existing relation

REMOVE_FRIEND Deletes a user from the friendlist

ADD_GROUP Creates an ABE attribute

REMOVE_GROUP Revokes an ABE attribute

REQUEST_DATA Requests a particular data item from a particular user

CHECK_UPDATES Checks for updates on the shared social data

TRANSMIT_APP_DATA Transmits application level data to another SOUP node

CONFIRM_FRIEND Confirms a friend request and adds the user to friendlist

REGISTER_APP Registers an application with the middleware

UNREGISTER_APP Exits the application appropriately

FOCUS_APP Claims user focus on this application

MODIFY_DATA Modifies or adds a particular data item of the local user

7.5 Mobile Nodes in SOUP

SOUP is designed to be friendly to mobile nodes. As these devices often experience excep-
tionally high churn (e.g., because of connectivity changes) and long response times (e.g.,
due to limited bandwidth), they can decrease the performance and stability of the DHT.
SOUP addresses this challenge by exempting mobile nodes from the DHT. Instead of be-
ing on the DHT, a mobile node will relay its DHT publish and lookup operations through
a gateway node that is on the DHT (e.g., node m will relay through node z in Figure 7.1).
Doing so has multiple advantages:

(i) It frees mobile nodes from directly executing DHT operations. In particular, they do
not participate in the shifting of directory entries upon the DHT join or departure of a
node. The exemption thus saves resources (e.g., bandwidth and energy) on the mobile
devices.

(ii) Further, the stability and performance of the DHT is improved. By removing the often
instable mobile nodes from the overlay, the likelihood of a faulty DHT ring is reduced.
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Also, if mobile nodes were part of the DHT, they could significantly impact the lookup
latency due to a possibly very limited bandwidth (e.g., in rural areas).

A mobile node initially uses a bootstrapping node as its gateway (the same node it con-
tacted to join SOUP). However, every time it encounters another node, it checks that node’s
ability to relay DHT requests (every regular node can set a limit to mobile connections)
and switches to that node as a gateway if possible, thus reducing the load on bootstrapping
nodes (e.g., node m has switched from node y to z in Figure 7.1). Note that since the data
itself is not stored in the DHT, the relayed requests do not consume a lot of bandwidth at
the gateway node.

7.6 Data Privacy in SOUP

To grant user data privacy, SOUP has to fulfill one paramount task: it has to endow users
with means to specify fine-grained access control to their data with regards to other users ac-
cording to their personal preferences [36]. The requirement for fine-grained access control
stems from the observation that a user Alice may be connected to a large number of users
in the OSN, but each of the links between Alice and another user Bob can be interpreted
differently. In fact, Alice might actually be linked with family, friends, co-workers, sports
mates, and so on, and SOUP should provide Alice with the tools to classify access to her
data, so that it represents the actual off-line relationship. For instance, Alice should be able
to define access policies to exclude users or groups of users from accessing more (or less)
personal informations.

Solving this task also provides users with the capability to restrict a mirror from accessing
their personal data. If Alice specifies access to (parts of) her data on a per-user basis, a
storage provider seeking access to the data has to be included by Alice as an eligible user.

However, to provide such functionality in absence of a centrally organized, trusted
provider requires some form of cryptographic support for efficient decentralized group key-
ing [36].

7.6.1 Traditional Cryptography in DOSNs

Traditional symmetric and asymmetric cryptography can help to enable efficient group en-
cryption [176, 177]. The OSN scenario however is different from the traditional group
keying scenarios in that a user sending to a group may not control the membership to the
group. For instance, Bob may post a picture to Alice with the intention to encrypt it for
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Alice’s friends to allow them to view the picture. However, Bob does not (and should not)
necessarily know the list of Alice’s friends and can thus not easily encrypt the picture for
every friend of Alice.

The group keying process is even more complicated if Bob wants to further restrict the
audience of a message (e.g., to target Alice’s friends who at the same time work with Bob).
Finally, when applying traditional group keying, the number of groups that exist in the OSN
can be extremely large, as users can encrypt for arbitrary (in the worst case any) combination
of friends, friends of friends or even strangers.

In detail, in order to create a group from a list of users with which Alice is connected
(e.g., friends), Alice can encrypt a symmetric or asymmetric group key with the public
key of each future member of the newly created group. A symmetric key leaves only the
members of the group able to encrypt content destined for the group, whereas an asymmetric
key also allows non-members to encrypt messages directed at the group (at a higher cost for
the cryptographic routines).

Alice then forwards the group key to all members of the new group, whereafter all mem-
bers can use the key to send encrypted messages to the group. This way, Alice (as the
creator of a group) can include any set of friends into the group, and messages can also be
encrypted for unions of groups. To do so, Alice’s friend Bob, who is member in two groups
G1 and G2 can encrypt messages for Alice’s friends who are in either one of two groups (G1
OR G2) by encrypting the message with each group key separately.

On the downside, it is not possible for Bob to encrypt the message for an intersection
(members who are in G1 AND G2). For that, Bob would encrypt with both group keys
consecutively. However, two friends of Alice, say Malory and Peter, can collude to gain
access to the message, even if both of them are in one of the groups only (e.g., Malory only
in G1 and Peter only in G2) [36]. In the example, Peter can first decrypt with the group key
of G2, forward the result to Malory, who then can decrypt the plain text of the message by
applying the group key of G1, or vice versa, depending on the order of encryption.

Also, a friend Mary of Alice who is not a member of a group G1 cannot easily encrypt
data for members of G1, as she does not know the group key of G1. Alice could publicly list
the groups and the corresponding public keys, and Mary could find the correct key for en-
cryption to G1. However, this requires additional infrastructure and, when using symmetric
cryptography, only group members can know the shared symmetric key.



SOUP - An Online Social Network By The People, For The People 108

Data Alice

AS = (friend ᴧ Berlin)

symmetric keyBob

ASK = (friend,Berlin)

3

4

5

2

1

Alice

Figure 7.2: An example of encryption in SOUP for two users Alice and Bob. Here, Alice
encrypts a data item with a symmetric key, and protects the symmetric key with
an AS. She also creates an ASK for a user Bob she wants to grant access to
the data. With that key, Bob satisfies the AS and can consequently access the
symmetric key, with which Alice’s data item can be decrypted.

7.6.2 Encryption in SOUP

In order to avoid the problems listed above, every SOUP user encrypts all her data by using
a combination of traditional cryptography with Attribute Based Encryption (ABE) [132].
Here, to ensure the confidentiality of all privacy-relevant user information, SOUP follows
the ideas of Baden et al. in [36]. The symmetric key required to access the encrypted content
is protected by an ABE Access Structure (AS), which itself is defined by a combination of
attributes, so that only requesters holding the correct attribute key can decrypt it (see Chap-
ter 2.3.3). The use of the symmetric key for the actual data encryption reduces the amount
of expensive (asymmetric) ABE operations. Critical operations (i.e., granting access to the
key required to access some data) are handled by ABE, while common operations (e.g., the
actual access to the data itself) are based on symmetric keys [36].

In SOUP, Alice will act as a quasi-CA for her own data as depicted in Figure 7.2. She
first encrypts (parts of) her data with a symmetric key (step 1 in Figure 7.2). Afterwards, she
defines the AS to restrict access to the symmetric key that is required to decrypt a particular
data item (step 2). The AS itself is defined as a logical expression over a set of attributes,
e.g., (’friend’ AND ’Berlin’).

To grant access to her data, Alice will then create an Attribute Secret Key (ASK) for each
of the users she wants to access some parts of her private data (in step 3 in Figure 7.2, Alice
creates the ASK for a user Bob with the attributes ’friend’ and ’Berlin’). In the ASK of Bob
a number of attributes, which Bob fulfills from Alice’s perspective, are embedded [132,
133]. In other words, the ASK specifies the groups Bob belongs to for Alice. Recall that the
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ASKs are constructed such that Bob, if he is a member of both groups f riend and Berlin
(i.e., Bob holds both attributes), can access the key (step 4) required to decrypt the data item
(step 5) (see Chapter 2.3.3 for details).

At the same time, two colluding users Malory and Peter cannot access the symmetric key
if both of them are a member of one group only (i.e., each of them holds one attribute only).
Further, any non-member of a group can encrypt to the group’s access structure—or to any
other access structure, thereby creating any new group—if she knows Alice’s ABE Public
Key (APK) and the names and definitions of the attributes Alice defined.

7.6.3 Attribute Management Routines

By using appropriate attributes, a user can then grant fine-grained access to her confidential
data, as the data cannot be accessed by other entities except those holding the corresponding
attribute keys. For instance, the user can limit access to one item to users holding two spe-
cific attributes, while three different attributes are required for another item. The attributes
themselves can be arbitrary (e.g., such as colleague or lives in my city). In particular, the
mirrors themselves cannot access the data stored at their premises without holding the cor-
rect attributes.

Thus, a user needs to have available particular routines to assign attributes to other SOUP
users. This thesis broadly follows the implementation of management routines for attributes
in OSNs as provided by Baden et al. , which only introduce a limited overhead—even for
mobile devices [36]. In detail, granting access to data for individuals or sets of users is
achieved as follows:

Adding a user to a group. If Alice wants to add a friend Bob to her set of friends, she
will create K = Alice.ASK′ f riend′ , the ASK that grants access to any content that is published
for the group ’friend’. Afterwards, Alice will compute C = T Encrypt(Bob.TCPK,K), i.e.,
asymmetrically encrypts K with Bob’s Traditional Cryptography Public Key (TCPK) and
makes C available to Bob who can then decrypt C using his traditional cryptography private
key. Hereafter, by using K, Bob can decrypt the symmetric key to all content, which was
encrypted for Alice’s friends. This way, Alice can also dynamically add users to existing
groups. She can then encrypt her data for arbitrary conjunctions of these groups, which
allows her to define access to her data on a fine-grained basis.

Assigning Rights to a Group. Alice may additionally want to encrypt data for a set of
users from different groups. For instance, suppose Alice wants to encrypt a message for
both Bob (who is in the group friend) and Charlie (who is in the group colleague). Here,
a combination of attributes (friend OR colleague) is unsuitable, as it would allow all users
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in both groups to access the message. Hence, Alice will define a new group. To setup
the group, she creates a new traditional public key cryptography key pair and encrypts this
key pair with an AS defining the group. Then, the key pair is the group identity and can
afterwards be treated as a single user as described above.

Transitive groups. Besides Alice herself, others may want to encrypt data for groups
defined by Alice. For instance, Bob might want to address the set of Alice’s friends. To do
so, he needs to define a group based on the group definition of Alice. Thus, Bob creates B =
Bob.ASK′alice− f riend′ and encrypts it with the Access Structure (AS) ′ f riend′ using Alice’s
APK (Alice.APK), such that users holding the attribute ′ f riend′ issued by Alice can access
the key. Afterwards, Bob can encrypt content using B and make it available at Alice’s
mirrors.

Modifying groups. Removing a user from any group, currently, requires re-keying of the
whole group. However, there exist ABE-based schemes to reduce re-keying, but unfortu-
nately, these schemes are not implemented and thus not ready-to-use for SOUP yet [178].

The opposite case, i.e., adding a user to the group does not require such re-keying. How-
ever, the newly added user might not be supposed to read older contents of the group, which
were discussed prior to her membership. In this case, a condition, e.g., keyYear≤ 2012, can
be included as an attribute into the AS to prevent newly joined members to read older data.

7.7 Data Synchronization in SOUP

Besides managing her own data, a user may receive updates from other users. These updates
can be varying in their type. For instance, an update could contain a message being sent to
the user, or a friend request that needs approval. Depending on the content an update might
require the user to alter her data. For instance, when accepting a friend request, the user
would have to update her friendship list.

If the user is online herself, she can directly receive these updates, order them based on
the timestamps included in the received SOUP objects, and alter her data accordingly. For
instance, when receiving multiple messages shortly after another, the timestamps can help
to order them correctly.

Afterwards, she will (re-)encrypt the updated or new data and can then distribute the
update to her mirrors. Note that the mirrors themselves are not (necessarily) eligible to
modify the (encrypted) user data themselves, but are merely used as storage facilities. Be-
cause SOUP encrypts and transmits data on a per-item basis, a user does not have to transmit
her whole profile to all mirrors after each change in her data. In case of an added friendship,
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u’s mirrors. In this scenario, mirror v is offline itself, such that the update for u
will be forwarded to v’s mirrors. v can then collect the update upon returning
online. This way, all mirrors which are online always have the most recent
updates available for u to collect at its return.

the user would instead just have to re-distribute her friendlist to her mirrors.

If the user is offline (e.g., u in Figure 7.3), she then needs assistance from her mirrors
(e.g., v and w in Figure 7.3). The mirrors act as a surrogate by receiving and storing the
updates to a user’s data, which can then be collected and ordered by the user upon returning
online later. Thus, as u is offline, updates for u have to be stored at u’s mirrors, v and w. u
can then collect these updates, decrypt the update objects, and alter her data appropriately
upon her return. SOUP is designed such that at least one mirror of each user is online at any
time and can retrieve these updates (see Chapter 8).

In both cases, a mirror might be offline herself as well. In that case, updates destined to
the user may have to be stored at the mirror’s mirrors analogously. Upon returning online,
the previously offline mirror will contact her mirrors to retrieve the updates destined for the
user. Hereby, all mirrors always present the most recent user data if they are online, which
also enables the data owner to synchronize different personal devices. In Figure 7.3, mirror
v herself is also offline, so that updates for (not the whole replica of u) have to be further
passed on to v’s mirrors x and y. Hence, v can retrieve any updates to u’s data upon returning
online from its own mirrors.

Note that requests to modify any data must be encapsulated in an appropriately (i.e., with
the owner’s private key) signed SOUP object, and will otherwise be discarded. Else, each
user with access to the symmetric key that protects the data could also modify it.
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7.8 Summary of Addressed Challenges

The system architecture of SOUP inherently addresses a number of the challenges for new
DOSN approaches.

(i) By relying only on other OSN nodes to form the storage substrate, SOUP remains free
of charge for users. Moreover, distributing the task of data storage to a multitude of
storage locations (mirrors) for each user reduces the risk of a large-scale data leak at
a single instance.

(ii) By allowing applications to transparently exchange content, SOUP is generic, and
since multiple applications can run concurrently on top of the middleware, SOUP also
facilitates inter-operability between multiple OSN services.

(iii) By exempting mobile users from overlay maintenance, SOUP goes easy on the re-
sources of their devices, while at the same time increasing the stability of the overlay.

(iv) By providing comprehensive ABE operations to each user, SOUP provides user-
controlled data access policies, and no entity can obtain access to data by simply
providing storage facilities.

However, due to removing the central data repository and relying on user machines as
mirrors, the system has yet to solve multiple challenges, including two of its two key objec-
tives.

(i) SOUP needs to be robust, i.e., it has to efficiently achieve high data availability of all
users’ data.

(ii) SOUP needs to be secure, i.e., it has to be protected against DDoS or Sybil attacks.

SOUP addresses these objectives and the remaining challenges in the way in which each
node selects its set of mirrors.



Chapter8
Mirror Selection in SOUP

In the previous chapter SOUP has been shown to address multiple of the challenges for
DOSNs. This chapter describes how SOUP keeps its remaining promises.

To constitute a robust OSN, SOUP has to ensure that at any given time for every OSN
node, either the node’s data is available at the node itself (the node is online), or a copy of
the data—called a replica—is available at another node—called a mirror. The core task for
SOUP is thus mirror selection: every OSN node needs to select the most eligible nodes as
mirrors before it places its data replicas there. The selection process should also consider
altruistically provided resources, while it must reduce the generated overhead to a minimum.

At the same time, to also set up a secure OSN, the mirror selection must be resilient
against a multitude of malicious attacks.
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8.1 Mirror Selection in a Nutshell

Every node employs two modes to select its mirrors, a bootstrapping mode and a regular
mode. When a node joins the OSN and does not know anything about the network, it
runs in the bootstrapping mode, which allows it to gain a foothold in the OSN; it obtains
recommendations from each node it encounters and ranks mirror candidates based on this
information (Section 8.2). Once a node befriends others, it begins to learn from them about
their experience in accessing its data at its mirrors, and transitions to the regular mode; it
will now rely on friend experience to rank mirror candidates (Section 8.3).

The two modes differ in their way of ranking mirror candidates, but follow the same
routine for selecting mirrors (Section 8.4). Here, a node will primarily consider that the
higher a candidate is ranked, the more likely it will make the node’s data available. Note
that it is more so with the regular mode when direct user experience is used for ranking,
as opposed to looking at strangers’ recommendations in the bootstrapping mode. SOUP
further allows every node to dynamically select as many mirrors as needed. As a result, no
matter whether a node itself is online a lot or not, and no matter whether it has many friends
or just a few, as long as it has enough quality mirrors via SOUP’s algorithms, its data will
be highly available through those mirrors.

The mirror selection is thus robust.

SOUP leverages social relationships in the mirror selection process primarily through
experience exchanges, and every node functions with the help of its friends: node u’s ex-
perience in accessing node w’s data via w’s mirror v helps w decide if v is a good mirror.
But social relationships can be useful in other contexts as well. Since friends have more
incentives and higher trust to store data for each other, a node assigns a higher weight to
friend candidates when selecting mirrors, and protects profiles of friends when dropping
data from its storage.

Dropping data may be necessary if a node is chosen as a mirror by many nodes, and its
resources are exhausted. A dropping strategy is critical, especially when an adversary is
flooding the OSN and many nodes receive numerous malicious requests to store data. For
this task SOUP employs a protective dropping mechanism (Section 8.5).

Besides flooding, malicious nodes may try to manipulate the recommendation scheme
by manipulating recommendations as, for instance, in a Sybil attack. By carefully deciding
which and how many recommendations to take into account during mirror selection, SOUP
offers protection against such adversary behavior.

The mirror selection is thus secure.
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8.2 Mirror Candidate Ranking in the Bootstrapping Mode

SOUP provides a mechanism to allow new nodes to quickly achieve high data availability.
At the time a node joins the OSN, it does not possess any information about well-suited
mirrors. However, as it contacts other nodes, these nodes can suggest such mirrors to the
new node. Here, the fact that OSN users are most active when they have just joined, and
they contact many other nodes is exploited [74]. More specifically, every time a new node
u contacts a node v, v suggests the set of mirrors that works well for itself to u. The initial
suggestions will thus be received from the bootstrapping node, which u used to join the
network. If for some reason u cannot obtain any recommendations, it will randomly select
mirrors from its contacts.

However, a node should not use the bootstrapping mode for too long. A node w suggested
by v might not be a good choice for u for various reasons:

(i) Node behavior in OSNs is heterogeneous (e.g., with regards to online time [156]) and
w is probably not the best fitting node for u.

(ii) Moreover, w might not be willing to store data for u in the first place, or may have a
limited storage capacity and has to drop some of the data it previously accepted.

(iii) Finally, a malicious node could fake recommendations and lure others to store their
data at its site.

8.3 Mirror Candidate Ranking in the Regular Mode

SOUP’s regular mode makes use of knowledge that a node does not have during bootstrap-
ping, but can obtain after it has established social relations to other users. It will then
leverage observations of these users to rank mirror candidates.

As illustrated in Figure 8.1, a node u in regular mode maintains two data structures: a
Knowledge Base (KB) and Experience Set (ES). In the knowledge base, every entry is
about a node that u knows. With regard to an entry for node v, if v is a mirror of u, u will
record an experience value (expv) based on u’s friends’ experience regarding v in the KB.
A node w is friends with u if there is an edge (u,w) in the OSN’s social graph G, which
represents a social connection between both nodes. The experience value is the basis for
ranking mirrors.
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Figure 8.1: Maintenance of knowledge base KB (top table) and experience sets ES (bottom
table) at node u. Initially, u only knows one node (node w in (a)), which is also
friends with u (i.e., sr(u,w) = 1). As u learns about new nodes, it adds them to
KBu (e.g., x, y in (b)). For each friend, node u further observes the performance
of the friend’s mirrors and records its experiences in ESu( f riend) (e.g., w in (b)).
u also receives ES j(u) from each friend j, allowing u to calculate the experience
ranking for each node in KBu (c). As u continues to record its own experiences
for friend nodes (c), node w has replaced node v2—for which u observed a bad
performance—with node v4.
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Figure 8.2: An example for a recording of Experience Sets. Here, node w has selected the
nodes v1,v2 and v3 as mirrors for her data. During the time in which w is offline,
node u tries to request w’s data from different mirrors. While u is successful in
retrieving the desired data from v1 and v3, a request towards v2 fails. u records
these observations in the experience sets and periodically transmits the collected
sets to w. Based on all collected experience sets submitted by her friends, w can
then rank its existing mirrors and react to their performance. In case of a bad
performance, w will increase mirrors or select different nodes as mirrors, w can
reduce the mirrors in case of a good performance.

In addition, the entry for v will record whether or not v is friends with u and a Time-To-
Live (TTL) value that decreases every time u does not choose v as a mirror (TTL not shown
in Figure 8.1).

Also, for every node w that is a friend of u, u records an experience set ESu(w) as shown
in Figure 8.2. This set records u’s observations of w’s mirrors; that is, when requesting w’s
data (Step 1 in Figure 8.2), u records whether or not the data is available at w’s mirrors (see
Figure 8.1b). It will then periodically transmit its experiences to w (Step 2).

Besides confining overhead, the experience set exchange is limited to friends for two
further reasons:

(i) Users request the their friends’ profiles more often than those of strangers. This way,
they can record experience sets on the fly when requesting the data anyway.

(ii) The limitation raises the bar for malicious nodes trying to perform slander, as they
have to establish social connections to their victims first.
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Thus, for every node j that u is friends with, u will receive an experience set ES j(u) from
j, which includes j’s observations about u’s mirrors. For any mirror v, node u can then
calculate v’s experience value—which also serves as v’s ranking—as:

expv = (1−α) · expold
v +α · 1

n

n

∑
j=1
·
o( j,v) ·av( j,v)

omax
(8.3.1)

where n is the number of experience sets that u’s friends have reported, o( j,v) is the number
of observations regarding v that a friend j is reporting since the last experience set exchange,
omax is the maximum number of observations that j can report, and av( j,v) ∈ [0,1] is the
availability of v during j’s requests of u’s data. Equation (8.3.1) was designed with respect
to a trade-off between accuracy and security:

• Accuracy. u usually does not care who tried to access its data (especially since the
exchange of observations is limited to friend nodes). Instead, it cares for the number
of attempts and successes of each reporting node in receiving its data. For instance,
in retrieving u’s data from v, if one node reports 100% success (9 successes out of
9 attempts) while another reports 0% (0 out of 1), v should not receive a mediocre
ranking since in total 9 out of 10 attempts succeeded.
• Security. However, a single malicious node or multiple collaborating Sybil accounts

could report huge numbers of manipulated observations, outweighing a lot of regu-
larly observing nodes. Recall that existing defenses against vote manipulations by
Sybils have been shown to be ineffective (Chapter 6). Hence, the maximum number
of observations, omax, that a node can report is limited to confine the influence of a
few (potentially malicious) nodes in this calculation.

With expv computed as above, a significant portion of the recommending nodes, i.e., the
friends of u, need to be malicious to have an impact on the selection scheme, while the
experience from nodes with more observations still carries more weight.

Finally, α is the aging factor of observations, and a more recent observation carries more
weight than an older one (expold

v ). Otherwise, a malicious node could perform a traitor
attack, where it obtains an excellent reputation just to exploit it afterwards. In particular,
such a node could offer exceptional storage capacities and online time, and thereby likely
getting selected as a mirror by many users, just to disappear later. Or, the quality of a
mirror could suddenly deteriorate because of accidental reasons like connectivity problems.
Applying the aging factor supports quick adaption to such situations. However, α should
also not be over-valued, since a performance degradation can be temporary as well. When
evaluating α , it appears that observing only the most recent observations might in fact
lead to unstable mirror sets. Choosing α = 0.75 provided the best experimental trade-off
between adaptation and stability.
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Algorithm 1 The mirror selection at node u. Given a ranked list of candidates for u, Cu, u
will select the highest ranked nodes from Cu until the estimated data request failure from the
already selected mirrors is below the target error rate ε . u will then apply the social filter β

to the not selected follow-up nodes in Cu who are friends with u. The filter checks whether
or not these nodes perform close to a selected mirror node, with whom u is not friends. If
so, the mirror node is replaced. Finally, u adds a random node to the mirror set to prevent
the overlooking of better nodes.

Mu: set of u’s mirrors, initially empty
Cu: a ranked list of mirror candidates
rv: a candidate v’s ranking value
# Select nodes from Cu
perr← 1
while perr > ε do

add next top ranked element v from Cu to Mu
perr = perr · (1− rv)

end while
# Apply social filter to nodes in Mu
# (sr(u,v)=1 if u is friends with v; 0 otherwise.)
for all v ∈Mu that sr(u,v) = 0 do

if ∃v′ ∈ (KBu−Mu) such that
sr(u,v′) = 1 and rv′ ·β > rv then

replace v with v′ in Mu
end if

end for
# Prevent overlooking better nodes
add to Mu a random node v′′

return Mu

8.4 Choosing Mirrors from the Ranking

Once a node obtains the ranking of mirror candidates from either mode, it selects its
mirrors from the candidates, as depicted in Algorithm 1. It has a target error rate, ε , such
that the probability of her data being unavailable is less than ε . First, it adds the top-ranked
candidate nodes to its mirror set one by one, until the estimated likelihood of the data not
being available is less than a target error rate ε:

perr =
n

∏
i=1

(1− ri)< ε (8.4.1)

where ri is the experience value of the i-th node in the candidate list.

Second, SOUP further exploits the inherent OSN incentives where nodes would rather
prefer to store data of a friend than a stranger. The node applies a social filter to raise the
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ranking values of its friends:

rv = max(β · rv,1) , where β > 1. (8.4.2)

Friend nodes will thus move up in the ranking and can even replace some unrelated nodes as
mirrors. The usage of this social incentive, however, must not be over-stretched. Evaluating
β shows that a friend has to provide at least 80% performance of unrelated mirrors (β ≈
1.25) in order to offer the best availability and overhead, i.e., it cannot be significantly
inferior to the unrelated nodes. For lower rankings, the performance gap exceeds the lesser
dropping probability due to the social relation. Note that, in contrast to related works, nodes
with few or low-ranked friends are not discriminated by the social filter and can still achieve
high availability. The filter is rather an option for those nodes with highly ranked befriended
mirror candidates. Finally, u adds to its mirror set a random node for which it has not yet
determined a ranking (e.g., a new entry in its knowledge base). This way, u prevents a
possible overlooking of even better suited nodes.

8.5 Protective Dropping of Data at Mirrors

A mirror node v may not always have enough space to store the data for another node,
say u. While v can simply neglect u’s storage request, alternatively, v can also drop another
node’s data to make more space for u. Dropping will not only provide more flexibility, it
will also enable v to choose what data to store.

If a miscreant orchestrates a Sybil attack and floods the OSN with a large amount of
storage requests, v may quickly fill up its storage space. Existing countermeasures against
such attacks have been shown to be ineffective in Chapter 6. Therefore, in SOUP, each
mirror node v implements a dropping policy that favors friends. The reasoning is that,
although a user might accidentally befriend some Sybils, the majority of her friends will
remain honest.

Note that this does not contradict the findings of Chapter 6, as it showed that a Sybil
only needs to create one or two attack edges to any honest nodes in the OSN to circumvent
existing Sybil defense solutions—and not that a majority of a user’s relations are usually
compromised.

v can thus drop the profiles of (possibly malicious) strangers, leaving space for the data
of friends.

On the downside, this practice alone would discriminate honest nodes without or with few
social relations, since these nodes need to rely on non-friend nodes. Moreover, malicious
nodes can obtain social relations with some victim nodes in any case (see Chapter 6), and
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Table 8.1: Protective dropping notations.

v Node at which storage is exhausted

Symbol Meaning

w Node that has stored a replica at v

dw Dropping score for replica of node w

ß Social filter

Ɵ Blacklisting threshold

c Mismatch increase (constant)

are thus able to flood the victims. Therefore, for every node w that stores its data at node v,
node v calculates a dropping score, dw, regarding w’s data as follows (with notations given
in Table 8.1, and pseudo-code listed in Algorithm 2):

• As v exchanges experience sets with each friend, say u, it also learns which nodes
store their data at u.
• If a node w also stores its data at u, dw is increased by 1. To protect the data of friends,

their score is decreased by 1/β (recall that β ≈ 1.25). If w is a flooder and tries to
store its data on as many nodes as possible, dw will then be high, and w’s data will
incur a high dropping probability. (Also, consider two benign nodes w, w′ where w
has a larger mirror set. Since v generally contributes less to the overall availability of
w than to that of w′, dropping the data of w has less impact than dropping the data of
w′.)
• If v observes a copy of w’s data in itself, but v is not listed in w’s published mirror

set, it increases dw by a large constant c, as such a mismatch between the announced
(i.e., published in the DHT) and the real mirror set may indicate a flooding attempt.
• If dw reaches a threshold θ , node v then blacklists w from storing its data on v.

The threshold can vary depending on the willingness to avoid false positives, which can
occur due to network errors, e.g., an error when publishing a new set of mirrors. The
experiments provided the best results with a three-strike principle, in which θ = 300 and
c = 100. Thus, a node w will be blacklisted at v after v observed three mismatched mirror
sets.
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8.6 Chapter Summary

SOUP’s mirror selection is supposed to offer a robust and secure DOSN, and offers the
following features to justify that claim:

(i) it does not discriminate against any node as all nodes can select as many mirrors as
needed to obtain high data availability.

(ii) in limiting the quantity of observations a single (possibly malicious) friend node can
report, it offers a protection against the Sybil attack.

(iii) its protective dropping mechanism offers both protection of friends’ data without dis-
criminating against badly connected users, and protection against DDoS attacks by
flooding.

However, it remains unclear how well these design principles help in achieving high and
robust data availability, and how efficient malicious behavior is mitigated by them. The
following chapter will thus evaluate every part of the mirror selection in detail.



Mirror Selection in SOUP 124

Algorithm 2 Protective Dropping at a Node v (invoked when storage space is full)
cv: storage capacity of v
Rv,Ru: set of replicas stored at v and u
Gv: set of nodes with social links to v
dw: dropping score for replica of node w
Mw: set of mirrors of w
θ : ban threshold
β : social filter
φ : increase of dw in case of a mismatch
Bv: ban list at v
dw← 0:
# Compare replica sets and compute pd(w)
for all w ∈ Rv do

for all u ∈ Gv do
retrieve Ru

if w ∈ Ru then
dw← dw +1 ·β
if u /∈Mw then

dw← dw +φ

end if
end if
# If threshold is reached, add node to ban list
if dw > θ then

w→ Bv

end if
end for

end for
drop dataw with highest dw

return updated Rv,Bv



Chapter9
SOUP - Simulation and Analysis

SOUP’s mirror selection scheme allows each OSN user to dynamically select as many mir-
rors as required to reach an estimated availability probability of above 99%. It considers
parameters such as friendships among users, the users’ collaboration, and the timeliness of
their recommendations. At the same time, protective dropping provides mirrors with op-
tions to control which data they store, and malicious users are inhibited from attacking the
system by various precautions.

In this chapter the selection procedure and its parameters are extensively evaluated by a
large-scale simulation. The analysis of the results pays particular attention to the challenges
SOUP and its mirror selection scheme face. The experiments with three real-world datasets
show that SOUP provides high data availability with low overhead, and does so for all nodes
in the OSN. SOUP performs even better when altruistic nodes exist, and successfully copes
with node churn and malicious attacks. Additionally, SOUP is measured against comparable
related works to also show its superior quantitative performance.
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Table 9.1: The large-scale datasets used for SOUP’s evaluation.

Facebook 90,269

OSN Nodes

Epinions 75,879

Slashdot 82,169

3,646,662

Edges

508,837

948,464

40.40

Avg. Degree

6.71

11.54

9.1 Metrics, Datasets, and Methodology

To evaluate SOUP’s mirror selection scheme, expressive metrics for its performance have
to be specified first. In essence, these metrics should be able to express that SOUP effi-
ciently solves its challenges. Hence, in the succeeding sections, the following two basic
performance metrics are used:

(i) Data availability at time t: The ratio of the number of users whose data is available
at time t to the total number of users in the OSN.

(ii) Replica overhead at time t: The average number of replicas each OSN node has at
time t.

With regards to these metrics, SOUP is considered to offer high performance if the data
availability is high while the replica overhead is kept low. As SOUP should achieve high
performance at all times for all users, regardless of any external influence, the two perfor-
mance metrics can then be used to measure SOUP’s robustness, adaptivity, and resiliency:

(iii) Robustness. SOUP’s ability to provide high performance to all nodes in an OSN,
regardless of a node’s online time, social relations and device capabilities.

(iv) Adaptivity. SOUP’s ability to increase performance when altruistically provided re-
sources are available.

(v) Resiliency. SOUP’s ability to maintain high performance when facing adverse sce-
narios, including attacks by malicious users.

Three different large-scale datasets as listed in Table 9.1 are used to evaluate SOUP’s
performance with regards to these metrics. These datasets cover a variety of real-world
social graph features and can help evaluate SOUP’s performance in different contexts. For
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Figure 9.1: A node online time probability distribution which follows a power-law distri-
bution. Most nodes are rarely online (towards the left end of the figure), while
only few nodes are highly available (towards the right end of the figure).

instance, users should not depend on their number of friends. Therefore, the Epinions data
set with an average node degree of only 17% of that in the Facebook set was chosen to
validate that SOUP can also perform well for users without many friends. Moreover, all
datasets provide a sufficiently large user population to evaluate whether SOUP is scalable.
SOUP is simulated under the metrics defined above by using these datasets.

Further, a number of parameters associated with each user are handled. One goal of the
succeeding experiments is to give a estimation for the lower boundary of SOUP’s perfor-
mance. Thus, the following parameter setups favor a conservative parameter setting over
the best case setting:

Target error rate ε . In the experiments, every user defines her target error rate as 0.01;
i.e., every user aims at a 99% likelihood of her data being available (Section 8.4).

Node online probability. Each node’s availability must be known at any given time to
determine if a user’s data is available at this node. Node online time in OSNs is based
on bursty interaction patterns of users and typically follows a power-law distribution [74,
156, 179]. Therefore, in the following experiments, around 60% of the nodes are available
less than 20% of the time, and there are only very few highly available nodes, as depicted in
Figure 9.1 for a 10000-node example network. Note that this power-law model incorporates
the high churn rates typical for an OSN, and thus all experimental results are obtained
respecting this property. Different online time distributions are evaluated in Section 9.2.7.
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Further, diurnal patterns are applied to populate the online time matrix of each node.
According to [180], on Facebook there exist three major time zones (US, Europe and Africa,
and Asia and Oceania), where a node’s probability of belonging to these zones is 0.4, 0.3,
and 0.3, respectively.

Additionally, complying with [82], the online time of a node is not correlated with its
degree, i.e., the user’s number of friends. Note that even if such a correlation would exist,
it would rather improve the performance of SOUP, as highly available nodes with many
social relations will contribute many experience sets. As a consequence, recommendation
set values would be more precise during mirror selection.

Finally, to bootstrap, nodes join the experiments asynchronously according to their online
probability. Hence, the first selection of mirrors will not occur instantly for most nodes due
to the power-law distribution of online times.

User activity pattern. Another parameter that affects the calculation of recommendation
sets is how often a user accesses the data of other users. Different evolutions of OSN user
activity have been observed [74, 156]. As the most conservative model, user activity was
chosen to be exponentially decreasing [74]. After an initial phase of high interaction once
joining an OSN, a user’s activity decreases exponentially to become less than one interaction
per day. As nodes in SOUP must gain knowledge about other participants (i.e., get in contact
with them) in order to find the best-suited mirrors, this model represents the worst observed
case in literature, and thus contributes to the conservative parameter setting.

Available storage space per node. Finally, each node must have a specific storage space
value in order to evaluate the storage overhead and dropping strategy of SOUP. This storage
space available at each node is modeled as a Gaussian distribution, with a median of space
for mirroring data of 50 users, which requires no more than half a gigabyte of disk space as
shown later in Chapter 11.

The assignment is repeated five times per dataset to create 15 simulation scenarios in total.
Afterwards, each scenario is executed multiple times, without assuming any correlation
between the online time, activity and storage parameters.
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Figure 9.2: SOUP achieves high availability with low overhead.

9.2 Results and Analysis

9.2.1 Data Availability and Replica Overhead

The first step SOUP must take towards providing a robust and competitive DOSN is to offer
high performance. Figure 9.2 shows SOUP’s data availability and replica overhead for each
dataset. In all the three datasets, SOUP achieves the targeted availability of above 99% after
only one day, even though no node has any knowledge upon joining. As SOUP reaches
equilibrium, the high level of availability is maintained for the entire remaining period.

Two distinct phases exist regarding the replica overhead. After joining, due to the lack of
knowledge about good mirrors, nodes do not select well-suited mirrors yet, and the number
of replicas increases. However, as soon as nodes obtain more precise rankings, the quality
of mirrors improves and the replica overhead is reduced by about 50%. On average each
node needs to store less than seven replicas.

9.2.2 Stability and Communication Overhead

SOUP needs to reach a stable state quickly in order to keep communication overhead low. In
particular, if a user frequently changes her set of mirrors, all her data has to be transmitted
to new mirrors often. SOUP’s profile distribution is shown in Figure 9.3. For the ease
of exposition, the results in the remainder of this chapter are obtained from the Facebook
dataset if not explicitly stated otherwise. SOUP showed the same behavior for both other
datasets.
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Figure 9.3: SOUP proves to be stable, and 90% of the users store less than seven replicas.
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Figure 9.4: SOUP drops only a low amount of data.

Here, three snapshots are taken throughout the simulation: after the first day, after two
weeks, and after one month. After day one, around half the nodes need to store 10 or more
replicas so that the system achieves high availability. However, as user experiences are
more accurately measured, 90% of the nodes need to store less than seven replicas (after
two weeks). The same distribution is present at the end of the simulation, which indicates
that SOUP has reached a stable state.

Further, while mirror rankings become more accurate, the drop rate of data converges
from 0.07% to a very low 0.045%, as shown in Figure 9.4.
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Figure 9.5: SOUP is robust and does not discriminate any node.

In other words, of 1000 profiles that are stored at mirrors, only about five are dropped.
Finally, the upper half of our nodes with regards to online time provides more than 90% of
all replicas. This indicates that weak nodes, in particular mobile nodes, are rarely chosen as
mirrors, saving storage, bandwidth and battery on these devices.

9.2.3 Robustness

To offer a robust OSN, regardless of their own online probability or quantity of friends,
every user should achieve a very high level of data availability in SOUP. The top and bottom
10% of users (first with regards to their own online probability and second with regards to
their number of friends) are compared with regards to their performance in Figure 9.5. After
just one day, even the bottom 10% of users obtain data availability of above 99%. Hence, in
contrast to some related works (e.g., [42, 43, 45, 46]), users are discriminated neither based
on their own online time nor based on the quantity and quality of their social relations.

A side observation is that, while SOUP achieves high availability even for nodes that are
almost never online, inactive, or maintain no social relations, most of the few total losses
also occur for such singletons, whose data is of little interest for the active users anyway
(see Chapter 2.1.1).

9.2.4 Adaptivity

One of SOUP’s challenges is to exploit altruistically provided resources efficiently. In an-
other experiment, altruistic nodes are injected into the running system. An altruistic node is
a regular machine, which is steadily online, but does not provide high storage capacity as a
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Figure 9.6: SOUP can exploit altruistic resources.

server would do. Figure 9.6 shows the impact of the presence of small percentages of such
nodes. It appears that 5% (a=0.05) altruistic nodes can cause a slight increase and stabiliza-
tion of availability, but the improvement in terms of replica overhead is more prominent. As
altruistic nodes become known to the OSN, nodes can select fewer mirrors than before to
achieve the same level of availability (recall that each node still aims for 99% availability).
Hence, while SOUP does not rely on any kind of altruistic nodes, it can exploit such nodes’
resources if available.

9.2.5 Resiliency Against Node Dynamics

To also offer a secure DOSN, SOUP has to be resilient when facing a variety of adverse sce-
narios. First, in addition to the high churn rates already included in the evaluation method-
ology, a fraction of the users might abruptly become unavailable to the rest of the OSN.
The reasons for this can be manifold and range from accidental network and node failures
to overloaded mirrors (e.g., if a mirror hosts a very popular profile) and DDoS attacks. To
show SOUP’s resiliency in such a case, the best nodes in terms of online time are assumed
to be unavailable at the same time. The results of such an event are shown in Figure 9.7.

If the best 5% of nodes leave the OSN simultaneously (d=0.05), there is a noticeable drop
in both data availability and replica overhead directly after the departure, caused by the con-
comitant loss of mirrors within the OSN. However, the remaining nodes adapt quickly by
choosing new mirrors, and SOUP’s performance improves without introducing any addi-
tional replica overhead.

Interestingly, SOUP is independent from the top 1-2% of nodes, as data availability does
not significantly drop as these nodes leave the OSN. Thus, DDoS attacks against the sys-
tem itself are difficult to execute, as even shutting down the top 5% of nodes will not be
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Figure 9.7: SOUP is resilient against node dynamics.

troublesome.

Even though the system itself is resilient to DDoS attacks to this extent, a specific profile
might be unavailable, either when an adversary attacks its mirrors or when mirrors of pop-
ular data deny service due to overloading. In such a case, these mirrors will receive a lower
ranking, and SOUP will distribute the load among additional mirrors. If a mirror is com-
pletely taken down, SOUP will choose a different one, as shown above. Compared to the
static mirror choices of related work, SOUP is the only approach capable of such adaptation
towards both increasing and decreasing resources.

9.2.6 Resiliency Against Malicious Nodes

Second, adversaries are not limited to DDoS attacks, but may also employ different attacks
on SOUP’s selection scheme as discussed in Chapter 8. To evaluate the resiliency of SOUP
in this dimension, different fractions of the OSN are now assumed to be compromised. Due
to increased potential to control a large number of nodes (e.g., by using cloud services),
SOUP’s performance is measured under attack of up to half the nodes in the OSN, whereas
none of the existing DOSN solutions consider attacks on their system at all (Chapter 4). In
this experiment, SOUP not only needs to tolerate the attackers after having stabilized, but
also has to bootstrap in their presence.

The first attack under investigation is a slander attack, in which attackers use fake iden-
tities to manipulate experience sets (or recommendations to bootstrapping users), such that
these sets are the inversion of what the attackers observed in reality. For instance, a Sybil
will report a low performance for a well performing honest mirror, whereas it will do the
opposite for a badly performing mirror.
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Figure 9.8: SOUP is resilient against a slander attack.
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Figure 9.9: SOUP can recover from a flooding attack.

The Sybils are assumed to have infiltrated the OSN successfully and they send out recom-
mendations at the maximum rate (see Chapter 8.3). Figure 9.8 shows that even when 50% of
social relations—and thereby experience sets—are subject to slander, the data availability
at most drops to around 95% (m = 0.5).

The second considered attack deals with a flooding adversary, which uses the fake iden-
tities (Sybils) to flood benign mirrors with data. The results for different percentages of
Sybils are shown in Figure 9.9. Even with as many Sybils as regular identities in the OSN,
the data availability does not drop below 90% for the benign users in the long run. The
replica overhead, although increased, does not exceed 13 copies per node. In this case, pro-
tective dropping prevents data of socially connected nodes from being dropped for a Sybil’s
data, and avoids the full utilization of resources at benign nodes.

In addition, SOUP can even help to detect Sybils with time passing. With an increasing
number of attackers being identified, SOUP is able to recover from the attack. Hence,
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Table 9.2: SOUP outperforms related work (p = online probability).

SOUP Power-law ~99.5% 6.5

Approach Online Time Assumption Availability Number of Replicas

SOUP ~98.5% 14

PeerSoN
10% of nodes p=0.9

25% of nodes p=0.87

30% of nodes p=0.75

30% of nodes p=0.3

<90%-100%;

Depends on p
6

SOUP ~100% 4

Safebook
Uniform, all nodes p=0.3

~90.0% 13-24

although storing some copies of malicious nodes, even a flooding attack with half of the
identities in the OSN being malicious can be tolerated quite well.

9.2.7 SOUP versus Related Work

SOUP’s superiority over state-of-the-art solutions mainly stems from its qualitative prop-
erties, which were extensively evaluated above. Compared against those, SOUP is robust,
adaptive to node dynamics, and resilient against attacks.

To further compare the performance of SOUP and related work quantitatively, SOUP is
now simulated under the node online time distributions assumed in related works, in those
cases where the distributions were available. As shown in Table 9.2, SOUP outperforms
both PeerSoN and Safebook, providing higher data availability and lower replica overhead.
In particular, when compared with Safebook, SOUP achieved 8.5% higher availability while
keeping the replica overhead near the lower bound of Safebook. In this scenario, SOUP per-
forms slightly worse than in the original experiments. This is caused by the uniform online
time distribution, due to which SOUP cannot exploit the heterogeneity of node characteris-
tics to select well-suited mirrors.

In the PeerSoN scenario, the online times of nodes are drastically improved over SOUP’s
power-law assumption. Still, PeerSoN is not able to create a robust OSN and the data
availability ranges between less than 90% and close to 100%, as nodes depend on their own
online times. SOUP however provides close to 100% data availability for all nodes and
further reduces the replica overhead by one third.
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9.3 Summary of Addressed Challenges

In essence, the results of the large-scale simulation of SOUP show that SOUP addresses the
following challenges:

(i) SOUP is robust in the sense that all data of all users is available at (almost) all times.
It does not introduce user payments or excessive storage overhead.

(ii) SOUP is secure in the sense that its performance does not significantly deteoriate in
the presence of large numbers of malicious users, which execute both Sybil attacks on
the mirror selection scheme and DDoS attacks on the mirrors themselves.

(iii) It is adaptive to altruistically provided resources.

(iv) SOUP’s mirror selection exploits the social links between OSN users.

However, besides storage overhead, SOUP also introduces bandwidth and processing
overhead. For SOUP to be feasible, both overheads have to remain within reasonable
boundaries. Therefore, the challenge of low overhead is only partially solved so far. To
realistically measure SOUP in terms of bandwidth and processing overhead, SOUP has to
be implemented and deployed.





Chapter10
SOUP - Implementation

The large-scale simulation of SOUP’s mirror selection scheme showed that the approach in
fact effectively addresses many drawbacks of existing DOSNs. In a next step, this chapter
describes the implementation of SOUP, including its mirror selection scheme. The im-
plementation of a SOUP node comprises two components: the SOUP middleware and the
SOUP applications. To make SOUP available to mobile users as well, both components
have also been implemented on Android.

In the big picture, there exists a clear separation between the SOUP middleware and its
applications. The middleware is responsible for joining the overlay of SOUP users as well as
for altering encrypted social data and for securely communicating with other nodes. Further,
the middleware also takes care of the selection of mirrors and provides the functionality to
enable data synchronization.

The applications on the other hand exploit the functionality offered by the middleware
and allow users to interact with it via graphical interfaces. They create and modify user
data, which is then managed by the middleware, and can exchange their own data
transparent to the middleware.
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Figure 10.1: Architecture of a SOUP Node. The node consists of the modularly organized
SOUP middleware and SOUP applications, which run on top of the middle-
ware. The two components have been implemented for both desktop and mo-
bile use.

10.1 Implementation of the SOUP Middleware

The SOUP middleware consists of several modules as shown in Figure 10.1, of which each
is responsible for a pre-defined task and designed to be easily exchanged for an improved
or different approach at any time. All modules communicate by passing SOUP objects to
each other.

The code of the middleware is lightweight and currently contains around 3400 Source
Lines of Code (SLOC) in JAVA. FreePastry 2.112, an open source implementation of the
Pastry DHT [102], is used as the underlying DHT. Most of the code and executables are
available online.13

Note that it is possible to exclusively run this middleware component—for instance, to
provide an altruistic node, which only acts as a mirror or just relays DHT requests for mobile
nodes.

12http://www.freepastry.org
13http://soup.informatik.uni-goettingen.de/
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10.1.1 Application Manager

The application manager is the northbound interface of the SOUP middleware and provides
an API to SOUP applications. It has two functionalities:

(i) it allows arbitrary social applications to run on top of the SOUP middleware; and

(ii) it enables communication between applications transparent to the middleware itself.

On one hand, it encapsulates content from a SOUP application into SOUP objects, which
are then further processed by other modules. On the other hand, it decapsulates content
destined for an application from SOUP objects received from other modules.

In the following sections, the life cycle of a SOUP object, starting at its creation and
ending at its transmission to the network stack is followed. The accompanying example
will be a friend request issued by a user Alice and targeted at a user Bob.

The ASCII protocol for communication between the middleware and the applications
is kept simple but yet expressive to allow application developers to easily implement new
OSN functionality. To illustrate the simplicity of the protocol, an example code snippet for
the friend request is shown in Listing 10.1. Here, in only 5 SLOC, the application needs
to indicate that a new request has been issued by the user, and then tell the middleware the
SOUP ID of the target user. The application manager will then create a SOUP object which
informs the social manager that a change to the friendlist of Alice is imminent.

Listing 10.1: Required code snippet to be written by the application developer to implement
a friend request

1 / / i n d i c a t e i n t e n d t o add a f r i e n d s h i p
2 w r i t e I n t (SOUPCode .ADD RELATION ) ;
3 / / w a i t f o r ACK by SOUP
4 isNotACKedThenThrow ( b i s ) ;
5 / / w r i t e t a r g e t ’ s SOUP ID
6 w r i t e ( Bob . SOUPId . g e t B y t e s ( ) ) ;
7 f l u s h ( ) ;
8 / / w a i t f o r ACK by SOUP
9 isNotACKedThenThrow ( b i s ) ;
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10.1.2 Social Manager

The social manager module is responsible for processing requests when a SOUP object
indicates a change to the social data. Such a change might either be an update to the actual
user data, or an update to the social graph, such as a friend request.

In the example, the social manager will alter Alice’s friendlist by adding an unconfirmed
social relation. It will further create a new SOUP object with Bob as destination, indicating
that Alice wants to establish a friendship with Bob.

10.1.3 Security Manager

However, the social graph (and all other user data) is encrypted by default. To enable SOUP
operations on encrypted data, the security manager module deals with all encryption-related
tasks. It uses an ABE implementation which has been optimized to lower the cryptographic
overhead for this thesis.14

For instance, when receiving the friend request, the social manager cooperates with the
security manager to decrypt Alice’s friendlist, to add the request, and to re-encrypt the list.
Note that the data is encrypted with a symmetric key, while the key itself is protected by the
ABE Access Structure to prevent unauthorized access to the friendlist (see Chapter 7.6).

Also, SOUP objects exchanged between different SOUP middlewares need to be signed.
The security manager thus also signs the outgoing SOUP object towards Bob with Alice’s
private key.

10.1.4 Mirror Manager

Changes to social data might require a re-distribution of the data to the user’s mirrors, for
which the mirror manager module is responsible. For instance, once Bob has confirmed the
friendship with Alice, Alice needs to redistribute her updated friendlist to her mirrors. Only
then can she retrieve her most recent social data in case of, e.g., switching to another device.

The mirror manager will thus try to update Alice’s data at the mirrors, or, if a mirror is
unavailable, store an update for that mirror (see Chapter 7.7). At the same time, it also takes
care of SOUP’s key element, the selection of mirrors as introduced in Chapter 8.

14Based on https://github.com/wakemecn/cpabe
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10.1.5 Interface Manager

All SOUP objects that have to be transmitted to another node are ultimately passed to the
southbound interface of SOUP, the interface manager, which can then initiate communica-
tion via a suitable network interface.

In the example, the security manager will hand the signed friend request object to the in-
terface manager, which is then responsible to forward the request to Bob over an appropriate
link. Additionally, it will also receive the SOUP objects containing the updated friendlist,
which have to be sent to Alice’s mirror nodes.

To find out the available interfaces of a target node, the interface manager can lookup
each target node’s entry in the DHT.

If the interface manager later receives an encrypted request confirmation object from Bob,
it forwards it to the security manager, which unlocks the object and issues a confirmation to
the application via the application manager. The security manager will further forward the
confirmation of the request to the social manager, which in turn will update Alice’s friendlist
accordingly.

10.2 Implementation of Exemplary SOUP Applications

To make use of the functionality offered by the SOUP middleware, a demo client has been
implemented as a SOUP application. It supports essential OSN functionalities: Users can
search for each other in the OSN, establish friendships, view other users’ profiles, share pho-
tos, and exchange messages. It implements all functionality provided by the middleware’s
API (see Chapter 7.4), which requires less than 350 SLOC (plus approximately 3000 SLOC
for the graphical user interface).15

Next to the demo application, a small broker application, which allows for a soft transi-
tion between Facebook and SOUP, has been implemented. It tries to deliver content created
in SOUP to Facebook and vice versa, as far as the Facebook API allows. The application
is further capable of looking up possible matching contacts in SOUP when fed with a Face-
book friend list. Note however that the Facebook API is constantly changing. The changes
introduced by each update are at times major, and can restrict the ability of the transition
application to transfer content.

15A video showing the demo application and its interplay with the middleware can be found at: https://

www.youtube.com/watch?v=bxfVvSXC2WY

https://www.youtube.com/watch?v=bxfVvSXC2WY
https://www.youtube.com/watch?v=bxfVvSXC2WY
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Figure 10.2: SOUP on a Nexus 4 Android Phone

10.3 Implementation of SOUP on Android

Both the SOUP middleware and the SOUP demo application have also been implemented
on the Android mobile platform. During the porting, particular attention was paid to the
clear separation between the middleware and its applications. Hence, the middleware was
implemented as an Android service, which predominantly runs in the background. To en-
sure the mobile-friendliness of SOUP, it enables mobile nodes to relay their DHT requests
through a fixed gateway node as introduced in Chapter 7.5.

The demo application implements the same ASCII protocol to communicate with the
service in the same way a desktop application would communicate with the desktop mid-
dleware. Figure 10.2 shows a screenshot of the demo application running on top of the
SOUP middleware service on a Nexus 4 Android phone. While its graphical user interface
is kept simple, the application essentially offers the same functionality as the desktop demo
application.





Chapter11
Deploying SOUP in the Wild

In the final step of evaluating SOUP, the middleware and applications as implemented in
the previous chapter have been deployed in order to build a real-world DOSN. The goal
of this deployment is to measure the performance of SOUP in further parameters, which
cannot be evaluated by simulation, but are critical to show that SOUP is feasible and does
not face significant deployment obstacles.

First and foremost, these parameters include the bandwidth consumption of SOUP in
several scenarios, but also its cryptographic and storage overhead along with its application
level latency.
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11.1 Deployment Setup and Methodology

To demonstrate the feasibility and deployability of SOUP, a prototype of the system was
deployed to a real-world DOSN consisting of 31 users. Four of those were using different
Android mobile phones. All phones were relaying via the same gateway node, and that
node was further a bootstrapping node for all users running the regular SOUP client. Data
of several days was collected, during which the SOUP users established 282 friendships,
shared 204 photos, and exchanged 1189 messages.

The deployment outperformed the simulation results with regards to availability—all data
was available at all times, and there was no loss at all—and replica overhead. However, note
that the large-scale simulations should be more accurate as the online times observed during
the deployment were much longer online than typical for OSNs.

Instead, the focus of the measurements during the deployment was on learning about
SOUP’s performance in those parameters, for which an evaluation by simulation is not suf-
ficient. These parameters mainly include its bandwidth consumption, cryptographic over-
head, storage overhead, and application level latency.

11.2 Bandwidth Consumption

For SOUP to be feasible, it first and foremost must not introduce excessive bandwidth con-
sumption. Here, the traffic that was originally flowing towards a sophisticated centralized
infrastructure has to be absorbed by the participants themselves (in particular by the mir-
rors of data), as they form and maintain the SOUP overlay themselves. In particular, there
are two kinds of overhead, for which SOUP must show that it is able to keep them within
reasonable boundaries.

(i) First, the overhead to maintain the overlay itself must remain low. Recall that while
maintaining the overlay, some nodes act as bootstrapping nodes or relay DHT requests
for mobile nodes.

(ii) Also, the overhead that is induced due to the selection of mirrors must be manageable.
Recall that most nodes select around seven other nodes as their replicas. The com-
munication overhead must be limited at both the mirrors and the selecting node itself.
Other participants may request data from the former, while the latter must not change
its mirrors very often, since doing so results in a retransmission of the whole data to
the new mirror(s).
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Figure 11.1: The control overhead introduced by SOUP is low.

11.2.1 Overlay Overhead

The bandwidth consumption of the DHT at the bootstrapping node is shown in Figure 11.1.
The figure depicts those thirty minutes of the whole deployment in which the bootstrapping
node—as the most utilized node in the deployment—experienced the most requests.

Recall that the bootstrapping node is not only responsible for booting new nodes into the
DHT ring, but also acts as a gateway for all mobile nodes and additionally has to play its
role as a regular node on the DHT, and is therefore responsible for queries towards a certain
range in the key-space.

Overall, the overlay overhead is very low. Only upon join and leave operations (i.e.,
shifting some entries in the DHT) the network interface is utilized at around 20-40 KB/s.
At the same time, lookups do not have a visual impact.

As a result, the cost of relaying for a mobile node (i.e., forwarding lookups and their
results) is low as well. Only during the join procedure of a mobile node, which requires
several DHT operations, relaying consumes a noticeable amount of bandwidth, which, how-
ever, still remains very low.
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Figure 11.2: The communication overhead of SOUP remains manageable.

11.2.2 Mirroring Overhead

The traffic introduced by SOUP itself is also manageable. Figure 11.2 shows the most band-
width intense period of 20 minutes observed for any user during the time of data collection.
Messaging or simple profile requests do not consume a lot of bandwidth and are hardly
distinguishable from an idle link. A more intense activity like skipping through a photo
album does not consume a regular user’s bandwidth as well, as she takes her time to view
the pictures.

Note that this kind of data traffic, i.e., the traffic a user generates by consuming content,
is approximately the same as in centralized OSNs, as the user needs to download the data
in those systems as well. As shown above, the overhead introduced by SOUP to lookup the
location of the data item of interest is low.

Only when producing or mirroring content, SOUP will generate additional traffic. The
reason is that produced data has to be distributed to the mirrors as well. At the same time, the
uplink of a user who acts as a mirror might be utilized. As a consequence, in Figure 11.2,
the most traffic is generated at the creation of a photo album, and distributing that photo
album to the user’s mirrors. As in centralized OSNs, mobile users on a data plan should
delay such uploads until they can access a WiFi link.
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11.2.3 Stability of Mirror Sets

It is further important for SOUP to offer stable mirror sets. The reason is that every time
a user changes her mirrors, she needs to transmit all her data to the new mirror(s). At the
same time, if there is no fluctuation in her mirror set, she can then transmit the—much
smaller—updates to her data to her mirrors.

Figure 11.3 shows that, overall, the mirror sets remain stable and do not differ much
between selection rounds. After the initial rounds, most mirror changes are additions of
a random node as described in Chapter 8. Each round, only few nodes change additional
mirrors. As a consequence, the whole data of a user does not have to be transmitted often,
and the communication overhead remains modest.

Note that during the initial mirror selections many users might not have uploaded much
data to the OSN yet. They have just joined the network and are interested in creating an
audience for their data first. Since users find a well suited set of mirrors quickly, unnecessary
retransmissions of a large set of multimedia data might thus not occur often.
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11.2.4 Stress-testing SOUP

With regards to bandwidth consumption, the real-world deployment did not push SOUP to
its limits. Thus, in another experiment, SOUP was specifically stress-tested. To emulate a
higher load, one particular mirror was chosen to store a large amount of user data, which
was then requested with much higher frequencies than during the deployment.

As the large amount of user data the complete Facebook and Google+ profiles of 20
users—including private data—were collected. These profiles offer details beyond a
crawler’s results, as those often do not include major parts of a user’s data (e.g., photos on
Facebook are not publicly available by default) [36].

The average profile size was approximately 10 MB, with the largest profile containing
hundreds of photos in 27 photo albums and one video. This profile consumed 60 MB of
disk space in total. At the same time, many profiles are small-sized, i.e., people do not
upload much multimedia information. This coincides with observations that only few users
in OSNs have a high degree and therefore are encouraged to share their data [156].

Overall, the data disclosed 2035 unique data items, for which Figure 11.4 shows the CDF
of item sizes. More than 35% of all items are less than 10 KB in size, and 93%—including
most images—are less than 100 KB in size, while large items rarely exist. These findings
mainly coincide with those in [36]. The whole data sums up to 206 MB. Note that even if
some profiles in the OSN happen to be much bigger, this would mainly affect the storage
required at the mirrors, as long as the item sizes remain small.
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Figure 11.5: Bandwidth consumption at high request rates.

One mirror was then selected as a host for all this data. Recall that storing these 20
profiles is three times as much as 90% of SOUP nodes will have to store (see Chapter 9.2.2).
Afterwards, the mirror received requests asking for text, photo and video data according to
the request probabilities for each data type as described in [181].

As shown in Figure 11.5, the average bandwidth consumption is well below 600 KB/s,
even if the mirror has to handle 20 requests per second. With an increasing request fre-
quency large items are hit more often, which causes the spikes in the measurements.

As a result, a request might time out once a mirror becomes overloaded or limits its
bandwidth, which may happen especially to nodes mirroring popular data. Note that unlike
other approaches, in which users are stuck with a static or heteronomous set of mirrors [42–
46], SOUP will adapt to this situation.

11.3 Cryptographic Overhead

Overall, the cryptographic overhead remains low, which coincides with the results obtained
by Baden et al. in [36]. The processing times for SOUP’s ABE operations are approximately
10% faster than existing JAVA implementations. When encrypting a key with four attributes
(the processing time grows linearly with the number of attributes, independent of the data
size [132, 182]), the 90th percentile encryption time was 262ms, whereas decryption was
four times faster and took 61ms per data item. As improved libraries for encryption (e.g.,
DOSN-specific approaches [182]) become available, SOUP can implement these as a new
version of the Security Manager.
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11.4 Storage Overhead

Recall that the mirror chosen for the stress test of SOUP stores 20 profiles—three times
of what 90% of SOUP nodes will have to handle. Still, the data sums up to 206 MB of
consumed space, which is both surprisingly low and easily manageable, even for nodes
with little resources. In fact, for 90% of all nodes, SOUP will only use as little as 70 MB of
disk space. Even if all profiles are treated to be of the same size as the largest profile in the
dataset, the consumed space is only 1.2 GB for the stress-tested mirror, and 390 MB for a
node that stores SOUP’s average of 6.5 profiles.

11.5 Latency and Processing Overhead

Finally, the application level latency that a client experiences when requesting the data from
the mirror, which is under full load (12 requests per second), was measured. Regardless of
the location of the client (distributed over several locations in the Amazon EC2 cloud), the
request latency is 2 ·RT T + ε , where 1 Round-Trip-Time (RTT) is due to TCP connection
establishment, 1 RTT is caused by the data request over the established TCP connection,
and ε < 2ms is the actual processing overhead introduced by SOUP.

11.6 Summary of Addressed Challenges

The deployment shows that SOUP can indeed also fulfill the last remaining challenge, as
it—next to a limited storage overhead—also operates with little bandwidth and processing
overhead. Thus, in combinations with the results obtained in previous chapters, SOUP can
enable high data availability for all users with little overhead.





Chapter12
Discussion and Future Work

This thesis underlined that a promising DOSN approach needs to fulfill a number of chal-
lenges to be able to compete with centralized DOSNs. After presenting the design, evalu-
ation, implementation and deployment of SOUP in the previous chapters, this last but one
chapter starts with a summary of whether or not SOUP fulfills all these challenges.

The remainder of the chapter then mainly discusses possible improvements to SOUP,
which are left for future work. Users could for instance exchange more meaningful recom-
mendations by valuing certain recommendations higher than others, or by including more
measurements than just the mere success or failure to retrieve data at a mirror’s site.
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12.1 Recap: Does SOUP Meet the Challenges?

To begin with, SOUP is robust. It achieves high data availability with limited overhead for
all users, i.e., it does not discriminate against users based on their social relations or online
probability. As each user is able to select as many mirrors as needed, SOUP is able to
provide robust data availability that is close to centralized solutions. Coincidentally, SOUP
allows for the consideration of altruistic nodes, which will obtain high rankings and will
thus be chosen as mirrors with a high probability.

At the same time, SOUP is also secure. The use of aging factors in the regular mode
makes SOUP resilient to churn and node dynamics (as, e.g., provoked by DDoS attacks),
as it is able to immediately react to such phenomena. If a node acts maliciously and tries to
flood the system, protective dropping provides a defense. Further, Sybil users are success-
fully hindered to manipulate SOUP’s cooperation schemes. Moreover, user data privacy
is granted by appropriately encrypting the data with Attribute Based Encryption, such that
only eligible users can access it.

Additionally, SOUP pays particular attention to mobile nodes on several layers. First,
during mirror selection, SOUP considers differing node characteristics, as weak nodes will
obtain low experience rankings and will be chosen as mirrors only rarely. This is of partic-
ular help to mobile users, as their devices with limited resources will not be used as mirrors
frequently. Second, mobile nodes are treated with further special care, and do not have to
bear the burden of DHT maintenance, which also helps the system to stabilize. As SOUP
is also implemented on Android, it is ready-to-use on mobile devices as well. Users on a
data plan can additionally disable mirroring if required in order to avoid high data volume
transmissions on their mobiles.

Moreover, SOUP considers social relations between OSN users, as it ranks socially re-
lated nodes higher than unrelated ones. SOUP further respects social relations with protec-
tive dropping, which prefers to keep data of friends over that of strangers.

Furthermore, both the SOUP node architecture and its implementation allow for a real-
ization of SOUP as a generic DOSN. The SOUP middleware allows multiple social ap-
plications to run on top of it concurrently. All applications exploit the same social data,
which leaves the OSN user with the responsibility to maintain a single set of data, instead
of having to administer one set of data for each application.

Finally, SOUP and its applications have been shown to be feasible in a deployment of a
prototype. There exist no costs for the user, as only user-provided resources are exploited,
and the bandwidth, storage and cryptography overheads are within reasonable bounds,
which do not contra-indicate SOUP’s feasibility.
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12.2 The Role of User Online Time

One particular challenge in which SOUP proved to be successful is the availability of user
data. The results obtained in Chapter 9 are of course linked to the assumptions made with
regards to the online time of users (and thus the online time of mirrors). As a consequence,
the availability of user data might turn out differently when users turn out to adopt divergent
online time patterns.

However, there are three key observations to consider:

(i) Among all online time distributions chosen by SOUP and related works, the power-
law distribution is the worst observed case.

(ii) SOUP—next to offering many qualitative advantages—is further already performing
much better than related work, regardless of the assumed online time distribution
(Chapter 9.2.7). If users turn out to be online more often, SOUP can exploit such
changes towards lesser replication and thus communication overhead.

(iii) Even if users turn out to be less often, SOUP can adapt to the new situation by increas-
ing the number of replicas in order to keep availability high.

SOUP thus provides an improvement over relevant related works, which cannot react to
such changes because they lack adaptivity.

12.3 Protecting User Privacy Beyond Encryption

Although SOUP addresses its challenges well, and in particular significantly increases the
security of DOSNs, some malicious exploitation might still be possible.

For instance, SOUP is currently protecting user data based on its encryption. However,
accessing the data content itself is not necessarily always needed to breach user privacy.
Another possibility for a miscreant is to serve as a mirror and perform tracking of accesses
to the mirrored data. Leaking the resulting access patterns could compromise the accessing
user’s privacy.

However, the gain for the attacker and the damage to the user remain questionable. First,
the attacker has to operate as a benign mirror constantly to obtain and maintain a high
ranking, which is costly in terms of providing resources. Second, unless the attacker is able
to control all replicas of a user, his view of the overall data access is still limited, as he
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can only put his eyes on a portion of the data accesses. The attacker can thus not be sure
whether or not this is representative for a user’s overall access behavior.

Furthermore, achieving control of all replicas of a user is not easy. Initially, the attacker
would need to provide a wide set of exceptionally well performing mirrors. Afterwards,
it would have to get the target user to store its replicas on exactly these mirrors. This is
difficult if the user already has established a stable set of mirrors, as the attacker has to
rely on being randomly added to that set multiple times. This puts SOUP ahead of those
related works which rely on a single replica for which access can be easily tracked by the
replicating entity [36–38, 47], and also of current centralized OSNs, in which the provider
itself can track access for all members of the network.

Still, leakage of access information might still be embarrassing for a user, if the leaked
information only needs to entail a binary notion of whether or not the user accessed the
data. This can be treated as an instance of Private Information Retrieval (PIR) [183], which
deals with the problem of access pattern tracking at an untrusted server. There is a variety
of established approaches to countering the adversary [184–186], of which some (e.g., The
Onion Router (TOR) [184]) can be already set up by the user herself, if desired.

12.4 Use of Social Relations

In SOUP, social relations not only provide incentives to store data, but also play a role when
selecting mirrors, deciding which data should be dropped, or filtering out malicious users
and limiting their impact.

However, the trustworthiness of social relations within an OSN is questionable, as shown
in earlier parts of this thesis (Chapter 6). As a consequence, recently, there have been
approaches to breaking this model and studying the effect of more expressive social rela-
tions [81, 187]. In fact, friend relations in OSNs are multi-faceted and the existence of the
relation itself only contributes very little to its tie strength according to a model in [81].

Even though SOUP is performing reasonably well even if a large fraction of the social
relations in the OSN is compromised, exploiting such models may provide an opportunity to
further improve its performance, robustness, and security. For instance, during the process
of mirror selection, SOUP could prefer closely related users represented by a strong tie. The
selecting node could value their experience sets more than those of mere acquaintances,
which could further lower the impact of manipulated experience sets. Or, the value of
the social filter β could be dynamically adjusted to the strength of the relation with each
particular friend. Also, data of closer friends could be more secured from being dropped.
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However, as learned from the drawbacks of related works and the design of SOUP, the tie
strength must not be overvalued. Otherwise, the performance of users without strong ties
(e.g., passive, but possibly still actively consuming users) might deteoriate.

12.5 SOUP and Applications for Directed Social Graphs

SOUP currently considers the social graph to be undirected. Thus, links in the graph repre-
sent a mutual friendship between users. Some OSN applications (e.g., Twitter) are however
based on a directed social graph (see Chapter 2.1.1), in which one user establishes a link to
another user, but not vice versa. SOUP’s mirror recommendation scheme is not bound to an
undirected graph. To enable a Twitter-like functionality, recommendations can be sent from
followers to the followee.

However, doing so would remove the need for recommendations to originate from be-
friended nodes, and thus lower the bar for a Sybil attack on the scheme. The amounts of
fake accounts on popular OSNs is estimated to range between 1% and 5%, and accounts
usually have around 10% fake (and thus possibly Sybil) followers [49, 188]. At the same
time, SOUP has shown to be resilient even if up to 50% of the social links are compro-
mised, which would enable a use of SOUP’s recommendation scheme even for Twitter-like
networks.

However, SOUP should maintain its genericness and the option of exploiting social in-
centives, and should not be left at risk in the case users accumulate more fake followers.
This could particularly happen if SOUP would use a directed graph, because in that case
the attacker would have additional motivation (manipulating the recommendation scheme)
to follow a large amount of honest users. As a result, the amount of fake followers might
grow to a point, at which SOUP can no longer function properly (i.e., more than 50% per
user).

Fortunately, SOUP has also been shown to only need a limited amount of input recom-
mendations to function properly (see Chapter 9.2.3). Thus, applications for a directed graph
should be implemented on the application layer, whereas the data availability can be taken
care of as described in previous chapters. For instance, a user may run a Twitter-like ap-
plication and the follower-relations can be managed by that application. At the same time,
rather than relying on her followers in the Twitter clone, the SOUP data accessed by that
application would still be made available with the help of the user’s friends in SOUP. This
way, the clear separation between the middleware and its applications is also maintained.
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12.6 Use of an Extended Recommendation Scheme

The recommendations in SOUP currently measure whether or not a user’s friends were able
to retrieve the user’s data from her mirrors. The mere availability of data is, however, only
one part of the quality of service perceived by a user requesting that data from a mirror.
Most obviously, the delay of the data transfer contributes to that quality of service as well.

SOUP can be extended in a way that a user’s friend also reports the bandwidth available
at the mirrors, which is then considered during mirror selection. Mirrors could opt-in (based
on their privacy preferences) to also providing their geographical location within the DHT,
such that a data request can be routed to the geographically closest high bandwidth mirror.
Ultimately, this could lead to a better quality of service for users requesting data from
mirrors.

12.7 The Special Case of Large Profiles

Although the storage and communication overhead is currently unproblematic when de-
ploying SOUP to the real world, there might be difficulties if users share much larger data
items or generate extremely large user profiles in the future. One option to overcome such
difficulties could be the use of network coding to distribute a large profile among mirror
nodes.

Network coding originally was proposed to improve the throughput utilization of a given
network topology [189], but can also be used in the context of decentralized data stor-
age [190]. Here, a file f can be split into k equally sized ( f/k) pieces, which are in turn
encoded into n fragments using an (n,k) maximum distance separable code (for details see
[189]). After distributing the fragments to n nodes, it is possible to obtain the complete
information from k encoded fragments.

Thus, instead of storing full replicas among mirrors, SOUP could distribute encoded parts
of the profile (pieces), and then allow for reconstruction from those parts’ fragments. Doing
so can (i) prevent one node from being overloaded with a large profile and (ii) increase the
data availability of SOUP as only k fragments need to be available to reconstruct the data of
interest.
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At present, users of Online Social Network (OSN) are facing severe confidentiality
breaches with regards to the privacy of their data, which have their roots in the central-
ized nature of these networks. As a result, OSN providers exhibit global control over all
user data within their domain, and yet they are frequently trying to weaken their users’
privacy even more. At the same time, there is little prospect of a significant turn-around
towards strengthening the privacy of users and their data.

Drawing on the consequences of this, in this thesis, in consensus with a wide range of
researchers, the need for a different approach to online social networking was explored. To
increase user privacy and to comply with the P2P nature of OSNs, Decentralized Online
Social Network (DOSN) constitute a promising alternative. In a DOSN, access to user data
can be controlled by the users themselves such that the data is only accessible by eligible
entities, and the users can be extricated from the need to maintain a wide range of OSN
identities at a multitude of providers that are inspecting their data.

In a comprehensive review of the profileration of existing decentralized solutions, this
thesis showed the difficulty of building a competitive DOSN. The review revealed a series of
imperfections, which make a successful adaptation of any state-of-the-art DOSN unlikely.
By learning from these shortcomings, a series of challenges became apparent which must
be addressed by a novel, promising DOSN.

Among these, attackers orchestrating Sybil attacks against the DOSN emerged as one
central challenge. To decide whether or not existing defense schemes may help with dealing
with the Sybil threat, a thorough analysis of major OSN-based Sybil defenses was carried
out. By focusing on the performance of each Sybil defense solution under a new scenario,
which more truly reflects the evolving behavior of Sybil attackers, the analysis revealed that,
unfortunately, current OSN-based Sybil defenses contain severe weaknesses. In fact, when
Sybils are not grouped together in a distinct Sybil community with very few links to honest
users, all of the evaluated schemes suffer in their effectiveness—some more than others.

Sybil detection approaches, even with modified designs, have a hard time reliably dis-
tinguishing Sybil nodes from honest nodes. In particular, whereas it has been shown that
Sybils can obtain hundreds of attack edges in real-world OSNs, this thesis showed that all
existent approaches can be circumvented by the presence of only a handful of attack edges.

Sybil tolerance schemes are application specific and, rather than being fundamentally
flawed, their weaknesses are mostly in the details. Nonetheless, they too are vulnerable
if Sybils deviate from their assumed behavior. As a consequence, current DOSNs cannot
be protected against Sybil attacks, and a new DOSN itself must be resilient against Sybil
nodes.
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Motivated by the absence of a full-fledged DOSN, this thesis then presented the design,
implementation, evaluation and deployment of a novel, robust and secure DOSN approach.
The SELF-ORGANIZED UNIVERSE OF PEOPLE (SOUP) efficiently compensates for the
lack of a centralized infrastructure by combining an efficient structured overlay — main-
tained by the users themselves — with a new recommendation-based approach to storing
user data in a large-scale DOSN. In doing so, SOUP solves multiple problems of state-of-
the-art DOSN approaches.

SOUP is robust in the sense that it successfully obtains the best mirror nodes for each
user to achieve high data availability with little overhead, and without node discrimination.
The main principle is for each user to function “with a little help from her friends” by
obtaining their observations and recommendations about mirrors particularly suited for the
user herself. A recursive update-based mechanism keeps all selected mirrors synchronized,
and SOUP can converge to a stable state quickly.

SOUP is also secure in several aspects. First, user data is protected from unauthorized
access and analysis as it is securely encrypted with Attribute Based Encryption (ABE). The
encryption routines introduced by ABE allow each user to effectively exert fine-grained
access control to her data. Second, SOUP tackles the severe problem of susceptibility to
malicious users, in particular those executing Sybil attacks. In fact, SOUP can tolerate up
to half of the social links in the OSN to be compromised by Sybils and still function prop-
erly. Besides the Sybil attack, it further copes with additional adverse situations effectively,
including the high churn rates typically observed in OSNs and DDoS attacks.

In addition, SOUP can opportunistically leverage social relations and altruistically pro-
vided resources. It provides solid support towards mobile users, and enables any kind of
social application to be built on top of its easy-to-use application interface. As a conse-
quence, a user can execute multiple concurrent applications sharing the same social data,
which frees her from the need to maintain and manage a copy of her data for each social
application.

A comprehensive implementation and real-world deployment demonstrated that SOUP
is also practicable and does not face hindering economic or technical deployability issues.
SOUP remains free of charge and does not require the user to follow a complicated setup
routine.

Enabling the aforementioned features distinguishes SOUP as a unique, full-fledged
DOSN from existing DOSNs and their deficiencies. Finally, the discussion of opportunities
to enhance SOUP has unfolded a series of possible ways to complete the last steps on the
path towards a robust and secure decentralized online social network.
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The author of this dissertation was the lead investigator and first author of several research
papers. In particular, the work on designing, implementing and evaluating SOUP has been
published in the following peer-reviewed international conference proceedings:

• David Koll, Jun Li, and Xiaoming Fu. SOUP: An Online Social Network By The
People, For The People. In: Proceedings of the 15th ACM/IFIP/USENIX Middleware
Conference (Middleware 2014).
• David Koll, Jun Li, and Xiaoming Fu. SOUP: An Online Social Network By The

People, For The People. In: Proceedings of the 2014 ACM SIGCOMM Conference
(SIGCOMM 2014), Demo Session.

The work on analyzing OSN-based Sybil defenses has been published in the following
peer-reviewed international conference proceedings:

• David Koll, Jun Li, Joshua Stein, and Xiaoming Fu. On The State of OSN-based
Sybil Defenses. In: Proceedings of the 13th IFIP International Conference on Net-
working (Networking 2014).
• David Koll, Jun Li, Joshua Stein, and Xiaoming Fu. On The Effectiveness of Sybil

Defenses Based on Online Social Networks. In: Proceedings of the 21st IEEE Inter-
national Conference on Network Protocols (ICNP 2013), Poster Session.

In advance of, but connected to this thesis, preliminary results and ideas in decentralizing
online social networking have been published in the following peer-reviewed international
conference proceedings:

• Florian Tegeler, David Koll, and Xiaoming Fu. GEMSTONE: Empowering Decen-
tralized Social Networking with High Data Availability. In: Proceedings of the 54th
IEEE Global Communications Conference (GLOBECOM 2011).
• David Koll, and Florian Tegeler, and Xiaoming Fu. GEMSTONE: A Generic Mid-

dleware for Social Networks. In: 8th Annual International Conference on Mobile
Systems, Applications and Services (MobiSys 2010), Poster Session.

Building on the work listed above, the author has further supervised and identified topics
for the following Bachelor and Master theses:

• David Kelterer. Prevention and Mitigation of Denial of Service Attacks in Enterprise
Environments. Bachelor Thesis, 2013.
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• Fabien Mathey. Gemstone Goes Mobile: Enabling Decentralized Online Social Net-
working on Mobile Devices. Bachelor Thesis, 2012.
• Kai-Stephan Jakobsen. Transitioning Social Graphs Between Different Online Social

Networks. Bachelor Thesis, 2012.
• Swen Weiland. Enabling Zero-Knowledge Authentication in Decentralized Online

Social Networks. Master Thesis, ongoing.
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