1,040 research outputs found

    INTRUSION DETECTION OF A SIMULATED SCADA SYSTEM USING A DATA-DRIVEN MODELING APPROACH

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) are large, geographically distributed systems that regulate help processes in industries such as nuclear power, transportation or manufacturing. SCADA is a combination of physical, sensing, and communications equipment that is used for monitoring, control and telemetry acquisition actions. Because SCADA often control the distribution of vital resources such as electricity and water, there is a need to protect these cyber-physical systems from those with possible malicious intent. To this end, an Intrusion Detection System (IDS) is utilized to monitor telemetry sources in order to detect unwanted activities and maintain overall system integrity. This dissertation presents the results in developing a behavior-based approach to intrusion detection using a simulated SCADA test bed. Empirical modeling techniques known as Auto Associative Kernel Regression (AAKR) and Auto Associative Multivariate State Estimation Technique (AAMSET) are used to learn the normal behavior of the test bed. The test bed was then subjected to repeated intrusion injection experiments using penetration testing software and exploit codes. Residuals generated from these experiments are then supplied to an anomaly detection algorithm known as the Sequential Probability Ratio Test (SPRT). This approach is considered novel in that the AAKR and AAMSET, combined with the SPRT, have not been utilized previously in industry for cybersecurity purposes. Also presented in this dissertation is a newly developed variable grouping algorithm that is based on the Auto Correlation Function (ACF) for a given set of input data. Variable grouping is needed for these modeling methods to arrive at a suitable set of predictors that return the lowest error in model performance. The developed behavior-based techniques were able to successfully detect many types of intrusions that include network reconnaissance, DoS, unauthorized access, and information theft. These methods would then be useful in detecting unwanted activities of intruders from both inside and outside of the monitored network. These developed methods would also serve to add an additional layer of security. When compared with two separate variable grouping methods, the newly developed grouping method presented in this dissertation was shown to extract similar groups or groups with lower average model prediction errors

    Practical Attacks Against Graph-based Clustering

    Full text link
    Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-art network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.Comment: ACM CCS 201

    ANOMALY NETWORK INTRUSION DETECTION SYSTEM BASED ON DISTRIBUTED TIME-DELAY NEURAL NETWORK (DTDNN)

    Get PDF
    In this research, a hierarchical off-line anomaly network intrusion detection system based on Distributed Time-Delay Artificial Neural Network is introduced. This research aims to solve a hierarchical multi class problem in which the type of attack (DoS, U2R, R2L and Probe attack) detected by dynamic neural network. The results indicate that dynamic neural nets (Distributed Time-Delay Artificial Neural Network) can achieve a high detection rate, where the overall accuracy classification rate average is equal to 97.24%

    Improving Data Transmission Rate with Self Healing Activation Model for Intrusion Detection with Enhanced Quality of Service

    Get PDF
    Several types of attacks can easily compromise a Wireless Sensor Network (WSN). Although not all intrusions can be predicted, they may cause significant damage to the network and its nodes before being discovered. Due to its explosive growth and the infinite scope in terms of applications and processing brought about by 5G, WSN is becoming more and more deeply embedded in daily life. Security breaches, downed services, faulty hardware, and buggy software can all cripple these enormous systems. As a result, the platform becomes unmaintainable when there are a million or more interconnected devices. When it comes to network security, intrusion detection technology plays a crucial role, with its primary function being to constantly monitor the health of a network and, if any aberrant behavior is detected, to issue a timely warning to network administrators. The current network's availability and dependability are directly tied to the efficacy and timeliness of the Intrusion Detection System (IDS). An Intrusion-Tolerant system would incorporate self-healing mechanisms to restore compromised data. System attributes such as readiness for accurate service, supply identical and correct data, confidentiality, and availability are necessary for a system to merit trust. In this research, self-healing methods are considered that can detect intrusions and can remove with intellectual strategies that can make a system fully autonomous and fix any problems it encounters. In this study, a new architecture for an Intrusion Tolerant Self Healing Activation Model for Improved Data Transmission Rate (ITSHAM-IDTR) is proposed for accurate detection of intrusions and self repairing the network for better performance, which boosts the server's performance quality and enables it to mend itself without any intervention from the administrator. When compared to the existing paradigm, the proposed model performs in both self-healing and increased data transmission rates.

    Advances in Data Mining Knowledge Discovery and Applications

    Get PDF
    Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications

    SensorWebIDS: A sensor with misuse and anomaly based data mining technique for web intrusion detection.

    Get PDF

    Network Intrusion Detection System:A systematic study of Machine Learning and Deep Learning approaches

    Get PDF
    The rapid advances in the internet and communication fields have resulted in ahuge increase in the network size and the corresponding data. As a result, manynovel attacks are being generated and have posed challenges for network secu-rity to accurately detect intrusions. Furthermore, the presence of the intruderswiththeaimtolaunchvariousattackswithinthenetworkcannotbeignored.Anintrusion detection system (IDS) is one such tool that prevents the network frompossible intrusions by inspecting the network traffic, to ensure its confidential-ity, integrity, and availability. Despite enormous efforts by the researchers, IDSstillfaceschallengesinimprovingdetectionaccuracywhilereducingfalsealarmrates and in detecting novel intrusions. Recently, machine learning (ML) anddeep learning (DL)-based IDS systems are being deployed as potential solutionsto detect intrusions across the network in an efficient manner. This article firstclarifiestheconceptofIDSandthenprovidesthetaxonomybasedonthenotableML and DL techniques adopted in designing network-based IDS (NIDS) sys-tems. A comprehensive review of the recent NIDS-based articles is provided bydiscussing the strengths and limitations of the proposed solutions. Then, recenttrends and advancements of ML and DL-based NIDS are provided in terms ofthe proposed methodology, evaluation metrics, and dataset selection. Using theshortcomings of the proposed methods, we highlighted various research chal-lenges and provided the future scope for the research in improving ML andDL-based NIDS
    • …
    corecore